
positive-intensity target in the middle frame. Again, this
implies a sub-optimal strategy for detecting the target, as
these early bar intensities are independent of the presence
or absence of the target. Neri and Heeger interpret this to
mean that these early high-contrast signals are engaging a
separate ‘attentional’ mechanism that is used to detect the
target. They ran a clever second experiment in which
subjects had both to detect and to identify the polarity of
the target, and the results demonstrated that the variance
kernel accounted for the detection task and the mean
kernel accounted for the identification task. The experi-
ment thus lends support to the hypothesis that the visual
system answers the questions of ‘what?’ and ‘where?’ using
separate mechanisms [8].

Conclusion

The resultsof Neriand Heeger’s experiments are intriguing,
and provide an elegant demonstration of the power of
stochastic stimuli in characterizing visual mechanisms. It
is worth considering the drawbacks of this approach, as
well as possible generalizations. First, designing and
executing this type of experiment is quite difficult, and
relies on a number of decisions about how to instruct
subjects, how much and what kind of training to allow, how
strong a target signal to use, and whether to provide
feedback. Second, the summary of their method in this
brief review has been simplified to ignore the distinction
between cases in which a target was present and those
when there was no target, because most of the analysis
presented in the paper by Neri and Heeger was done in this
fashion (although they do present results for the ‘False
Alarm’ case alone, which seem consistent with the
simplified yes/no case). Analysis and interpretation of
these sub-cases is more difficult, but can potentially offer
further insights into the nature of the underlying visual
mechanisms. It would also be interesting to extend the
analysis to include interactions between stimulus bars
(i.e. estimation of response-triggered covariance), as has
been done in physiological settings [9–11]. This could
provide a richer characterization of the underlying

mechanisms, at the expense of requiring more data for
reliable estimation.

Finally, it would be interesting to see this technique
applied to the detection, discrimination or identification of
more complex stimulus features, such as those defined by
orientation or motion (e.g. see [12]). Ultimately, refine-
ment of these techniques could allow us to formulate a
precise description of the mechanisms underlying all
aspects of vision, from detection of complex features, to
attentional and recognition processes.
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Imagined movements that leak out

Margaret Wilson
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In a case study that fundamentally alters our under-

standing of motor imagery, Schwoebel et al. report a

patient who unintentionally carries out imagined move-

ments. Furthermore, his ‘imagery’ movements are

more accurate than his intended movements, which

suggests that the inhibitory signal that normally pre-

vents us from acting out our motor imagery can be

selectively blocked. Removing this inhibition allows us

to observe motor imagery ‘in action’, and reveals that

motor imagery and motor planning for execution are

not identical.

In the last twenty years it has become accepted that
‘imagery’ of perceptual or motor events involves mental
representations that, in some important sense, resemble
the ‘real thing’. Visual imagery, for example, causes
activation in visual processing areas of the brain [1], and
motor imagery causes activation in motor areas [2]. ButCorresponding author: Margaret Wilson (mlwilson@cats.ucsc.edu).
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how, then, does the system distinguish an imagined event
from it’s overt counterpart? Why do visual images not
become hallucinations, and why does motor imagery not
result in muscular response? In the case of motor imagery,
a kind of accepted wisdom has emerged: motor imagery is
like motor production, with the addition of an inhibitory
signal that prevents overt movement [3]. Now, in a single
case study, comes a striking confirmation and partial
disconfirmation of this account of motor imagery.

Unintended execution: a window into motor imagery

Schwoebelandcolleagues [4] reportthecaseofCW, ‘the man
who executed ‘imagined’ movements’. CW is a 67-year-
old man with bilateral parietal damage due to two separate
strokes. Two years after the second stroke, he shows some
clumsiness with his hands, but largely preserved proprio-
ception. Most startling, though, is the fact that when he
imagines movements, he actually produces those move-
ments without being aware that he is doing so. This
behavior pattern, first observed informally, was confirmed
in experimental settings. CW gives every indication of fully
understanding the instructions to imagine certain hand
movements, and reports no awareness that he overtly
moves his hands when following the instructions.

In short, it appears that it is possible to selectively
remove the inhibitory signal, so that motor imagery that is
otherwise apparently normal can have the unintended
consequence of following through to execution. This
demonstration of the inhibitory signal by its absence is
perhaps the most direct evidence to date that such an
inhibitory signal exists.

The story does not end there, however. The fact that CW
overtly executes his motor images conveniently allows us
to observe the imagined movements. And for CW’s left
hand, those images are significantly more accurate than
deliberate movements. When asked to touch his thumb to a
particular finger, for example, CW makes significantly
more errors under instructions to execute the movement
than under instructions to imagine the movement.

How is this possible, if motor imagery is simply motor
commands coupled with the presence (or in this case, the
absence) of an inhibitory signal? The answer may lie in
recent theories of the role of ‘forward modeling’ in motor
control [5,6], an account which considerably complicates
the view of motor imagery sketched above.

Explaining motor imagery with forward models

A forward-model is a simulation device. Using information
about relevant properties of the system to be simulated, a
forward-model runs in real time, paralleling and mimick-
ing the activity taking place in the target system. The
purpose of a forward model is to provide estimates of what
is going on in the target system, and thus allow ongoing
control and correction without waiting for feedback from
the target system. Because the delays caused by neural
transmission make it impossible for a pure feedback model
to account for the fine-tuned temporal aspects of motor
control [7], current theories incorporate forward modeling
[5–7]. According to this view, forward models in the brain
contain information about the biomechanics of the
muscles, limbs and joints. Motor signals are sent

simultaneously to the pathways that result in overt
movement and to the forward model, which runs a
simulation of how the motor command is unfolding in
the external world. By comparing the output of the
forward model with the desired goal state, corrective
commands can be sent in time to have their desired effect.

When the story of motor outflow is complicated in this
fashion, we can see that there is now opportunity for motor
imagery and motor execution to diverge. Rather than a
single path of information flow from intention to execution,
motor control involves multiple pathways and multiple
representations. This makes it possible for dissociations
and selective impairments to occur. One such dissociation
appears to be occurring in CW.

Schwoebel et al. propose that the dissociation results
from impairment of a mechanism that compares the
output of the forward model with the actual proproceptive
and sensory feedback arriving from the external event.
This comparator, which would be called upon in the case of
executed but not imagined movement, might be producing
faulty updating of the represented hand location. This
would then result in inappropriate ‘corrections’ to the
movement trajectory, but only in the case of an intended
movement.

Alternative explanations for CW’s performance

It is unclear whether this is the only, or even the best,
explanation of CW’s performance based on a forward-
model account. As noted above, feedback from external
movement is delayed, and it is unclear whether an
impairment in integrating this feedback would occur in
time to create the observed difficulties. Furthermore,
other possible explanations suggest themselves when
one considers how forward models work. For instance,
there could be an impairment in the corrective motor
commands derived from the forward model that are
intended to fine-tune the movement in mid-trajectory.
If such corrective commands are not sent in the case
of motor imagery, the result could be a ‘ballistic’,
uncorrected motor command that hits its target more
often than motor commands that are modified by
distorted corrections.

This is, of course, pure speculation, but it serves to
illustrate how there could be other explanations for CW’s
performance. Further research should be directed at
constraining the relationship between motor imagery, on
the one hand, and the forward models that drive motor
execution, on the other. Nevertheless, the case of CW both
strengthens and fundamentally alters our understanding
of how motor imagery occurs.

References

1 Farah, M.J. (1995) The neural bases of mental imagery. In The
Cognitive Neurosciences (Gazzaniga, M.S., ed.), pp. 963–975, MIT
Press

2 Jeannerod, M. and Frak, V. (1999) Mental imaging of motor activity in
humans. Curr. Opin. Neurobiol. 9, 735–739

3 Lotze, M. et al. (1999) Activation of cortical and cerebellar motor areas
during executed and imagined hand movements: an fMRI study.
J. Cogn. Neurosci. 11, 491–501

4 Schwoebel, J. et al. (2002) The man who executed ‘imagined’

Update TRENDS in Cognitive Sciences Vol.7 No.2 February 200354

http://tics.trends.com

http://www.trends.com


movements: evidence for dissociable components of the body schema.
Brain Cogn. 50, 1–16

5 Wolpert, D.M. and Flanagan, J.R. (2001) Motor prediction. Curr. Biol.
11, R729–R732

6 Blakemore, S-J. et al. (2002) Abnormalities in the awareness of action.
Trends Cogn. Sci. 6, 237–242

7 Desmurget, M. and Grafton, S. (2000) Forward modeling allows
feedback control for fast reaching movements. Trends Cogn. Sci. 4,
423–431

1364-6613/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S1364-6613(02)00041-4

Do we all look alike to computers?

Robert L. Goldstone
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People are better able to recognize faces of their own

race than those of other races. One explanation is that

this ‘other-race effect’ is caused by lifelong experience

in which faces from some races are more common than

other races. A recent article by Furl et al. tests experi-

ence-based accounts of the other-race effect by giving

computer algorithms of face recognition training on

preponderantly Caucasian faces. The only algorithms

that reliably produced other-race effects were those

that created face representations distorted to empha-

size features that individuated faces.

The chances are that you have had heard somebody,
perhaps an uncle whom you suspect harbors racist
attitudes, declare of some racial group, ‘They all look
alike to me.’ Well, in fact, psychological experiments have
confirmed this observation. In memory experiments,
people are shown a set of faces, and are later shown a
second set of faces that contains some of these old faces and
additional new faces. People more accurately distinguish
the old from new faces when the faces are from their own,
typically more familiar, race than when they are from
other races [1–3]. A recent study by Furl, Phillips and
O’Toole [4] develops computational models of this ‘other-
race effect’ Their modeling explores an account known as
the ‘contact hypothesis’, which asserts that people develop
specialized perceptual processes for representing familiar
faces. An attractive aspect of the contact hypothesis is that
it is consistent with a large corpus of empirical evidence
showing robust perceptual learning for familiar objects
that transfers to highly similar objects [5–7].

The only fly in the contact hypothesis’ ointment is that
empirical evidence for life-long experience driving the
other-race effect has been inconsistent. Some studies have
shown that experience with other races modulates the
other-race effect. For example, living among members of
another race sometimes reduces the other-race effect [8,9].
However, other studies have failed to show an influence of
contact with different races [1,10,11]. Given the empirical
divergence of results, it is useful to step back and consider
specific mechanisms for how perceptual systems might
tune themselves to the properties of faces in their
environment. Furl et al. pursue this strategy by testing

a set of computer algorithms for face recognition that tailor
their representations to their environment. The algor-
ithms were trained with a biased collection of faces
containing a disproportionately large number of Cauca-
sian faces. The researchers were interested in identifying
the kinds of algorithms that would produce the same
other-race effect observed in people using the same
collection of faces. Is the creation of race-conscious
computers really progress? It is if it uncovers principles
that underlie our own skewed perception of races.

Training computers to recognize faces

In developing computers that exhibit an other-race effect,
the authors started with 13 state-of-the-science compu-
tational algorithms for face recognition evaluated by the
US government’s FERET (Face Recognition Technology)
program. The 13 algorithms were tested on a database
consisting of mostly Caucasian faces. Better recognition
accuracy for Caucasian than Asian faces was taken as
evidence for an other-race effect. These races were selected
because the authors replicated the other-race effect with
Caucasian and Asian participants using Caucasian and
Asian faces from the FERET database. The 13 algorithms
were divided into three categories based on how the face
representations that theyused are influenced by experience.

Three categories of face-recognition algorithms

The first category, non-contact hypothesis algorithms,
represent faces in the same manner no matter what faces
are used during training. The algorithms in this category
could only account for an other-race effect if Caucasian
faces were objectively more easily individuated than the
Asian faces.

The second category consisted of algorithms that
created perceptual representations based upon statistical
properties present in the set of training faces. The eight
algorithms in this set used Principal Component Analysis
(PCA) to create dimensions that accounted for the most
important sources of variation in the faces. For example, if
broad foreheads, full lips, and round cheeks were all highly
correlated, then PCA would create a single dimension that
consolidated all three of these facial features. Every face
can be represented in terms of the dimensions acquired by
PCA during training, and the vector representationCorresponding author: Robert L. Goldstone (rgoldsto@indiana.edu).

Update TRENDS in Cognitive Sciences Vol.7 No.2 February 2003 55

http://tics.trends.com

http://www.trends.com

	Outline placeholder
	Conclusion
	References

	Imagined movements that leak out
	Unintended execution: a window into motor imagery
	Explaining motor imagery with forward models
	Alternative explanations for CW’s performance
	References

	Do we all look alike to computers&quest;
	Training computers to recognize faces
	Three categories of face-recognition algorithms


