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Studies of perception usually emphasize processes that are largely
universal across observers and—except for short-term fluctuations—
stationary over time. Here we test the universality and stationarity
assumptions with two families of ambiguous visual stimuli. Each
stimulus can be perceived in two different ways, parameterized by
two opposite directions from a continuous circular variable. A
large-sample study showed that almost all observers have pre-
ferred directions or biases, with directions lying within 90 degrees
of the bias direction nearly always perceived and opposite direc-
tions almost never perceived. The biases differ dramatically from
one observer to the next, and although nearly every bias direction
occurs in the population, the population distributions of the biases
are nonuniform, featuring asymmetric peaks in the cardinal direc-
tions. The biases for the two families of stimuli are independent
and have distinct population distributions. Following external per-
turbations and spontaneous fluctuations, the biases decay over
tens of seconds toward their initial values. Persistent changes in
the biases are found on time scales of several minutes to 1 hour.
On scales of days to months, the biases undergo a variety of dy-
namical processes such as drifts, jumps, and oscillations. The global
statistics of a majority of these long-term time series are well
modeled as random walk processes. The measurable fluctuations
of these hitherto unknown degrees of freedom show that the
assumptions of universality and stationarity in perception may
be unwarranted and that models of perception must include both
directly observable variables as well as covert, persistent states.
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The neural networks underlying visual perception are complex
systems and, as such, undoubtedly have internal states. The

formal notion of “state” can be defined as the minimal set of
variables that, together with the input to a system and the fixed
processing mechanisms, allows one to predict the system’s output
(1). If perception is a function of both the sensory input and
internal states, then—because states can vary both across indi-
vidual observers and over time—the presence of an internal state
would manifest itself as potentially large individual differences in
the perception of the same stimulus and in coherent temporal
variations of perception of the same stimulus over time in a
single observer. It is known that visual functions can be modu-
lated (2) on brief time scales by priming (3–6), aftereffects (7–9),
and sequence effects (10–13) [and sometimes on larger time
scales as well (14)]; can undergo visible short-term fluctuations in
the presence of multistable stimuli (15–20); and can undergo
long-term or permanent changes in their structure through
learning (21–24). Despite these examples, little is known about
internal states of the visual system. In terms of underlying mecha-
nisms, the internal state is represented naturally in recurrent but not
in feed-forward neural networks (25, 26).
Here we measure patterns of biases in two families of visual

stimuli and show that, contrary to most known cases, these patterns
can vary radically from one observer to the next, leading to stimuli
that are often perceived in opposite ways by different observers. We
show that these bias patterns can be predicted to a large extent
by simple variables. We therefore call these parameters “state

variables.” They constitute a form of long-term but dynamic
memory in perception and are related to but distinct from the phe-
nomenon of short-term coherence in the perception of multistable
stimuli known as sensory memory (15–20), as we discuss below.
The stimuli in the first family, which we call structure–from–

motion (SFM), consist of moving dots simulating planes rotating
in depth (Fig. 1A). [Examples of stimuli and response procedures
for the two families of stimuli may be seen at lab-perception.org/
demo/p/sfm and lab-perception.org/demo/p/tfm. Following the
16-trial session, the web page displays the participant’s bias.]
Each stimulus can be perceived as having one of two tilts (27–
29), separated by 180 degrees (Fig. 1 B and I). The stimuli in the
second family, transparency–from–motion (TFM), consist of two
sets of dots moving in opposite directions (Fig. 1C). The two sets
of dots are usually perceived as transparent layers, one of which
is seen as being closer or more salient (30–32), also giving rise to
a 180 degree ambiguity (Fig. 1D). Observers reported which of
the two tilts they perceived for SFM stimuli and which of the two
motion directions they perceived closer for TFM stimuli. Suc-
cessive stimuli had different orientations (tilts or motion direc-
tions), sampled in random order from the entire 360 degree
range—in contrast to procedures used to study spontaneous fluc-
tuations (15–20), in which only one stimulus is presented. To reduce
spontaneous fluctuations, stimuli were brief (0.5 s).
Each twofold ambiguity at a different stimulus orientation could

have been resolved as an independent stochastic decision, which
would have yielded an isotropic pattern of perceptual decisions
across stimulus orientations. As we shall show, however, perceptions
at different orientations are far from isotropic, following a pattern
that is both highly stereotypical and idiosyncratic. The individual
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differences are governed by state variables—bias parameters
that exhibit coherence over time, while also undergoing cu-
mulative changes—whose dynamics we explore below.

Results
Experiment 1: Population Distribution and Stability of State Variables.
In a large-scale internet-sourced study, we were able to gather
reliable psychophysical data on 704 participants (see SI Appendix
for details). Individual responses will be presented using the
conventions described in Fig. 1 E and F. The responses of several
representative participants (Fig. 2 A and D) show that perceived
tilts and motion directions generally lay in 180 degree fans. In-
spection of the responses of all participants (SI Appendix, Fig. S1)
reveals that fan-shaped patterns are extremely common—but with
different fan orientations in different participants. This pattern
may be described as a bias in favor of tilts or motion directions
with a positive projection on a “bias vector” (shown as red arrows
in Fig. 2 A and D and SI Appendix, Fig. S1). Individual bias vec-
tors can be estimated as a sum of unit vectors corresponding to
reported tilts or motion directions; the normalized length of the

bias vector yields the bias strength and its direction, the preferred
tilt, or motion direction (Fig. 1 G and H). The population distri-
butions of bias strengths (Fig. 2 B and E) were very different
from those expected for the null hypothesis of random responses
(Kolmogorov–Smirnov tests, P < 0.0001).
Although a large majority of observers had strong fan-shaped

biases, individual observers had very diverse bias directions. Two
randomly chosen subjects disagreed with one another on the
average of 45.3% of the stimuli (almost the maximum possible
incoherence of 50%, given the binary responses) but were co-
herent in their own response patterns, giving the same response
in 85.5% of the repetitions of the same stimulus. The empirical
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Fig. 1. The two families of ambiguous stimuli and summary of data analysis.
(A and B) SFM stimuli. Optic flow such as in A is ambiguous because it can be
generated by the two configurations shown in B, corresponding to surfaces
with tilts that differ by 180 degrees (see I for definition) and opposite direc-
tions of rotation. (Stimuli used in the study had 45 degrees between tilts and
rotation axes, rather than 0 degrees, as shown here.) (C and D) TFM stimuli.
Two sets of dots moving in opposite directions (C), with no explicit depth cues,
are usually perceived as segregated by motion direction into two transparent
layers, with one of the layers seen as closer or more salient than the other;
(D) the motion direction of the front or salient layer is ambiguous by 180
degrees. (E) We represent one stimulus by two opposite-facing arrows, cor-
responding to the two possible tilts (SFM, shown here) or front-layer motion
directions (TFM) that can be perceived. We will represent the tilt or motion
direction that was reported by the darker arrow. (F) A typical pattern of re-
sponses obtained when we present a series of tilts or motion directions. Actual
experiments had more values of tilts or directions. (G) To calculate the bias
vector, we take the sum of the unit vectors corresponding to the perceived
tilts or motion directions. (H) The direction of the bias vector yields the pre-
ferred tilt or motion direction, whereas its length (normalized by its maximum
value) is a measure of bias strength. (I) Illustration of slant and tilt, the vari-
ables we use to parametrize surface orientations in SFM stimuli. Tilt is the
orientation in the image plane of the projection of the surface normal vector.
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Fig. 2. Results of the population distribution experiment (experiment 1).
(A) Data of five representative participants (out of 691—the rest are shown in SI
Appendix, Fig. S1) in the SFM condition. Data are represented using the con-
ventions in Fig. 1 E and F. The red arrows are the bias vectors (Fig. 1G andH). For
visual clarity, only one out of four of the trials is shown. (B) Population distri-
bution of bias strength (dark bars) compared with the null hypothesis arising
from isotropically random tilt choice (light bars). Of the participants, 97.4% had
significantly fan-shaped distributions (Rayleigh test, Benjamini–Hochberg cor-
rection for multiple tests with false discovery rate, 0.05). (C) Circular histogram
of the population distribution of bias directions (smoothed using a 15 degree-
wide kernel). Individual bias directions are shown as strokes on the rim of the
white circle. Some corresponding plane orientations are shown for refer-
ence. The distribution is highly anisotropic (Kuiper’s test, P < 0.0001).
Percentages indicate fractions of the population with peaks within ±45
degrees of the cardinal directions. (D–F ) Corresponding results for the TFM
condition, where 95.9% of observers had significantly fan-shaped distribu-
tions. The population distribution (E) resembles the distribution in a previous
study (31), obtained with a much smaller sample in laboratory conditions. (G)
Relationship between SFM and TFM bias directions, with each dot representing
one participant. The two state variables are uncorrelated and independent. (H)
Significant correlation between preferred TFM preferred directions as measured
initially (x axis) and 1 y later (y axis), with each dot representing one participant.
Participants whose preferred directions underwent significant change are shown
in red. Similar results were obtained for the SFM preferred tilts.
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population distributions of the bias directions (Fig. 2 C and F)
show that nearly every bias direction occurs in the population in
the two stimulus families. However, the distributions of bias di-
rections were notably anisotropic. Both SFM and TFM distri-
butions had peaks in the cardinal directions (72.9% and 68.5% of
participants had biases within 22.5 degrees of the cardinal di-
rections). The cardinal peaks could not arise from decision bias,
as observers typically reported nearly all directions within 90
degrees of their preferred direction; thus, all observers perceived
tilts and motions in both cardinal and noncardinal directions.
Moreover, as can be seen in Fig. 2 C and F, the cardinal peaks in
the population distributions were asymmetric, with different pat-
terns for SFM and TFM. In SFM (Fig. 2C), the largest peak cor-
responded to surfaces oriented near the ground plane (55%),
reflecting the known and probabilistically justifiable bias in favor of
surfaces seen from above (33); however, significant minorities
preferred the ceiling and the right wall orientations. Of the par-
ticipants, 18% had a preferred tilt within 45 degrees of the right
wall orientation but only 6% within 45 degrees of the left wall—
with the difference statistically significant. In fact, the differences
between the left and right, and between the up and down peaks,
were significant in both distributions (bootstrap test, P < 0.0001).
The SFM and TFM bias directions are independent variables:

Their population distributions were significantly different from
one another (Watson’s U2 test, P < 0.0001) and had no within-
participant correlation [Fig. 2G; Fisher–Lee circular correlation
(34),

Q
= 0.001, 95% bootstrap confidence interval (–0.008,

0.011)]. We found few effects of age, gender, or hand preference
on the distributions of preferred directions (SI Appendix, Fig.
S3). Whereas the right–left asymmetry disappeared in left-handed
participants in the SFM population distribution, it became more
pronounced in the TFM distribution.
Are the biases, which are so different in different observers,

stable or changing? We will come back to this question repeatedly,
but it can be tested in the data of experiment 1, where blocks lasted
only 3 min on the average. We calculated the mean absolute an-
gular differences between responses on all pairs of trials separated
by a given lag. If the biases are stable, the mean difference should
be flat as a function of lag. Averaging over the many hundreds of
participants revealed a signal emerging from the noise due to the
random order of stimuli: Responses on trials closer together in
time tend to be closer than responses farther apart (SI Appendix,
Fig. S4). A simple explanation for this temporal proximity effect is
that, at any given point in time, each observer has a definite bias

but that this bias undergoes cumulative change (such as drifts
or random walks) even over brief durations.
To test the long-term stability of the biases, we invited the

participants to repeat the measurements about 2 wk later (235
did so) and 1 y later (175 did so). Fig. 2H shows the original TFM
bias directions versus their values 1 y later, with significant
changes highlighted (see SI Appendix, Fig. S5 for other com-
parisons). The SFM bias direction changed by a median value of
only 11.0 degrees over 2 wk and 22.5 degrees over 1 y; the TFM
changes were 14.1 degrees over 2 wk and 26.3 degrees over 1 y.
Although some of the long-term stability was due to the non-
uniformity of the population distributions, especially for SFM,
the biases showed strong coherence on the individual level (SI
Appendix). The 1-y changes were significantly larger (Mann–
Whitney test, P < 0.0001) than the 2-wk ones (SI Appendix, Fig.
S5). We found no significant within-participant correlations be-
tween changes in the two biases or between 2-wk and 1-y steps.
Thus, although most biases are stable even over periods as long
as 1 y, significant (and sometimes large) changes do occur.

Experiment 2: Effect of Biases on Unambiguous Stimuli.Although the
patterns of biases we have found are striking, they are “cost-
free,” because each stimulus is completely twofold ambiguous.
We wondered to what extent the biases can overcome perceptual
cues to one or the other solution and therefore performed an
experiment in which we applied binocular disparities to disambig-
uate SFM stimuli. We found that the individual biases persisted and
significantly affected reported surface orientations at disparities
above threshold in most participants, although there were large
individual variations in response to the disparity cue (SI Appendix,
Fig. S6). Thus, the biases are operative even in the face of signifi-
cant perceptual counterevidence, at least in many observers.

Experiment 3: Long-Term Temporal Dynamics. Because we found
that biases do change over time, we wished to study their tem-
poral evolution. A fundamental property of a time series is
whether its value at a given time is predictive of later values. A
nonpredictive series consists of independently drawn samples
from a fixed distribution, also known as “white noise.” Values in
the series may vary, but successive values are uncorrelated, the
power spectrum is flat, and the mean distance between values is
independent of the time lag between them. A predictive time
series, on the other hand, consists of values that retain information
about the past. In this sense, we may say that a process that
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Fig. 3. Results of the 3-mo time-series study (experiment 3). (A–F) Examples of daily time series of the SFM (A–C) and TFM (D–F) variables in six participants.
For each series, the bias direction is shown in black as a function of time in days and the bias strength in blue. (G–J) Macroscopic analysis of time series data.
Black curves show the means, the gray regions the 95% confidence intervals (between-participant bootstrap), and the red curves the predictions of the fitted
noisy random walk or IMA(1, 1) model. Power spectra of the (G) SFM and (H) TFM series, on a log–log scale. The dashed lines show 1/f and 1/f2 spectra for
comparison. MSED between (I) SFM and (J) TFM bias vectors measured on different days, as a function of time between measurements (lag) in days. Because
bias vectors lie inside the unit circle, variables range from –1 to +1, and maximum square distance is 4.
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generates such a time series has its own state—the information
retained from past values. Predictive series have correlated values,
power spectra that vary with frequency, and mean distance between
samples that depends on lag. Moreover, predictive series can be
either stationary—with properties such as mean and variance in-
dependent of time—or nonstationary. Stationary series fluctuate in
an autocorrelated fashion about fixed values, whereas non-
stationary series, such as random walks, can wander away. The
finding in experiment 1 that the biases change more over 1 y than
over 2 wk is a first indication that the bias time series retain
state information.
To study bias time series in greater detail, we performed a

second large-scale internet-based study in which we measured
the SFM and TFM biases once a day for about 3 mo in a group of
97 participants, yielding an average of 87.8 nearly daily mea-
surements for each. The daily measurements were performed
similarly to experiment 1, each involving a block of randomly
ordered, equally spaced 48 trials. Representative examples of the
time series are shown in Fig. 3 and for all participants in SI
Appendix, Table T2. There was an almost bewildering variety of
individual behaviors: stability (Fig. 3D), slow drifts with constant
speed (Fig. 3E) or variable speed (Fig. 3 A and F), temporary
excursions (Fig. 3F), abrupt transitions (Fig. 3B), oscillations
between discrete values (Fig. 3 B and C), and oscillations at
multiple frequencies (Fig. 3C). Although we cannot exclude that
perhaps some of the abrupt transitions were due to changing
experimental conditions that were not under our complete control,
the slow and regular drifts are very likely to represent authentic
evolution in the state variables, all the more so when the drift
occurred in one of the variables but not the other (as was often
the case; SI Appendix, Table T2).
To quantitatively characterize the time series, we calculated

several types of macroscopic statistics. First, we calculated the
temporal power spectra of the bias vectors (Fig. 3 G and H).
Spectra for both SFM and TFM had peaks at low temporal
frequencies that fell off and then flattened out at higher fre-
quencies. Linearly regressing the individual participant’s spectra
on a log–log scale, we found that 95% of the SFM spectra and
98% of the TFM showed decreasing power with higher frequencies.
Second, we calculated the mean squared Euclidean distance
(MSED) between the measurements as a function of lag—days
between measurements. We found that MSED increased with
increasing lag (Fig. 3 I and J); performing a linear regression of
MSED versus lag, we found that 79% of the participants had
biases that systematically drifted farther apart with increasing
lag. (Many of the others had biases that wandered off only to
loop back near their initial values.) Stationary series should have
a mean distance that flattens out for large lag; the functions in
Fig. 3 I and J show no evidence for such flattening, at least for
averaged data. Third, we calculated autocorrelations of the dif-
ferenced time series and found a nonzero autocorrelation at lag
1 (see SI Appendix, Fig. S7 for details). These observations strongly
imply that biases are predictive, stateful time series and suggest that
they are nonstationary.
To characterize the microscopic behavior of the time series,

we modeled them within the Box–Jenkins autoregressive in-
tegrated moving-average (ARIMA) framework (35). Briefly (for
details, see SI Appendix), we first searched a space of model
families, including white noise, to find one that best approxi-
mated each series (the Cartesian components of each partici-
pant’s SFM or TFM series were modeled separately). We found
that only 18% of the SFM series and 24% of the TFM series
were best fit by stateless, white-noise processes. One model
family, integrated moving average or IMA(1, 1), was much more
common than the rest. The autocorrelation functions of the
differenced series (SI Appendix, Fig. S7) also strongly imply that
the series were IMA(1, 1). In a second step, we fitted all of the
individual series with models from this family and found that
93% of the SFM and 88% of the TFM series were well fitted, as
revealed by a randomness test on the residuals.

The IMA(1, 1) family are series vt with the following dynamical
behavior: vt = vt−1 + «t − b«t−1, where «t is an independent identi-
cally distributed (i.i.d.) variable. It can be shown (35) (also see SI
Appendix) that such time series are equivalent to “random walks”
or “Brownian motion” subject to measurement noise. In other
words, an underlying state variable, ut, was given by the random
walk ut = ut−1 + αt, where αt, the random step, is an i.i.d. variable
with variance σ2α. This variable constitutes the system’s memory,
its cumulative value being carried over from one measurement to
the next: Although successive steps are independent, their effects
are cumulative. However, the state variable was not observed
directly but filtered through independent measurement noise:
vt = ut + βt, where βt, the measurement noise, is i.d.d. with variance
σ2β. We found that the median random step σα in our population was
0.022 [0.009, 0.041] (25/75 percentiles in brackets) for SFM and
0.020 [0.008, 0.036] for TFM, with our variables ranging from –1
to +1. The measurement noise σβ was 0.103 [0.068, 0.144] for
SFM and 0.122 [0.078, 0.157]. In terms of bias angles, the max-
imum median steps were 1.3 and 1.2 degrees for SFM and TFM
and measurement noise 6.3 and 7.4 degrees. The power spec-
trum of a noisy random walk asymptotically approaches 1/f2 at
low frequencies (the random walk component) and flattens out
at high frequencies (the white noise), precisely what we found in
the mean power spectra (Fig. 3 G and H). The model predic-
tions, shown in red in Fig. 3 G–I, are at least good qualitative
approximations to the macroscopic statistics of the time series.
Similar to the population distribution experiment, we found

no trace of correlation between the daily values of the SFM and
TFM biases. However, we did find moderate but robust corre-
lations between the magnitudes of the daily steps in the SFM and
TFM biases, both within and between participants (SI Appendix).
A histogram of all of the daily bias directions is shown in SI

Appendix, Fig. S8. These distributions strongly resemble those
obtained in experiment 1 (Fig. 2 C and F), namely having peaks
near the cardinal directions, with the same left–right and top–
bottom asymmetries, on an almost completely different sample
(10 out of 97 participants had participated in experiment 1). A
simple random walk model obviously cannot account for all
features of the data, such as the nonuniform bias distributions or
the structured macroscopic features of the individual time series
(Fig. 3). Even so, the random walk model gives a surprisingly
good fit to intraindividual statistical properties of the time series
(see Fig. 3, for instance).

Experiment 4: Short-Term Temporal Dynamics. To check if the biases
had stateful behavior on time scales shorter than 90 days, we
performed a laboratory experiment in which SFM bias was re-
peatedly measured over 90 min in 15 participants. We presented
a sequence of stimuli lasting 30 min, resulting in a mean of 13
independent measures of the bias. To compare the roles of ex-
ternal stimulation and internal dynamics in driving bias change,
we also measured the bias once 30 min before and once 30 min
after this sequence, with the participants remaining in complete
darkness in the intervening periods.
The individual bias time series are shown in SI Appendix, Fig.

S9. Spectral power that decreases with frequency, increasing
distance between biases with lag, and autocorrelations all point
to stateful series that can be modeled as noisy random walks (SI
Appendix). In three cases, the bias changed significantly after
30 min in complete darkness (marked by asterisks in SI Appendix,
Fig. S9), suggesting that internal CNS dynamics can drive change
in the bias variable. We found that biases changed faster during
the 30-min sequences of continuous measures than over the 30min of
darkness (see SI Appendix for details). Thus, repeatedly showing SFM
stimuli over many hundreds of trials seems to “excite” change in the
bias variable. [Another finding of experiment 4, performed in com-
plete darkness with nothing but the stimulus visible, is that the car-
dinal peaks in the bias direction distributions (Fig. 2C)—also found
here—do not seem to be caused by visual edges with cardinally ori-
ented orientations (monitor edges, etc.; see SI Appendix for details).]
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Experiment 5: Deliberate Perturbation of State Variables. We won-
dered whether it is possible to modify the values of the state
variables using visual stimuli. We measured observers’ SFM and
TFM biases and then perturbed them for about 30 s using stimuli
whose depth was unambiguously specified by the addition of
binocular disparity and whose tilts or motion directions differed
from the biases by 90–135 degrees, alternating the direction of
the perturbation on successive blocks. Following this sequence of
perturbing stimuli, we remeasured biases over a 100-s period,
using a multiblock design to increase the temporal resolution of
the measurement down to 1–2 s (SI Appendix, Fig. S10).
Results for individual participants (see Fig. 4 for a represen-

tative participant and SI Appendix, Fig. S11 for all participants)
show that the aftereffect of the perturbation on the bias variable
was attractive, “pulling” the bias variable toward the perturba-
tion, but with decay toward the preperturbation value over sev-
eral tens of seconds. Fitting exponential decay functions to the
time evolution curves, we found that the amplitude of the effect
immediately following the perturbation had a median value of
37.2 degrees in SFM and 41.7 degrees in TFM, with effects
significantly attractive in all participants and conditions. The
half-life of the perturbation—the time it takes for the effect to
decay to half its initial value—had median values of 21.1 s for
SFM and 42.4 s for TFM.

Experiment 6: Effect of Bistable Fluctuations on Biases. Any one of
our ambiguous stimuli, when repeatedly presented at the same
orientation, is bistable: Its perception spontaneously fluctuates
between the possible interpretations (15–20). We wondered
whether such fluctuations modify the state variables, temporarily
or durably. We first measured SFM bias direction in six partic-
ipants. Then, we repeatedly exposed each participant to the
surface oriented at his or her own bias tilt, until obtaining a
spontaneous tilt reversal that persisted for 10–20 stimulus pre-
sentations (several tens of seconds), so that the participant
perceived the tilt opposite to his or her own initial bias. We then
remeasured the bias in the usual way over the next several mi-
nutes. We found (SI Appendix, Fig. S12) that the bias returned to
near its original value in all participants in at most a few minutes.
Thus, fluctuations in bistable stimuli seem to have, at most,
short-term effects on the state variables.

Experiment 7: Existence of the Bias Before the First Stimulus. Studies
of bistable perception have brought to light a phenomenon known
as sensory or perceptual memory, where a single interpretation of

an intermittently presented stimulus can last for a large number of
trials (17, 19, 20). Are state variables sensory memories formed at
or near the first stimulus, or do they exist in the visual system
before exposure to our stimuli? To answer this question, we
performed an experiment using SFM stimuli on 30 participants,
with responses recorded from the very first stimulus (i.e., no
practice trials). We predicted that if the biases were sensory
memories, then the response on the first trial would be completely
random and unbiased but then become “frozen in” as a sensory
memory, in effect becoming the bias. A more complex version of
the hypothesis would have the vector average of the responses on
the first n trials becoming the sensory memory. For each i, we
calculated the absolute angular difference between the bias di-
rection calculated using trials 1, . . . , i and the bias direction from all
trials. The sensory memory hypotheses predicted local minima in
this curve. We found no evidence for such local minima, and the
data were in perfect agreement with a simple model of preexisting
bias (see SI Appendix, Fig. S13 for details). Thus, experiments 6 and
7 both show that the state variables are independent of bistability
phenomena, namely of spontaneous reversals and sensory memory.

Discussion
Although most studies of perception emphasize processes that
are largely universal across measurements on different observers
and different points in time, we have demonstrated large-scale
differences among observers that undergo stateful, cumulative
fluctuations over time scales from tens of seconds to months.
There have been several recent reports of stable idiosyncratic
biases arising in different contexts in human vision (36–40).
Here, we have shown for the first time, to our knowledge, that
two of these biases are state variables, in two different ways.
First, we found that the appearance of suprathreshold stimuli
depends not only on the stimulus but also strongly on the bias
variables’ values. Second, the variables retain information about
their past values when undergoing fluctuations in time, with their
temporal dynamics at least partly described by a random walk
model. Although the successive steps in the random walk are
independent, its value accumulates the steps and constitutes a
new kind of perceptual memory. Although random walk or dif-
fusion models have been used to account for neurophysiological
and behavioral data on perceptual decision making and other
processes on brief time scales (41, 42), perceptual parameters
have not previously been shown directly to undergo random
walks, and on time scales as long as several months.
An open question is what drives change in the state variables:

visual stimuli (if so, which ones) or internal dynamics. Our results
suggest that both factors can drive change: On one hand, state
change can be primarily stimulus-driven (cf. the perturbation
experiment); on the other hand, state change seems to some-
times occur in total absence of external visual stimulation (the
short-term temporal dynamics experiment). Results showing the
importance of endogenous (43) and initial (44) perceptual decisions
to subsequent cue learning may be germane to these issues.
The continuous presentation of an unchanging ambiguous stim-

ulus (e.g., an SFM or TFM stimulus at a fixed orientation) leads to
spontaneous fluctuations between the two interpretations usually
every several seconds (15, 16, 18), whereas intermittent presentation
leads to a lengthening of the duration of each interpretation up to
several minutes, a phenomenon known as sensory memory (17, 19,
20). The main methodological difference between studies of these
bistability phenomena and our studies is that we present successive
stimuli at different orientations rather than repeating the exact
same stimulus. The spontaneous fluctuations found in the bistability
studies also exhibit a kind of perceptual state or memory, because
successive interpretations are correlated. In experiments 6 and 7,
however, we have shown that spontaneous fluctuations do not lead
to long-terms changes of the state variables and that the state var-
iables are unlikely to be sensory memories newly formed by expo-
sure to our stimuli. However, state variables may be closely related
to the independent and idiosyncratic initial phase of bistable fluc-
tuations, known as onset rivalry (36, 45).
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Fig. 4. The effect of deliberate perturbation on the biases using nonambiguous
stimuli (experiment 5). Data are shown for one representative participant for TFM
stimuli (data for all participants are shown in SI Appendix, Fig. S11). The x axis shows
the time immediately following the perturbation in seconds. The y axis shows the
effect of the perturbation: the difference in degrees between the measured di-
rection bias and the initial, preperturbation bias. On every other block, the per-
turbation stimuli were chosen between +90 and +135 degrees away from the
initial bias direction (blue dots, bars, and curves), whereas on the other blocks the
perturbation was in the opposite direction, between –90 and –135 (orange). Error
bars denote SEs over multiple blocks. The curves are exponential fits.
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We have demonstrated the existence of two state variables that
have the same formal structure and whose instantaneous values are
independent (the amplitudes of their changes are weakly but ro-
bustly correlated). This raises the question of the universality of this
perceptual structure. Recently, the perception of a third family of
stimuli—ambiguous one-dimensional apparent motion—has been
shown to admit the same kind of biases as studied here (40).
Semicircular-shaped biases with individual differences are not
limited to vision: An identical structure is found in hearing (46). It
is not known whether these other biases show stateful behavior,
what their temporal dynamics may be like, and whether they have
any correlations with the two variables studied here. It would be
interesting to know how many other state variables might there be
and if some variables control more than one type of stimulus.
The presence of state in perceptual processes pleads in favor of

recurrent neural architectures, which represent state in a natural
way (25, 26). Brain imaging studies of the related phenomenon of
bistable perception have identified activity in ventro-occipital and
intraparietal as well as frontoparietal regions (47–49) correlated to
transitions between states. Interestingly, some of the interindividual
variability in perceptual dynamics of bistable perception is corre-
lated with local gray-matter density in the parietal cortex (50). It
would be interesting to check whether these functional activations
or anatomical features are correlated parametrically to the values
of the state variables or to their transitions. Another line of re-
search for future studies will be to determine the genetic
contributions to individual variations in our state variables,

similarly to what has been done for bistable perception (51). If
the state variables capture at least some functional aspects of the
underlying neural networks, the identification and measurement
of these variables may open the door to a psychophysics of
neural state.

Methods
Trials typically consisted of twofold ambiguous SFM or TFM stimuli presented
at different orientations in random order for 500 ms, after which the participant
chose one of the two shape (SFM) or motion (TFM) percepts compatible with the
stimulus. Experiments 1 and 3 were performed by participants on their own com-
puters and ran inside internet browsers and were implemented in Javascript and
HTML5. Experiments 2 and 4–7 were performed in the laboratory using more
traditional methods. For further details, see SI Appendix. Informed consent was
obtained prior to all experiments in accordance with the Declaration of Helsinki. In
France, the legal ethics committees do not examine non-invasive behavioral studies.
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