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Abstract

 

External representation is the use of the physical
world for cognitive ends, the enlargement of the
mechanisms of representation to include the action-
perception cycle. It has recently been observed that
such representation is pervasive in human activity in
both pragmatic and more abstract tasks. It is argued
here that by forcing an artificial learning system to
off-load all of its representation onto a (simulated)
external world, we may obtain a model that is biased
in a very natural way to represent functional rela-
tions in ways similar to those used by people. After
learning a function from examples, such a model
should therefore generalize to unseen instances in
ways that we would consider correct. These ideas
are tested by developing two machine learning sys-
tems, in which representation relies on the sen-
sorimotor control of simulated robotic agents. These
systems are able to represent a variety of functional
relations by means of their action and perception,
and they learn to spontaneously do so from exam-
ples. Moreover, they generalize extremely well to
unseen problems even after a small number of exam-
ples, including on functions such as 

 

n

 

-parity that are
notoriously difficult to generalize for machine learn-
ing algorithms. It is argued that despite these sys-
tems’ simplicity, the external representations that
they evolve are similar to those used by people on
similar tasks.

 

1. Introduction: From external 
representation to learning 

and back again

 

Internal and external representation. 

 

Any ambi-
tious learning machine must possess some form of
internal representation, it has long been acknowl-
edged, for the reason that interesting things to
learn—functions, concepts, etc.—are seldom
directly expressible as simple input–output map-
pings, but rather seem to require re-representation
of the raw input data.

 

1

 

 The trouble with representa-

tion is that once we admit internal degrees of free-
dom—the architecture and weights of hidden layers
in a neural network, for example, or the structure of
a decision tree that is built up, etc.—we have a great
deal of freedom in deciding the general form and
the specific parameters of the our system’s innards,
which embody its internal representations. In all
interesting cases, these hidden degrees of freedom
are severely underconstrained by the data used to
train the system. It might be profitable to consider
what we know about representation in natural sys-
tems, for example in humans.

Internal representation in biological systems is
neural-based. The appropriate unit of analysis for
the understanding of the representation of high-
level concepts (rather than, say, the representation
of the fact that there is a bar of a certain orientation
in the receptive field of a particular cell in visual
cortex) may be anywhere from one neuron up to an
ensemble of billions of neurons. The problem with
neural representation is a practical one: we hardly
know how it works. Many of the details of single-
neuron mechanisms are known, but we have little
idea how, or whether, single cells represent high-
level concepts. At the other extreme we have large
ensembles of neurons, some of whose connections
are known, but whose causal role in cognition is far
from understood. At best, the data we have are cor-
relational: a neuron in an animal brain may change
its activation systematically following a particular
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 In this paper we will use “learning” to mean “learn-
ing a function from one set of numbers (input) to another
set of numbers (output), from examples.” The examples
are called the 

 

training set

 

, and include both input and de-
sired output; they are used to adjust the internal parame-
ters of the system. Following this learning phase, the
system is presented with another set of examples, the 

 

test
set

 

, in order to quantify generalization. The usual caveats
apply about this being a strong abstraction of what
“learning” might mean; it is nevertheless useful for dis-
cussing fundamental issues in inductive learning.
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sensation or preceding a particular movement; or an
area of a human brain may be activated during the
performance of a certain type of cognitive task. But
we are very far indeed from knowing the causal
neural mechanisms behind how, say, the representa-
tions of “

 

p

 

” and of “if 

 

p

 

 then 

 

q

 

” might (or might not)
lead to the representation of “

 

q

 

”. These kinds of
questions are probably not unanswerable in princi-
ple; but, despite dramatic recent progress in neuro-
science, we are still far from this goal.

Together with internal representation, there is
another, often overlooked variety: external repre-
sentation. External representations can be defined
as 

 

states of the physical world deliberately created
as part of a cognitive process, rather than for prag-
matic ends

 

 (Kirsh 1995; Zhang and Norman 1994;
Clark and Chalmers 1998). A common example is
the rearrangement of cards in games: one rearranges
the cards in one’s hand so as to render the relations
between the cards more perceptually salient, to off-
load at least a part of the planning process onto the
external arrangement, thereby freeing cognitive
resources for other tasks—rather than for any
immediate pragmatic end in the game. Another
example is counting a large pile of similar objects,
such as coins, where the difficulty is to count each
item, and only once. People typically use strategies
such as pointing to the border separating the
counted from the uncounted items, or sorting the
items into a new pile as they are counted. These
actions have no direct pragmatic relevance to the
task at hand, but are executed for their subsequent
facilitating effects on one’s mental operations:
namely, keeping track of the items that have already
been counted. As Clark and Chalmers (1998) point
out, there is no principled way to separate such
external representations from the internal, neural
variety, based purely on the work that the two types
of representation do.

External representations need not play only a
static, memory-like role; they can do cognitive
work, as well. In other words, a physical action per-
formed on an external representation may be iso-
morphic to a mental operation performed on the
analogous internal representation. For instance,
consider having to determine whether a large num-
ber (of objects or events) is even or odd. An external
representation for even might be, say, having one’s
index finger extended, with the index finger flexed
standing for odd. The relevant way to operate on
this representation would be to change the state of

the finger (to flex it if extended, and vice versa) for
every object or event to be tallied. If at the end the
finger is in the initial state, the number is even, oth-
erwise it is odd. This is functionally isomorphic to,
for example, to ‘mentally uttering’ alternatively
“even” or “odd” after every event to be counted. To
take another example from the ‘digital’ domain,
consider deleting a file in a windowed computer
interface. An icon, an external representation of
some information (more properly, an external repre-
sentation of an external representation—the data on
the disk) is dragged into the trash can icon and
thereby disappears, a process that parallels the men-
tal forgetting (or labeling as unimportant) some
internally represented information. External repre-
sentations thus need not be just reminders or facili-
tators; if well designed, they can also participate in
external transformations that do cognitive work, in
a process that parallels internal, neural representa-
tions being (presumably) transformed in the central
nervous system.

 

Inductive machine learning. 

 

We now return to
machine learning. In artificial inductive learning,
the machine is trained on only part of the set of pos-
sible input–output pairs; once it reaches some cri-
terion of success on this training set, the machine is
tested for ‘correct’ generalization on the remaining
test set. The number of generalizations consistent
with the training set is usually very large. The trou-
ble is: in many, probably most, natural cases of
learning, no purely formal, procedural criterion can
systematically pick out that (those) generaliza-
tion(s) which we would consider ‘correct,’ out of
this large field of possibilities. The fact that past
experience cannot 

 

formally

 

 constrain future experi-
ence was famously pointed out by Hume; Good-
man (1983) demonstrated with his elegant “grue”
argument that without inductive bias, one cannot
formally decide which predicates are projectible
(i.e., can be generalized over). Mitchell (1980) and
Wolpert (1996), among others, have discussed
these ideas in the context of machine learning,
showing, for instance, that, for a given learning
algorithm, for every problem set that is generalized
correctly there is one that is generalized incor-
rectly.

From a strictly unbiased, ‘objective’ point of view,
any generalization that is consistent with the training
set is as good as any other. Nevertheless, if all gener-
alizations are equal, some generalizations strike 

 

us
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as more clever or perspicacious. If we want to con-
struct an artificial system that reasons in a human-
like fashion, or if we want to model human inductive
reasoning, it is these latter generalizations that we
want our system to prefer.

The usual solution is to endow the learning system
with systematic inductive bias. No formal system
can be entirely free of bias, as it is obliged to formu-
late its hypotheses in some language; any such lan-
guage excludes some hypotheses, and of the ones it
does include makes some hypotheses easier and
more natural to express than others. Another type of
bias is due to the learning algorithm. This results in
a norm, “badness”, on the hypothesis language—
usually the error committed by the hypothesis on the
training set, for example, often combined with a fac-
tor to bias the system towards parsimony. Induction
is then seen as a form of optimization or search to
reduce the badness of the hypothesis.

In cognitive science, the traditional cure for the
various sticky problems of learning has been innate-
ness, or, less crudely, strong developmental con-
straints on the 

 

contents

 

 of eventual mental represen-
tations. This solution, however attractive, cannot be
the whole story, however, for a number of reasons.
First, shifting the burden from ontogeny to phylog-
eny begs the cognitive question, for phylogenetic
learning is at least as difficult as its ontogenetic
counterpart. Second, hard developmental constraints
seem to be at odds with the real plasticity of central
nervous system development (Quartz and Sejnowski
1997). Third, learning occurs on many time scales;
humans are capable of fast learning, from very few
examples, in rather artificial domains for which no
direct innate bias could have evolved.

The problem of induction has recently been dis-
cussed from the point of view of intermediate repre-
sentations (Kirsh 1992, Clark and Thornton 1997).
In the inductive learning of patterns, categories or
rules, the distinction is made between low-order reg-
ularities that are present directly in the training data
(such as conditional probabilities between individual
input and output bits that are close to 0 or 1), and
more subtle higher-order regularities that can only be
expressed in a richer language and in terms of the
lower-order regularities (such as relational proper-
ties, etc.). The lower-order regularities can certainly
be picked up by formal, fairly general and unbiased
techniques. As for the higher-order regularities, if the
learner is to succeed it must first re-represent the raw
input in order to make the more subtle pattern mani-

fest. (The learner can of course choose to treat the
higher-order regularity as if it were lower-order, by,
e.g., simply memorizing the input–output pairs, or
by learning bit–by–bit associations. But then it
would fail to generalize ‘correctly’: it will certainly
have learned something, but not what we were trying
to teach it.) The problem of perspicacious re-repre-
sentation is thus seen as the critical component of
higher-order learning.

Multi-layer neural networks have become popular
mainly due to the assumption that the intermediate
layers will somehow carry out this re-representation,
and the magic is supposed to be that this is induced
by means of a completely mindless procedure, hill-
climbing. Clark and Thornton (1997) have shown
that this is not so for a number of difficult learning
problems; the one I will discuss is 

 

n

 

-parity, as I also
use this problem in my toy models (see below). The

 

n-

 

parity mapping receives 

 

n

 

 bits as input and outputs
one bit, the sum of the input modulo 2. This mapping
is hard to learn from examples because they provide
no raw statistical information: all the conditional
probabilities between input and output bits are 0.5. It
is well known that multi-layer feed-forward net-
works can ‘learn’ parity by means of hill-climbing—
but this is only when they are trained on 

 

all

 

 the 2

 

n

 

input–output pairs. No simple associationistic learn-
ing will do for this rule: changing any bit of the input
flips the answer. Reproducing the training set is nec-
essary but not sufficient for having a concept or a
rule; simple memorization will lead to the same
result, and we would not then say that the memorizer
has learned a rule, because (among other reasons) no
re-representation of the input has taken place. A
sharper test for having learned a rule is of course cor-
rect generalization to previously unseen cases.

Clark and Thornton have found that 

 

no

 

 training
algorithm on 

 

any

 

 network architecture leads to net-
works that generalize correctly to previously unseen
cases of parity; in fact, even in the best cases it suf-
fices to withhold a very small fraction of the prob-
lems from the training set for generalization to fail
completely.

 

2

 

 This is very bad news for neural net-
works. Practically, it shows how bad general net-
work methods are at generalization: in problems of

 

2 

 

 The closest that any neural network—or any general
learning system—has come to generalizing parity is Pol-
lack’s (1992) cascaded network, which, given 

 

all

 

 input
strings of length 1 and 2, and some longer strings as train-
ing, generalizes correctly to 

 

some

 

 longer input strings.
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practical interest no system can be trained on 

 

all

 

cases. More fundamentally, it shows that, at least in
this case, that when a network learns to reproduce
input–output pairs, what it has actually learned is
entirely unlike the rule that 

 

we

 

 have used to arrive at
the training set. Indeed, what reason do we have to
suppose that a neural network, with its peculiar
dynamics and bias, would generalize beyond the
training set in the way 

 

we

 

 would? The only possible
reason would be the biological verisimilitude of arti-
ficial neural networks; but this, apparently, is not
enough. And lest one specifically blame neural net-
works, Clark and Thornton found that popular sym-
bolic algorithms, such as decision trees, fare just as
badly on generalization.

 

Learning with external representations. 

 

We are
faced, on one hand, with traditional machine learn-
ing methods based on intuitively appealing princi-
ples such as association (i.e., the solution of new
problem should be close to that of a previously seen
problem, if the two problems are close, in some met-
ric) and parsimony (shorter descriptions are pre-
ferred to longer ones, in some language) that never-
theless fail to evolve appropriate internal
representations and therefore fail to generalize ‘cor-
rectly’ to unseen training cases, on many interesting
problems. On the other hand, Nature offers few clues
about the shape and dynamics of appropriate internal
representations, other than some general information
about nerve cells and their connections and interac-
tions, which by themselves do not seem to be suffi-
cient constraints. In such circumstances, a prudent
way to proceed would be to seek inspiration from the
one type of high-level representation that we can
observe in detail, namely external representation.

 

We will therefore study learning and generaliza-
tion in systems that are obliged to make use of exter-
nal representations.

 

 We will do this by developing a
toy model that is built in such a way as to be forced
to off-load all of its representation onto a (simulat-
ed) external world. What is meant by this is that its
dynamical degrees of freedom have a passing re-
semblance to the sensorimotor links that biological
creatures have with the outside world. This resem-
blance is cartoon-like, in the same way that artificial
neural networks are an extremely abstract version of
real neural systems. It is to be hoped that such a
rough sketch will nevertheless capture something
essential about the effect of external representation
on learning.

We will experiment with two variations on the
general theme, in Sections 2 and 3, respectively, that
have somewhat different sensorimotor embeddings.
The first system is modeled after a simple animat: it
lives in an analog two-dimensional world, its reper-
toire of actions being confined to self-rotation and
forward motion. The second system is embedded in
a discrete, one-dimensional world similar to Block-
sworld, where it can move but also pick up and drop
objects.

The general architecture of our sensorimotor
learning systems is shown in Fig. 1. The problem is
fed, one bit at a time, to the controller. The architec-
ture of the controller is different for the two models
to be presented. In the first case it is a perceptron
neural network; in the second, a hierarchical LISP-
like program. In both cases, the controller is ‘repre-
sentationally shallow’, in the sense that it cannot
itself store any state, that it cannot re-represent the
input in any way.

The presentation of a problem always begins with
the system in a canonical world state. The controller
translates the input (and possibly the current sensory
state) into a motor command, to be executed in the

Controller

motor command

sensory data

Evaluator

Problem input: 0 1 1 0 1

Problem output: 1

Simulated
external

world

Figure 1: The general scheme for the sensorimotor
learning systems discussed in this paper.
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(simulated) external world. The motor command is
executed, sensory data collected, and, together with
the next element in the problem sequence, fed back
into the controller. This procedure is repeated for the
length of the problem input. Finally, the evaluator
(which has the same general architecture as the con-
troller) translates the sensory data from the final
world state into a solution or output to the current
problem.

It may be argued that since the ‘external’ embed-
ding of our systems is only simulated, it is not exter-
nal at all; this type of representation is just a special
case of internal representation. This is true, but
beside the point. What is important is the way that
the representational capacity of the system has been
sliced: a shallow controller and evaluator that them-
selves cannot store or represent anything, forcing all
representation to be offloaded onto the simulated
external world. As we will see, this architecture,
together with the sensorimotor details, strongly con-
strains what can be represented, what can be learned
from examples, and how this learning generalizes.

The models to be presented in Sections 2 and 3 are
trained using versions of genetic algorithms. The
advantage of this choice is that it leaves the form of
the representations completely free. We will devote
most attention, however, not to how the systems
learn—although their learning is quite efficient—but
to how they generalize, once they reach a learning
criterion. This is because learning performance
depends strongly on the incidental details of the
learning algorithm. Generalization performance, on
the other hand, which is largely independent of the
learning algorithm, answers the real question that we
want to address: what the system really learns from
the limited training data, given its external represen-
tation constraint.

 

2. External representation and 
learning in an animat

 

3

 

We begin with a very simple creature with a highly
simplified sensorimotor embedding in a simulated
external world, similar to an animat. This particular
creature lives on a 2-dimensional plane; its external
‘world’ state is simply its position on the plane and
its heading. Time is taken as discrete. At each tick

the creature issues a motor command, telling it the
distance to travel forward and the angle by which to
turn. The sensory data returned consist of the dis-
tance to a fixed landmark, and the angle between the
animat’s heading and the landmark (given as a sine
and cosine, to avoid discontinuities).

The architecture of the system is a specialization
of the general scheme given in Fig. 1. The controller
and evaluator are perceptrons—i.e., feedforward
neural networks with no hidden layer. The control-
ler has one input (for the current problem bit) and
two outputs (the motor commands); the evaluator
has three inputs (the sensory data) and one output
(the problem output). In this case, there is no feed-
back connection of sensory data to the controller
(but there is such a connection in the system pre-
sented in Section 3).

The function that we will teach this system will be

 

n

 

-parity. Before the beginning of the presentation, the
creature is put in a canonical world state, that is a giv-
en position and heading. As described in the Intro-
duction, the input bits of the parity problem are fed
one–by–one to the controller, which translates them
into motor commands. After all the input bits are ex-
hausted, the evaluator translates the final sensory data
from the world state into the problem output. Having
no other representational methods at its disposal
(such internal recurrent connections), the system is
obliged to represent the problem, and to keep track of
the intermediate results, by means of its action.

The system is trained by means of a genetic algo-
rithm. Each experiment proceeds as follows. A frac-
tion 

 

f

 

 of the 2

 

n

 

 problems are assigned to the training
set; the other 2

 

n

 

 (1 – 

 

f

 

) problems are assigned to the
test set and are never used in training (the training
set always has an equal number of even and odd
cases). In each generation of the GA each member
of the (initially random) population is evaluated on
the 2

 

n

 

 

 

f

 

 training problems. (The weights and thresh-
olds of the networks are coded as 10-bit strings in
the genome.) A logical-0 input bit is coded as –1 for
the neural networks, a logical-1 as +1. The neural
networks have sigmoid activation functions
between –1 and +1, with bias. The score on each
problem is the absolute value between the output of
the sensory-output network and the true answer; the
score on the entire training set is the mean of the
scores on each problem. The population (size 50, 10
bits/ weight) is evolved by both 2-point crossover
and mutation, with rank-based fitness. The experi-
ment was stopped as soon as at least one member of

 

3 

 

 The results in this section have been reported in
Wexler (1996).
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the population reached criterion on the training set,
a score of 0.001 or below. (Occasionally experi-
ments ran over 200 generations without reaching
criterion; these were discarded.) The best member
of the population is then tested on the 2

 

n

 

 (1 – 

 

f

 

)
problems in the test set, which the population had
never seen during its training. The average score on
the best population member on the generalization
test is the score for the experiment. 100 experiments
were run for each value of 

 

f

 

, with new training and
test sets were chosen for each experiment. (Further
details available on request. All techniques used
were very generic. The results were not sensitive to
small variations in the parameters.)

In order to have a comparison for the generaliza-
tion performance of these systems, the same task
was run with ordinary, non-embedded neural net-
works. The idea was to make things as hard as pos-
sible for hypothesis by comparing the generaliza-
tion performance of the embedded systems with
that of the 

 

best

 

 generalizing ordinary networks. As
shown by Clark and Thornton (1997), feed-forward
networks for the non-temporal version of the prob-
lem are quite miserable at generalization. For the
temporal version feed-forward networks won’t do,
as they do not preserve state, and therefore at least
some recurrent connections are required. After
experimenting with a number of architectures, it
was found that simple recurrent nets generalize
best. Within this class, 1-

 

a

 

*-

 

b

 

-1 architectures are
the best (* denotes a recurrent context layer), and as
long as 

 

b

 

 is not too large the performance depends
essentially on 

 

a

 

; 

 

b

 

 = 

 

a

 

 was found to be the best
choice. The three best architectures are 1-2*-2-1, 1-
3*-3-1, and 1-4*-4-1. These networks were trained
by exactly the same method as the embedded sen-
sorimotor systems. It should be noted that they got
stuck in local minima much more often than the
embedded systems.

The results for 4-parity are presented in Fig. 2,
where the mean generalization performance is plot-
ted against 

 

f

 

, the fraction of the 2

 

4

 

 problems that
were withheld from the training set. Error of 0.5
corresponds to chance level. (There is a good but
not very enlightening explanation for why the con-
trol nets actually perform worse than chance for
small values of 

 

f

 

.) The embedded, systems with
external representation generalize almost perfectly
down to 

 

f

 

 = 0.25. As for the control nets, with the
marginal exception of the 1-2*-2-1 architecture
(which is almost pre-engineered to become a parity-

calculating flip-flop), they generalize very poorly
(as do Clark and Thornton’s models): omitting just
two problems gives very high error, and at four
problems they are close to chance level. Even the 1-
2* -2-1 architecture has errors that are 50–100 times
greater than those of the embodied systems for 

 

f

 

above 0.25. The problem length can be increased
without substantially changing the results: keeping
f fixed one obtains similar generalization perfor-
mance for 5-, 6-, and 7-parity.

The interesting question of course is how the
embodied systems managed to represent the parity
function. As already discussed, these systems had no
internal means to represent the problem, therefore
they had to perform all ‘computations’ externally,
i.e., by means of their movement. The systems that
generalized successfully (which, as can be seen in
Fig. 2, is most of the trained systems) adopted vari-
ations on the following controller strategy: do noth-
ing if the input is 0, turn by 180˚ if the input 1. To
then calculate parity, the evaluator simply had to
give 0 if the creature oriented in its original direc-
tion, and 1 if it was oriented the other way. Many of
the systems performed additional, spurious move-
ment which had little or no effect on the final answer.

It should be emphasized that this toy system is not
meant as a ‘model’ for any natural learning system.
Instead, it should be seen as a metaphor and an illus-
tration of how a naturalistically inspired sensorimo-
tor embedding can lead to external representation
that usefully channels learning.

0
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Figure 2: Generalization performance as a function
of training fraction on the 4-parity problem for the
system using external representation and the three
best SRN controls. Chance level is at 0.5.
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3. A second example 
with a symbolic controller

 

The main proposal of this paper to use external
representation as a means to channel appropriate
generalization is independent of the controlling
mechanism. Thus, in the systems described in the
previous section, the crucial aspect was the sys-
tems’ external embedding, not their controlling
mechanism, which happened to be a neural net-
work. Broadly speaking, a more flexible control-
ling mechanism will allow the system to represent
more complex functional relations given the same
external representational medium, but in itself is
not a means to canalize generalization.

To illustrate this idea, we will now describe a
new learning system that will be similarly embed-
ded in a pseudo-physical world, and will rely on
this embedding for its representational mecha-
nisms, but will be controlled by a very different
mechanism from neural networks: a LISP-like
program, trained by means of a genetic algorithm.

 

4

 

Like the systems described in the previous section,
the new system is composed of a controller and an
evaluator. The system receives the bits of the
binary training and test patterns serially; based on
the current input and world state, the controller
carries out a series of actions that may alter the
world state; the input thus processed, the evaluator
returns an output that depends on the final world
state.

The world that the new systems are embedded in
is a discrete half-line. Always starting at the origin,
the system can move in either direction, provided
it doesn’t bump into the wall. Each position on the
half-line may contain zero or more objects (with
all objects cleared at the beginning of a training or
test pattern). When receiving an input bit of 1, the
system has an object placed in its ‘hand’; other-
wise its hand is empty. It can deposit this object at
its current position, or, provided there is an object

at its current position, can pick it up. Finally, the
system may perform a number of tests, and base its
subsequent actions on the outcome.

The controllers are LISP-like programs, com-
posed of a set of operands. Each controlling pro-
gram is a 

 

list

 

. A list is composed of a 

 

head

 

 (which
are given in Table 1) followed by zero or more ele-
ments, each of which may either be an 

 

atom

 

(which are given in Table 2) or another list.

Atoms perform actions; atoms and lists return val-
ues. (Empty conditionals do nothing and return
their value; 

 

(IFS)

 

 returns 

 

1

 

 if objects are present at
the current position, and otherwise 

 

0

 

.)
The systems are trained using a genetic algorithm

similar to Koza’s genetic programming (Koza
1992). The parameters of the training algorithm

 

5

 

are not very important, though, as they tend to bear
on the efficiency with which systems that reproduce

 

4 

 

 Somewhat paradoxically, the choice of learning al-
gorithm will be seen as not very important for our pur-
poses. A particular choice of algorithm might make the
system learn some training sets faster, but, at least to a
first approximation, has no effect on generalization per-
formance. Thus we could instead have used a brute
search through the space of LISP-like programs, result-
ing in much less efficient learning of the training sets, but
very similar generalization performance.

 

Head Description

 

(PROG a b ...)

 

Executes operands in order,
returning the value of the last
operand. The empty list

 

(PROG)

 

 is the same as

 

(IFS).

(NPROG a b ...)

 

Same as 

 

PROG

 

, with the return
value inverted.

 

(IFI a b ...)

 

If the current input is 1, exe-
cute and return the value of 

 

a

 

,
otherwise 

 

b

 

, if present. Subse-
quent elements are ignored.

 

(IFS a b ...)

 

If there are one or more objects
at the current position, execute
and return the value of 

 

a

 

, oth-
erwise 

 

b

 

, if present.

 

(IFO a b ...)

 

If the current position is at the
origin, execute and return the
value of 

 

a

 

, otherwise 

 

b

 

, if
present.

 

Table 1:

 

 Types of list heads.

 

Atom Description

 

LEFT

 

Moves one unit of distance towards the origin,
if possible.

 

RIGHT

 

Moves one unit of distance away from origin.

 

PUT

 

If the hand is holding an object, deposits it at
the current position.

 

TAKE

 

If there is one or more object at the current
position, moves one object into the hand.

 

Table 2:

 

 Types of atoms.
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the training set are evolved but not those systems’
subsequent generalization scores. A brute-force
search through tree space, though highly inefficient,
gives very similar generalization scores as the
genetic algorithm, once systems that perform per-
fectly on the training set are found.

This architecture has the capacity to represent and
to learn a variety of ‘intuitively simple’ boolean
functions. Consider, for instance, our old friend par-
ity. A system whose controller is 

 

(IFO (IFI
RIGHT) (IFI LEFT)

 

)

 

, and whose evaluator is

 

(NPROG (IFO))

 

 ‘solves’ the parity problem in a
way reminiscent of the systems from the previous
section, but using its position to keep track of state:

 

0

 

 is represented by being at origin, 

 

1 by being at the
neighboring position. There are other solutions pos-
sible. A system that uses objects rather than posi-
tions has controller (IFI (IFS TAKE PUT))  and
evaluator (PROG); 0 is represented by no objects in
the stack, 1 by one object. Mixed space/object solu-
tions also exist, for instance controller (IFS (IFI
RIGHT) PUT)  and evaluator (PROG), which repre-
sents 1 by an object at the current position but
zeroes the state by moving to an unoccupied adja-
cent spot. All three types of representations, and
others besides, have been evolved by the system.

The architecture not only has the capacity to rep-
resent parity, its external representational mecha-
nism makes parity simple to represent (as illustrated
by the above examples) and therefore canalizes the
system to learn parity and to generalize it correctly
after very few examples. This is illustrated in the
same way as in the previous section. We consider
length-4 parity; of the 16 possible problems, the
system is trained on a randomly chosen training
subset of 16 f problems until its performance is per-
fect.6 Its generalization is then tested on the remain-

ing, never–before–seen 16 (1 f) problems. (Here,
performance is defined as the fraction of problems
solved correctly, so 0.5 is chance level.) Each train-
ing fraction f is re-run many times, with the training
and test sets reshuffled each time. The result is
shown in Figure 3.

With very few problems included in the training
set, the system understandably performs at chance
level. But when as few as 6 out of 16 problems are
used for training, the average performance is signif-
icantly better; with 8 problems performance is
above 90%, and with 10 or more it is very close to
perfect. When the size of the problem is increased,
the size of the training set needed to achieve a given
generalization level grows very slowly; training on
10 problems, for example, leads to about the same
generalization score for 5-parity as training on 8
problems does for 4-parity. For comparison, the
reader should keep in mind that most machine
learning methods, based on associativity rules, are
obliged to represent a function like parity descrip-
tively (such as dividing the n-dimensional hyper-
cube of the problem space by a large number of
hyperplanes) rather than procedurally. The resulting
descriptions are complex compared to the simple
programs evolved by our system (and grow rapidly
more complex as the problem size increases), and
are found to generalize very poorly omitting just
one problem is usually sufficient to reduce the sys-
tem to chance performance.

The system can learn and generalize a variety of
other interesting functions. We illustrate with length
parity, boolean AND, and boolean OR. Length parity
is the function that returns the parity of the number
of input bits, regardless of the value of the bits

5  Population size 1000. Root of tree either PROG or
NPROG, with equal probability. Subsequent elements
chosen from Table 2 with equal probability; probability
of branching a new list is 0.4, of terminating the list 0.3.
Minimum length 5 for controller, 3 for evaluator. Top
10% of each generation copied unchanged into next gen-
eration; the rest of the population is ‘sexual offspring’ of
previous generation with one tree swap (Koza 1992),
with parent choice probability proportional to inverse
rank.

6  Care is taken to include the same number of prob-
lems in the training set whose answer is 0 as those whose
answer is 1. If the training criterion is not reached after
50 generations, the system is restarted.
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Training fraction

Figure 3: Generalization performance on the 4-par-
ity problem as a function of the fraction of problems
used for training. Error bars are standard deviations.
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(unlike ordinary parity); it can be thought of as a sim-
ple period-2 timer. One way our system can repre-
sent length parity is with controller (IFO RIGHT
LEFT)  and evaluator (NPROG (IFO)) , making
itself into a period-2 oscillator, cycling between the
starting position and the next cell to the right on
every bit of the input. Other variations on this theme
can also be learned and generalized correctly. For
example, the length modulus 3 function returns 1 if
the length of the input is a multiple of 3, and zero
otherwise; it may be represented by the controller
(PROG (IFO (PROG RIGHT RIGHT RIGHT))
LEFT) , and evaluator (NPROG (IFO)) . This system
again uses position for its representation; it moves
two units to the right on the first bit of the input, then
one unit to the left on each of the next two bits, and
so on. The function can be learned, and generalizes
as well as length parity. The systems implementing
the length parity and length modulus 3 functions
may be thought of period-2 and period-3 timers.

Boolean AND can be represented by controller
(IFI (PROG) RIGHT)  and evaluator (IFO) ;
boolean OR by controller (PROG PUT)  and evalu-
ator (IFS) . As with parity, there are many alternate
ways that the system can represent these functions.
Once again, however, the system’s representational
mechanism canalizes it into correct generalization
with very few examples.

For the length parity, boolean AND, and boolean
OR problems, the system was trained on all input
patterns of a given length (the ‘training length’), and
tested on all longer problems, through length 6 bits.
The generalization performance is shown in Fig. 4.

As can be seen in Fig. 4, excellent generalization
can be achieved with very small training sets. When
problems of length 0 to 2 are included, generaliza-
tion is very close to perfect.

With the inclusion of an additional operand,
(IFHS a b ...) , that evaluates a if the state of
the hand is the same as the state of the current loca-
tion (i.e., both have at least one object, or both are
empty), and otherwise b, the system acquires a
capacity to represent, learn and generalize a new set
of functions, requiring short-term memory. Con-
sider the function, which we will call BN = BN 1,
that returns 1 iff the last bit is equal to the second-
to-last bit. It might at first seem that, lacking any
internal state, our system would be incapable of rep-
resenting such a function (and, a forteriori, of learn-
ing it from examples). But the system has another
way to implement memory, through off-loading the
information onto the external world. Consider, for
instance, the controller (PROG PUT RIGHT) . Every
time that this system receives an input bit, it ‘writes’
it on its current spatial location by leaving the space
empty if the bit is 0, and placing an object there if
the bit is 1; it then moves to the next spatial location
on the right. The system thus turns its one-dimen-
sional space into a transcript of its temporal input
sequence, much as people do when we reason about
time in spatial terms. Now if the evaluator were to
be (PROG LEFT TAKE LEFT (IFHS)) , the system
will represent precisely the BN = BN 1 function: it
backs up, ‘picks up’ the final bit, backs up once
more and compares the contents of that spatial loca-
tion with the contents of its hand. Similarly, to com-
pare the third–to–last bit with the fifth–to–last, the
BN 2 = BN 4 function, the system would need the
evaluator (PROG LEFT LEFT LEFT TAKE LEFT
LEFT (IFHS)) , or one that is equivalent.

This type of short-term memory not only can be
represented by the system, but can also be learned
from (a small number of) examples, and then gener-
alized correctly. This is shown in Fig. 5, the gener-
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Figure 4: Generalization performance on three functions, as a function of maximum length of training problems.
Generalization was tested on all unseen problems through length 6.

(a) length parity (b) boolean AND (c) boolean OR



Mark Wexler

A. Riegler & M. Peschl | 10 | Understanding Representation

alization curve for the BN = BN 1 function for N = 4.
All conditions were identical to those used to test
parity (see Fig. 3), except for the inclusion of the
IFHS  conditional. The BN = BN 2 function had a vir-
tually identical generalization curve.

4. Discussion
I first summarize the main lessons of the simula-
tions.

• Using the two models developed here, I have
shown that simulated robots with physical-like
degrees of freedom can use action on their sim-
ulated worlds to represent a variety of abstract
functional relations.

• The systems learn these external representa-
tions from small training sets of examples, and,
most importantly, generalize to previously un-
seen cases ‘correctly’—in ways that people
would find reasonable.

• No prescription is given to the systems as to
how to use their action to represent the func-
tions, and indeed, for a particular system and
particular training set, a variety of representa-
tional strategies are observed to arise spontane-
ously.

• These results hold true for at least two different
kinds of simulated robot, one moving on a con-
tinuous two-dimensional world, the other on a
discrete one-dimensional world. The second ro-
bot can, in addition to moving, pick up and drop
objects. The second robot seems to be able to
represent a richer variety of functional relations
in virtue of its expanded sensorimotor reper-
toire.

• The architecture of the sensorimotor controller
and evaluator does not seem to be crucial, as
long as it allows sufficient flexibility.

An interesting question to ask is: is there anything
in common between the our systems’ representa-
tions and ours? People do, of course, make frequent
use of external representations, most obviously in
practical tasks (as in separating a pile of objects in
two when counting, or laying out objects in a spatial
order that ‘represents’ the temporal order of their
use; for further examples, see Kirsh 1995). But does
external representation play a role in less pragmatic
and, at least notionally, more abstract reasoning,
such as the learning and representation of relations
studied in the previous two sections?

Consider the way the model in Section 3 learns
the short-term memory functions that test the equal-
ity of the last bit in the sequence with the second- or
third–to–last bits. Having no ‘internal’ memory, the
model is obliged to off-load the information onto
the external, spatial configuration of objects. By
dropping an object at its current position if the cur-
rent input is 1, and moving to the next position, the
system converts the temporal input sequence into an
ordered spatial representation. This reminds us of
the well-known propensity that people have to rep-
resent and reason about temporal events in terms of
spatial structures and metaphors.

Another comparison can be made between our
models’ representation of the parity function, and
typical human representations of the same relation.
It can be revealing to ask people to learn, for
instance, the parity function from examples. (This is
of course more interesting with those who are math-
ematically naive, and do not possess the ready-
made notion of parity.) Start off by saying, “0 gives
0 and 1 gives 1,” and let the subject pose longer
sequences as questions. Most people guess after
very few examples, and guess ‘correctly’ (i.e., they
guess parity), often after learning that “1 1 gives 0”
but that “1 1 1 gives 1.” Observing carefully what
the subject does and says during the evaluation of a
problem, as well as his description of the algorithm,
provides important clues about the representation
employed. Some people actually use physical
movement. For instance, when asked “what does 1
1 1 1 0 1 0 1 give,” a subject of this type might hold
out a finger and, every time there is a “1” in the
sequence, change the finger’s ‘state’ by flexing or
unflexing it; if, at the end of the sequence, the finger
is in the original state, the subject will answer “0,”
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Figure 5: Generalization curve for the short-term
memory function BN = BN 1 with N = 4.
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and otherwise “1.” It is important to note that such
strategies (that have obvious connections to, and
possible reinforcement from, counting on one’s fin-
gers) are evolved spontaneously, without any direc-
tions, other than the solutions given to the posed
questions.

Other subjects do not produce overt movement,
but employ similar strategies acting on imaginary
movement. A typical example is imagining a coin
(starting on the “heads” side, say), and imagining
flipping it for every “1” in the sequence; if it is
“heads” at the end the answer is “0,” otherwise “1.”
Although there is no overt movement involved in
this type of imagination strategy, it has been shown
that the imagination of self-movement in the brain
is closely related to the production of movementƒin
the activation of cortical areas, and in the close
matching of spatio-temporal characteristics (Jean-
nerod 1997). What is more, it has also been shown
recently (Wexler, Kosslyn and Berthoz 1998) that
manual movement (such as rotation) interferes in a
very selective way with the cognate transformation
of mental images even of abstract objects (such as
mental rotation). Thus, a strategy in which one
imagines transforming an object may be very
closely related to the fully external strategy in
which one physically and overtly transforms an
external object. Instead of overtly acting on the
world and letting the world perform the memoriza-
tion and calculation, one covertly simulates this
action and internally predicts its outcome.7

A precise developmental sequence that interpo-
lates between external and internal representation,
and between overt and covert action, has been
established by V. Pouthas (1985). In her experi-
ments, children aged 4–8 years had to produce, and
therefore to represent, specific time delays. In a
paradigm borrowed from animal studies, the child
had to wait a precise amount of time after a signal
(usually 10 or 20 seconds), and then press a button.
Accurate performance was rewarded (with an inter-
esting display), but the child received no other indi-

cations of what to do. Those of the youngest sub-
jects (4 years old) who succeeded all employed
external represenation. For instance, one child
would jump out of his chair as soon as the signal
was given, run to the door of the room, slap the
door twice, run back to the chair, and then press the
button. A strategy such as this can work, and work
systematically, because of the biomechanical and
neurological constraints on movement that insure
the high repeatability of the time needed to execute
the same chain of actions; the trick is, of course, to
find a chain of actions that ‘represent’ a given tar-
get delay. The actions themselves, entirely con-
structed by the subject, differed widely. Another
child would get up out of her chair, turn the chair (a
light cube) upside-down and back, sit back down
and then press the button. Another child would
sway her entire body sideways, like an inverted
pendulum, a number of times, and then press the
button. None of the youngest children could sys-
tematically produce the required delays while
remaining still. These children’s only way to ‘rep-
resent’ a time delay is to execute a chain of actions
that, for biomechanical reasons, systematically
takes about the same time.

This changed in children who were older. There
was still movement, but its amplitude decreased and
it became more erratic. One child, for instance, sat
still but moved her finger back and forth—compare
this with the whole-body movement seen in one of
the younger subjects. Finally, by age 8 children are
able to produce the delay without any overt move-
ment whatsoever; most likely, they counted to them-
selves, as adults would typically do. An interpreta-
tion of this developmental sequence, in light of the
arguments given here, is as a progressive internal-
ization of an external representation. The youngest
subjects do not have access to an internal timer, or
at the very least find it more natural to offload the
task onto the world through self-movement and/or
object manipulation. The progressive diminution of
the reliance on external representation can of course
be interpreted as the its gradual replacement by a
disembodied internal clock. But it would certainly
be more parsimonious to interpret it as an internal-
ization of the previously utilized external represen-
tations. Instead of performing an action in order to
use its duration as a timer, the subject simulates the
action (such imagining performing an oscillatory
movement, or subvocalic speech); the imaginary
action can work just as well as a timer, since its tem-

7  This assumes, of course, that there are specific mech-
anisms in the brain to predict the outcome of about–to–
be–executed action, or, short-circuiting the action-per-
ception cycle, of imagined action. There is much evi-
dence for such a mechanism, probably located in
posterior parietal cortex. See Clark and Grush (1998) for
a summary of some of the evidence, as well as an inter-
esting discussion of its link to mental representation.
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poral parameters closely match those of the overt
action (Jeannerod 1997).

The external representations evolved by our toy
system closely resemble those actually used by peo-
ple to represent the same relations, as discussed in
the preceding paragraphs. In the case of parity, both
the analog and digital artificial systems typically
adopt an external representation of two states (usu-
ally by means of self-rotation, for the analog sys-
tem; through self-translation or object manipulation
for the digital system), a rule that amounts to “do
nothing if input is zero; change state if input is 1”;
and a final evaluation rule, to the effect of “if we’re
in the same state as initially, the answer is 0, and
otherwise 1.”8 This is functionally identical to the
typical spontaneous human representations that
involve either overt movement (i.e., using a finger to
keep track of state), or imagined movement (i.e.,
imagining flipping a coin). The case of length parity
and length modulus 3 functions can be considered
as a period-2 and period-3 timers, respectively. Our
system learns to represent these functions through
cyclic movement: the period-2 by moving right then
left then right then left, etc., the period-3 by moving
right two spaces then left then left, etc. This is qual-
itatively very similar to the self-movement strate-
gies spontaneously adopted by 4-year-old children
when faced with the task of reproducing 10- or 20-
second intervals, as discussed above.

Finally, we come back to the theme of generaliza-
tion. The generalization of a given training set to
previously unseen cases is always an ill-posed prob-
lem. Formally, without inductive bias any generali-
zation is as good as any other, by some set of prin-
ciples. Given this, if we want artificial systems that
generalize as we do (and a large part of reasoning
involves different types of induction), it makes
sense to constrain their representational mecha-
nisms to be similar to ours, for, as we have seen,
constraints on representation are an effective way to
introduce inductive bias. Having little information
about the detailed dynamics of internal, neural rep-
resentations, we turn to external representations as
a form easy to study and imitate, at least on the level

of a toy model. Implementing a system (in two ver-
sions) that has no choice but to represent problem
state through very simple sensorimotor dynamics,
we construct devices that not only can learn a vari-
ety of simple functional relations, but, due to their
representational constraints, generalize these rela-
tions in the way most people would consider ‘cor-
rect’—a non-trivial accomplishment, at least for the
parity function, which most general-purpose learn-
ing systems fail miserably to generalize. Moreover,
the representations evolved by our systems resem-
ble closely those observed in people learning the
same relations. This canalization of ‘correct’ gener-
alization suggests that perhaps external representa-
tion plays a non-negligible role in human inductive
reasoning. Indeed, the abundance of examples of
how we employ action in our reasoning suggest that
this might be the case, even when we perform no
overt action, but rather internally simulate its
effects.
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