L ear ning to count without a counter :
A case study of dynamics and activation landscapesin recurrent

networks

Janet Wiles
Departments of Computer Science and Psychology
University of Queensland
Queensland 4072ustralia
j anet w@s. uqg. oz. au

Jeff EIman
Department of Cognitive Science, 0515
University of California, San Diego
La Jolla, California 92093-0515
el mn@ogsci . ucsd. edu

Abstract

The broad context of this study is the investigation of the nature of computation in recurrent networks (RNSs).
The current study has two part$e frst is to show that a RN can solve a problem that we take to be of interest
(a counting task), and the second is to use the solution as a platform for developing a more general understan
ing of RNs as computational mechanisive. begin by presenting the empirical results of training RNs on the
counting taskThe task &"b") is the simplest possible grammar that requires a BDéounterA RN was

trained to predict the deterministic elements in sequences of thexfettwheren=1 to 12 After training, it
generalized tm=18. Contrary to our expectations, on analyzing the hidden unit dynamicsdwvefevidence

of units acting like counters. Instead, wadfian oscillatadWe then explore the possible range of behaviors of
oscillators using iterated maps and in the second part of the paper we describe the use of iterated maps f
understanding RN mechanisms in terms of “activation landscapes’analysis leads to used an understand-

ing of the behavior of network generated in the simulation study

Keywords: Connectionist models
Dynamical systems
Formal language theory

Presentation preference: talk

L earning to count without a counter:
A case study of dynamics and activation landscapesin recurrent

networks
Janet Wiles Jeff EIman
Departments of Computer Science and Psychology Department of Cognitive Science, 0515
University of Queensland University of California, San Diego
Queensland 4072ustralia La Jolla, California 92093-0515
j anetw@s. ug. oz. au el mn@ogsci . ucsd. edu
Abstract puters are neural network8®empts to answer this ques-

The broad context of this study is the investigation of the tion generally attempt either to probe capacily through

nature of computation in recurrent networks (RNgje cur empirical experimentation (_e.g., of the sort reported in
rent study has two partShe fist is to show that a RN can Cleeremans, Servan-Schreibe& McClelland, 19809;

solve a problem that we take to be of interest (a counting task), Elman, 1991; Giles, MillerChen, Chen, Sun, & Lee,
and the second is to use the solution as a platform for develop- 1992: Manolios & Fanelli, 1994Vatrous & Kuhn, 1992)
ing a more general understanding of RNs as computational . ¢i5e to establish theoretical capacity through formal

mechanismsWe begin by presenting the empirical results of .)] .
training RNs on the counting taskhe task (a”b'p) is the sim- analysis (Kolen, 1994; Pollack, 1991; Seligmann & Son-

plest possible grammar that requires a RibAounterA RN tag, 1992).
was trained ;\orpredict the deterministic elements in sequences Lacking in much of this work, howevyehas been a
of the forma b * wheren=1 to 12 After training, it general- close-grained analysis of the precise mechanisms which

ized ton=18. Contrary to our expectations, on analyzing the : : }
hidden unit dynamics, weniil no evidence of units acting like can be employed by neural networks in the service of spe

counters. Instead, wenfi an oscillatorWe then explore the Cific computational tasks. Elman (1991), for example,
possible range of behaviors of oscillators using iterated maps demonstrates the ability of a recurrent network to emulate

and in the second part of the paper we describe the use-of iter certain aspects of a pushdown automaton (nartejyro-
ated maps for understanding RN mechanisms in terms of cess recursively embedded structures to a limited depth);
“activation landscapesThis analysis leads to used an uRder o 509y sis of this network suggests that the network par
standing of the behavior of network generated in the simula-
tion study titions the hidden unit state space to represent grammatical
categories and depth of embeddifige network weights
then implement a dynamics which allow the network to
Introduction move through this state space in a rule-following manner
which is consistent with the context-free grammar that
produces the input string¥his analysis is suggestive at
best, howeverand leaves many important questions unan-

tati b derstood within the f K of di swered. How does the RN solution compare with that of a
computation can be understood within the Iramework of tiSge, oy iy terms of processing capacif® the solutions

cr'ete fiite automata (D.F)' One' can then' use the Chomsky functionally exactly equivalent or are therefeiiénces?
Hierarchy as a tool for inferentially classifying the computa-, .. these dierences relevant to understanding cognitive
tional power of the brain. If brains produce behaviors Whicrbehaviors’> If RNs are dynamical systems, then how can

fall entirely within the realm of context-free grammars, fordynamics be employed to carry out specimputational
example, we might suppose that the brain is the computge | oo

tional equivalent of a Linear Boundéditomata (since this
class of machines is both necessary anéicgerit for the
generation and recognition of such languages).

It is common to view the brain as a computut the real
guestion isWhat sort of computer might the brain be?
One reasonable assumption is that the functioniatiin

Our goal in the project which this work initiates is to
redress this failingWe wish to investigate the nature of
computation in recurrent networks by discovering the

In reality, howevey formal gnalygs of behawor does not detailed mechanisms which are employed to carry out spe-
suggest that such a neat typing will be possible. Furthermorgiﬁc computational requirementhe strategy is ft to

n :hbe %asttdecgdle,dlt hastbeen Sugﬁg?Stiﬂ that the br?m MAn a recurrent network to produce a behavior which is of
not be best modeled as a type oFDBut rather as a contin- a priori interest, and which has known a computational
uous analog automaton of the sort represented by neural N€Liution within the realm of DE We then analyze the

WOI’k'S. . . . recurrent network to discover whether the solution is
This possibility then raises the questi@¥hat sort of com-

equivalent to that of the or whether it is dierent. If the used There were two input units (representing the two
solution is diferent, the question then becomes whether the
solution is more or less likely to provide insight into the

computational mechanisms employed by the brain in the ser

. . . Output units
vice of cognitive behaviors. P

Simulation Hidden units

The work of Giles and colleagues has demonstrated that

recurrent networks (RNs) can provide reasonable approxi-)
mations of the simplest class of B Finite Staté\utomata Input units
(FSA).The network solution appears to involve an instantia-
tion of the state space required by the FSA, although there
are interesting and possibly usefuffeiences. (For example,
path information tends to be saved—qgratuitously—in the

RN, and the RN state space probably hgs an intrinsic SeM3fhssible inputsa andb) and two output units (represent-
tics whereas the topology of the F&Aaside from the state ing the networlg predictions for the next inputsjwo

transitions, undefied.) Our interest is therefore in exploring higden units were connected with full recurrence. Net-
behaviors which require the next highest category oADF \\qris were initialized with dférent random weights.

namely context-free languageshese require a form of Nepworks was trained using back propagation through
pushdown automaton known as a Linear Bounigitma- (ime (for 8 time steps)iraining was carried out for a total

ton. of 3 million inputs.

Figure 1: Network architecture

Task and stimuli

One of the simplest CF languages one can devise is the 1afse networksiperformance was evaluated using the test

guagea'd’; that is, the language consisting of strings Ofyata in which all strings from depth 1 to 30 were present.
some number dds followed by the same numberl. This gg1ing was carried out following 1, 2, and 3 million train-

language requires a pushdown store in order to keep track ﬁ:\fg cycles.

Results

theas in order that each may be matched by a later In After 1 million training cycles 9 of the networks learned
reality, though, the full power of the store is not really esseng, o language"s" for n17. One network generalized to
tial. All that is required is a counter n=11. The other networks learned the language . This

_V\/_e generated a training set consisting of 356_strings, CORs the language consisting of any numbeesffollowed
taining a total of 2,29&2 tnokens afandb. These strings con- by any number obs: in this case the network simply pre-
formed to the forma'b’, with n ranging from 1 to 1 jisits input.

(meaning strength length varied from 2 to 22). Length was afiar 2 million training cycles, 4 of the 20 networks

biased toward shorter strings (e.g., there were 129 strings Séneralized the correct languagertel2. One network

depth 1 and 7of deptil _ generalized ton=18. Remaining networks had learned
A separate set of test stimuli were generated which cory

sisted of all possible strings withranging from 1 to 30 SO after 3 million training cycles, no networks were suc-
that we might test generalization to depths greater than thatcssul forn>11. Those networks which had exhibited

encountered during training. o generalization at earlier stages of learning lost their solu-
The networks task was to take a symbol as its input and t§5n and in many cases revertecatd .

predict the next input. _Succe_ss_f_ul pe_rformance_would re_quire Subsequent replications on additional groups of 20 net-
that the networ.k predict an initial (since all strings begin ks yield essentially the same statistics, including at
with this token); the network should then prea@icirbwith 1655t one network which generalizes to approximately a

equiprobability until the fstb is encounteredl'he network depth of 18We therefore focus on this network for analy-
should then predicb for n timesteps, whera equals the

number ofas that were input. Following that, the network
should then predict amto indicate the end of the old string
and beginning of the next string. Analysis; Part |

Our first conjecture was that the network might have
Network and training solved this task by employing one or both of its hidden

)) units as counterd.his would be indicated by that hidden
20 recurrent networks of the form show in Figure 1 was

unit’s activation function changing (e.g., increasing) as a fixed point

monotonic function of the number afinputs.The magni- 1
tude of the faal activation state of the unit would therefore
encoden.

However when we plotted the hidden unit activations as a 0.8

function of input we saw nothing which resembled a counter

Instead, to our surprise, we found both units oscillating in
activation value over time (but not in synchrorjje took 0.6
this as prima facie evidence that the counter hypothesis was =
falsified and then attempted to construct another hypothesis. & ‘\fixed point
This involved stepping back and considering in more general < 0.4)
terms what sorts of dynamical behaviors might be generated fixed poin
in recurrent networks under very limiting conditions.

Dynamicsin recurrent networks

Let us consider a simpler version of the network used in the
simulation; this network will have two inputs, two outputs, a

bias, and a single hidden unit with a self-recurrent connec- h (t)
tion. This network is shown in Figure 2.

0.2 0.4 0.6 0.8 1

Figure 3: Dynamical properties of network shown
Figure 2, with w=10 and b=-5

Oa | Op

\f) h2) h(3)
h(1)

W h w 0.8
My
Wa/ \Wp
ia ib

Figure 2: Network used in analysis

h (t+1)

We are interested in the dynamics of the hidden tnit,
under various conditions'his unit has several sources of

input: input tokens, bias, and self-recurrenge. begin by 0 02 0a 06 08 i

recognizing that when the input is held constant (as when the h (t)

network is processing a string a§ which it has to count),

then the only thing which changes is the self-rectiresni- Figure 4: Convegence properties of network in Figur:

tation. We can therefore subsume all other inputs under a

bias term: Suppose the sign of the self-recurrent weight is nega-
netinput = bias+i w,+i,w, +h(t-1)w tive. In efect, this fips the activation function and
netinput = Lb—-'——h-('rfbt)'vv—' changes the conwgence propertiedVe now fnd that we

have fked points as before, but we oscillate back and forth
above and below the middlexdd point. Depending on the
The activation function for this unit is then steepness of the slope and our initial value, we either
h(t) = W diverge out or convgye inward.This is shown in Figure 5.
l+e Finally, we note that if we could change the slope of the
If we letw=10andb=-5 then we observe the unit has the hidden units activation function dynamically (i.e., during
properties shown in Figure 3he unit has 3 fied points. processing), then we could produce two regimes, a$f., fi
Thus, over time, if we begin with h(0) greater than 0.5, wetonveging and then diveing. This is shown in Figure 6.
see the movement in activation space shown in Figure 4. We now ask how such behavior might be useful to us?

h (t+1)
h (t+1)

-
e
N

0.6 0.8 0.6 0.8 1

0.4
h (t)
Conveging

0.4
h (1)
Figure 6: Conveging oscillations followed by divging

1 oscillations

things to be true. First, we need output units which can
o8 implement a hyperplane on the digence phase so that
the network can establish a criterial value which will sig-
nal the end of sequence. Second, during the initial phase,
0.6 while the frst hidden unit is convging, we would like to
have the second hidden unit (rightmost graph) “out of the
way”; this could be accomplished if the input it receives
0.4 J from the frst hidden unit shifts the slope to its asymptotic
region. Then, during the second phase, while the second
hidden unit is divaging, we would like to have therst
hidden unit suppressed in a similar whgt us return to
the actual simulation to see if this is what happens.

h(t+1)

02 r:'(‘lt) o6 08 ! Analysis: Part |1
Diverging Returning to the trained network shown in Figure 1, we

can graph the activation function of each hidden unit
under conditions when a sequence®fare received, and
when a sequence @k are received. Figure 7 shows the

In Figure 6 we see the activation function of the single hig&ctivation function of the st hidden u nit during presen-
den unit in the network in Figure 2rsi when the slope is tation ofas (rightmost plot) antis (leftmost plot) Figure
shifted to the left, and then when the activation function i€ shows the activation functions of the second hidden unit
shifted to the right. In both cases the hidden unit computé4der similar conditions.
an iterated map on itself, given a constant input. What we see is that each unit is “on” (i.e., has an activa-
Let us imagine that we have two hidden units instead dfon function which is capable of producing discriminably
one, so that these two slopes represeférdifit units. Fur different outputs) only during one type of input, and each
ther, let us imagine that the graph shown on the left is th&nit responds to a dérent inputWhile one unit is active,
first hidden uni§ response to a seriesainputs.The units it shuts of the other unit. When the input sequence
activation will convege on successive iterations; how far it SWitches froma to b, the other unit becomes active and
conveges depends on how many iterations with the samghuts the fit unit of.
input we carry out. Now let us assume that the input changesNOW let us look at the actual pattern of responses while
to b. The graph on the right might represent the iterated maé‘iS network processes a real sequefitdés is shown in
on the second hidden urifthe initial starting point depends Figure 9.Here we see exactly the desired behavior: One
on the fnal state value of ther§it hidden unit; it then hidden unit in essence “winds up” like a spring as it counts
diverges outward. successiva inputs; when the ffst b is encountered, the

To make use of this for a counting task, we need two morg&cond unit “unwinds” for exactly the amount of time

Figure 5: Oscillating behavior found with negative s
recurrent weight.

o8 a input
:_T__" 0.6
—
<

0.4

0.2

b input
0 0.2 0.4 0.6 0.8 1
hl (t)

Figure 7:Activation function of hidden unit 1 duriny
presentation of a sequenceasf andbs.

ainpu

hl (t+1)

b input

0.2 0.4 0.6 0.8 1

hi (1)

Figure 8:Activation function of hidden unit 2 during
presentation of a sequenceasf andos

"which corresponds to the numberadhputs.

Discussion

0.8 bmput
= .
+ >0 a input
N—r
<

0.4

0.2

0
0.2 0.4 0.6 0.8 1
h (1)

Figure 9: Hidden unit oscillations in trained netwo
processing &a’s (spiral on lower left, representing hic
den unit 1), followed by Bs (spiral on upper right, reg
resenting hidden unit 2).

What we found was something quitefeient. The solu-
tion involved instead the construction of two dynamical
regimes. During the st phase, one hidden unit goes into
an oscillatory regime in which the activation values con-
verged. We might think of this as akin to the netwak’
“winding up a spring."This phase continues untilkais
presentedThe efect of theb is to move the network into
the second regime; in this phase thstfhidden unit is
now damped and the second hidden unit “unwinds” the
spring for as long as corresponds to the numbas.of

This solution is déctive well beyond the depth of
strings (=11) presented during training. Our network was
able to generalize easily to length21.We found through
making additional small adjustments of recurrent weights
by hand that the generalization could be extended&5.

The solution is interesting because it demonstrates that a
task which putatively requires a counter can in fact be
solved by a mechanism which shares some but not all the
properties of a counteFhis particular dynamical solution,
for example, solves the problem of indicating when to
expect the beginning of a new string; but there is no way
to read of from the internal state at any point in time
exactly what the current count is (although once inbthe
phase,one can tell how many motes are expected)n

We began by posing the question of how a recurrent nethis regard, the network is very much like other dynamical

work might solve a task (i.e., the languag&")which,
given a DR, is known to require a pushdown stoke

systemsThe instantaneous view of a child in motion on a
swing will not reveal how many times the child has oscil-

hypothesized that the network might solve this task by develated to get to that position.

oping a counter

We are currently involved in extending this work by

looking at related languages such as parenthesis balancinganguages using second-order recurrent netwdiks-
(in which the count may be non-monotonic, as opposed to ral Computation, 4, 406-414.
the a"b" case)We are also interested in cases such as the
palindrome language, which more clearly motivate the need
for a stack-like mechanisms. Finallye are developing tools
for studying dynamical solutions in networks which have a
larger number of hidden unit¥his poses a major challenge,
since the dynamics made possible through the interactions of
many hidden units are much more complex than the case
studied here.
At this point we prefer not to evaluate this solution as bet-
ter or worse than that provided by a conventional counter or
by the pushdown store of a BFWe simply note that the
solution is diferent.And we take this as an object lesson that
prior notions of how recurrent networks might be expected
to solve familiar computational problems are to be regarded
as open hypotheses onle should be prepared for sur
prises.

Acknowledgments

We are grateful to members of the PDPNR&search Group

at UCSD, and in particular to Paul Mineiros, Gary Cottrell,
and Paul Rodriguez for many helpful discussiditgs work
was supported in part by contract NO0014-93-1-0194 from
the Ofice of Naval Research to the second aytéed grant
DBS 92-09432 from the National Science Foundation, also
to the second author

References

CleeremansA., Servan-SchreiberD., & McClelland, J.
(1989). Finite state automata and simple recurrent net-
works.Neural Computationl, 372.

Elman, J.L. (1991). Distributed representations, simple recur
rent networks, and grammatical structiMachine Learn-
ing, 7, 195-225.

Giles, C.L., Mille C.B., Chen, D., Chen, H.H., Sun, G.Z., &
Lee, Y.C. (1992). Learning and extractingiife state
automata with second-order recurrent netwofésural
Computation?2, 331-349.

Kolen, J.F (1994). Recurrent networks: state machines or
iterated function systems? In M. Moz& S. Smolensky
D. Touretzky J. ElIman, 8A. Weigend (Eds.)Proceedings
of the 1993 Connectionist Models Summer ScpgpoR01-
210). BoulderCO: Lawrence Erlbaursssoc.

Manolios, P& Fanelli, R. (1994). First order recurrent neural
networks and deterministicnfte state automatdNeural
Computation6, 1154-1172.

Pollack, J.B. (1991 he induction of dynamical recognizers.
Machine Learning7, 227.

Seligmann, H.T & Sontag, E.D. (1992). Neural networks
with real weights: Analog computational complexity
Report SYCON-92-05. Rutgers Center for Systems and
Control, Rutgers University

Watrous, R.J., & Kuhn, G.M. (1992). Induction afife-state

