

Learning to count without a counter:
A case study of dynamics and activation landscapes in recurrent

networks

Janet Wiles

Departments of Computer Science and Psychology
University of Queensland

Queensland 4072, Australia

janetw@cs.uq.oz.au

Jeff Elman

Department of Cognitive Science, 0515
University of California, San Diego

La Jolla, California 92093-0515

elman@cogsci.ucsd.edu

Abstract

The broad context of this study is the investigation of the nature of computation in recurrent networks (RNs).
The current study has two parts. The first is to show that a RN can solve a problem that we take to be of interest
(a counting task), and the second is to use the solution as a platform for developing a more general understand-
ing of RNs as computational mechanisms. We begin by presenting the empirical results of training RNs on the
counting task. The task () is the simplest possible grammar that requires a PDA or counter. A RN was
trained to predict the deterministic elements in sequences of the form * where

n

=1 to 12. After training, it
generalized to

n

=18. Contrary to our expectations, on analyzing the hidden unit dynamics, we find no evidence
of units acting like counters. Instead, we find an oscillator. We then explore the possible range of behaviors of
oscillators using iterated maps and in the second part of the paper we describe the use of iterated maps for
understanding RN mechanisms in terms of “activation landscapes”. This analysis leads to used an understand-
ing of the behavior of network generated in the simulation study.

Keywords: Connectionist models
Dynamical systems
Formal language theory

Presentation preference: talk

a

n

b

n

a

n

b

n

Abstract

The broad context of this study is the investigation of the
nature of computation in recurrent networks (RNs). The cur-
rent study has two parts. The first is to show that a RN can
solve a problem that we take to be of interest (a counting task),
and the second is to use the solution as a platform for develop-
ing a more general understanding of RNs as computational
mechanisms. We begin by presenting the empirical results of
training RNs on the counting task. The task () is the sim-
plest possible grammar that requires a PDA or counter. A RN
was trained to predict the deterministic elements in sequences
of the form * where

n

=1 to 12. After training, it general-
ized to

n

=18. Contrary to our expectations, on analyzing the
hidden unit dynamics, we find no evidence of units acting like
counters. Instead, we find an oscillator. We then explore the
possible range of behaviors of oscillators using iterated maps
and in the second part of the paper we describe the use of iter-
ated maps for understanding RN mechanisms in terms of
“activation landscapes”. This analysis leads to used an under-
standing of the behavior of network generated in the simula-
tion study.

Introduction

It is common to view the brain as a computer. But the real
question is, What sort of computer might the brain be?

One reasonable assumption is that the functionally, brain
computation can be understood within the framework of dis-
crete finite automata (DFA). One can then use the Chomsky
Hierarchy as a tool for inferentially classifying the computa-
tional power of the brain. If brains produce behaviors which
fall entirely within the realm of context-free grammars, for
example, we might suppose that the brain is the computa-
tional equivalent of a Linear Bounded Automata (since this
class of machines is both necessary and sufficient for the
generation and recognition of such languages).

In reality, however, formal analysis of behavior does not
suggest that such a neat typing will be possible. Furthermore,
in the past decade, it has been suggested that the brain may
not be best modeled as a type of DFA, but rather as a contin-
uous analog automaton of the sort represented by neural net-
works.

This possibility then raises the question, What sort of com-

a

n

b

n

a

n

b

n

puters are neural networks? Attempts to answer this ques-
tion generally attempt either to probe capacity through
empirical experimentation (e.g., of the sort reported in
Cleeremans, Servan-Schreiber, & McClelland, 1989;
Elman, 1991; Giles, Miller, Chen, Chen, Sun, & Lee,
1992; Manolios & Fanelli, 1994; Watrous & Kuhn, 1992)
or else to establish theoretical capacity through formal
analysis (Kolen, 1994; Pollack, 1991; Seligmann & Son-
tag, 1992).

Lacking in much of this work, however, has been a
close-grained analysis of the precise mechanisms which
can be employed by neural networks in the service of spe-
cific computational tasks. Elman (1991), for example,
demonstrates the ability of a recurrent network to emulate
certain aspects of a pushdown automaton (namely, to pro-
cess recursively embedded structures to a limited depth);
the analysis of this network suggests that the network par-
titions the hidden unit state space to represent grammatical
categories and depth of embedding. The network weights
then implement a dynamics which allow the network to
move through this state space in a rule-following manner
which is consistent with the context-free grammar that
produces the input strings. This analysis is suggestive at
best, however, and leaves many important questions unan-
swered. How does the RN solution compare with that of a
stack in terms of processing capacity? Are the solutions
functionally exactly equivalent or are there differences?
Are these differences relevant to understanding cognitive
behaviors? If RNs are dynamical systems, then how can
dynamics be employed to carry out specific computational
tasks?

Our goal in the project which this work initiates is to
redress this failing. We wish to investigate the nature of
computation in recurrent networks by discovering the
detailed mechanisms which are employed to carry out spe-
cific computational requirements. The strategy is first to
train a recurrent network to produce a behavior which is of
a priori interest, and which has known a computational
solution within the realm of DFA. We then analyze the
recurrent network to discover whether the solution is

Learning to count without a counter:
A case study of dynamics and activation landscapes in recurrent

networks

Jeff Elman

Department of Cognitive Science, 0515
University of California, San Diego

La Jolla, California 92093-0515

elman@cogsci.ucsd.edu

Janet Wiles

Departments of Computer Science and Psychology
University of Queensland

Queensland 4072, Australia

janetw@cs.uq.oz.au

equivalent to that of the DFA or whether it is different. If the
solution is different, the question then becomes whether the
solution is more or less likely to provide insight into the
computational mechanisms employed by the brain in the ser-
vice of cognitive behaviors.

Simulation

The work of Giles and colleagues has demonstrated that
recurrent networks (RNs) can provide reasonable approxi-
mations of the simplest class of DFAs: Finite State Automata
(FSA). The network solution appears to involve an instantia-
tion of the state space required by the FSA, although there
are interesting and possibly useful differences. (For example,
path information tends to be saved—gratuitously—in the
RN, and the RN state space probably has an intrinsic seman-
tics whereas the topology of the FSA is, aside from the state
transitions, undefined.) Our interest is therefore in exploring
behaviors which require the next highest category of DFA,
namely context-free languages. These require a form of
pushdown automaton known as a Linear Bounded Automa-
ton.

Task and stimuli

One of the simplest CF languages one can devise is the lan-
guage ; that is, the language consisting of strings of
some number of

a

s followed by the same number of

b

s. This
language requires a pushdown store in order to keep track of
the

a

s in order that each

a

 may be matched by a later

b

. In
reality, though, the full power of the store is not really essen-
tial. All that is required is a counter.

We generated a training set consisting of 356 strings, con-
taining a total of 2,298 tokens of

a

 and

b

. These strings con-
formed to the form , with

n

 ranging from 1 to 11
(meaning strength length varied from 2 to 22). Length was
biased toward shorter strings (e.g., there were 129 strings of
depth 1 and 7of depth 11).

A separate set of test stimuli were generated which con-
sisted of all possible strings with

n

 ranging from 1 to 30 so
that we might test generalization to depths greater than that
encountered during training.

The network’s task was to take a symbol as its input and to
predict the next input. Successful performance would require
that the network predict an initial

a

 (since all strings begin
with this token); the network should then predict

a

 or

b

with
equiprobability until the first

b

 is encountered. The network
should then predict

b

 for

n

 timesteps, where

n

 equals the
number of

a

s that were input. Following that, the network
should then predict an

a

 to indicate the end of the old string
and beginning of the next string.

Network and training

20 recurrent networks of the form show in Figure 1 was

a

n

b

n

a

n

b

n

used. There were two input units (representing the two

possible inputs,

a

 and

b

) and two output units (represent-
ing the network’s predictions for the next inputs). Two
hidden units were connected with full recurrence. Net-
works were initialized with different random weights.

Networks was trained using back propagation through
time (for 8 time steps). Training was carried out for a total
of 3 million inputs.

Results

The networks’ performance was evaluated using the test
data in which all strings from depth 1 to 30 were present.
Testing was carried out following 1, 2, and 3 million train-
ing cycles.

After 1 million training cycles 9 of the networks learned
the language for . One network generalized to

n

=11. The other networks learned the language . This
is the language consisting of any number of

a

s followed
by any number of

b

s; in this case the network simply pre-
dicts its input.

After 2 million training cycles, 4 of the 20 networks
generalized the correct language to

n

=12. One network
generalized to

n

=18. Remaining networks had learned
.

After 3 million training cycles, no networks were suc-
cessful for

n

>11. Those networks which had exhibited
generalization at earlier stages of learning lost their solu-
tion and in many cases reverted to .

Subsequent replications on additional groups of 20 net-
works yield essentially the same statistics, including at
least one network which generalizes to approximately a
depth of 18. We therefore focus on this network for analy-
sis.

Analysis: Part I

Our first conjecture was that the network might have
solved this task by employing one or both of its hidden
units as counters. This would be indicated by that hidden

Input units

Output units

Hidden units

Figure 1: Network architecture

a

n

b

n

n

7

∼

a

*

b

*

a

*

b

*

a

*

b

*

unit’s activation function changing (e.g., increasing) as a
monotonic function of the number of

a

 inputs. The magni-
tude of the final activation state of the unit would therefore
encode

n

.
However, when we plotted the hidden unit activations as a

function of input we saw nothing which resembled a counter.
Instead, to our surprise, we found both units oscillating in
activation value over time (but not in synchrony). We took
this as prima facie evidence that the counter hypothesis was
falsified and then attempted to construct another hypothesis.
This involved stepping back and considering in more general
terms what sorts of dynamical behaviors might be generated
in recurrent networks under very limiting conditions.

Dynamics in recurrent networks

Let us consider a simpler version of the network used in the
simulation; this network will have two inputs, two outputs, a
bias, and a single hidden unit with a self-recurrent connec-
tion. This network is shown in Figure 2.

We are interested in the dynamics of the hidden unit,

h

,
under various conditions. This unit has several sources of
input: input tokens, bias, and self-recurrence. We begin by
recognizing that when the input is held constant (as when the
network is processing a string of

a

s which it has to count),
then the only thing which changes is the self-recurrent exci-
tation. We can therefore subsume all other inputs under a
bias term:

The activation function for this unit is then

If we let

w=

10 and

b

=-5, then we observe the unit has the
properties shown in Figure 3. The unit has 3 fixed points.
Thus, over time, if we begin with h(0) greater than 0.5, we
see the movement in activation space shown in Figure 4.

bias

o

a

o

b

i

b

i

a

h

w

a

w

b

w

Figure 2: Network used in analysis

netinput bias i

a

w

a

i

b

w

b

h t

1–

()

w

+ + +=

b

netinput b h t

1–

()

w

+=

h t

()

1

1

e

wh t

1–

()

b

+

()

–

+
---=

Suppose the sign of the self-recurrent weight is nega-
tive. In effect, this flips the activation function and
changes the convergence properties. We now find that we
have fixed points as before, but we oscillate back and forth
above and below the middle fixed point. Depending on the
steepness of the slope and our initial value, we either
diverge out or converge inward. This is shown in Figure 5.

Finally, we note that if we could change the slope of the
hidden unit’s activation function dynamically (i.e., during
processing), then we could produce two regimes, e.g., first
converging and then diverging. This is shown in Figure 6.

We now ask how such behavior might be useful to us?

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fixed point

Figure 3: Dynamical properties of network shown in
Figure 2, with w=10 and b=-5

fixed point

fixed point

h (t)

h
(t

+
1)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h(0)

h(1)

h(2) h(3)

Figure 4: Convergence properties of network in Figure 2

h (t)

h
(t

+
1)

In Figure 6 we see the activation function of the single hid-
den unit in the network in Figure 2, first when the slope is
shifted to the left, and then when the activation function is
shifted to the right. In both cases the hidden unit computes
an iterated map on itself, given a constant input.

Let us imagine that we have two hidden units instead of
one, so that these two slopes represent different units. Fur-
ther, let us imagine that the graph shown on the left is the
first hidden unit’s response to a series of

a

inputs. The unit’s
activation will converge on successive iterations; how far it
converges depends on how many iterations with the same
input we carry out. Now let us assume that the input changes
to

b

. The graph on the right might represent the iterated map
on the second hidden unit. The initial starting point depends
on the final state value of the first hidden unit; it then
diverges outward.

To make use of this for a counting task, we need two more

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Oscillating behavior found with negative self-
recurrent weight.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Converging

Diverging
h (t)

h(
t+

1)

h (t)

h
(t

+
1)

things to be true. First, we need output units which can
implement a hyperplane on the divergence phase so that
the network can establish a criterial value which will sig-
nal the end of sequence. Second, during the initial phase,
while the first hidden unit is converging, we would like to
have the second hidden unit (rightmost graph) “out of the
way”; this could be accomplished if the input it receives
from the first hidden unit shifts the slope to its asymptotic
region. Then, during the second phase, while the second
hidden unit is diverging, we would like to have the first
hidden unit suppressed in a similar way. Let us return to
the actual simulation to see if this is what happens.

Analysis: Part II

Returning to the trained network shown in Figure 1, we
can graph the activation function of each hidden unit
under conditions when a sequence of

a

s are received, and
when a sequence of

b

s are received. Figure 7 shows the
activation function of the first hidden u nit during presen-
tation of

a

s (rightmost plot) and

b

s (leftmost plot). Figure
8 shows the activation functions of the second hidden unit
under similar conditions.

What we see is that each unit is “on” (i.e., has an activa-
tion function which is capable of producing discriminably
different outputs) only during one type of input, and each
unit responds to a different input. While one unit is active,
it shuts off the other unit. When the input sequence
switches from

a

 to

b

, the other unit becomes active and
shuts the first unit off.

Now let us look at the actual pattern of responses while
this network processes a real sequence. This is shown in
Figure 9. Here we see exactly the desired behavior: One
hidden unit in essence “winds up” like a spring as it counts
successive

a

 inputs; when the first

b

 is encountered, the
second unit “unwinds” for exactly the amount of time

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6: Converging oscillations followed by diverging
oscillations

h (t)

h
(t

+
1)

”which corresponds to the number of

a

 inputs.

Discussion

We began by posing the question of how a recurrent net-
work might solve a task (i.e., the language)which,
given a DFA, is known to require a pushdown store. We
hypothesized that the network might solve this task by devel-
oping a counter.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7: Activation function of hidden unit 1 during
presentation of a sequence of

a

s, and

b

s.

a input

b input

h1 (t)

h1
 (

t+
1)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 8: Activation function of hidden unit 2 during
presentation of a sequence of

a

s, and

b

s

a input

b input

h1 (t)

h1
 (

t+
1)

a

n

b

n

What we found was something quite different. The solu-
tion involved instead the construction of two dynamical
regimes. During the first phase, one hidden unit goes into
an oscillatory regime in which the activation values con-
verged. We might think of this as akin to the network’s
“winding up a spring.” This phase continues until a

b

 is
presented. The effect of the

b

 is to move the network into
the second regime; in this phase the first hidden unit is
now damped and the second hidden unit “unwinds” the
spring for as long as corresponds to the number of

a

s.
This solution is effective well beyond the depth of

strings (

n

=11) presented during training. Our network was
able to generalize easily to length

n=

21. We found through
making additional small adjustments of recurrent weights
by hand that the generalization could be extended to

n

=85.
The solution is interesting because it demonstrates that a

task which putatively requires a counter can in fact be
solved by a mechanism which shares some but not all the
properties of a counter. This particular dynamical solution,
for example, solves the problem of indicating when to
expect the beginning of a new string; but there is no way
to read off from the internal state at any point in time
exactly what the current count is (although once in the

b

phase, one can tell how many more

b

s are expected). In
this regard, the network is very much like other dynamical
systems: The instantaneous view of a child in motion on a
swing will not reveal how many times the child has oscil-
lated to get to that position.

We are currently involved in extending this work by

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 9: Hidden unit oscillations in trained network,
processing 7

a’s

(spiral on lower left, representing hid-
den unit 1), followed by 7

b

s (spiral on upper right, rep-
resenting hidden unit 2).

a input

b input

h (t)

h
(t

+
1)

looking at related languages such as parenthesis balancing
(in which the count may be non-monotonic, as opposed to
the case). We are also interested in cases such as the
palindrome language, which more clearly motivate the need
for a stack-like mechanisms. Finally, we are developing tools
for studying dynamical solutions in networks which have a
larger number of hidden units. This poses a major challenge,
since the dynamics made possible through the interactions of
many hidden units are much more complex than the case
studied here.

At this point we prefer not to evaluate this solution as bet-
ter or worse than that provided by a conventional counter or
by the pushdown store of a DFA. We simply note that the
solution is different. And we take this as an object lesson that
prior notions of how recurrent networks might be expected
to solve familiar computational problems are to be regarded
as open hypotheses only. We should be prepared for sur-
prises.

Acknowledgments

We are grateful to members of the PDPNLP Research Group
at UCSD, and in particular to Paul Mineiros, Gary Cottrell,
and Paul Rodriguez for many helpful discussions. This work
was supported in part by contract N00014-93-1-0194 from
the Office of Naval Research to the second author, and grant
DBS 92-09432 from the National Science Foundation, also
to the second author.

References

Cleeremans, A., Servan-Schreiber, D., & McClelland, J.
(1989). Finite state automata and simple recurrent net-
works.

Neural Computation

, 1, 372.
Elman, J.L. (1991). Distributed representations, simple recur-

rent networks, and grammatical structure.

Machine Learn-
ing,

7, 195-225.
Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., &

Lee, Y.C. (1992). Learning and extracting finite state
automata with second-order recurrent networks.

Neural
Computation,

2, 331-349.
Kolen, J.F. (1994). Recurrent networks: state machines or

iterated function systems? In M. Mozer, P. S. Smolensky,
D. Touretzky, J. Elman, & A. Weigend (Eds.),

Proceedings
of the 1993 Connectionist Models Summer School

(pp 201-
210). Boulder, CO: Lawrence Erlbaum Assoc.

Manolios, P. & Fanelli, R. (1994). First order recurrent neural
networks and deterministic finite state automata.

Neural
Computation

, 6, 1154-1172.
Pollack, J.B. (1991). The induction of dynamical recognizers.

Machine Learning

, 7, 227.
Seligmann, H.T., & Sontag, E.D. (1992). Neural networks

with real weights: Analog computational complexity.
Report SYCON-92-05. Rutgers Center for Systems and
Control, Rutgers University.

Watrous, R.J., & Kuhn, G.M. (1992). Induction of finite-state

a

n

b

n

languages using second-order recurrent networks.

Neu-
ral Computation, 4, 406-414.

