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Abstract Research in language evolution is concerned with
the question of how complex linguistic structures can emerge
from the interactions between many communicating
individuals. Thus it complements psycholinguistics, which
investigates the processes involved in individual adult
language processing, and child language development
studies, which investigate how children learn a given (�xed)
language. We focus on the framework of language games
and argue that they offer a fresh and formal perspective on
many current debates in cognitive science, including those on
the synchronic-versus-diachronic perspective on language,
the embodiment and situatedness of language and cognition,
and the self-organization of linguistic patterns. We present a
measure for the quality of a lexicon in a population, and
derive four characteristics of the optimal lexicon: speci�city,
coherence, distinctiveness, and regularity. We present a
model of lexical dynamics that shows the spontaneous
emergence of these characteristics in a distributed population
of individuals that incorporate embodiment constraints.
Finally, we discuss how research in cognitive science could
contribute to improving existing language game models.

1 Introduction

There exists a long tradition of formulating and studying formal models of language
processing and language learning. These models have generally focused on the lin-
guistic competence of a single individual. They have proven to be appealing because
such formalisms offer precision and clarity, have led to successful technology, and have
allowed for extensive theoretical research to complement empirical work.

However, these competence models have abstracted away many arguably crucial
characteristics of language. These abstractions are viewed with growing uneasiness by
cognitive scientists, linguists, and other researchers. Some of their concerns are well
known: competence theories lack an appreciation of linguistic performance and of the
communicative function of language, and they place a strong emphasis on symbolic
processing and innateness (see, e.g., [8, 33, 17] for criticisms).

Here we focus on a particular criticism: traditional models fail to acknowledge how
much of linguistic structure emerges from communication and embodiment. Recent
research on natural language pragmatics, for instance, has focused on language as a
cooperative phenomenon where communication is viewed as a joint action between
the participants [4]. This view is in contrast to the traditional approach in which speak-
ing and hearing are investigated in isolation as individual actions. Researchers in the
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framework of emergentism have argued that the structure of language should be ex-
plained as the emergent result of the many interactions between known processes in
evolution, development, speaking, listening, and language change over time [17].

This type of work emphasizes the role of (i) the function of language for commu-
nication between individuals (cooperativity ), and (ii) the biophysical constraints of the
human body and its environment (embodiment) in the explanation for the origin and
development of linguistic structure. We are sympathetic to these arguments and share
the criticism of a tradition that in some sense equates the formalisms of the researcher
with the mechanisms of the real brain. However, we regret that this general criticism
goes hand in hand with a reluctance to use formal models at all. Many researchers
have focused instead uniquely on empirical or philosophical approaches (e.g., [17]), or
on building “embodied” robots (e.g., [32]).

The goal of this article is to argue that formal models can deal in a meaningful way
with embodiment, situatedness, and self-organization. They can help to de�ne these
concepts and elucidate the role they play in the development of complex language.
Language games, such as those studied in recent years in the �eld of arti�cial life (see,
e.g., [29, 15] for reviews), are a prime candidate for this purpose. Language games are
models of language change and language evolution in populations of communicating
individuals. Although in most of these models cooperativity and embodiment have not
played much of a role, we believe they can be successfully extended to incorporate
these important aspects.

The notion of embodiment comes in different �avors. On the one hand, a learning
system can be incorporated into an actual robotic body, highlighting the need of the
system to cope with sensory limitations [32] and allowing it to manipulate its envi-
ronment and to develop representations based on sensorimotor interactions with this
environment [22]. On the other hand, and more in line with the notion adopted here,
embodiment can mean incorporating constraints from sensory, brain, and psycholog-
ical processing into models without explicitly constructing an arti�cial body. These
approaches are complementary, and neither presents a fully embodied system. In this
article we argue that the latter notion of embodiment can be studied with formal mod-
els, by incorporating sensory constraints (in the form of noise on the signals) and brain
and cognitive processing constraints (by assuming limited processing resources and
topological relations between meanings and between signals) into such models.

The models of language evolution that we will consider are multi-agent models.
They de�ne a population of individuals that talk to each other and learn from each
other, using a language that as a result changes over time. Individuals in the mod-
els have limited production, memory, and perception abilities, and they have limited
access to the knowledge of other individuals. The models evaluate the complex rela-
tionship between (i) acoustic, cognitive, and articulatory constraints, (ii) learning and
development, (iii) cultural transmission and interaction, (iv) biological evolution, and
(v) the complex patterns that are to be explained: the phonology, morphology, syntax,
and semantics that are observed in human languages.

The type of language game we examine here is concerned with how a common
lexicon can develop in a population of individuals (often called agents in this context).
In these games, an agent can act either as a speaker or as a hearer. The purpose of
a communicative act is the transmission of a meaning from the speaker to the hearer.
Meanings cannot be transmitted directly but are encoded by linguistic forms. We can
investigate how, based on a great number of such linguistic exchanges under different
constraints, a shared lexicon develops so that different speakers use the same word
for the same meaning and hearers interpret words with intended meanings. In our
models we restrict ourselves to the development of a common lexicon, thus skipping
the much more complex and controversial issues in syntax. Nevertheless, we hope
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to make the point that language games offer an appealing framework to study other
aspects of language as well. For language games that do incorporate grammar, we refer
to the extensive review by Kirby [15].

From the perspective of language games, the development of a shared lexicon sim-
ply cannot be studied in isolation within one individual, because it depends on the
interactions between individuals. In that respect it is a prime example of an aspect of
language that escapes study in traditional approaches.

In the rest of this article we will discuss the general framework of these models
and present a measure for the quality of a lexicon. We will then study a model that
is simple, but is nevertheless novel and serves well to illustrate our approach. Finally,
we will discuss how simple language games can be extended to incorporate realistic
aspects of cognition, embodiment, and communication.

2 The Optimal Lexicon

The communicative success of a population depends on the organization of the lin-
guistic forms in that population’s language, and on how these forms relate to different
meanings: how uniquely does one form refer to one meaning? How likely is a speaker
to choose a speci�c linguistic form for a meaning, and how likely is a listener to at-
tribute a certain meaning to a received form? To what extent do individuals agree
on the meaning-form mappings? How easily can different forms be confused when
communication is noisy?

In this section we will �rst derive a formal description of what would be the optimal
lexicon, that is, the lexicon that leads to the highest communicative success in the
population. To do so, we need a measure for communicative success. Such a measure
is presented next. Similar formalisms were used in [11, 21] and other papers, but our
measure is chosen so that we can incorporate some real-world constraints on noise in
signaling (like [18]) and different values for different meanings ([14, 19] incorporate in
their models the related idea of different frequencies for different meanings).

Speakers can express what they want to say in different ways. Likewise, hearers
can interpret spoken forms in different ways. Communicative success is high when the
hearer’s interpretation of a received form matches with the intention of the speaker.
We assume a set of N agents that communicate by forms F to convey meanings M .
In a given interaction, a speaker chooses a form f for a meaning m, and the hearer
interprets the heard form f ¤ (which may differ from f if transmission is noisy) and
assigns it the meaning m¤. Communication is optimal if speakers and hearers always
agree on the meaning for an exchanged form, that is, if m D m¤ for any choice of m.

We denote by S i. f j m/ the probability that an agent i uses the form f to express
the meaning m. Similarly, R i.m j f / is the probability that agent i as a hearer interprets
the form f as the meaning m. We assume that there are a �nite number jM j of relevant
meanings and a �nite number jF j of forms used. Further, we assume that similarity
between different forms and between different meanings can be measured (e.g., [16]).

We also assume that communication is noisy, that is, the hearer can misperceive a
certain form, and more similar forms are more easily confused. We denote by U . f ¤ j f /

the probability that an agent perceives the form f as the form f ¤ ( f can be equal to
f ¤, indicating that the hearer has perceived the form correctly).

Finally, we assume that the communication is successful if the hearer’s interpretation
is close to the sender’s intention. The probability of successfully conveying a certain
meaning thus depends on the probabilities of the sender using certain forms and the
probabilities of the hearer perceiving and interpreting these forms correctly. We denote
by V .m¤; m/ the value (or reward) for the hearer understanding m¤ when the speaker
intended m. Thus V is a measure of communication quality. It should express both
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the relative importance of a certain meaning, and the relations between alternative
meanings. For example, we could assume that interpreting a signal with a meaning
that is wrong but similar is better than interpreting it with just a random meaning, or
that being able to express frequent meanings is more important than being able to
express infrequent ones.

From these observations, we derive a simple equation that describes the probability
P .m¤ j m/ of any hearer j having an interpretation m¤ when the speaker i intended
m:

P .m¤ j m/ D 1

N .N ¡ 1/

X

i

X

j 6Di

X

f 2F

X

f ¤2F

¡
S i

¡
f j m

¢
¢ U

¡
f ¤ j f

¢
¢ R j

¡
m¤ j f ¤¢¢

(1)

This equation says that the probability of the meaning m being perceived as m¤

(“understanding m as m¤”) is the probability of agent i using the form f to encode
meaning m, the hearer perceiving form f ¤ and then interpreting it as m¤. Because we
sum over all N agents as speakers and all but one as hearers (N ¡ 1; agents do not talk
to themselves), we divide the whole expression by N .N ¡ 1/.

From here it is only a small step to de�ne the communicative success C of the whole
population of N agents talking about all jM j meanings:

C D 1

jM j
X

m2M

X

m¤2M

¡
P

¡
m¤jm

¢
¢ V

¡
m¤; m

¢¢
(2)

That is, overall communicative success is the sum of the probabilities for all mean-
ing transmissions weighted by their values (assuming that all meanings are equally
frequent). This measure is normalized with the number of meanings.

Because S , R , U , and V can all be described as matrices, we can in fact summarize
Equations 1 and 2 as follows:

C D 1

jM jN .N ¡ 1/

X

i

X

j 6Di

¡
S i £

¡
U £ R j

¢¢
¢ V (3)

where the ‘£’ indicates usual matrix multiplication, and the ‘¢’ indicates the summation
of the product every element in one matrix with its corresponding element in the other
matrix (dot multiplication).

Equation 3 constitutes a very general quality measure for a communication sys-
tem between individuals (described by the matrices S and R), under some embodied
constraints of articulation and perception (described by U ) and semantic/pragmatic
constraints on how useful an interpretation is given a certain intention (described by
V ). By choosing the proper U and V , a wide range of different noise and reward func-
tions can be modeled. However, these matrices can of course not capture all aspects
of the embodiment and environment. For instance, the development of conceptual
and articulatory abilities and the dependence of rewards and confusion probabilities
on speci�c contexts cannot be modeled directly with our four matrices. However, the
formalism is easily extendable to incorporate such aspects. Moreover, even if not all
aspects of animal (e.g., [24]), human, or robot communication (e.g., [32]) are modeled,
the formalism gives a principled way to abstract out those aspects of embodiment that
are nonessential for the emerging language.

With equation 3 in hand, we can now investigate under which conditions commu-
nicative success is maximized. We will not provide analytical results for any speci�c
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choice of U and V . Instead, we will present numerical results for a variety of choices
of U and V with a simple hill-climbing algorithm. The algorithm used throughout this
section is the following:

1. Initialize a population of P individuals, each with an jM j £ jF j matrix S (a
production lexicon) and an jF j £ jM j matrix R (a reception lexicon) set with
random values and columns normalized.

2. Measure C according to Equation 3.

3. Apply a random change (from a Gaussian distribution with mean 0 and standard
deviation n D 0:1) to a random entry in a random matrix of a random individual,
and normalize the column.

4. Measure C 0 according to Equation 3.

5. If C > C 0, revert the change; otherwise C :D C 0.

6. If maximum steps are reached, stop; otherwise go to 3.

Note that in the simulations that use this algorithm an individual’s lexicon is not
changed as a direct consequence of communication, but is changed randomly. How-
ever, this random change may lead to higher communicative success, in which case the
change is retained. We use this simple global optimization procedure to analyze what
the optimal lexicon will look like for different choices of U and V . In Section 3 we
will look at the more realistic situation where agents optimize their individual commu-
nicative success, that is, where optimization is local and distributed.

2.1 Categorical Meanings; Noise-Free Signaling
Let us �rst consider the simplest case of categorical, noise-free communication. That
is, we assume that every meaning is unique and has no relation with other meanings.
Further we assume that forms are perceived as they are uttered. In short, both U and
V are unit matrices (matrices with 1’s on the diagonal, and 0’s everywhere else).

If we optimize a population’s lexicon under these conditions using the hill-climbing
algorithm described above, we obtain results as in Figure 1. Here C increases steadily
and reaches the optimal value (1:0). The S matrices in the population have maximal
probability (D 1:0) for a speci�c form (horizontal) for each of the meanings (verti-
cal), and probability 0 for all other forms. In the matrix R these forms (vertical) are
interpreted as the “correct” meanings. Because there are more possible forms than
meanings, some forms are never used and have arbitrary interpretations.

From this simple simulation we can derive two properties of the optimal lexicon:
speci�city, one unique form for every intention, and one unique interpretation for every
used form, if jM j · jF j; and coherence, that is, everyone in a population uses the same
form for the same meaning.

2.2 Categorical Meanings, Noisy Signaling
If there is noise on the signal (due to a noisy environment and sensory limitations of
the hearer), we can expect the hearer to sometimes hear a different form than the
speaker uttered. We can model this by introducing nonzero off-diagonal entries in the
matrix U . Here, we consider only the simplest case, where forms vary on one axis,
determined by their index, and we set the values of U depending on the distance from
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(a) Development of communicative success

over 25000 iterations

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

m8

m7

m6

m5

m4

m3

m2

m1

(b) S matrix of a random

individual, showing for each

meaning (vertical) the prob-

ability that she will use any

of the forms (horizontal) to

m1 m2 m3 m4 m5 m6 m7 m8

f12

f11

f10

f9

f8

f7

f6

f5

f4

f3

f2

f1

(c) R matrix of the same indi-

vidual, showing for each form

(vertical) the probability that

she will choose any of the

meanings (horizontal) as its

Figure 1. The optimal lexicon in a population under categorical, noise-free conditions. The size of circles is pro-
portional to the value of the corresponding entry; entries with value 0 are plotted as a small dot. (V and U are unit
matrices, jMj D 8, jFj D 12, N D 3, n D 0:1).

the “correct” form (and subsequently normalize every row of U ):

U . f ¤ j f / D 1

1 C . f ¡ f ¤/2
(4)

We expect a lower optimal value of C . Moreover, for optimized C , we also expect
to �nd matrices that somehow minimize the chance of misinterpretation. Figure 2
shows that this is indeed what happens. The S matrix shows that for every meaning,
there is a prototype form that individuals use. For these prototype forms and their
direct neighbors, the interpretation is the “correct” meaning. Thus, little clusters of
neighboring forms are all interpreted in the same way, such that prototype forms are
maximally distinct from each other. Thus, in addition to speci�city and coherence,
distinctiveness is a property of the optimal lexicon when the signaling is noisy. Note
that, even though there are many more forms than meanings, all forms have a speci�c
“best” interpretation. We can obtain similar results with form spaces that have more
dimensions [36] or continuous values [37].

2.3 Semantic Similarities and Noisy Signaling
If we include in the model the assumption that not only forms have similarity relations,
but also meanings relate to each other, we can identify a fourth criterion of the optimal
lexicon: regularity. Figure 3 shows results that are obtained by running the hill-climbing
algorithm of this section, with U as in Equation 4 and, similarly, V as follows (and rows
subsequently normalized):

V .m¤; m/ D 1

1 C .m ¡ m¤/2
(5)
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(a) Development of communicative success

over 100000 iterations

(b) S matrix of a random individual. (c) R matrix of the

same individual.

Figure 2. A local optimum of the lexicon in a population under categorical, noisy conditions (V-unit matrix, U as in
Equation 4, jMj D 10, jFj D 30, N D 3, n D 0:1).

Here, V is maximal when the intended meaning m and understood meaning m¤ are
the same and decreases with increasing distance between m and m¤.

The local optima found by the hill-climbing algorithm show not only speci�city,
coherence, and distinctiveness, but also partial regularity : similar forms tend to have
similar meanings, such that misinterpretations are still better than a random interpreta-
tion. The solution found is a local optimum; the globally optimal lexicon is maximally
regular: with the parameters of the simulations in Figure 3, meaning m1 is expressed
with form f1, and forms f2 to f3 are interpreted as m1; meaning m2 is expressed with
f5, and f4 to f6 are interpreted as m2; and so on. This optimum is not found in this
simulation; however, in the local optimum of Figure 3 neighboring clusters of forms
are, with only a few exceptions, associated with neighboring meanings. In related
work [36] we found that with a slightly different representation the optimum can easily
be found as well. Measuring the degree of regularity (as the correlation between the
distances between each pair of meanings and the distances between their associated
forms) shows that it is consistently higher under conditions with semantic similarities
than without.

2.4 Properties of the Optimal Lexicon
From these experiments we can conclude that the optimal lexicon must have the fol-
lowing properties (provided that jM j · jF j, and that the off-diagonal U and V values
are suf�ciently low):

² Speci�city : Every meaning has exactly one form to express it, and vice versa (i.e.,
there are no homonyms, and no real synonyms: if different forms have the same
meaning, they are very similar to each other).

² Coherence : All agents agree on which forms to use for which meanings, and vice
versa.

² Distinctiveness : The forms used are maximally dissimilar to each other, so that they
can be easily distinguished.
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(a) Development of communicative success

over 100000 iterations

(b) S matrix of a random individual (c) R matrix of the

same individual

Figure 3. Local optima for S and R under semantic similarities, noisy signaling conditions (V as in equation 5, U as in
Equation 4, jMj D 10, jFj D 30, N D 3, n D 0:1).

² Regularity : In the mapping between meanings and forms there is a preservation of
topology, that is, similar forms tend to have similar meanings.

3 Language Games

After establishing the properties of an optimal lexicon, we can now turn to language
games, where there is no global optimization, but rather, every individual tries to op-
timize its own communicative success. Language game models can be viewed as an
extension of the basic communication model that consists of a sender, a message, and
a receiver. Language games consider a population of individuals (agents) that can both
send and receive. A language game then is a linguistic interaction between two or
more agents that follows a speci�c protocol and has varying degrees of success. The
types of models that we will consider have the following components: (i) a linguistic
representation, (ii) an interaction protocol, and (iii) a learning algorithm. In this section
we will discuss the choices we have made for each of these components, based on a
review of existing models.

3.1 Linguistic Representation
By a representation we mean here a formalism to represent the linguistic abilities of
agents, ranging from recurrent neural networks [1] or rewriting grammars [13, 35] to
a simple associative memory [11, 21, 28, 20, 6, 12, 26], representing the strength of
associations between meanings and forms.

In the model of this section, we use the same S and R matrices as in Section 2. Forms
and meanings thus remain abstract. Other researchers (e.g., [30, 3]) have chosen more
concrete representations, such as random concatenations of consonants and vowels
for the forms, or positions in a psychophysically motivated color space for meanings.
However, these models do not have similarity relations between forms or between
meanings. Instead, forms and/or meanings are categorical, and as a result the form-
meaning associations in the emerging languages are completely arbitrary (as in our �rst
model, Sections 2.1 and 2.2). A possible exception is the model in [31]; however, in that
article it is not clear whether the stochasticity in the meaning space is dependent on
the assumed topology (i.e., whether a wrong but close interpretation is more valuable
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than a far-off interpretation), and regularity and distinctiveness are not measured or
analyzed.

In contrast to these models, we assume here that there are varying degrees of similar-
ity between forms and between meanings, i.e., there is a topological space of meanings,
and a topological space of forms. In that respect, our model is more similar to mod-
els of the evolution of grammatical language, where associations between structured
meanings and structured forms are not arbitrary (e.g., [14, 2]). For the sake of simplic-
ity, we report here results from simulations where forms and meanings each vary on a
one-dimensional axis. As in Section 2, we interpret the index of meanings and forms
in the S and R matrices as their positions on these axes. Even such a similarity metric,
which is only a �rst step toward more cognitive plausibility, brings fundamentally new
behaviors.

3.2 Interaction Protocol
The agents in language game models interact following simple protocols. In most
models two agents—a speaker (initiator) and a hearer (imitator)—are chosen at random.
Three types of games can be distinguished. In the imitation game [5], in contrast to the
present models, meanings play no role. However, as in our model and in contrast to
most other language game models, the imitation game assumes noise and similarities in
the form space and studies the emergent maximization of the distance between them.

In the imitation game, the initiator chooses a random form from its repertoire and
utters it. The imitator then chooses the form from its own repertoire that is closest to
the received form and utters it. If the initiator �nds that the closest match to this (heard)
form is the form that it originally used, the game is successful. Otherwise the game is
a failure.

In the naming game [28], meanings do play a role. The speaker chooses a meaning
and a form to express that meaning, and the hearer makes, based on the perceived
form, a guess of what is meant. The hearer then receives feedback from the speaker
on the intended meaning, that is, whether its guess was correct. The game is a success
if the speaker’s intention and the hearer’s interpretation are the same, and a failure
otherwise. The naming game serves as a model system for studying the emergence of
conventional form-meaning associations.

In the observational game, the meaning of the expressed form is immediately avail-
able to the hearer (as in situations where the speaker points at the object that is the
topic of a conversation). This simpli�cation has been used in most language game
models studied so far (e.g., [11, 28, 21, 1, 13, 12]).

In the model described here, we make another simplifying assumption. We pick
two random agents from the population. The �rst agent learns from the other, and
is randomly assigned the role of either speaker or hearer. We then assume that the
�rst agent is able to assess the overall communicative success in communicating with
the other agent, and learns through a form of hill climbing as described below. The
effect of one interaction in our model can thus be seen as the average effect of many
interactions in the naming game. In Section 4 we will discuss the consequences of
relaxing this assumption.

3.3 Learning Algorithm
In most models, the learning algorithm that agents use to improve their linguistic abil-
ities is very simple (see [27] for a discussion of the required biases of these learning
algorithms and how these biases can evolve). In all of the language game models men-
tioned above, a mechanism is implemented to keep track of the success of each form
or form-meaning association. Whether or not a speci�c association is used depends
on this score. Such algorithms can be considered variants of a hill-climbing process:
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given a present state of the system, a random variation is tried out. If the performance
is better than before, this variation is kept, and otherwise it is discarded.

The difference from a standard hill-climbing algorithm (such as in Section 2) is that
optimization is local (every agent optimizes its individual success) and many variants
are tried out at the same time. That is, at any one time we can view associations with a
high score as constituting the present state of the system. For the other associations, the
(low) scores are estimates of how much communication would improve by adopting
it. If adopting it would improve communication at this point, the scores will go up and
the association will eventually become part of the system.

In the language game model of this section, we will simply use a local hill-climbing
variant. After picking two random agents, the learning agent makes a random change
in its S matrix (if it is assigned the role of speaker) or R matrix (if it is the hearer). The
learner checks if that change improves the communicative success in communicating
with the other agent according to the following equation (which is almost identical to
Equation 3, but now for one speci�c speaker and hearer):

C ij D 1

jM j
¡
S i £

¡
U £ R j

¢¢
¢ V (6)

If C
ij
before > C

ij
after, the change is kept; if not, the change is reversed. Note that in this

distributed hill climbing, at every interaction the target of the hill-climbing process can
be different, because each interaction is with a random other agent in the population
and because other agents are learning at the same time.

3.4 Self-Organization of the Optimal Lexicon
The main result that we present here is that close approximations of each of the prop-
erties of the optimal lexicon emerge from the local interactions that we have de�ned
above. Figure 4 shows results from a simulation with the same parameters as in Fig-
ure 3, just with a larger population (N D 40) and a higher noise level (the random
change in the hill-climbing algorithm is from a Gaussian distribution with mean 0 and
standard deviation n D 1:0). The �gure shows S and R matrices from one random
individual at three points in the simulation: after 5 £ 106 and 2 £ 107 iterations, and in
the stable equilibrium con�guration (after almost 1 £ 108 iterations).

The lexicon that develops shows all four characteristics. In the S matrix at equilibrium
(labeled t D 1), every meaning is always expressed by one unique form; in the
R matrix, that form is always interpreted with the correct meaning (speci�city). At
equilibrium, all agents have the same S and R matrices (coherence). In the S matrix,
the total distance between all preferred forms is (almost) maximal; in the R matrix, each
of these preferred forms (except at the edges) is the center of a little cluster of forms
that are all interpreted with the same meaning (distinctiveness). Finally, with three
exceptions, all form clusters have neighboring form clusters that express a neighboring
meaning (regularity).

The degree of regularity in this simulation is small (the correlation between the
distance between each pair of meanings and the distance between their corresponding
forms is around 0:2). In general, regularity can be dif�cult to obtain because to go from
an irregular to a regular lexicon many changes to the lexicon are required. Moreover,
its contribution to the communicative success is small in comparison with the other
three properties. In [36] we show results with a different representation, where the
entries in the S and R matrices are always 1 or 0, and random changes move a 1 to a
different position in the matrix. In this setup regularity can much more easily emerge,
both in the global and in the distributed hill-climbing condition.
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(a) S matrix, t = 5 £ 106 (b) S matrix, t = 2 £ 107 (c) S matrix, t = 1

(d) RT matrix, t = 5 £ 106 (e) RT matrix, t = 2 £ 107 (f) RT matrix, t = 1

Figure 4. Development of speci� city, coherence, distinctiveness, and regularity in the lexicon of a population under
semantic similarities, noisy signaling conditions. At each time step a random speaker interacts with a random hearer
and one of them performs a single hill-climbing step to improve the communication. In this graph, the R matrices are
transposed, so that in both S and RT meanings are on the vertical axis and forms on the horizontal axis. The size of
circles is proportional to the value of the corresponding entry; entries with value 0 are not plotted. t D 1 indicates
any time after the simulation has converged (from around t D 108) to the stable equilibrium. (V as in Equation 5, U
as in Equation 4, jMj D 10, jFj D 30, N D 40, n D 1:0.)

4 Toward More Cognitive Plausibility

Our results show that there is no necessity for explicit and innately speci�ed “princi-
ples” that guarantee speci�city, distinctiveness, coherence, and regularity. It is possible
in principle that these basic characteristics emerge from simple interactions between
agents, a generic learning algorithm, and topological meaning and form spaces. That is,
they emerge from the embodiment (i.e., general perceptual and processing constraints)
and situatedness (i.e., interactions between individuals) of the simulated agents.

Of course, the biophysical constraints of real humans are different from the ones
implemented in this model. The next step in our research is therefore to evaluate
whether more realistic constraints lead—through similar dynamics—to an emergent
language with more realistic characteristics. Here we consider three possible extensions
of the model.

4.1 Limited Feedback
In the distributed hill-climbing simulations we assumed that an agent makes a random
change in one of its matrices, and then evaluates if that change increases the success
in communicating with one other individual. In reality, that information might not be
available. It is therefore worth examining if the same results can be obtained with the
minimal assumptions of feedback on whether or not a communication about a single
meaning has been successful (as in the naming game [28]), or on shared contexts
between speaker and hearer (as in the observational game [25]).

We have done some experiments that show that at least speci�city, coherence, and
distinctiveness can easily emerge in a naming game setup [37]. Figure 5 shows one of the
emerging languages from these experiments. It shows a pattern formed through local
interactions between two communicating agents, expressing nine different meanings
with forms from a two-dimensional form space. Each of the nine clusters in this �gure
shows strong associations from two agents for one particular meaning.
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Figure 5. Local interactions: emergence of distinctiveness, coherence, and speci� city. Dispersed forms in form
space, obtained through local interactions between communicating agents. Each of the nine clusters in this � gure
shows associations from both agents for one particular meaning. Large dots are strong association. (Parameters:
N D 2, jMj D 9; form space continuous—i.e., jFj D 1; perceptual noise 10%.)

4.2 Cooperativity
An important principle in line with the joint-action view of human communication has
been formulated by Grice [9] as the principle of cooperation: In a conversation, the
speaker makes certain assumptions about the expectations of the hearer, and she uses
these assumptions to communicate her intended message effectively. This principle
involves the provision of enough, but not too much, information in a message, the
relevance of the message to the current conversation topic, and the truthfulness of the
information provided. In interpreting the message, the hearer relies on the speaker to
have obeyed these principles.

In the context of language game models, we can extend this principle to the coop-
erative creation of new words: a speaker that is interested in communicative success
should only generate a new form if no form for the intended meaning already exists in
the language. For example, a speaker who wants to talk about a duck-billed platypus
but has forgotten the name for it (or never knew it) would not make up a random word
and thus confuse the hearer. Instead, she would either circumvent the term or describe
the animal, and somehow prompt the hearer to give the name. By querying the hearer
for a possible form, the speaker allows herself to make assumptions about the beliefs of
the hearer and therefore to engage in a cooperative language game (as opposed to the
merely interactive language games that are traditionally studied). Such an extension of
the language game framework is plausible in that it views language as a cooperative
phenomenon and as a means to maximize the ef�ciency of communicating intended
meanings. It will prevent the creation of an excess of new forms, thereby reducing the
number of synonyms and the cognitive load.

4.3 Analogy
When an agent creates a new form in a language game, it usually randomly assembles
phonemes (e.g., [28]). This mechanism is in line with the claim of the “arbitrariness of
the sign” [7]: the structure of the form has no relationship to the meaning conveyed
by it. While this is true for many forms in today’s existing languages, there is evidence
suggesting that, in the creation of new forms, the intended meaning should be taken
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into account. First of all, when new words are created in, for example, English, they are
often compounded and derived from existing words to ease their understanding. Thus,
someone who eats bananas will be called a “banana-eater” rather than a “manslo,” to
indicate the semantic relationship with bananas and eaters. While such a process cannot
be applied to simple language games directly, it does show a structural relationship
between words that re�ects a semantic relationship between their meanings.

Second, there is growing evidence for the hypothesis that the sound of a word can
suggest its meaning (“sound symbolism”). This idea was �rst mentioned by Plato and
has been pursued since then, for example, by von Humboldt [34]. Subsequent psy-
cholinguistic research has shown that in the formation of words, certain sounds can rep-
resent certain meanings. For example, in assigning the two words Mil and Mal to images
of big and small tables, 80% of subjects chose Mal to stand for the larger table and Mil
for the smaller table, indicating that /a/ suggests large size and /i/ small size [23]. These
results have been reproduced and extended by numerous researchers (see e.g. [10]).

A less controversial version than such absolute sound symbolism (where sounds
carry meaning) is a relative sound symbolism that can be directly applied to the cre-
ation of new forms in naming games. It is described by von Humboldt [34, p. 74] as
“Words whose meanings lie close to one another, are likewise accorded similar sounds,”
while the sounds themselves bear no direct semantic content. In Sections 2 and 3 we
presented results where such relative sound symbolism (regularity) emerges as an op-
timal solution in noisy conditions. However, we can also imagine that agents actively
exploit a form of topology preservation when creating new forms. In a language game
the decoding of the form by the hearer could then work as follows:

Find a meaning for the form f:

for the nearest neighbor f’ of f according to the similarity

metric, find the best meaning m’

associate f with a meaning which is closest to m’

This approach can help to reduce ambiguity in the hearer’s lexicon. Preliminary
results suggest faster convergence of the language than in the original model, due
to the emergence of regularities in the form-meaning mapping. Further, we found
several examples of parameter settings that would not lead to convergence under the
classical settings, but did converge under these topological settings. Finally, we �nd
an unexpected delay in the convergence in the �nal stage, due to con�icts between
competing partial regularities. This delay indicates that lexicon creation is subject to
the opposing pressures of topological preservation and distinctiveness maximization.
We could assume that in the evolution of vocabularies of human languages, words
with similar meanings might have developed to be as similar as possible (and thus
predictive of their meaning) while at the same time being as distinctive as possible (to
facilitate communication with already known words). A new form that is created to be
similar to another in order to facilitate understanding of its meaning would then undergo
variation (historical change) to become more arbitrary as it became more established
and a prediction of its meaning became less important than its distinctiveness from other
forms. While we have not incorporated these constraints in our current simulations, we
believe that they present a promising direction in the endeavor to integrate language
game formalisms with cognitive approaches to language.

5 Conclusions

We have discussed the relevance of language evolution models to the study of em-
bodiment and self-organization of language, and presented a formalism for describing
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language games. Language game models are complementary to work that studies lan-
guage processing and language acquisition. The models we discussed are simple; their
value is that they make the roles of diachrony, embodiment, and self-organization in
emerging linguistic structure explicit and testable.

We have argued that the environment and embodiment of communicating agents in
the real world impose a topology on both the meaning and the form space of their
communication system. We have shown that with these topologies the optimal lexicon
has four characteristics: speci�city, coherence, distinctiveness, and regularity. We have
further shown that in a distributed population of agents that each have generic learning
capabilities, a lexicon can be established that shows each of these four characteristics.

Our results on distinctiveness and regularity follow naturally from the framework
that we have described in this article. Nevertheless, they have not been reported in
the extensive literature on the modeling of language evolution. We believe that this
fact in itself is support for our approach to embodiment, where we try to incorpo-
rate constraints from sensory, brain, and psychological processing into formal models
without explicitly constructing an arti�cial body. However, much work remains to be
done on explaining the role of these constraints in the evolution of language. In the
�nal part of the article, we have therefore raised issues where cognitive science can
inform language game modeling, and eventually lead to a detailed understanding of
how complex language has emerged from many simple interactions.
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