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We examined how depth information from two different cue types (object motion and texture gradient) 
is integrated into a single estimate in human vision. Two critical assumptions of a recent’model of 
depth cue combination (termed moa!i@d weak fusion) were tested. The first assumption is that the 
overall depth estimate is a weighted linear combination of the estimates derived from the individual 
cues, after initial processing needed to bring them to a common format. The second assumption is that 
the weight assigned to a cue reflects the apparent reliability of that cue in a particular scene. By this 
account, the depth combination rule is linear and dynamic, changing in a predictable fashion in 
response to the particular scene and viewing conditions. A novel procedure was used to measure the 
weights assigned to the texture and motion cues across experimental conditions. This procedure uses 
a type of perturbation analysis. The results are consistent with the weighted linear combination rule. 
In addition, when either cue is corrupted by added noise, the weighted linear combination rule shifts 
in favor of the uncontaminated cue. 

Depth Multiple cues Sensor fusion 

INTRODUCTION 

There are a variety of measures in two-dimensional (2D) 
images which provide information about three- 
dimensional (3D) structure. Psychophysical studies of 
biological depth perception have most commonly stud- 
ied these depth cues in isolation: depth from binocular 
disparity (Julesz, 1971; Mayhew & Frisby, 1981) depth 
from texture gradient (Gibson, 1950; Todd & Aker- 
Strom, 1987) structure from motion (Wallach & 
O’Connell, 1953; Sperling, Landy, Dosher & Perkins, 
1989), and others. These studies leave open the problem 
of how depth information from different cue types is 
integrated into a single estimate at each location in a 
scene. This problem is receiving an increasing amount 
of attention (Biilthoff & Mallot, 1988; Aloimonos & 
Shulman, 1989; Maloney & Landy, 1989). 

Clark and Yuille (1990) divide approaches to the 
problem into weak fision and strong fusion models. 
Research on single depth cues has fostered an under- 
standing of depth perception as a system of modular 
processes (Marr, 1982) and weak fusion models empha- 
size the apparently modular structure of depth vision. 
They assume that even when multiple depth cues are 
simultaneously present in a scene, each type of depth cue 
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is processed independently to produce an estimate of 
depth. These separate depth estimates are then combined 
at each location by a rule of combination. 

In contrast, strong fusion models assume that infor- 
mation from multiple cue types is processed coopera- 
tively to arrive at a single depth estimate. By this 
account, the apparently modular structure of the 
visual system is an artifact of the kinds of experiments 
used to investigate it. Single cue experiments may only 
demonstrate that depth perception is organized to 
accommodate missing information. Strong fusion 
models formulate depth estimation as a nonseparable 
function of multiple cues and predict nonlinear inter- 
actions between depth information derived from differ- 
ent types of cues. Weak fusion models preclude such 
interactions. 

Studies of cues strongly in conflict have demonstrated 
complex interactions between different types of depth 
information (Wallach & Karsh, 1963; Epstein, 1968; 
Johnston, Cumming & Parker, 1993) and, consequently, 
the simple weak fusion models described above cannot 
be valid descriptions of human visual processing. The 
rejection of these models leads naturally to a search for 
a model of depth processing that parsimoniously ac- 
counts for human depth estimation in scenes where 
multiple types of cues are present, and which also 
explains the interactions observed between cue types. 

Maloney and Landy (1989) (also see Landy, 
Maloney, Johnston & Young, 1991b) have proposed a 
framework for investigating depth cue combination 
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FIGURE 1. Illustration of the manner in which depth from texture (d,) 

and depth from motion (d,,,) are varied independently. Round texture 

elements of random size and spacing are formed by the intersections 

of a cylinder (with depth d,) with randomly-placed balls. The resulting 

textured surface is then projected (parallel to z-axis) onto a second 

cylinder (with depth d,,,). Stimuli are generated by projections (parallel 

to z-axis) of the second surface rotated about the x-axis. The width 

of the projected surface is 2 W. 

which they term modzjied weak fusion. They suggest that 
in natural scenes, individual depth cues tend towards 
consonance and may be combined in a normative 
fashion. They assume that depth estimates derived from 
single cue types are combined by a weighted average, 
consistent with a weak fusion approach. This choice of 
rule of combination is consistent with some previous 
research. For example, Dosher, Sperling and Wurst 
(1986) found that a weighted linear combination ex- 
plained their data for combinations of binocular dis- 
parity and proximity-luminance covariance (“brighter is 
closer”) cues in conjunction with the kinetic depth effect 
(KDE). Maloney and Landy assume that interactions 
between cues are due to two normative processes they 
term (1) cue promotion and (2) dynamic reweighting. 

Cue promotion 

Single cues may provide depth information dependent 
on one or more undetermined parameters (e.g. 
Richards, 1985). Depth from object motion (KDE), for 
example, does not provide estimates of absolute depth 
to points of an object, but instead provides estimates 
which are missing two unknown parameters: the dis- 
tance to any single point on the object and the direction 
of object rotation. Maloney and Landy (1989) argue 

*By using the depth cues of object motion and surface texture, we skirt 

around the issue of cue promotion. Both motion and texture can 

provide “depth-maps-with-parameters”, but they share the same 

parameterization. The depth provided by each cue scales with the 

viewing distance, and can additionally involve a reflection about 

the image plane (a depth reversal). Here, we assume only that 

texture and motion share the same estimates of viewing distance 

and depth order. 

that “depth-maps-with-parameters” are first computed 
in a modular fashion for each cue type. The resulting 
estimates are then promoted: the missing parameters in 
each depth map are filled in by comparison with others. 
The process of cue promotion constitutes an interaction 
among different cues, 

Dynamic reweighting 

The promoted depth cues are then combined by a 
weighted average. If the weights are chosen correctly, 
the resulting depth estimate will be no worse than, and 
likely better than, any of the individual depth estimates. 
Maloney and Landy argue that the weight assigned to 
a depth estimate derived from a particular cue type 
should reflect the estimated reliability of that cue type in 
the current scene, under the current viewing conditions. 
The weight assigned to depth estimates derived from 
motion parallax, for example, should depend on the 
observer’s velocity as estimated from both visual and 
nonvisual (e.g. vestibular) information. A normative 
system should use such ancillary measures to estimate 
the reliability of cues, and to determine appropriate 
weights. 

This paper reports work testing the assumptions of 
the framework proposed by Maloney and Landy. We 
have tested the linearity of observers’ depth estimates 
for combinations of texture and motion cues by a 
psychophysical method inspired by perturbation analy- 
sis. We analyzed changes in depth perceived from two 
consonant cues as a function of a small difference 
between the cues. This work is a continuation of pre- 
liminary work reported by Landy, Maloney and Young 
(1991a). In a stimulus containing both texture and 
motion cues to depth, the depth of a stimulus as 
portrayed by texture (d,) and the depth portrayed by 
motion (d,) are manipulated independently. To 
measure the combined depth estimate for a stimulus 
with inconsistent texture and motion cues (d, # d,), it is 
determined which stimulus with consistent cues 
(d; = dk = d) appears to have equal depth, thus empiri- 
cally specifying the function which yields the combined 
depth estimate for independent texture and motion cues, 

d =.f(4, d,). (1) 

If the combined depth estimate is a weighted average of 
the individual cues,* then 

d = cr,d, + cr,d,, (2) 

where the weight of the texture cue (cz,) and the weight 
of the motion cue (IX,) sum to 1 

xl + c1, = I. (3) 

If the combined depth estimate is linear in d,, the weight 
assigned to the texture cue can be measured by measur- 
ing the combined depth estimate d while we vary the 
depth portrayed by texture d,, holding the depth por- 
trayed by motion d,,, fixed. For two measurements, 

(4) 
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FIGURE 2. Example stimuli, labeled by eccentricity @,/IV). The range shown is larger than that used in the experiments. 

and 

d2=atdt2+a,d,, (5) 

we then have 

d2 - d, Ad 

“=4,=4,= (6) 

Note that this derivation does not depend on the 
assumption that the weights sum to 1 [equation (3)], 
but simply that a,,, remains constant over the two 
levels of d,. The weight of the motion cue can 
be measured in a similar way. In this study we tested 
the linear combination rule by determining if the 
combined depth estimate was a linear function of each 
cue (Expt 1). The role of ancillary information in 
determining the weights was examined by testing cue 
combinations at different levels of single cue reliability 
(Expt 2). 

EXPERIMENT 1 

Methods 
Stimuli. The stimuli were motion sequences portraying 

a pair of rotating surfaces. Each surface was an elliptic 
hemicylinder covered with approximately circular tex- 
ture elements (Fig. 1). The axis of rotation was horizon- 
tally oriented in a frontoparallel plane. A cylinder’s 
elliptic cross section had one semiaxis that was always 

*A texture volume is constructed by randomly packing a virtual box 
with spheres. The box is positioned in the coordinate frame of a 
surface so as to contain the surface. The color of a surface pixel is 
that of the voxel (primarily) containing it. The color of a voxel 
depends upon its position within the texture volume: voxels 
(primarily) within spheres are black and voxels not within spheres 
are white. The surface is thus marked with randomly positioned 
nearly circular texture elements of random size. With respect to 
surface area, both the size and density of texture elements are 
homogeneously and isotropically distributed. The general form of 
this texture model is termed bombing by Peachey (1985). The “box 
of balls” implementation used in these experiments is related to the 
method used by Johnston et al. (1993). 

parallel to the image plane, corresponding to the cylin- 
der’s halfwidth (W), which was constant across all 
stimuli. The other semiaxis was parallel to the line of 
sight when the cylinder’s center axis was in a frontopar- 
allel plane (i.e. vertical). This semiaxis corresponded to 
the cylinder’s depth, which was varied across stimuli. 
Two depth values, d, and d,,, , were used to construct each 
stimulus surface. 

A homogeneous and isotropic texture was mapped to 
a surface comprised of points with coordinates (x, y, z) 
where (x/W)’ + (z/d,)* = 1. The depth coordinates (z) of 
this surface were then resealed z --, (d,,,/d,)z so that 
surface points then had coordinates where 
(x/ W)2 + (z/d,,,)2 = 1. A stimulus view was rendered 
from a parallel projection of the resealed cylinder rotated 
about the x-axis with the line of sight along the z-axis. 
The projected texture compression was that of a homo- 
geneously and isotropically textured cylinder with eccen- 
tricity d,/W. The projected motion was that of an 
inhomogeneously and anisotropically textured cylinder 
with eccentricity d,,,/ W. Shape-from-texture algorithms 
generally begin with the assumption that the gradient of 
texture compression is due to the changing surface 
orientation and not changes in the physical texture 
distribution. Adopting this assumption, the stimulus 
generation technique just described allows us to indepen- 
dently vary d, and d,,, (different values of d, are illustrated 
in Fig. 2). The perturbation analysis should be limited to 
differences between d, and d,,, that do not disturb this 
assumption by providing contrary information to the 
observer. 

The 3D texture function was defined procedurally,* 
based upon a volume randomly packed to density 0.25 
with nonintersecting spheres 20 pixels in diameter. Tex- 
ture elements were shaded black on a white background. 
All cylinders were 240 pixels wide (2 W) with eccentric- 
ities (d,/W, d,,,/W) of 0.83, 1.04, 1.25, 1.46, or 1.67. 
Motion sequences were projections of a cylinder rotated 
about the x-axis from - 15 to + 15 deg (with respect to 
vertical) in 0.625 deg steps (49 frames/surface). The 
viewing window was 240 horizontal x 256 vertical pixels 
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with the rotation axis at midheight in the window. The 
vertical length of a cylinder was such that the viewing 
window always clipped the bottom and top portions, 
eliminating the depth cue provided by the time-varying 
deformations of the contours at the edges of the surface. 

To insure that subjects were making judgments based 
upon depth estimates rather than 2D information such 
as single-point displacement magnitudes and velocities, 
we reduced the correlation between d, and such 2D 
measures. For each surface on each trial, the rate and 
total amplitude of rotation were randomized. The ro- 
tation rate was randomly sampled from the range 
12.5-37.5 deg/sec with uniform probability.* The ro- 
tation amplitude was randomly sampled from the range 
10-30 deg (symmetric about the line of sight) with 
uniform probability. A stimulus display began with the 
downward-most rotated frame and then rotated upward, 
then back down, and so on. This cycle was repeated as 
many times as full rotations could be shown in 4.85 set, 
with remaining frames blank (black). Three full ro- 
tations were displayed on average. 

A compiete stimulus sequence was constructed by 
displaying two such surfaces side by side on a black 
background with rotation rates and amplitudes indepen- 
dently sampled. Each displayed surface window sub- 
tended 3.5 deg of visual angle and was viewed from a 
distance of 1.7 m. The two windows were separated by 
15 min of visual angle. 

Stimuli were displayed using an Adage RDS-3000 
display system driving a US Pixel PX15 monochrome 
monitor with a fast P4-like phosphor. The video format 
was 60 Hz, noninterlace, with 480 x 512 visible pixels. 
The background luminance was 32 cd/m* when a stimu- 
lus was displayed. Displays were viewed monocularly 
through a reduction screen approximately matched in 
color and luminance to the background of the stimuli. 

The perceived dimensions of the cylinders depended 
on observer calibration of viewing distance (e.g. Ono, 
Rivest & Ono, 1986) which we tried to eliminate with the 
reduction screen.? For references to stimulus depths 
however, instead of pixel numbers we use a metric 
scale consistent with the viewing distance employed 
in the experiments (O.O44cm/pixel), The depths 

*Equipment limitations required an overall sampling rate (new 

frame&c) of 20 Hz. Thus, every 0.05 set the current orientation 

of the surface was determined. The closest available frame, given 

the 0.625 deg sampling density of rotation, was then displayed for 

three full video frames (at a 60 Hz video frame rate). At the slowest 

rotation rate of 12.5deg/sec, all 49 frames of the precomputed 

sequence were simply shown in order at 20 Hz. At the fastest rate, 

they were subsampled at a rate of 3 : 1. For intermediate rates, the 

precomputed frames were subsampled as necessary to best approxi- 

mate the targeted rate, which often resulted in nonuniform 
sampling of rotations. This resulted in a minor oscillation in the 

actual rate about the targeted rate. However, the rotational motion 

was always smooth in appearance. 
TThe primary function of the reduction screen was to provide a 

monocular view of a blank field (except for the surface stimuli). To 

view through the reduction screen, an observer was required to 

position their head against a mask that restrained lateral head 

movements. This served to eliminate motion parallax cues. 

reported would be consistent with cylinders 10.5 cm wide 
and texture volumes packed with spheres with 8.8 mm 
diameters. 

Procedure. In each trial, two surfaces were displayed 
side by side. One of the surfaces was a consistent -cues 
surface where d, = d,,, . The other surface was a mixed- 
cues surface where generally dt # d,. The subject’s task 
was to indicate with a key press which surface appeared 
to extend further in depth. The side on which a surface 
appeared (right or left) was randomly determined on 
each trial. A response terminated the display and the 
next trial would begin after a 0.5 set pause. Subjects were 
given the option of not responding, in which case the 
stimulus display would be presented again after a 0.5 set 
delay. 

Within a block of trials there was a single mixed-cues 
surface. A block consisted of 50 two-alternative forced- 
choice (2AFC) comparisons with each of five consistent- 
cues surfaces in random order for 250 trials per block. 
Consistent-cues surfaces portrayed depths of 4.4, 5.5, 
6.6, 7.7, and 8.8 cm. For half of the blocks, the mixed- 
cues surface had d, fixed at 6.6 cm while d, was 4.4, 5.5, 
6.6, 7.7, or 8.8 cm. On the other half of the blocks, the 
mixed-cues surface had d,,, fixed at 6.6 cm while d, was 
4.4. 5.5, 6.6, 7.7, or 8.8. cm. There were two blocks for 

d,= 6.6 cm d,= 4.4-8.8 cm d,= 6.6 cm d,= 4.4-8.8 cm 

~~~~~ 

4.4 5.5 6.6 7.7 8.0 4.4 5.5 6.6 7.7 a.8 

~~ ~~ 

4.4 5.5 6.6 7.7 6.6 4.4 5.5 6.6 7.7 6.8 

100 100 

75 75 

50 50 

25 25 

0 IJ I 
4.4 5.5 6.6 7.7 8.6 4.4 5.5 6.6 7.7 6.8 

Consistent Cues Depth (cm) 

FIGURE 3. The psychometric functions of the proportion of compari- 
sons for which the consistent-cues surface was perceived to have 

greater depth than the mixed-cues surface. The depth portrayed by the 

consistent-cues surface varies along the abscissa. Each curve represents 
the comparisons with a single mixed-cues surface and combines the 

data from two blocks of 250 trials. Each data point is based on 100 

comparisons. Each row corresponds to a different subject. The left- 

hand column plots data for blocks in which the depth portrayed by 

motion (d,,,) in the mixed-cues stimulus was fixed and depth portrayed 

by texture (d,) varied from block to block; in the right-hand column 
d, was fixed and d,,, varied across blocks. In both cases, the curves 

appear to slide rightward as the depth portrayed by the variable cue 
is increased. 
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each mixed-cues surface for 20 blocks total and 100 trials 
per data point. The order of blocks was randomized. 

Subjects. Subjects MJY and LTM were authors. 
Subject EBJ was knowledgeable about the purposes of 
the experiment. All subjects had normal or corrected-to- 
normal vision. All subjects were experienced psycho- 
physical observers. 

Results and discussion 

Figure 3 graphs the psychometric functions of the 
proportion of comparisons for which the consistent-cues 
surface was perceived to have greater depth than the 
mixed-cues surface. The depth portrayed by the consist- 
ent-cues surface varies along the abscissa. Each curve 
represents the comparisons with a single mixed-cues 
surface and combines the data from two blocks of 250 
trials. Each data point is based on 100 comparisons. 
Each row of Fig. 3 graphs the data for a single subject 
over 20 blocks of trials. The psychometric functions in 
the left columns of Fig. 3 represent the comparisons with 
mixed-cues surfaces of fixed d,,, (6.6 cm) with d, varied 
(4.4, 5.5, 6.6, 7.7, and 8.8. cm). The psychometric func- 
tions in the right columns of Fig. 3 represent the 
comparisons with mixed-cues surfaces of fixed d, (6.6 cm) 
with d, varied (4.4, 5.5, 6.6, 7.7, and 8.8 cm). In the 
following analysis, each panel represents one of the six 
sets of subject x condition. 

In each plot the central psychometric function is for 
a so-called mixed-cues surface with texture and motion 
cues that were in fact consistent (d, = d,,, = 6.6 cm) and 
serves as the unperturbed cue combination reference. The 
perturbation analysis considers the effects of varying one 
cue in a combination by comparing the perturbed psy- 
chometric functions (d, # d,,,) to the unperturbed func- 
tion. A qualitative examination of the psychometric 
functions indicates that a cue perturbation shifts the 
psychometric function for the combined depth compari- 
son in the same direction that the cue is shifted. It also 
appears that the shapes of the psychometric functions do 
not change much with the perturbation. 

To make quantitative evaluations we fitted two- 
parameter cumulative probability distribution functions 
to the data for each mixed-cues surface. Maximum 
likelihood estimates (MLE) of parameters were com- 
puted using a downhill simplex method (Press, Flannery, 
Teukolsky & Vetterling, 1988, pp. 305-308). We fitted 
both normal and Weibull distributions and found that 
the normal distribution gave a better fit in four of the six 
sets of subject x condition, as indicated by x *. We used 
the normal distribution parameters for further analysis. 
Of the six data sets, both sets for EBJ and one set (d, 
fixed) for LTM resulted in normal distribution fits that 
were rejected by x * (a = 0.01). 

The simplest linear model would consist of parallel 
psychometric functions, a perturbed single cue just shift- 
ing the combined depth estimate without affecting 
sensitivity, and this is consistent with qualitative obser- 
vations. We tested this quantitatively by comparing the 
fit of a parallel set of psychometric functions to indepen- 
dently fitted curves. For each subject x condition there 

will be a different mean for each of the five distributions. 
Parallel functions will have a common variance while 
independent functions may each have different vari- 
ances. With the MLE of the six parallel psychometric 
function parameters and the 10 independent psychomet- 
ric function parameters, we can test the null hypothesis 
that the functions are parallel with the nested hypothesis 
test (Mood, Graybill & Boes, 1974, pp. 440-442). Com- 
paring the likelihoods (L) of the two fits as 

2 1% r ( Lindejxndent ‘I (7) 
\ ~parallel / 

is distributed as x 2 with 10 - 6 = 4 degrees of freedom. 
The likelihood that the data were sampled from normal 
distributions of equal variances was not significantly 
different from the likelihood that the data were sampled 
from distributions of different variances for four of six 
sets of subject x condition. At c( = 0.01, the parallel 
psychometric functions model was rejected for MJY and 
EBJ when d, was fixed. 

For a model with parameters 8,) 8,, . . . , 8,, the joint 
distribution of MLE (8,) P2, . . . , 8”) of the parameters 
is asymptotically Gaussian. The expected value of the 
estimate Pi is asymptotically Bi. For an n x n matrix M, 
the variance of dj is c$, where 

(8) 

(Mood et al., 1974, pp. 358-362; Kendall & Stuart, 1979, 
pp. 59-64). Our analysis uses the fitted psychometric 
functions’ parameters assuming the estimates are sam- 
pled from normal distributions with standard deviations 
given by equation (8). Based upon the partial success of 
the parallel model in the nested hypothesis test and the 
absence of statistically significant differences between 
MLE parameters for parallel and independent psycho- 
metric functions, we used the more compact parallel 
model for the subsequent analysis. The mean of the 
standard deviation parameters of the fitted normal dis- 
tributions across all subjects and psychometric functions 
was 1.5 cm. This establishes the size of single cue pertur- 
bations (1 .l and 2.2 cm) to be about 0.75 and 1.5 
standard units. Cue perturbations were then on the order 
of one jnd, confirming that the independent variables 
were manipulated within a range appropriate to the 
perturbation analysis. 

The MLE of the mean of a cumulative normal distri- 
bution function corresponds to the psychometric func- 
tion’s 50% level. The mean is then the point of subjective 
equality (PSE), the depth of a consistent-cues surface 
judged to extend further in depth on 50% of the 
comparisons with the mixed-cues surface generating the 
psychometric function. We take the PSE to be the 
perceived depth of a mixed-cues surface. Each psycho- 
metric function then yields one PSE as a function of the 
perturbed depth cue in the mixed-cues surface [equation 
(l)]. These functions are plotted in Fig. 4. The data 
points are marked with error bars which indicate 99% 
confidence intervals for the measurement based upon 
standard deviations computed using equation (8). 
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d,= 6.6 cm d, = 6.6 cm 
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4.4 6.6 a.0 
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8.8 t LTM I 
7.7 

6.6 

5.5 

4.41, , , 1 
4.4 6.6 8.8 

dT (cm) 4 (cm) 

4.4 6.6 8.8 

FIGURE 4. A plot of PSE as a function of the perturbed depth cue. 

Panels are arranged as in Fig. 3. Each psychometric curve in Fig. 3 

corresponds to one point on this plot. The error bars represent 99% 

confidence intervals for each PSE. The lines are maximum likelihood 

regressions of PSE on the portrayed depth of the perturbed cue in the 

mixed-cues stimulus. The data are generally consistent with a linear 
model. 

Straight lines were fitted to PSE measurements by 
MLE. We tested whether the data were consistent with 
a linear relationship between PSE and the perturbed cues 
by comparing the confidence intervals for each PSE to 
the distance between the PSE and the fitted line. As this 
entails performing five independent tests per fitted line, 
we set the significance level to 1 - (1 - IX)“’ for each 
comparison. The overall significance level (probability of 
incorrectly rejecting the linear hypothesis for any of the 
five points associated with a line) was set to a = 0.01. We 
could reject the linear hypothesis for only one of the six 
fits (subject LTM with d,,, perturbed). Note however that 
the test of linearity is unavoidably weak because we have 
no prior hypothesis concerning the pattern of nonlinear- 
ity to be expected under the alternative hypothesis. 

The slopes of the lines and the sums of the slopes are 
listed in Table 1. The confidence intervals are computed 
under the assumption that the estimates are normally 
distributed with variances derived from PSE variances 
given by equation (8). The sums of the weights are not 
significantly different from one (u = O.Ol), although this 
is a consequence of the choice of stimuli (see the 

TABLE 1. Depth cue weights from Expt 1 

MJY EBJ LTM 

a1 0.46 (0.39&53) 0.53 (0440.62) 0.27 (0.174.37) 

alll 0.45 (0.380.52) 0.45 (0.36-0.54) 0.61 (0.51tO.71) 

at + c&l 0.91 (0.81-1.01) 0.98 (0.8551.11) 0.88 (0.7441.02) 

Ranges in parentheses are 99% confidence intervals for each estimate. 

Discussion of Expt 2). The subjects’ combined depth 
estimates appear to be weighted linear combinations of 
the depth estimates from the individual cues. 

The question then arises as to what determines the 
values of the weights. It may seem surprising that two of 
the subjects weighted texture information as heavily as 
motion information. The common subjective impression 
with more complex stimuli is that motion is a stronger 
depth cue than texture gradient. For example, Braun- 
stein (1968) found the motion cue to have twice as much 
weight as the texture cue in a study which measured 
perceived slant with stimuli which included dot density 
and motion gradients on inclined planes. Pilot studies 
indicated that motion cues could be sufficiently weak- 
ened to make them more comparable in influence to 
texture cues. We then set our baseline stimulus par- 
ameters so as to yield relatively equal texture and motion 
weights. 

If these data are partitioned by the rotation amplitude 
of the mixed-cues surface into two sets, one for total 
rotations about the line of sight of lO-20deg, another 
for larger rotations of 2&30 deg, we derive two different 
sets of weights (Table 2). The weight given to the motion 
cue is increased for the cases of greater rotation ampli- 
tude (although not significantly for subject EBJ at a 
one-tailed CY = 0.01). With greater rotations a larger set 
of 2D measurements is available for computing structure 
from motion. The availability of information relevant to 
a depth computation affects the weight given to the cue 
(Landy et al., 1991b). Notice also that in all cases the 
weight of the texture cue decreases as the weight of the 
motion cues increases (although none of the differences 
is significant at a one-tailed a = 0.01). 

From the viewpoint of statistical decision theory, we 
would also expect the reliability of the information used 
in computing depth from a particular cue to influence the 
weight that a normative observer would give that cue in 
a linear combination. Although this appears to be 
consistent with the increase of ~1, as the rotation extent 
is increased, we tested this more directly in Expt 2. 

EXPERIMENT 2 

In the first experiment we demonstrated that depth 
judgments combining texture and motion cues are linear 
combinations with weights that may depend upon the 
availability of the relevant information in the scene. In 
this experiment we explore the role of reliability in 
determining the weights by artificially reducing the re- 
liability of the single cues. We measure the weights with 
the same paradigm as used in Expt 1. Assuming that the 
depth information in an orthographic projection of a 
curved surface is the gradient of compression of the 
texture elements (Cutting & Millard, 1984), we may 
reduce the reliability of the texture cue by increasing the 
variability of texture element compression in the view. 
Assuming that the gradient of texture element velocity 
provides the information used to determine the structure 
from motion, we may reduce the reliability of the motion 
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TABLE 2. Depth cue weights from Expt 1 partitioned by rotation amplitude 

Rotation MJY EBJ LTM 

1 O-20 deg aI 0.44 (0.354.53) 0.59 (0.47-0.71) 0.29 (0.154.43) 
a, 0.39 (0.29-0.49) 0.43 (0.30.56) 0.32 (0.174.47) 

a, + a, 0.83 (0.694.97) 1.02(0.85-1.19) 0.61 (0.41-0.81) 
20-30 deg at 0.36 (0.26-0.46) 0.51 (0.38-0.64) 0.27 (0.134.41) 

a, 0.53 (0.434.63) 0.49 (0.3kO.62) 0.59 (0.454.73) 
a,+@, 0.89 (0.75-1.03) 1.00(0.81-1.19) 0.86 (0.67-l .05) 

Ranges in parentheses are 99% confidence intervals for each estimate. 

cue by increasing the variability of the texture element 
velocities in the view. 

Methods 

Stimuli. The stimuli were produced in the same 
fashion as Expt 1. The consistent-cues surfaces were the 
same as those used in Expt 1. However, the mixed-cues 
surfaces were constructed with some modifications. 

For conditions with reduced texture cue reliability, the 
textures of the mixed-cues surfaces were generated by 
volumes packed with ellipsoids rather than spheres as in 
Expt 1. All ellipsoids had semiaxes parallel to the 
cylinder’s elliptic semiaxes and vertical axis. The ellip- 
soid semiaxis parallel to the cylinder’s vertical axis was 
the same length as the radii of the spheres used in Expt 
1. The other ellipsoid semiaxes were equal in length to 
each other (i.e. ellipsoids of revolution) although that 

length varied randomly from ellipsoid to ellipsoid. The 
lengths of these ellipsoid semiaxes orthogonal to the 
cylinder’s vertical axis were normally distributed over 
ellipsoids with mean equal to the ellipsoid vertical 
semiaxis (i.e. length of spheres’ radii in Expt 1) and 
standard deviation one-half of that. (Actually, the distri- 
butions were clipped at 2 SDS, so that lengths ranged 
from 0 to 20 pixels.) The gradient of texture element 
aspect ratios then has a coefficient of variation (CV,) of 
0.5. The geometry of the cylindrical surfaces used in the 
stimuli were otherwise the same as for Expt 1. Images of 
nontilted cylinders with added aspect ratio variability 
can be seen in Fig. 5. 

For the conditions with reduced motion cue reliability, 
the textures were generated as in Expt 1. The geometry 
and motion of the mixed-cues surfaces were the same as 
in Expt 1 except for an additional manipulation of the 

4.4cm 6.6 cm 8.8 cm 

FIGURE 5. Examples of stimuli for different levels of texture cue reliability. The upper row shows textures from Expt 1. The 
lower row shows textures from Expt 2 with noise added to the texture cue (for a CV, = 0.5). Each column shows a surface 

for a given level of d,. 
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FIGURE 6. The psychometric functions for depth comparisons with 

the mixed-cues surfaces with reduced texture cue reliability (CV, = 0.5) 

from Expt 2. 

FIGURE 7. PSE as a function of the perturbed depth cue in 

mixed-cues surfaces with reduced texture cue reliability (CV, = 0.5). 

Each point corresponds to a psychometric function in Fig. 6. Note that 

the slopes in the left-hand panels are less than the corresponding panels 

position of individual texture elements. For each motion 
sequence frame, after the 3D position of each texture 
element was computed based upon the cylinder’s ro- 
tation, each texture element on the mixed-cues surface 
was additionally displaced along the cylinder’s surface. 
The displacement was in a direction parallel to the 
cylinder’s vertical axis. The magnitude of the displace- 
ment was sampled from a normal distribution with mean 
0 and standard deviation one-half of the texture el- 
ement’s 3D displacement with respect to the previous 
frame. This generates an optic flow variability roughly 
proportional to velocity for a CV, of 0.5, relevant to a 
depth from motion computation. Despite the fact that 
the individual texture elements now jitter back and forth 
somewhat independently, the displays still look like 
rotating cylinders. 

of Fig. 4, suggesting that the texture cue is given less weight. 

shifted along the consistent-cues’ depth axis in the 
direction of the perturbation. These curves are also 
roughly parallel. Psychometric functions with d, varied 
for MJY and d,,, varied for EBJ pass the nested hypoth- 
esis test for parallel psychometric functions (a = 0.01). 

Procedure and subjects. The procedure for Expt 2 was 
identical to that of Expt 1. Each single cue reliability 
level evaluated (CV, for two subjects, CV,,, for one 
subject) required the same set of measurements as 
Expt 1. The same number of trials and blocks and the 
same levels of the perturbed cue in the mixed-cues 
surfaces for both cues were repeated for each cue 
reliability level evaluated. Subjects MJY and EBJ are the 
same observers as participated in the first experiment. 
MJY and EBJ provided the measurements for CV, MJY 
provided the measurements for CV,,,. 

It is important to note that the functions for the 
perturbed texture cue are more closely spaced for 
CI’, = 0.5 than for Expt 1. This effect is more clearly seen 
in the slopes of the functions of PSE for single cue 
perturbations graphed in Fig. 7. As in Expt 1, the 
combined depth estimate is a linear combination of the 
two cues, as demonstrated by the linearity of PSE with 
single cue perturbation. Different from Expt 1 are the 
slopes of the comparable lines. Compare the functions 
graphed in Fig. 7 with the same subjects’ functions in 
Fig. 4. The weights of the individual cues in the linear 
combination are listed in Table 3. These are to be 
compared with those in Table 1. In both cases, the 
weight given to the texture cue significantly decreased 
when the reliability of the texture information was 
reduced (one-tailed c1 = 0.01). The weight given to the 
motion cue either did not change (EBJ) or increased in 
a nearly complementary fashion (MJY). 

Results and discussion 

Figure 6 shows the psychometric functions for depth 
comparisons with the mixed-cues surfaces with increased 
texture element aspect ratio variability in the mixed-cues 
surfaces. If these psychometric functions are compared 
to those in Fig. 3 one will note the general effect of the 
perturbed cues is similar, the psychometric functions are 

TABLE 3. Depth cue weights from Expt 2 

Condition MJY EBJ 

cv, = 0.5 al 0.26 (0.19-0.33) 0.39 (0.294.49) 

% 0.62 (0.55-0.69) 0.44 (0.34454) 

aI + a, 0.88 (0.78-0.98) 0.83 (0.6990.97) 
cv,n = 0.5 a, 0.30 (0.240.36) 

%I 0.20 (0.14 0.26) 

a, + %l 0.50 (0.414.59) 

Ranges in parentheses are 99% confidence intervals for each estimate. 

8.0 EBJ 

7.7 

6.8 
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4.4 ;Iir” 
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FIGURE 8. The upper row shows the psychometric functions for 
depth comparisons with the mixed-cues surfaces with reduced motion 
cue reliability (CV,,, = 0.5) from Expt 2. The lower row shows PSE as 
a function of the perturbed depth cue, each point corresponding to a 
psychometric function in the plot above. The slope in the lower-right- 
hand panel is less than the corresponding panel of Fig. 4, suggesting 

that the motion cue is given less weight. 

The story is similar for MJY when the reliability of 
the motion cue is reduced. The upper row of Fig. 8 
shows the psychometric functions for MJY’s depth 
judgments for trials in which the mixed-cues surfaces 
had increased optic flow variability. The perturbed cue 
again shifts the psychometric function along the depth 
axis relative to the unperturbed central function 
(d, = d,,,). Compared to the psychometric functions in 
Fig. 3, however, the shifts are smaller. Note how closely 
spaced are the psychometric functions for the perturbed 
motion cue. This close spacing is reflected in the flatter 
slopes of PSE as a function of the perturbed depth cue 
as graphed in the lower row of Fig. 8. In this case, as in 
the previous, increasing the variability of the infor- 
mation in a single depth cue does not destroy linearity, 
but it decreases the weight given to the cue in the 
linearly combined depth estimate. Compare the weights 
of the cues for the higher quality displays of Expt 1 
(Table 1) with those for reduced motion cue reliability 
for subject MJY (Table 3). The motion cue’s weight is 
dramatically reduced with reduced motion cue re- 
liability. Unexpectedly, the texture cue’s weight is also 
reduced. 

The data also demonstrate that the depth of a surface 
with lower quality cues appears different than that of a 
surface of the same distal shape with higher quality 
cues. When measuring the unperturbed psychometric 
functions of Expt 1, comparisons are made between 
surfaces that are essentially the same (different only in 
that the random textures are sampled independently for 

each surface). Thus, the PSE for this function must 
match the unperturbed cue, by definition. In other 
words, in Fig. 4 a mixed-cues surface with 
d, = d,,, = 6.6 cm must match a consistent-cues surface 
with the same portrayed depth values (up to binomial 
variability). If perceived depth is a linear combination, 
as described by equation (2), this forces the sum of 
weights to be one, since 

d=a,d+a,d=(a,+a,)d. (9) 

In Expt 1 the weights must sum to one because of the 
choice of stimuli. This is not the case in Expt 1 when we 
examine the subset of the data for which the mixed-cues 
rotation amplitude is constrained and the consistent- 
cues rotation amplitude is unconstrained (Table 2); in 
this case it is meaningful to check whether the cue 
weights sum to one. 

In Expt 2 the unperturbed psychometric function is 
generated by comparisons between a mixed-cues surface 
and a consistent-cues surface that are rendered from the 
same solid shape model, but with cues of different 
quality. Thus, Expt 2 does not constrain the measured 
weights to sum to one. We predicted that the slope of 
PSE as a function of perturbed depth cue would change 
with cue quality but had no prediction of an effect on 
the PSE-intercept. Note that the lines graphed in Fig. 7 
and in the lower row of Fig. 8 mainly pass below the 
point where the perturbed cue is equal to depth to the 
unperturbed cue (6.6 cm), whereas the lines in Fig. 4 
pass through that point. This implies that the surface 
with lower quality cues appeared to have less depth 
than one of the same distal shape with higher quality 
cues. 

This depth effect of cue quality may be due to the 
cue combination process. The linear combination 
rule of equation (2) may be made consistent with 
the data from the conditions with reduced cue re- 
liability (including the lCL20 deg subset of Expt 1) 
in two ways. One model suggests that decreased 
cue reliability somehow decreases the depth computed 
from an individual cue (e.g. d,,, is decreased by motion 
noise). Alternatively, lowered reliability may have 
no affect on the depth computed using a cue (other 
than to reduce the reliability of the depth estimate), 
but overall depth is reduced due to a change in weight 
(e.g. a reduction in a,,,). This reduction in cue weight 
only implies a reduced overall depth if the other cue 
weight (a,) is not increased in a compensatory fashion, 
resulting in a, + a,,, < 1. We refer to this property as 
subadditivity. In the CV, = 0.5 condition of Expt 2 it 
is clear that the results are not consistent with merely 
a change in depth from texture (d,): although overall 
depth was decreased slightly by the unreliable 
texture cue, the measured weight of the motion cue 
increased in a nearly compensatory fashion. However, 
in the CV,,, = 0.5 condition the data do not allow us to 
distinguish these two explanations because overall 
depth did decrease. Below we outline several reasons 
why the sum of the weights might change with cue 
quality. 
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CONCLUSIONS 

The results of these experiments suggest, first, that 
perceived depth is linearly dependent on the depth 
encoded in the individual cues, as evidenced by the fits 
of PSE as a function of the depth portrayed by the 
perturbed cue. Second, they suggest that weights change 
with changes in the reliability of the different types of 
depth cues. Unreliable cues are downweighted in favor 
of reliable cues. 

A weighted linear combination rule has a number of 
implications for quantitative studies of depth modules. 
We develop one such implication next. 

Let us assume that the depth estimate from texture is 
perturbed by additive error with mean zero, variance of, 
that the depth estimate from motion is perturbed by 
additive error with mean zero, variance af,, and that the 
errors in the depth and texture estimates are indepen- 
dent. Then we can compute the variance of the combined 
estimate of depth (using elementary properties of covari- 
ante and independence) as: 

0: = a202 + a2 o2 tt mm’ (10) 

Thus, ai is a function of a, and a,,,, the weights assigned 
to texture and motion, respectively. When a, and a,,, sum 
to 1, we may replace a, by 1 - a, in the above equation, 
and equation (10) is then a function of a,,, which achieves 
its minimum at 

(11) 

This choice of a,,, minimizes the variance of the combined 
depth estimate. Conversely, if we know this optimum 
value, then we can solve for the ratio between the 
variances, oQrr$ 

$&l. (12) 
0, m 

Therefore, if we assume that the observer’s choice of a, 
is optimal then we can, in principle, estimate the ratio of 
variances using equation (12), at least for those cases 
where the sum of the measured weights is (approxi- 
mately) 1. These results are readily generalized to n cues. 
Again, the sum of the n weights must be 1. 

Drawing conclusions based upon the assumption that 
weights sum to one requires a full inventory of depth 
cues in a stimulus, and we have evidence that this is more 
difficult than is ordinarily assumed. Subadditivity of the 
depth cue weights was particularly pronounced for 
displays of reduced quality (see Table 3 and the 
10-20 deg subset of Table 2). The reduction of a cue’s 
weight with a reduction in the cue’s quality was not 
always accompanied by a complementary increase in the 
other cue’s weight (sometimes there was even a de- 
crease). We take this as an indication that other cues are 
used and reducing the quality of a controlled cue may 
cause the weights to be redistributed to the advantage of 
cues we have not accounted for. The plots of PSE are 
also shifted downwards (see Figs 7 and 8) suggesting 
that these unidentified cues indicate flatter surfaces than 

those simulated experimentally. These cues may corre- 
spond to whatever information is still present in the 
experimental situation to indicate that the stimuli are in 
fact on the nearly flat surface of a CRT. The lighting and 
arrangement of the experimental situation were designed 
to weaken or eliminate these cues. By this account, the 
effect of these cues is unobservable when the experimen- 
tal cues are “strong”, but then when we reduce the 
reliability of the experimental cues as in Expt 2, these 
cues are given corresponding larger weights. 

The analysis of results generated by stimuli with weak 
depth information may require consideration of ex- 
traneous cues for depth, present in the scene, that 
typically signal that the depth stimulus is a flat pattern 
on a CRT screen. While the difficulty this adds to cue 
combination studies is obvious, it should be noted that 
it is also relevant to single cue studies. If the perceived 
depth in a single cue experiment is a weighted linear 
combination of the depth cue (deXp) and the cues of the 
flat screen (dRat = 0), equation (2) becomes 

d = aexp &,, + aflat dRat = (1 - aflat Yexp . (13) 

There are then two classes of depth effects possible 
between experimental conditions, those due to changes 
in the depth estimated by the module (de_) and those due 
to a redistribution of weights that varies the influence of 
the extraneous cues (aflat). Reducing the quality of the 
depth cue may reduce perceived depth by increasing an,, . 

We hypothesize that in experimental situations where 
there are a sufficient number of strong depth cues under 
experimental control to make any extraneous cues in- 
significant, reducing the quality (e.g. perceived re- 
liability) of one cue should not result in reduced 
perceived depth. Rather, more weight is given to the 
remaining, more reliable cues. However, when there are 
few reliable cues in the display, then a reduction in single 
cue reliability will result in less perceived depth (that is, 
more weight given to the extraneous cues that typically 
signal “flatness”). To test this idea, we constructed a 
demonstration that employed a finding by Loomis and 
Eby (1988): perceived depth of KDE displays decreases 
with a decrease in the angle between the axis of rotation 
and the line of sight. This makes sense since in the limit 
of rotation about the line of sight, no information is 
available in the display for computing depth from 
motion. They used multidot displays which give only a 
weak texture cue (only dot density varies across the 
display). Thus, by our account their results do not 
necessarily indicate a decrease in the estimate of depth 
from motion, but rather a decrease in the weight applied 
to that estimate (and a corresponding increase in the 
weights of other cues which specify a flat display). Using 
the stimulus model from the experiments, we constructed 
stereograms of textured cylinders rotating about axes 
with various orientations relative to the line of sight. 
Perspective projection was employed. The depths of 
identical surfaces defined by perspective, texture com- 
pression, binocular disparity, and motion cues were 
compared and depth did not appear different for ro- 
tations about axes making angles with the line of sight 
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of 30, 45, or 90deg (in the above experiments, the 
rotation axis was perpendicular to the line of sight). This 
demonstrates that the orientation of the rotation axis 
does not affect the perceived shape of an enriched depth 
stimulus (within the range tested), supporting our hy- 
pothesis. 

Other observations were provided by the demon- 
stration. Stationary cylinders or cylinders rotating about 
the line of sight appeared to have less depth than 
identical cylinders rotating about other axes. One expla- 
nation is that extraneous cues achieve significant weight 
in versions of our stimuli containing only disparity, 
perspective, and texture compression cues to depth. 
Another explanation is that the motion cue affects 
calibration of stereopsis, a cue that in isolation is 
miscalibrated (Johnston, 1991; Johnston, Cumming & 
Landy, 1992). Either way, this also demonstrates that for 
our displays with rich depth information, independence 
of perceived depth from rotation axis orientation is not 
due to a dominating disparity cue. Instead, the motion 
cue must have a weight that is transferred to the 
extraneous cues when motion is eliminated or irrelevant 
for depth estimation. The monocular percept was that 
depth decreased as the angle between the rotation axis 
and the line of sight decreased, as Loomis and Eby 
found. Thus, extraneous cues also achieve significant 
weight when our stimuli contain only perspective, tex- 
ture, and reduced quality motion cues. 

If the subadditivity of weights observed is, in fact, due 
to extraneous cues, then it could be eliminated by an 
experimental apparatus that provides a sufficiently com- 
pelling simulation of depth stimuli. The sum of the 
weights of the controlled cues then serves as an index of 
depth display quality. In some of the conditions of our 
experiments, this index was rather low. While this does 
not weaken our demonstration of a linear combination 
rule for depth cues, it complicates the analysis of the 
weight assignment process. 

Interpretations of psychophysical measurements of 
depth cue combinations may be more complex when the 
sum of the weights is not known. For example, perceived 
depth increases with the number of cues included in the 
stimulus (Bruno & Cutting, 1988; Biilthoff & Mallot, 
1988). This phenomenon may be due to redist~butions 
of weights whereby extraneous cues to flatness are offset 
by additional depth cues. This is in contrast with the 
unnormalized additivity suggested by Bruno and Cut- 
ting, or regularization mechanism suggested by Biilthoff 
and Mallot. The extrzneouf cue hypothesis can be re- 
jected when the weights of the controlled cues sum to one 
in each condition.* We may then consider explanations 
of this phenomenon that attribute it to an inherent 
response of the visual system to inconsistent or impover- 
ished visual data, rather than a response to imperfect 
stimuli (e.g. actual stimulus cues to flatness). One 
alternative explanation is that when the visual system is 

*A weaker rejection of the extraneous cue hypothesis might be possible 
when the sum of the weights of the controlled cues is constant 
across conditions. 

presented with unreliable or impoverished depth cues, it 
responds by producing flattened or “smoothed” esti- 
mates of surfaces in the scene. This ouersmoothing 
hypothesis is also consistent with these results. This 
phenomenon may be due to a tendency for the visual 
system to perceive stimuli as flat [the equidistance ten- 
dency (Gogel, 1965)]. It may also arise due to a decrease 
of the “smoothing” term in a regularization scheme 
as more information becomes available (Biilthoff and 
Mallot, 1988). 

Consideration of either the extraneous cue hypothesis 
or the oversmoothing hypothesis suggests that it may be 
difficult to study the integration of depth modules with 
stimuli that have impoverished depth information, stim- 
uli that are made unreliable, or with depth cues that 
signal markedly discrepant depths at the same location 
in a scene. The visual system may react to unreliability 
or inconsistency per se by altering the depth combination 
rule. The perturbation analysis methods and accompa- 
nying psychophysical procedures are designed to circum- 
vent such problems. 

In summary, the analysis of depth vision with cues 
strongly in conflict has proven to be difficult. A full 
description of the depth combination rules for inconsist- 
ent and impoverished stimuli seems likely to resemble a 
microcosm of cognitive processing: elements of memory, 
learning, reasoning and heuristic strategy may dominate. 
In contrast, we suggest that under conditions where 
reliable and consistent depth cues are presented, and the 
experimental procedure does not itself reduce reliability 
or render consistent cues inconsistent, the depth combi- 
nation rule may prove to be both simple and normative. 
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