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Abstract tion is that once we admit internal degrees of free-
External representation is the use of the physical Qom—the architecture and weights of hidden layers
world for cognitive ends, the enlargement of the 'N@& nggral network,. for gxample, or the structure of
mechanisms of representation to include the action- @ decision tree that is built up, etc.—we have a great
perception cycle. It has recently been observed that deal of freedom in deciding the general form and
such representation is pervasive in human activity in the specific parameters of the our system’s innards,
both pragmatic and more abstract tasks. It is argued which embody its internal representations. In all
here that by forcing an artificial learning system to interesting cases, these hidden degrees of freedom
off-load all of its representation onto a (simulated) are severely underconstrained by the data used to
external world, we may obtain a model thatis biased trajn the system. It might be profitable to consider
in a very natural way to represent functional rela- a1 we know about representation in natural sys-
tions in ways similar to those used by people. After tems, for example in humans
learning a function from examples, such a model ' . L . .

Internal representation in biological systems is

should therefore generalize to unseen instances in l-based. Th iat it of vsis f
ways that we would consider correct. These ideas Neural-based. The appropriate unit o analysis for

are tested by developing two machine learning sys- the understanding of the representation of high-
tems, in which representation relies on the sen- level concepts (rather than, say, the representation
sorimotor control of simulated robotic agents. These Of the fact that there is a bar of a certain orientation
systems are able to represent a variety of functional in the receptive field of a particular cell in visual
relations by means of their action and perception, cortex) may be anywhere from one neuron up to an
and they learn to spontaneously do so from exam- ensemble of billions of neurons. The problem with
ples. Moreover, they generalize extremely well to neural representation is a practical one: we hardly
unseen problems even after a small number of exam- know how it works. Many of the details of single-
ples, including on functions suchmgarity thatare oo mechanisms are known, but we have little
_notorlous_ly d|ff|cult_ to generalize for ma.Ch'ne learn- idea how, or whether, single cells represent high-
ing algorithms. It is argued that despite these sys- level concepts. At the other extreme we have large
tems’ simplicity, the external representations that ’ .
they evolve are similar to those used by people on ENSembles of neurons, some of whose connections
similar tasks. are known, but whose causal role in cognition is far
from understood. At best, the data we have are cor-
relational: a neuron in an animal brain may change

1. IntrOdUCtlon: From eXtemal its activation systematically following a particular
representation to learning
and back again 1 In this paper we will use “learning” to mean “learn-

ing a function from one set of numbers (input) to another
Internal and external representation.Any ambi-  set of numbers (output), from examples.” The examples
tious learning machine must possess some form efe called théraining set and include both input and de-
internal representation, it has long been acknowkired output; they are used to adjust the internal parame-

edged, for the reason that interesting things tters of the system. Following this learning phase, the
learn—functions, concepts, etc.—are seldonsystem is presented with another set of exampletgshe

directly expressible as simple input—output map§et in order to qgantif_y generalization. The u_sual caveats
pings, but rather seem to require re-representatitf‘ﬁ ply about this being a strong abstraction of what

. . earning” might mean; it is nevertheless useful for dis-
of the raw input dataThe trouble with representa- cussing fundamental issues in inductive learning.
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sensation or preceding a particular movement; or ahe finger (to flex it if extended, and vice versa) for
area of a human brain may be activated during thevery object or event to be tallied. If at the end the
performance of a certain type of cognitive task. Bufinger is in the initial state, the number is even, oth-
we are very far indeed from knowing the causakrwise it is odd. This is functionally isomorphic to,
neural mechanisms behind how, say, the represenfar example, to ‘mentally uttering’ alternatively
tions of “p” and of “if p theng” might (or might not) “even” or “odd” after every event to be counted. To
lead to the representation of’* These kinds of take another example from the ‘digital’ domain,
guestions are probably not unanswerable in princeonsider deleting a file in a windowed computer
ple; but, despite dramatic recent progress in neurdaterface. An icon, an external representation of
science, we are still far from this goal. some information (more properly, an external repre-
Together with internal representation, there isentation of an external representation—the data on
another, often overlooked variety: external reprethe disk) is dragged into the trash can icon and
sentation. External representations can be defingdereby disappears, a process that parallels the men-
asstates of the physical world deliberately createdal forgetting (or labeling as unimportant) some
as part of a cognitive process, rather than for praginternally represented information. External repre-
matic endgKirsh 1995; Zhang and Norman 1994;sentations thus need not be just reminders or facili-
Clark and Chalmers 1998). A common example isators; if well designed, they can also participate in
the rearrangement of cards in games: one rearrang®gernal transformations that do cognitive work, in
the cards in one’s hand so as to render the relatioasprocess that parallels internal, neural representa-
between the cards more perceptually salient, to offions being (presumably) transformed in the central
load at least a part of the planning process onto theervous system.
external arrangement, thereby freeing cognitive
resources for other tasks—rather than for anjnductive machine learning.We now return to
immediate pragmatic end in the game. Anothemachine learning. In artificial inductive learning,
example is counting a large pile of similar objectsthe machine is trained on only part of the set of pos-
such as coins, where the difficulty is to count eachible input—output pairs; once it reaches some cri-
item, and only once. People typically use strategie®rion of success on this training set, the machine is
such as pointing to the border separating thtested for ‘correct’ generalization on the remaining
counted from the uncounted items, or sorting théest set. The number of generalizations consistent
items into a new pile as they are counted. Thesgith the training set is usually very large. The trou-
actions have no direct pragmatic relevance to thiele is: in many, probably most, natural cases of
task at hand, but are executed for their subsequdearning, no purely formal, procedural criterion can
facilitating effects on one’s mental operationsisystematically pick out that (those) generaliza-
namely, keeping track of the items that have alreadyon(s) which we would consider ‘correct, out of
been counted. As Clark and Chalmers (1998) poirthis large field of possibilities. The fact that past
out, there is no principled way to separate suchxperience cannéormally constrain future experi-
external representations from the internal, neurance was famously pointed out by Hume; Good-
variety, based purely on the work that the two typeman (1983) demonstrated with his elegant “grue”
of representation do. argument that without inductive bias, one cannot
External representations need not play only &rmally decide which predicates are projectible
static, memory-like role; they can do cognitive(i.e., can be generalized over). Mitchell (1980) and
work, as well. In other words, a physical action perWolpert (1996), among others, have discussed
formed on an external representation may be isdhese ideas in the context of machine learning,
morphic to a mental operation performed on thehowing, for instance, that, for a given learning
analogous internal representation. For instancelgorithm, for every problem set that is generalized
consider having to determine whether a large nuneorrectly there is one that is generalized incor-
ber (of objects or events) is even or odd. An externaéctly.
representation for even might be, say, having one’s From a strictly unbiased, ‘objective’ point of view,
index finger extended, with the index finger flexedany generalization that is consistent with the training
standing for odd. The relevant way to operate oBet is as good as any other. Nevertheless, if all gener-
this representation would be to change the state afizations are equal, some generalizations strike
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as more clever or perspicacious. If we want to corfest. (The learner can of course choose to treat the
struct an artificial system that reasons in a humarhmigher-order regularity as if it were lower-order, by,
like fashion, or if we want to model human inductivee.g., simply memorizing the input—output pairs, or
reasoning, it is these latter generalizations that wiey learning bit-by—bit associations. But then it
want our system to prefer. would fail to generalize ‘correctly’; it will certainly

The usual solution is to endow the learning systerhave learned something, but not what we were trying
with systematic inductive bias. No formal systemto teach it.) The problem of perspicacious re-repre-
can be entirely free of bias, as it is obliged to formusentation is thus seen as the critical component of
late its hypotheses in some language; any such lahigher-order learning.
guage excludes some hypotheses, and of the ones Multi-layer neural networks have become popular
does include makes some hypotheses easier amdinly due to the assumption that the intermediate
more natural to express than others. Another type tdyers will somehow carry out this re-representation,
bias is due to the learning algorithm. This results imnd the magic is supposed to be that this is induced
a norm, “badness”, on the hypothesis language-by means of a completely mindless procedure, hill-
usually the error committed by the hypothesis on thelimbing. Clark and Thornton (1997) have shown
training set, for example, often combined with a facthat this is not so for a number of difficult learning
tor to bias the system towards parsimony. Inductioproblems; the one | will discussnsparity, as | also
is then seen as a form of optimization or search tose this problem in my toy models (see below). The
reduce the badness of the hypothesis. n-parity mapping receivasbits as input and outputs

In cognitive science, the traditional cure for theone bit, the sum of the input modulo 2. This mapping
various sticky problems of learning has been innatés hard to learn from examples because they provide
ness, or, less crudely, strong developmental como raw statistical information: all the conditional
straints on theontentsof eventual mental represen- probabilities between input and output bits are 0.5. It
tations. This solution, however attractive, cannot bes well known that multi-layer feed-forward net-
the whole story, however, for a number of reasonsvorks can ‘learn’ parity by means of hill-climbing—
First, shifting the burden from ontogeny to phylog-but this is only when they are trained ahthe '
eny begs the cognitive question, for phylogenetilmput—output pairs. No simple associationistic learn-
learning is at least as difficult as its ontogenetiéng will do for this rule: changing any bit of the input
counterpart. Second, hard developmental constrairfifps the answer. Reproducing the training set is nec-
seem to be at odds with the real plasticity of centrassary but not sufficient for having a concept or a
nervous system development (Quartz and Sejnowskile; simple memorization will lead to the same
1997). Third, learning occurs on many time scalegesult, and we would not then say that the memorizer
humans are capable of fast learning, from very fewaas learned a rule, because (among other reasons) no
examples, in rather artificial domains for which nore-representation of the input has taken place. A
direct innate bias could have evolved. sharper test for having learned a rule is of course cor-

The problem of induction has recently been disrect generalization to previously unseen cases.
cussed from the point of view of intermediate repre- Clark and Thornton have found thao training
sentations (Kirsh 1992, Clark and Thornton 1997)algorithm onany network architecture leads to net-
In the inductive learning of patterns, categories oworks that generalize correctly to previously unseen
rules, the distinction is made between low-order regzases of parity; in fact, even in the best cases it suf-
ularities that are present directly in the training datéices to withhold a very small fraction of the prob-
(such as conditional probabilities between individualems from the training set for generalization to fail
input and output bits that are close to 0 or 1), andompletely? This is very bad news for neural net-
more subtle higher-order regularities that can only bevorks. Practically, it shows how bad general net-
expressed in a richer language and in terms of thveork methods are at generalization: in problems of
lower-order regularities (such as relational proper.
ties, etc.). The lower-order regularities can certainly 2 The closest that any neural network—or any general
be picked up by formal, fairly general and unbiasegbarning system—has come to generalizing parity is Pol-
techniques. As for the higher-order regularities, if théack’s (1992) cascaded network, which, giahinput
learner is to succeed it must first re-represent the rastrings of length 1 and 2, and some longer strings as train-
input in order to make the more subtle pattern manirg, generalizes correctly mmelonger input strings.
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practical interest no system can be trainedathn Problem output: 1
cases. More fundamentally, it shows that, at least in
this case, that when a network learns to reproduce T

input—output pairs, what it has actually learned is
entirely unlike the rule thate have used to arrive at

the training set. Indeed, what reason do we have to
suppose that a neural network, with its peculiar
dynamics and bias, would generalize beyond the
sensory | data

training set in the wawewould? The only possible
reason would be the biological verisimilitude of arti-
ficial neural networks; but this, apparently, is not

enough. And lest one specifically blame neural net- Simulated
works, Clark and Thornton found that popular sym- external

bolic algorithms, such as decision trees, fare just as world

badly on generalization.

Learning with external representations.We are motor Tcommand
faced, on one hand, with traditional machine learn-

ing methods based on intuitively appealing princi- -«
ples such as association (i.e., the solution of new

problem should be close to that of a previously seen T

problem, if the two problems are close, in some met-

ric) and parsimony (shorter descriptions are pre- Problem input: 01101

ferred to longer ones, in some language) that never-
theless fail to evolve appropriate internal Figure 1: The general scheme for the sensorimotor
representations and therefore fail to generalize ‘cor- l€arning systems discussed in this paper.
rectly’ to unseen training cases, on many interesting
problems. On the other hand, Nature offers few clues We will experiment with two variations on the
about the shape and dynamics of appropriate internggneral theme, in Sections 2 and 3, respectively, that
representations, other than some general informatidrave somewhat different sensorimotor embeddings.
about nerve cells and their connections and interadhe first system is modeled after a simple animat: it
tions, which by themselves do not seem to be suffiives in an analog two-dimensional world, its reper-
cient constraints. In such circumstances, a prudettire of actions being confined to self-rotation and
way to proceed would be to seek inspiration from théorward motion. The second system is embedded in
one type of high-level representation that we caa discrete, one-dimensional world similar to Block-
observe in detail, namely external representation. sworld, where it can move but also pick up and drop
We will therefore study learning and generaliza-objects.
tion in systems that are obliged to make use of exter-The general architecture of our sensorimotor
nal representationd/Ve will do this by developing a learning systems is shown in Fig. 1. The problem is
toy model that is built in such a way as to be forcefkd, one bit at a time, to the controller. The architec-
to off-load all of its representation onto a (simulatture of the controller is different for the two models
ed) external world. What is meant by this is that itéo be presented. In the first case it is a perceptron
dynamical degrees of freedom have a passing reeural network; in the second, a hierarchical LISP-
semblance to the sensorimotor links that biologicdike program. In both cases, the controller is ‘repre-
creatures have with the outside world. This resensentationally shallow’, in the sense that it cannot
blance is cartoon-like, in the same way that artificiaitself store any state, that it cannot re-represent the
neural networks are an extremely abstract version @fput in any way.
real neural systems. It is to be hoped that such aThe presentation of a problem always begins with
rough sketch will nevertheless capture somethinthe system in a canonical world state. The controller
essential about the effect of external representatidranslates the input (and possibly the current sensory
on learning. state) into a motor command, to be executed in the
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(simulated) external world. The motor command ighe creature issues a motor command, telling it the
executed, sensory data collected, and, together wittistance to travel forward and the angle by which to
the next element in the problem sequence, fed batlrn. The sensory data returned consist of the dis-
into the controller. This procedure is repeated for thiance to a fixed landmark, and the angle between the
length of the problem input. Finally, the evaluatoranimat’'s heading and the landmark (given as a sine
(which has the same general architecture as the camd cosine, to avoid discontinuities).
troller) translates the sensory data from the final The architecture of the system is a specialization
world state into a solution or output to the currenof the general scheme given in Fig. 1. The controller
problem. and evaluator are perceptrons—i.e., feedforward
It may be argued that since the ‘external’ embedaeural networks with no hidden layer. The control-
ding of our systems is only simulated, it is not exterter has one input (for the current problem bit) and
nal at all; this type of representation is just a specidvo outputs (the motor commands); the evaluator
case of internal representation. This is true, butas three inputs (the sensory data) and one output
beside the point. What is important is the way thafthe problem output). In this case, there is no feed-
the representational capacity of the system has beback connection of sensory data to the controller
sliced: a shallow controller and evaluator that themfbut there is such a connection in the system pre-
selves cannot store or represent anything, forcing akented in Section 3).
representation to be offloaded onto the simulated The function that we will teach this system will be
external world. As we will see, this architecturen-parity. Before the beginning of the presentation, the
together with the sensorimotor details, strongly conereature is put in a canonical world state, that is a giv-
strains what can be represented, what can be learnem position and heading. As described in the Intro-
from examples, and how this learning generalizes. duction, the input bits of the parity problem are fed
The models to be presented in Sections 2 and 3 asae—by—one to the controller, which translates them
trained using versions of genetic algorithms. Thénto motor commands. After all the input bits are ex-
advantage of this choice is that it leaves the form diausted, the evaluator translates the final sensory data
the representations completely free. We will devotérom the world state into the problem output. Having
most attention, however, not to how the systemso other representational methods at its disposal
learn—although their learning is quite efficient—but(such internal recurrent connections), the system is
to how they generalize, once they reach a learningpbliged to represent the problem, and to keep track of
criterion. This is because learning performancéhe intermediate results, by means of its action.
depends strongly on the incidental details of the The system is trained by means of a genetic algo-
learning algorithm. Generalization performance, omithm. Each experiment proceeds as follows. A frac-
the other hand, which is largely independent of théon f of the ' problems are assigned to the training
learning algorithm, answers the real question that weet; the other(1 —f) problems are assigned to the
want to address: what the system really learns frotest set and are never used in training (the training
the limited training data, given its external represerset always has an equal number of even and odd
tation constraint. cases). In each generation of the GA each member
of the (initially random) population is evaluated on
2. External representation and the 2'f training problems. (The weights a_nd thresh_—
o ] olds of the networks are coded as 10-bit strings in
learning in an animat® the genome.) A logical-0 input bit is coded as -1 for
the neural networks, a logical-1 as +1. The neural
We begin with a very simple creature with a highlynetworks have sigmoid activation functions
simplified sensorimotor embedding in a simulatedetween —1 and +1, with bias. The score on each
external world, similar to an animat. This particularproblem is the absolute value between the output of
creature lives on a 2-dimensional plane; its externahe sensory-output network and the true answer; the
‘world’ state is simply its position on the plane andscore on the entire training set is the mean of the
its heading. Time is taken as discrete. At each tickcores on each problem. The population (size 50, 10
bits/ weight) is evolved by both 2-point crossover
8 The results in this section have been reported iand mutation, with rank-based fitness. The experi-
Wexler (1996). ment was stopped as soon as at least one member of
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the population reached criterion on the training set g 1
a score of 0.001 or below. (Occasionally experi-5 )ig )
ments ran over 200 generations without reachin(E ¢ 75 A

criterion; these were discarded.) The best membe£ o A// N
. . [} =8

of the population is then tested on tHe(2 —f) S 05 . & e

problems in the test set, which the population hacg - —= =K ¢ =

never seen during its training. The average score 0§ 0.5

the best population member on the generalizatiol'@
test is the score for the experiment. 100 experimem%
were run for each value §fwith new training and © 0
test sets were chosen for each experiment. (Furthe

0 0.1250.250.375 0.50.625 0.750.875

details available on request. All techniques usec Training fraction —o—Ext. rep.
were very generic. The results were not sensitive t 0—1-2*-2-1
small variations in the parameters.) —4—1-3*-3-1

In order to have a comparison for the generaliza o 1-4%41

tion perforr_nance_ of these systems, the same tas’kFigure 2: Generalization performance as a function
was run with ordinary, non-embedded neural net- of rajning fraction on the 4-parity problem for the

works. The idea was to make things as hard as possystem using external representation and the three
sible for hypothesis by comparing the generaliza- pest SRN controls. Chance level is at 0.5.
tion performance of the embedded systems with
that of thebestgeneralizing ordinary networks. As calculating flip-flop), they generalize very poorly
shown by Clark and Thornton (1997), feed-forwardas do Clark and Thornton’s models): omitting just
networks for the non-temporal version of the probtwo problems gives very high error, and at four
lem are quite miserable at generalization. For thproblems they are close to chance level. Even the 1-
temporal version feed-forward networks won't do,2* -2-1 architecture has errors that are 50-100 times
as they do not preserve state, and therefore at legseater than those of the embodied systemd for
some recurrent connections are required. Afteabove 0.25. The problem length can be increased
experimenting with a number of architectures, iwithout substantially changing the results: keeping
was found that simple recurrent nets generalizt fixed one obtains similar generalization perfor-
best. Within this class, &*b-1 architectures are mance for 5-, 6-, and 7-parity.
the best (* denotes a recurrent context layer), and asThe interesting question of course is how the
long asb is not too large the performance dependembodied systems managed to represent the parity
essentially org; b = a was found to be the best function. As already discussed, these systems had no
choice. The three best architectures are 1-2*-2-1, Iaternal means to represent the problem, therefore
3*-3-1, and 1-4*-4-1. These networks were trainedhey had to perform all ‘computations’ externally,
by exactly the same method as the embedded sare., by means of their movement. The systems that
sorimotor systems. It should be noted that they gaeneralized successfully (which, as can be seen in
stuck in local minima much more often than therig. 2, is most of the trained systems) adopted vari-
embedded systems. ations on the following controller strategy: do noth-
The results for 4-parity are presented in Fig. 2ing if the input is 0, turn by 180° if the input 1. To
where the mean generalization performance is plothen calculate parity, the evaluator simply had to
ted againsf, the fraction of the 2problems that give 0 if the creature oriented in its original direc-
were withheld from the training set. Error of 0.5tion, and 1 if it was oriented the other way. Many of
corresponds to chance level. (There is a good btlie systems performed additional, spurious move-
not very enlightening explanation for why the con-ment which had little or no effect on the final answer.
trol nets actually perform worse than chance for It should be emphasized that this toy system is not
small values off.) The embedded, systems withmeant as a ‘model’ for any natural learning system.
external representation generalize almost perfectiypstead, it should be seen as a metaphor and an illus-
down tof = 0.25. As for the control nets, with the tration of how a naturalistically inspired sensorimo-
marginal exception of the 1-2*-2-1 architecturetor embedding can lead to external representation
(which is almost pre-engineered to become a parityhat usefully channels learning.
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3. A second example at its current position, can pick it up. Finally, the
with a symbolic controller system may perform a number of tests, and base its
subsequent actions on the outcome.

The main proposal of this paper to use external The controllers are LISP-like programs, com-
representation as a means to channel approprigtesed of a set of operands. Each controlling pro-
generalization is independent of the controllinggram is dist. A list is composed of head(which
mechanism. Thus, in the systems described in thtee given in Table 1) followed by zero or more ele-
previous section, the crucial aspect was the sysaents, each of which may either be atom
tems’ external embedding, not their controlling(which are given in Table 2) or another list.
mechanism, which happened to be a neural net-

work. Broadly speaking, a more flexible control- Head Description

ling mechanism will allow the system to representproG ab ...) Executes operands in order,

more complex functional relations given the same returning the value of the last

external representational medium, but in itself is operand. The empty list

not a means to canalize generalization. (PROG) is the same as
To illustrate this idea, we will now describe a (IFS).

new learning system that will be similarly embed-(NPROG ab ...) Same a®ROGwith the return

ded in a pseudo-physical world, and will rely on value inverted.

this embedding for its representational mecha{/F!ab.) If the current input is 1, exe-
nisms, l:_)ut will be controlled by a very differe_nt g?rzgr\?v?sdekrft#rgrg]seer:/télgit?sfe-
mechanism _from neural networks: a LISP_—Ilke quent elements are ignored.
program, trained by means c_>f a genetlc_ algorli‘hr_n. (FSab..) If there are one or more objects
Like the systems described in the previous section, at the current position, execute
the new system is composed of a controller and an and return the value @, oth-
evaluator. The system receives the bits of the erwiseb, if present.

binary training and test patterns serially; based ogiFO ab ...) If the current position is at the
the current input and world state, the controller origin, execute and return the
carries out a series of actions that may alter the value of a, otherwiseb, if
world state; the input thus processed, the evaluator present.

returns an output that depends on the final world Table 1: Types of list heads.

State.

The world that the new systems are embedded iAtom  Description

is a discrete half-line. Always starting at the origin, [EFT  Moves one unit of distance towards the origin,
the system can move in either direction, provided if possible.

it doesn’t bump into the wall. Each position on theriGHT  Moves one unit of distance away from origin.
half-ll_ne may contain zero or more ObjeCtTQ' _(Wlth PUT If the hand is holding an object, deposits it at
all objects cleared at the beginning of a training or the current position.

test pattern). Whe’? receiving an i_nput bit of 1, theTAKE If there is one or more object at the current
system has an object placed in its *hand’; other- position, moves one object into the hand.
wise its hand is empty. It can deposit this object at
its current position, or, provided there is an object

Table 2: Types of atoms.

] _ _ Atoms perform actions; atoms and lists return val-

4 Somewhat paradoxically, the choice of learning alyes. (Empty conditionals do nothing and return
gorithm will be seen as not very important for our purpeir value(IFS) returnsl if objects are present at
poses. A particular choice of algorithm might make the[he current position, and otherwigg

system learn some training sets faster, but, at least to 4The systems are trained using a genetic algorithm
first approximation, has no effect on generalization per-. . \ . .
milar to Koza’s genetic programming (Koza

formance. Thus we could instead have used a brufd - &
search through the space of LISP-like programs, resulg=992)' The parameters of the training algorithm

ing in much less efficient learning of the training sets, bur® NOt very important, though, as they tend to bear
very similar genera”zation performance. on the eﬁ|C|enCy with which SyStemS that repl’oduce
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the training set are evolved but not those systems 1
subsequent generalization scores. A brute-force

search through tree space, though highly inefficient 0.75 /

gives very similar generalization scores as the
genetic algorithm, once systems that perform per- o5
fectly on the training set are found.

This architecture has the capacity to represent ani g o5
to learn a variety of ‘intuitively simple’ boolean
functions. Consider, for instance, our old friend par-
ity. A system whose controller i6FO (IFI 0 0.1250.250.375 0.5 0.6250.75 0.875
RIGHT) (IFI LEFT) ), and whose evaluator is
(NPROG (IFO)) ‘solves’ the parity problem in a
way reminiscent of the systems from the previous Figure 3: Generalization performance on the 4-par-
section, but using its position to keep track of state: ity problem as a function of the fraction of problems
0 is represented by being at origlnby being at the used for training. Error bars are standard deviations.
neighboring position. There are other solutions pos-
sible. A system that uses objects rather than posig, never—before—seen 16 )L problems. (Here,
tions has controllefiFl (IFS TAKE PUT)) and performance is defined as the fraction of problems
evaluator(PROG); 0 is represented by no objects insolved correctly, so 0.5 is chance level.) Each train-
the stackl by one object. Mixed space/object solu-ing fractionf is re-run many times, with the training
tions also exist, for instance control(&S (IFI and test sets reshuffled each time. The result is
RIGHT) PUT) and evaluatofPROG), which repre- shown in Figure 3.
sents1l by an object at the current position but With very few problems included in the training
zeroes the state by moving to an unoccupied adjset, the system understandably performs at chance
cent spot. All three types of representations, ankkvel. But when as few as 6 out of 16 problems are
others besides, have been evolved by the system.used for training, the average performance is signif-

The architecture not only has tbapacityto rep- icantly better; with 8 problems performance is
resent parity, its external representational mechabove 90%, and with 10 or more it is very close to
nism makes parity simple to represent (as illustrategerfect. When the size of the problem is increased,
by the above examples) and therefteiealizeshe the size of the training set needed to achieve a given
system to learn parity and to generalize it correctlgeneralization level grows very slowly; training on
after very few examples. This is illustrated in thelO problems, for example, leads to about the same
same way as in the previous section. We considgeneralization score for 5-parity as training on 8
length-4 parity; of the 16 possible problems, theroblems does for 4-parity. For comparison, the
system is trained on a randomly chosen trainingeader should keep in mind that most machine
subset of 16 problems until its performance is per-learning methods, based on associativity rules, are
fect Its generalization is then tested on the remairsbliged to represent a function like parity descrip-
tively (such as dividing th@-dimensional hyper-

5 Population size 1000. Root of tree eitiRROGor  cube of the problem space by a large number of
NPROGwith equal probability. Subsequent elementshyperplanes) rather than procedurally. The resulting
chosen frpm Table 2 w_ith equal prob_abiljty; prOb_abi"tYdescriptions are complex compared to the simple
of branching a new list is 0.4, of terminating the list O'3programs evolved by our system (and grow rapidly

Minimum length 5 fqr Contrpller, 3 for eval_uator. Top more complex as the problem size increases), and
10% of each generation copied unchanged into next gen-

eration; the rest of the population is ‘sexual offspring’ ofare fougld to. generel‘lhze ;/fer.y Fiotorly domlmtnhg Just
previous generation with one tree swap (Koza 1992)(,)nepro em IS usually sufficient to reduce the sys-

with parent choice probability proportional to inverset®M to chance performance. _ _
rank. The system can learn and generalize a variety of

6 Care is taken to include the same number of proither interesting functions. We illustrate wigmgth
lems in the training set whose answer is 0 as those whoparity, boolean ANDandboolean ORLength parity
answer is 1. If the training criterion is not reached afters the function that returns the parity of the number
50 generations, the system is restarted. of input bits, regardless of the value of the bits

)

Training fraction
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Figure 4: Generalization performance on three functions, as a function of maximum length of training problems.
Generalization was tested on all unseen problems through length 6.

(unlike ordinary parity); it can be thought of as a sim- With the inclusion of an additional operand,
ple period-2 timer. One way our system can reprgdFHS a b ...) , that evaluatea if the state of
sent length parity is with controllg¢iFO RIGHT the hand is the same as the state of the current loca-
LEFT) and evaluatofNPROG (IFO)) , making tion (i.e., both have at least one object, or both are
itself into a period-2 oscillator, cycling between theempty), and otherwisé, the system acquires a
starting position and the next cell to the right orcapacity to represent, learn and generalize a new set
every bit of the input. Other variations on this themef functions, requiring short-term memory. Con-
can also be learned and generalized correctly. Feider the function, which we will caBy = By 3,
example, théength modulus 3unction returns 1 if that returns 1 iff the last bit is equal to the second-
the length of the input is a multiple of 3, and zerdo-last bit. It might at first seem that, lacking any
otherwise; it may be represented by the controlleénternal state, our system would be incapable of rep-
(PROG (IFO (PROG RIGHT RIGHT RIGHT)) resenting such a function (araforteriori, of learn-
LEFT), and evaluatqiNPROG (IFO)) . This system ing it from examples). But the system has another
again uses position for its representation; it movesay to implement memory, through off-loading the
two units to the right on the first bit of the input, thennformation onto the external world. Consider, for
one unit to the left on each of the next two bits, andhstance, the controll¢PROG PUT RIGHT) . Every

so on. The function can be learned, and generalizéme that this system receives an input bit, it ‘writes’
as well as length parity. The systems implementing on its current spatial location by leaving the space
the length parity and length modulus 3 functionempty if the bit is 0, and placing an object there if
may be thought of period-2 and period-3 timers. the bit is 1; it then moves to the next spatial location

Boolean AND can be represented by controlleon the right. The system thus turns its one-dimen-
(IFI (PROG) RIGHT) and evaluato(lFO) ;  sional space into a transcript of its temporal input
boolean OR by controll§PROG PUT) and evalu- sequence, much as people do when we reason about
ator(IFS) . As with parity, there are many alternatetime in spatial terms. Now if the evaluator were to
ways that the system can represent these functiori®e(PROGLEFT TAKELEFT (IFHS)) , the system
Once again, however, the system’s representationaill represent precisely thBy = By 1 function: it
mechanism canalizes it into correct generalizatiobacks up, ‘picks up’ the final bit, backs up once
with very few examples. more and compares the contents of that spatial loca-

For the length parity, boolean AND, and booleartion with the contents of its hand. Similarly, to com-
OR problems, the system was trained on all inpytare the third—to—last bit with the fifth—to—last, the
patterns of a given length (the ‘training length’), andBy , = By 4 function, the system would need the
tested on all longer problems, through length 6 bitevaluatofPROG LEFT LEFT LEFT TAKE LEFT
The generalization performance is shown in Fig. 4LEFT (IFHS)) , or one that is equivalent.

As can be seen in Fig. 4, excellent generalization This type of short-term memory not only can be
can be achieved with very small training sets. Wherepresented by the system, but can also be learned
problems of length 0 to 2 are included, generalizarom (a small number of) examples, and then gener-
tion is very close to perfect. alized correctly. This is shown in Fig. 5, the gener-
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1 * The architecture of the sensorimotor controller
and evaluator does not seem to be crucial, as

0.75 // long as it allows sufficient flexibility.

An interesting question to ask is: is there anything

05 [ ——% in common between the our systems’ representa-
tions and ours? People do, of course, make frequent
0.25 use of external representations, most obviously in
practical tasks (as in separating a pile of objects in
0 two when counting, or laying out objects in a spatial
0 0.1250.250.375 0.5 0.625 0.750.875 order that ‘represents’ the temporal order of their

use; for further examples, see Kirsh 1995). But does

external representation play a role in less pragmatic

Figure 5: Generalization curve for the short-term @nd, at least notionally, more abstract reasoning,

memory functiorBy = By ; with N = 4. such as the learning and representation of relations
studied in the previous two sections?

Consider the way the model in Section 3 learns
alization curve for th8y = By ; function forN = 4.  the short-term memory functions that test the equal-
All conditions were identical to those used to tesity of the last bit in the sequence with the second- or
parity (see Fig. 3), except for the inclusion of thehird—to—last bits. Having no ‘internal’ memory, the
IFHS conditional. TheéBy = By o function had a vir- model is obliged to off-load the information onto

Training fraction

tually identical generalization curve. the external, spatial configuration of objects. By
dropping an object at its current position if the cur-
4. Discussion rent input is 1, and moving to the next position, the

system converts the temporal input sequence into an

| first summarize the main lessons of the simulaerdered spatial representation. This reminds us of
tions. the well-known propensity that people have to rep-

» Using the two models developed here, | haveesent and reason about temporal events in terms of
shown that simulated robots with physical-likespatial structures and metaphors.
degrees of freedom can use action on their sim- Another comparison can be made between our
ulated worlds to represent a variety of abstraatnodels’ representation of the parity function, and
functional relations. typical human representations of the same relation.
The systems learn these external representli- can be revealing to ask people to learn, for
tions from small training sets of examples, andinstance, the parity function from examples. (This is
most importantly, generalize to previously un-of course more interesting with those who are math-
seen cases ‘correctly’—in ways that peopleematically naive, and do not possess the ready-
would find reasonable. made notion of parity.) Start off by saying, “0 gives
No prescription is given to the systems as t® and 1 gives 1,” and let the subject pose longer
how to use their action to represent the funcsequences as questions. Most people guess after
tions, and indeed, for a particular system andery few examples, and guess ‘correctly’ (i.e., they
particular training set, a variety of representaguess parity), often after learning that “1 1 gives 0”
tional strategies are observed to arise spontanbut that “1 1 1 gives 1.” Observing carefully what
ously. the subject does and says during the evaluation of a
These results hold true for at least two differenproblem, as well as his description of the algorithm,
kinds of simulated robot, one moving on a conprovides important clues about the representation
tinuous two-dimensional world, the other on aemployed. Some people actually use physical
discrete one-dimensional world. The second romovement. For instance, when asked “what does 1
bot can, in addition to moving, pick up and dropl 1 1 0 1 0 1 give,” a subject of this type might hold
objects. The second robot seems to be able twt a finger and, every time there is a “1” in the
represent a richer variety of functional relationssequence, change the finger's ‘state’ by flexing or
in virtue of its expanded sensorimotor reperunflexing it; if, at the end of the sequence, the finger
toire. is in the original state, the subject will answer “0,”
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and otherwise “1.” It is important to note that suchcations of what to do. Those of the youngest sub-
strategies (that have obvious connections to, arjdcts (4 years old) who succeeded all employed
possible reinforcement from, counting on one’s finexternal represenation. For instance, one child
gers) are evolved spontaneously, without any direavould jump out of his chair as soon as the signal
tions, other than the solutions given to the posedas given, run to the door of the room, slap the
guestions. door twice, run back to the chair, and then press the

Other subjects do not produce overt movemenhutton. A strategy such as this can work, and work
but employ similar strategies acting omaginary  systematically, because of the biomechanical and
movementA typical example is imagining a coin neurological constraints on movement that insure
(starting on the “heads” side, say), and imagininghe high repeatability of the time needed to execute
flipping it for every “1” in the sequence; if it is the same chain of actions; the trick is, of course, to
“heads” at the end the answer is “0,” otherwise “1.find a chain of actions that ‘represent’ a given tar-
Although there is n@vert movement involved in get delay. The actions themselves, entirely con-
this type of imagination strategy, it has been showatructed by the subject, differed widely. Another
that the imagination of self-movement in the brairchild would get up out of her chair, turn the chair (a
is closely related to the production of movementfitight cube) upside-down and back, sit back down
the activation of cortical areas, and in the closand then press the button. Another child would
matching of spatio-temporal characteristics (Jearsway her entire body sideways, like an inverted
nerod 1997). What is more, it has also been showpendulum, a number of times, and then press the
recently (Wexler, Kosslyn and Berthoz 1998) thabutton. None of the youngest children could sys-
manual movement (such as rotation) interferes in @matically produce the required delays while
very selective way with the cognate transformatiomemaining still. These children’s only way to ‘rep-
of mental images even of abstract objects (such assent’ a time delay is to execute a chain of actions
mental rotation). Thus, a strategy in which ondhat, for biomechanical reasons, systematically
imagines transforming an object may be verytakes about the same time.
closely related to the fully external strategy in This changed in children who were older. There
which one physically and overtly transforms arwas still movement, but its amplitude decreased and
external object. Instead of overtly acting on that became more erratic. One child, for instance, sat
world and letting the world perform the memoriza-still but moved her finger back and forth—compare
tion and calculation, one covertly simulates thighis with the whole-body movement seen in one of
action and internally predicts its outcorne. the younger subjects. Finally, by age 8 children are

A precise developmental sequence that interpable to produce the delay without any overt move-
lates between external and internal representatioment whatsoever; most likely, they counted to them-
and between overt and covert action, has beeselves, as adults would typically do. An interpreta-
established by V. Pouthas (1985). In her experition of this developmental sequence, in light of the
ments, children aged 4-8 years had to produce, amadguments given here, is as a progressive internal-
therefore to represent, specific time delays. In &ation of an external representation. The youngest
paradigm borrowed from animal studies, the childsubjects do not have access to an internal timer, or
had to wait a precise amount of time after a signadt the very least find it more natural to offload the
(usually 10 or 20 seconds), and then press a buttaask onto the world through self-movement and/or
Accurate performance was rewarded (with an intembject manipulation. The progressive diminution of
esting display), but the child received no other indithe reliance on external representation can of course
be interpreted as the its gradual replacement by a
. - disembodied internal clock. But it would certainly

_ This assumes, of course, that there are specific mecha more parsimonious to interpret it as an internal-
anisms in the brain to predict the outcome of abOUt_tOTzation of the previously utilized external represen-

be-executed action, or, short-circuiting the action-per,;o o |nstead of performing an action in order to

ception cycle, of imagined action. There is much evi- . ! . .
dence for such a mechanism, probably located i€ its duration as a timer, the subj@niulatesthe

posterior parietal cortex. See Clark and Grush (1998) fgiction (such imagining performing an oscillatory
a summary of some of the evidence, as well as an intefd0vement, or subvocalic speech); the imaginary
esting discussion of its link to mental representation. action can work just as well as a timer, since its tem-
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poral parameters closely match those of the ovedf a toy model. Implementing a system (in two ver-
action (Jeannerod 1997). sions) that has no choice but to represent problem
The external representations evolved by our togtate through very simple sensorimotor dynamics,
system closely resemble those actually used by pewe construct devices that not only can learn a vari-
ple to represent the same relations, as discussedety of simple functional relations, but, due to their
the preceding paragraphs. In the case of parity, botbpresentational constraints, generalize these rela-
the analog and digital artificial systems typicallytions in the way most people would consider ‘cor-
adopt an external representation of two states (ustect'—a non-trivial accomplishment, at least for the
ally by means of self-rotation, for the analog sysparity function, which most general-purpose learn-
tem; through self-translation or object manipulatioring systems fail miserably to generalize. Moreover,
for the digital system), a rule that amounts to “ddhe representations evolved by our systems resem-
nothing if input is zero; change state if input is 1”;ble closely those observed in people learning the
and a final evaluation rule, to the effect of “if we'resame relations. This canalization of ‘correct’ gener-
in the same state as initially, the answer is 0, analization suggests that perhaps external representa-
otherwise 18 This is functionally identical to the tion plays a non-negligible role in human inductive
typical spontaneous human representations thetasoning. Indeed, the abundance of examples of
involve either overt movement (i.e., using a finger tdhhow we employ action in our reasoning suggest that
keep track of state), or imagined movement (i.ethis might be the case, even when we perform no
imagining flipping a coin). The case of length parityovert action, but rather internally simulate its
and length modulus 3 functions can be considereeffects.
as a period-2 and period-3 timers, respectively. Our
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