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Two approaches to the study of movement planning were contrasted. Data on the drawing of
complex two-dimensional trajectories were used to test whether the covariations of the
kinematic and geometrical parameters of the movement formalized by the two-thirds power
law and by the isochrony principle (P. Viviani & R. Schneider, 1991) can be derived from the
minimum-jerk model hypothesis (T. Flash & N. Hogan, 1985). The convergence of the 2
approaches was satisfactory insofar as the relation between tangential velocity and curvature
is concerned (two-thirds power law). Global isochrony could not be deduced from the optimal
control hypothesis. Scaling of velocity within movement subunits can instead be derived from
the minimum-jerk hypothesis. The implications vis-a-vis the issue of movement planning are
discussed with an emphasis on the representation used by the motor control system for coding
the intended trajectories.

Because of the flexibilit y and redundancy of the neuro-
muscular and skeletal systems, many motor goals can be
achieved using different combinations of elementary move-
ments. Differences may be quantitative—for example, one
position in space can be reached with the fingertip using
various sets of angles between the articular joints; one
trajectory can be traced with different velocity profiles—or
qualitative—for example, a handle can be turned using
either the overhand or the underhand grip; horses can reach
certain speeds by either trotting or galloping. Although
humans do sometimes take advantage of such freedom,
there is often evidence of strong biases favoring one solu-
tion over all alternatives (Kay, 1988). Motor theorists be-
lieve that we would make a significant step toward eluci-
dating the logic of motor control if we were to understand
the constraining principles responsible for the reduction of
the available degrees of freedom (Jordan, 1990; Whiting,
1984). However, it is not clear yet (cf. Rosenbaum,
Vaughan, Jorgensen, Barnes, & Stewart, 1993) whether one
conceptual framework can subsume qualitative differences
in motor strategies under a quantitative theory. In this arti-
cle, we deal exclusively with the special but important case
in which the goal is uniquely defined by the motion of a
well-identified endpoint (as in writing or drawing), and
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differences between alternative motor solutions are clearly
quantitative. In particular, we address how geometrical and
kinematic aspects of endpoint movements are specified and
what is the nature of the constraints that intervene in the
specification.

Several approaches have been devised to tackle this ques-
tion. Some of them share a set of assumptions that, for sake
of reference, we identify collectively as the motor program
view. A motor program is generally defined as the central
representation of a sequence of motor actions that can lead
to a patterned movement in the absence of feedback (Keele,
1981). Generality and flexibilit y can be achieved if one
introduces in the definition of program the distinction be-
tween structural aspects of the intended action (that are
assumed to be invariant and stored in memory) and param-
eters (total duration of the action, amount of force used in
execution, choice of the muscular synergies, etc.) that are
specified only at the time of execution (Schmidt, 1975,
1976, 1987). The nature of the structural, invariant infor-
mation is still debated. Some authors (e.g., Stelmach,
Mullins, & Teulings, 1984; Wing, 1978, 1979, 1980) sug-
gest that the plan is a preset temporal sequence of activa-
tions of agonist and antagonist muscles; recent neurophys-
iological (Alexander & Crutcher, 1990a, 1990b; Crutcher &
Alexander, 1990; Kalaska, Cohen, Hyde, & Prud'homme,
1989; Kalaska, Cohen, Prud'homme, & Hyde, 1990) and
behavioral data (for a review, see Van Galen, 1991) are
instead compatible with the hypothesis that spatial variables
are represented in the motor plan. In either case, it is a basic
tenet of the motor program view (at least for such complex,
learned gestures as handwriting or drawing; Ellis, 1988) that
some internal representation of the intended trajectory is
available to the implementation stage prior to the inception
of movement; moreover, it is also often assumed that the
spatial relationships observed in overt behavior correspond
isomorphically to identifiable features of this internal rep-
resentation. In particular, some key geometrical features of
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the trajectory—such as its length, or the presence of closed
loops—are supposed to be traceable to specific aspects of
the motor plan. Finally, the fact that the temporal structure
of the movement can be kept relatively invariant across
voluntary changes in tempo and size (ratiomorphic scaling)
is sometimes interpreted by the motor program view as
evidence that kinematic variables are constrained to some
extent by the geometrical properties of the intended trajec-
tory (Teulings, Mullins, & Stelmach, 1986).

Other approaches to movement planning depart more or
less drastically from the premises that characterize the mo-
tor program view. Although they differ in several important
respects, many of these approaches share the tenet that overt
features of the movement (both geometrical and kinematic
alike) are concurrently specified by a few basic principles
that preside over the working of the motor control system.
Thus, for instance, the so-called pattern dynamics approach
(cf. Haken & Wunderlin, 1990; Kelso & Schoner, 1987;
Kelso, Schoner, Scholz, & Haken, 1987; Saltzman & Kelso,
1987; Schoner & Kelso, 1988) holds that the coordination of
bimanual oscillations, the stability of coordination patterns,
and the phase transitions that occur between stable modes of
coordination should be construed as nonlinear dynamic
phenomena involving collective variables, that is, low-di-
mensional quantitative descriptors of the order or relations
among components. Discrete movements can also be inves-
tigated within the same framework by identifying their
intrinsic dynamics in terms of initial and target postural
states (Schoner, 1990).

Another example of alternative approach is the so-called
mass-spring theory of handwriting (Hollerbach, 1981;
Kelso, 1981), which argues that harmonic oscillations rep-
resent the most fundamental mode of action of viscoelastic
biomechanical systems, and that a rich variety of distinctive
features of cursive letters (e.g., the presence of closed loops,
the slant and height of strokes, the sense of rotation, etc.)
can be selected by controlling stiffness and viscosity of
orthogonally arranged (second-order) dynamic systems. Fi-
nally, cost-minimization models (one of which will be de-
scribed later in greater detail) represent yet another instance
of departure from the motor program view inasmuch as they
postulate that movement planning is based on a global
principle of optimal control, and that no complete blueprint
exists for the generation of the movement. For instance, the
minimum spatial deviation model (Jordan, Flash, & Arnon,
in press) assumes that point-to-point movements result from
the implicit constraint that the trajectory deviates as little as
possible from a straight line. It can be shown that minimiz-
ing a cost-function that takes into account the total devia-
tion, in conjunction with the constraints that arise from the
dynamical properties of the neuromuscular system, suffices
to specify the law of motion of the movement. Over and
above the variety of mechanisms invoked to explain specific
motor behaviors, the feature that all these approaches share
is the low dimensionality of the control space wherein the
movement plan is coded: Because many aspects of the
movement's complexity are supposed to result from the
implementation process, the plan need not bear any isomor-

phic relationship with observable properties of the resulting
gesture.

In the face of the considerable divergence of the respec-
tive premises, the motor program view would a priori seem
incompatible with any of these competing views. However,
if the implementation of these different ideas failed to
produce contrasting predictions concerning the execution of
some reasonably complex motor task, one could suspect
that differences are more terminological than substantive,
and that some sort of integration can be achieved. In this
article, we explore this possibility by contrasting two spe-
cific strategies for investigating movement planning that
have been independently pursued by the authors over the
last few years; one strategy is inspired by the motor program
view, the other by the concept of global optimization. Al-
though neither of them can claim to be representative of the
entire conceptual domain to which it is associated, both
present some prototypical features of the respective camp.
Thus, we hope that the conclusions of our joint effort of
clarification may have some relevance beyond the context
of this study.

The article is organized as follows. First, we outline the
two strategies under examination, as well as a few basic
results obtained with each of them. Then, after summariz-
ing a recent critical appraisal of their relationship (Wann,
Nimmo-Smith, & Wing, 1988), we present the motiva-
tions for taking up the issue once more. Next, we de-
scribe an experiment that provides the empirical basis for
evaluating the convergence between the two strategies. A
subsequent section analyzes quantitatively the manner in
which each of them deals with the same body of data. Fi-
nally, we discuss the level of integration that it has been
possible to achieve, as well as the significance of the re-
maining discrepancies.

Explicit Versus Implicit Constraints

It is still open to debate whether the central nervous
system (CNS) plans hand movements in terms of angular
(intrinsic) coordinates at the arm joints (e.g., Lacquaniti
& Soechting, 1982; Soechting & Lacquaniti, 1981;
Soechting, Lacquaniti, & Terzuolo, 1986), or in terms of
body-centered (extrinsic) coordinates of the relevant end
point (e.g., Flash & Hogan, 1985; Georgopoulos, Kalaska,
Caminiti, & Massey, 1982; Georgopoulos, Kettner, &
Schwartz, 1988; Morasso, 1981). However, the two strate-
gies contrasted here adopt the same point of view in this
debate, namely, that the motor control system represents
hand position in space in an extrinsic system of reference.
Thus, in the upcoming presentation we are concerned ex-
clusively with the distal variables that characterize end-
point motions. Moreover, we will restrict the analysis to
the special case of planar movements.

A planar point movement can be described in at least
three equivalent ways:

1. It can be described by providing the time course of the
coordinates [x = x(f), y = y(t)].
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2. It can be described by specifying both the geometrical
form of the trajectory, which in turn is described by the
parametric equations G: [x = x(s), y = y(s)] (where s is
the curvilinear coordinate), and the law of motion M:
{s = s(t)} which indicates the length of the segment of
trajectory spanned from motion onset (t = 0) to time t.

3. It can be described by specifying the radius of curvature
R(s) of the trajectory and the tangential velocity of the
point V(s) = ds/dt, both as a function of curvilinear co-
ordinate (to within a location parameter the function R(s)
uniquely defines a trajectory [Guggenheimer, 1963]).

In the domain of kinematics no relation needs to exist
between G and M or R and V: a trajectory can be traced with
any law of motion and, conversely, a specific law of motion
can be followed along any trajectory. The situation is dif-
ferent in the domain of dynamics (i.e., when one takes into
account the forces that generate the movement). In fact, the
time course of the forces, in conjunction with Newton's
equation, specifies jointly the trajectory and the law of
motion; thus, G and M (as well as R and V) are mutually
constrained in a manner that depends uniquely on the driv-
ing forces. It follows that, if a principled relationship exists
between G and M (or, equivalently, between the functions R
and V), which is invariant for a class of movements gener-
ated by one controlling system, this relationship must be the
reflection of a general rule that the system follows in plan-
ning the forces. Ultimately, any consistent pattern of co-
variation between quantities related to geometry and kine-
matics is likely to provide a clue for understanding the logic
of the controller.

Two-Thirds Power Law and Isochrony

A research program carried out in recent years has in-
vestigated two such patterns of covariation (Lacquaniti,
Terzuolo, & Viviani, 1983,1984; Viviani & Cenzato, 1985;
Viviani & McCollum, 1983; Viviani & Schneider, 1991;
Viviani & Terzuolo, 1980, 1982). The first principle for-
malizes a local constraint between geometry and law of
motion, that is, a constraint that involves the properties of
the movement at any one point in time. It has long been
observed that curvature and velocity of endpoint hand
movements are related (Binet & Courtier, 1893; Jack,
1895). Early attempts to formulate this observation mathe-
matically (Lacquaniti et al., 1983) led to a simple relation
between curvature (C = l/R) and angular velocity (A =
V/R): A = K C% (two-thirds power law), valid only for a
certain class of movements. The most recent formulation of
the relation between curvature and velocity (Viviani &
Schneider, 1991) extends the validity of the original law on
three counts: (a) It covers a wider class of movements,
including those composed of identifiable units of motor
actions; (b) it deals satisfactorily with points of inflection;
and (c) it takes into account certain aspects of the matura-
tion of motor control in the course of development.

The new formulation relates the radius of curvature at any
point s along the trajectory with the corresponding tangen-

tial velocity:

V(s) = K(s)
aR(s)

a>0, K(s) > 0. (1)

In adults, the exponent ]8 takes values close to Vs; the
constant a ranges between 0 and 1, depending on the
average velocity (Viviani & Stucchi, 1992). The multipli-
cative function K(s) appearing in this equation has been
termed the velocity gain factor; it depends on the length of
the trajectory but not on its form. Although we have noted
explicitly the dependency of K on the curvilinear coordinate
s, the analysis of complex movements has shown that this
term can be approximated in many cases by a piece-wise
constant function (Viviani, 1986; Viviani & Cenzato, 1985).
When /3 = Vs, a = 0 and K(s) = constant, the new formu-
lation is mathematically equivalent to its simpler, original
version; thus, for the sake of consistency, Equation 1 is also
referred to as the two-thirds power law.

The second covariance principle to be considered here is
known as the isochrony principle. It is an old observation
that average velocity of point-to-point movements increases
with the distance between the points and, therefore, that
movement duration is only weakly dependent on movement
extent (Binet & Courtier, 1893; Derwort, 1938; Fitts, 1954;
Freeman, 1914). More recent studies (Viviani, 1986;
Viviani & McCollum, 1983; Viviani & Schneider, 1991)
have shown that a similar phenomenon is present in almost
any type of movement, periodic and aperiodic, regular and
extemporaneous. In all cases the relative constancy of
movement duration results directly from the empirical fact
that the average velocity covaries with the linear extent of
the trajectory. In particular, changing the scale at which one
traces a given trajectory produces a similar change in the
average velocity.

The two-thirds power law described above suggests a way
of factoring out this change into two components. By taking
the logarithms of both sides of Equation 1, substituting C(s)
for l/R(s), and averaging over the entire length L of the path
one obtains:

- log[V(s)]ds

 - |\>g[*(S)]<fe + '-
LJo

(2)

The left term in this equation is an increasing function of the
average velocity; the first term on the right side is an
increasing function of the average velocity gain; finally, the
second term on the right is a decreasing function of the
average curvature of the trajectory. Studies (Viviani &
Cenzato, 1985; Viviani & Schneider, 1991) have shown that

1 In robotics the term trajectory is sometimes used to denote
collectively all kinematic variables that characterize a point mo-
tion, the tern path being instead reserved to denote the geometrical
form of the motion. In this article we adhere to the terminology
adopted in rational mechanics.
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the average gain in turn is an increasing function of the
length L. Moreover, for any given form of the trajectory,
average curvature scales inversely with the overall size of
the movement. Thus, the modulation of the average velocity
is the sum of two effects, one mediated by the velocity gain,
the other related to the distribution of curvature along the
path (for a discussion of the relative weight of these effects,
see Viviani & Cenzato, 1985, and Viviani & Schneider,
1991). It has been argued (Viviani & Schneider, 1991) that
these two contributions to the relative invariance of move-
ment duration pertain to distinct aspects of motor planning,
and that the term isochrony is best used to denote only the
empirical (and so far unexplained) fact that the velocity gain
is sensitive to the length of the path, rather than the overall
covariation of average velocity with length.

A connection can be established between the phenome-
non of isochrony and the decomposition of complex move-
ments into units of motor action. Viviani (1986) suggested
that all portions of a movement over which the velocity gain
factor K is approximately constant (see above) correspond
to relatively autonomous chunks of motor planning. The
number and size of the units defined by this criterion depend
on the nature of the movement as well as on the form of the
trajectory. For instance, in the case of simple periodic
motions, such as the continuous tracing of an ellipse, K is
constant throughout; thus, there is only one identifiable unit
that coincides with a complete cycle of movement. When
tracing more elaborate closed patterns that contain identifi-
able figural elements (such as, for instance, the two loops in
patterns Tl and T3 in Figure 2), the trajectory is typically
decomposed in several units that correspond to these ele-
ments. Finally, in the case of very complex and nonperiodic
movements, such as free scribbling, the segmentation into
units occurs primarily at the points of inflection of the
trajectory where the sense of rotation of the movement is
inverted (Schneider, 1987).

Identifying the units of motor action by a criterion that
involves the velocity gain factor is justified by the obser-
vation that average velocity within units is well predicted by
the linear extent of the corresponding portions of trajec-
tory.2 In other words, the same phenomenon of isochrony
that applies to the entire trajectory is also observed within
units (the average velocity for the entire movement being
itself a weighted mean of the individual averages). In both
cases, the fact that velocity is modulated by a global geo-
metrical quantity (the linear extent of the path) even before
the trajectory is fully executed, suggests that an estimate of
this quantity is available to the motor control system as part
of the internal representation of the intended movement.

The factorization of velocity into two multiplicative fac-
tors suggested by the two-thirds power law (see above)
applies also within units of motor actions where the velocity
gain is approximately constant. Moreover, it can be shown
that the dependency of the gain on the length of the path,
which has been argued to be the most direct expression of
the phenomenon of isochrony, is also present within units
and corresponds to a local form of isochrony (Schneider,
1987). Specifically, let st and s2 be the curvilinear coordi-
nates of the endpoints of a unit. It has been demonstrated

(Schneider, 1987; see also Figure 1 in Viviani & Stucchi,
1992, and Figure 5B of the present article) that the empirical
linear regression (in log units):

log K(s)ds (3)

between the linear extent of the unit (s2 - *i) and the
corresponding average gain (left-sided integral) affords a
satisfactory approximation to the data. Thus, the weak de-
pendence of movement time on trajectory length is mostly
due to the modulation of the velocity gain empirically
described by Equation 3. The interplay between the modu-
lation of the average velocity gain by the total length of the
trajectory (global isochrony), and the modulation within
units of motor action (local isochrony) is a complex prob-
lem that is not fully understood yet.

Minimum-Jerk Model

In summary, the line of research outlined above hinges on
the assumption that (a) a spatial plan is available to the
motor control system prior to the inception of the move-
ment, and (b) many temporal and kinematic aspects of the
action are explicitly constrained by the geometrical proper-
ties of the actual expected trajectory. Thus, whereas neither
the two-thirds power law nor the isochrony principle ad-
dresses directly the problem of trajectory formation, both
adhere on this issue to the premises that characterize the
motor program view. By contrast, in some approaches to
movement planning that break away from the motor pro-
gram tradition, the necessary dissipation of the degrees of
freedom results from constraints that are set at a much more
global level inasmuch as they are supposed to correspond to
general qualitative properties of the motor system. In par-
ticular, several authors have investigated the consequences
of assuming that point-to-point movements comply with
some global minimum-cost condition (Flash & Hogan,
1985; Hasan, 1986; Hogan, 1984; Hollerbach, 1977;
Nagasaki, 1989; Nelson, 1983; Uno, Kawato, & Suzuki,
1989; Wann et al., 1988). Minimum-jerk modeling is a
representative instance of this line of research. A formal
mathematical description of the minimum-jerk model is
provided in Flash and Hogan (1985) and Edelman and Flash
(1987). It suffices here to sketch the main points.

Barring particular overriding circumstances, natural
movements—and, more markedly, hand movements—tend
to be smooth and graceful. One can then postulate that this
characteristic feature corresponds to a design principle, or,
in other words, that maximum smoothness is a criterion to
which the motor system abides in the planning of end-point
movements (Hogan & Flash, 1987). It is a mathematical fact
that this constraint is so powerful that it can be turned into

2 The situation is actually slightly more complex because of
the presence of coupling between contiguous units (Viviani &
Cenzato, 1985). This point will be taken up again in the discussion.
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a motor recipe. To this end, one defines a cost function CF
that is proportional to the mean square of the jerk (deriva-
tive of the acceleration):

f':CF =  V2
Jti dr dt (4)

and stipulates that the movement is "maximally smooth" if
the corresponding parametric equations minimize the cost
CF. It can be shown that there is only one pair of parametric
equations that simultaneously satisfy this minimum condi-
tion and an appropriate set of boundary conditions.

In essence, then, the minimum-jerk model postulates that,
among all possible solutions for generating a trajectory, the
motor control system selects precisely this unique pair. In
the case that is relevant here, namely, that in which one
wants to go from an initial point Ql = fa, yj) to a final
point Q3 = (x3, y3) by way of an intermediate position Q2 =
(x2, v2), the selection process, framed as an optimal control
problem with interior point equality constraints (Bryson &
Ho, 1975), yields a closed analytical solution. The horizon-
tal and vertical components of the movement are both
expressed as fifth-order, polynomial functions of time:

(t-t2)+ = t - t2
0 if t < t2 (5)

where t2 is the via-point passage time. The coefficients
{Ckx, %; * = 0, 5}, plx, p2K, ply, and p2y that appear in
Equation 5 can be determined on the basis of the following
set of boundary conditions: time, position, velocity and
acceleration at Qj and Q3, and position and velocity (or just
position) at Q2. The solution is invariant with respect to
rotations and translations of the positions Q1; Q2, and Q3;
moreover, it is time homogeneous and scalable: changes in
time scale leave the trajectory unaffected and are reflected
proportionally in the kinematic parameters. It must be em-
phasized that passage time t2 at the via-point is also deter-
mined jointly by the boundary and minimum conditions.
Thus, the model makes quantitative predictions on the in-
ternal temporal structure of the movement. Specifically, by
predicting how the relative duration (t2 - fi)/(f 3 — ?i) of the
first part of the movement (up to the via-point) varies as a
function of the corresponding relative length of the trajec-
tory (s2 — s^fai — *i) , one can test the ability of the model
to simulate the phenomenon of local isochrony. These pre-
dictions were found to be in excellent agreement with the
experimental results (Flash & Hogan, 1985) and, more
generally, with the phenomenon of within-movement iso-
chrony described by the empirical regression 3.

The minimum condition on movement derivatives affords
considerable morphogenetic power. Even with a single via-

point constraint, a great variety of curved trajectories can be
generated through an appropriate choice of boundary con-
ditions. Figure 1 illustrates this point with a representative
example. Even more complex patterns can be obtained by
chaining a sufficient number of point-to-point trajectories.
Realistic simulations of handwriting derived from an opti-
mum principle similar to the one embodied in the minimum-
jerk model were obtained by Edelman and Flash (1987),
who assumed that the instructions for complex movements
(such as the writing of a letter string) are coded as a
sequence of boundary conditions, each of which specifies
completely the generation of successive segments of the
trajectory. In agreement with the general philosophy of this
type of approach, the CNS is supposed to represent hand-
writing and drawing in a high-level language, leaving many
aspects of the actual result to the implementation stage.
Thus, the format of the internal representation is far more
compact and, at the same time, far more opaque than that
typically postulated by the motor program view. Finally, we
recall that, although an earlier version of the model was
meant to describe actual movements, in later work (Flash,
1987, 1990) it has been argued that the minimum-jerk
solution may describe an internal representation of the de-
sired movement (equilibrium trajectory). We elaborate on
this suggestion in the Discussion section.

Previous Work and Goal of the Project

A recent study (Wann et al., 1988) addressed the question
of whether the dependency of velocity on curvature can be
derived from a minimum-cost principle. Using data on the
continuous tracing of ellipses by adult subjects, these au-
thors argued the following points:

1. The two-thirds power law is a restatement of the general
notion that many two-dimensional movements can be
construed as the result of coupling two orthogonal har-
monic motions. Therefore, the law is neither more signif-
icant nor more accurate than this simple oscillatory
model.

2. Even in the most favorable case (i.e., when considering
elliptical trajectories), there are asymmetries in the move-
ment that significantly violate the two-thirds power law.

3. The hypothesis that the CNS seeks to minimize a cost
function related to "jerkiness" implies a covariation be-
tween velocity and curvature that is commensurate with
the empirical data. However, contrary to the assumption
of Flash and Hogan's (1985) model, the cost function
cannot be expressed by kinematic quantities only. Per-
ceived jerkiness must relate in some way to the action of
dynamic variables.

4. This revised minimization model provides a good account
of human behavior under relaxed conditions. As such, and
within these limits, it supersedes previous models.

Points 1 and 2 above have been discussed at length in a
recent article (Viviani & Schneider, 1991). In particular, the
analysis of the development of motor control in young
children has demonstrated that, across ages, velocity and
curvature are always related by a power function. However,
the exponent of the function varies in the course of puberty
and attains the value ¥3 found in adults only after the age
of 12. The simple oscillatory model for the generation of
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COMPONENTS

INITIAL POSITION
INITIAL VELOCITY
INITIAL ACCELERATION
VU-POINT POSITION
VIA-POINT VELOCITY
FINAL POSITION
FINAL VELOCITY
FINAL ACCELERATION

VIA-POINT TIKE
TOTAL MOVEMENT TIME
IENCTN BEFORE VIA-POINT
LENGTH AFTER VIA-POINT
TOTAL TRAJECTORY LENGTH

HOMZOHTAL VERTICAL

-J.OOO
18.000
210.000

0
-18.000
5.000
20.000

-60.000

J.OOO CM.
22.000 CX./SEC.

0 CM./SEC."2
-1.000 CM.
-18.000 CM./SEC.
-4.000 CM.
6.000 CM./SEC.
200.000 CM./SEC."2

0.821
2.000
18.180
18.873
37.075

SEC.
SEC.
CM.
CM.
CM.

Figure 1. Morphogenetic capability of the minimum-jerk model. This is an example of the
complex trajectories that can be generated by the model. Given an initial point (Q1), a final point
(Q3), and a mandatory via-point (Q2), a variety of trajectories can be obtained by choosing
appropriately the kinematic boundary conditions. In this example the indicated velocity (V1( V2, V3)
and acceleration (A1( A2) vectors, as well as the imposed duration of the movement, induce the
presence of a loop in the trajectory. Because the model is time-scalable (see text), the same trajectory
can be executed in any specified amount of time, provided that velocities and accelerations are
scaled proportionally.

elliptic movement instead predicts that the exponent of the
power function is always Vi and is therefore at variance with
these developmental data. Points 3 and 4 address issues that
are directly relevant to our own program. Among others,
they raise the question of how broad the range of phenom-
ena should be that one takes into account when contrasting
different approaches to the study of movement, and, relat-
edly, the question of what kind of database is adequate for
carrying out this contrast. Because of the relation that exists
between the two-thirds power law and isochrony (see
above), we have adopted the view that the analysis of
these two empirical principles should not be dissociated.
We believe that the results obtained with motor tasks as
simple as elliptic tracing studied by Wann et al. (1988)
cannot provide the necessary discriminating power. The
reason is twofold. On the one side, ellipses are generally

traced by adults in such a way that the horizontal and
vertical components of the movement are hard to distin-
guish from sine and cosine functions of time. This mode
of generation is predicted by several models of control,
including those, like the mass-spring model, that are con-
ceptually quite distinct from both formalisms discussed
here, and from Wann et al.'s model. On the other side, el-
lipses and other simple closed trajectories are normally
traced as a unit (see above); thus, they provide no way of
discriminating between local and global isochrony. The
movements performed in our experiments overcome these
limitations because their components are more complex
than harmonic functions, and because the presence of
clearly identifiable geometrical subunits is likely to in-
duce a segmentation of the execution into distinct units of
motor action.
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The task proposed in our experiments, continuous tracing
of three complex, closed trajectories, was designed to high-
light those aspects of motor performance on which the two
approaches to be contrasted make quantitative predictions.
Two of the patterns contain similar loops that are concate-
nated with and without points of inflection (one pattern
requires an inversion of the sense of rotation; the other does
not). By changing the relative size of the loops while
keeping the rhythm of execution (and, in one case, the total
perimeter) constant, one can investigate the phenomena of
local and global isochrony. The third pattern has a fourfold
symmetry; by having subjects trace it at different rhythms,
one can investigate the scaling properties of the movement.
The three patterns present large variations in curvature,
which permits one to quantify accurately the covariation
between this geometrical parameter and the velocity. Fi-
nally, all patterns can be generated accurately by the mini-
mum-jerk model; thus, a rigorous three-way comparison is
possible between the kinematics predicted by the model,
that predicted by the two-thirds power law, and the one that
is actually measured.

Method

Subjects and Apparatus

Three right-handed men (S1; S2, and S3) from the staff of
P. Viviani's laboratory in Geneva volunteered as subjects. They
were 35, 33, and 45 years old, respectively. The coordinates
of drawing movements were recorded with a digitizing table
(Numonics Corporation, Montgomeryville, PA; Model 2200-
0.60TL.F; nominal accuracy: 0.01 mm; temporal resolution: 200
samples/s) placed horizontally in front of the sitting subjects. The
writing implement of the table resembled a normal ballpoint pen
but did not leave a visible trace. The model curves to be traced
(templates) were drawn on standard-sized (A4) white sheets placed
on the table.

Material

Three types of closed mathematical curves were used as tem-
plates: asymmetric lemniscate (Tj), cloverleaf (T2), and oblate
limagon (T3). Figure 2 illustrates one representative instance of
each template. It also provides the corresponding general paramet-
ric equations. Absolute and relative sizes of the curves are speci-
fied by the constants a, b, and c in the equations. Three versions of
Tj and T3 were tested, each corresponding to a different ratio
between the linear extent of the large (Px) and small (P2) loops
present in these curves. For template Tx the total linear extent PT
was constant (48 cm). The ratio r = P-JPj. could take the values
rt = 1 (rn: P! = P2 = 24 cm), r2 = 2 (712: P1 = 32 cm; P2 = 16
cm), and r3 = 3 (rl3: Pl = 36 cm; P2 = 12 cm). The values of the
constants a and b corresponding to these size specifications were
computed numerically with a simplex minimization algorithm
(r a< b> 106; ab = 9.1531; T12: a= 3.2645;
b = 2.7981; J13: a = 4.9200; b = 1.8489). The total horizontal
extent of the curve (Ex = 2ab) was almost identical in the three
cases (TII : £x = 18.31 cm; T12: £x = 18.27 cm; T13: Ex = 18.19
cm). The three versions of T3 were defined as follows. The
rightmost and leftmost points of the curve are reached for ® = 0
and ®* = cos^J(— l/4b). The difference between the abscissas of

) = a(cos(t+6)—

i(G)-«(cos » » 6<:os20)

Figure 2. Templates used for the experiments. Row A: asym-
metric lemniscate (7\); Row B: cloverleaf (T2); Row C: oblate
limagon (T3). Each curve is described mathematically by the
indicated parametric equations. By specifying the parameters a, b,
and c in these equations as explained in the text, one can control
the absolute and relative sizes of these templates.

these two points is Ex = a(4b + l)2/8b. The ordinate jmax of the
uppermost point of the curve is also a known function of b and c.
P! and P2 were defined as twice the length of the curve corre-
sponding to the parametric intervals (0 < ® < ®*) and (©* <
® < TT), respectively. The eccentricity of the outer loop was
defined as 2 = [1 - 4(ymax/£x)

2]^. For any choice of values of
P1; 2, and r = PJP^, the three constants appearing in the equa-
tions of the curve are uniquely defined. The values Pt = 45 cm
and 2 = 0.9 were fixed for the three versions of the template. The
ratio r = P,/P2 could take the values ^ = 3/2 (T31: P2 = 30 cm;
PT = 75 cm), r2 = 2 (T32: P2 = 22.5 cm; PT = 67.5 cm), and
r3 = 3 (T33: P2 - 15 cm; PT = 60 cm). The values of a and b and
c corresponding to these size specifications were again computed
numerically (r31: a = 3.3138; b = 2.4236; c = 1.3504; T32:
a = 5.0020; b = 1.4254; c = 1.9772; T33: a = 6.7031;
b = 0.9105; c = 2.5801). In this case also the total horizontal
extent of the figure was almost independent of r (T31: Ex = 19.55
cm; T32: Ex = 19.70 cm; T33: Ex = 19.83 cm). Only one T2

template was used (a = 9.6 cm, £x = 8a/3-y/3 = 14.75 cm). The
total linear extent of T2 can be expressed in terms of the complete
elliptic integral of the second kind E: PT = 8aE(3/4) and was equal
to 93.00 cm.

Task and Procedure

The task consisted of tracing each version of the templates
freely and continuously. 7\ was traced counterclockwise for the
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large loop and clockwise for the small loop. T2 and T3 were traced
counterclockwise. Movements were recorded for 10 s. The exper-
imenter started the recording after a few cycles of movement
during which subjects reached a stable pace. Subjects were tested
in a single session. Sessions were divided into three phases, one for
each type of template, with short periods of rest between phases.
Each phase comprised a series of nine recordings. For 7\ and T3

the series consisted of three repetitions for each version of the
templates. Recording sequences within a series were arranged in a
different random order for each subject with the constraint that
identical templates never occurred in successive trials. Subjects
were free to choose idiosyncratically the tempo with which move-
ments were executed. For template T2 the tempo was suggested by
the experimenter. Subjects were instructed to synchronize the
completion of a full movement cycle with the beat of a metronome.
The metronome was stopped before the beginning of the recording
in order to prevent voluntary corrective actions by the subjects in
case of phase slippage. Three periods were tested (dT1 = 2.0,
d-rz = 2-5, and dT3 = 3.0 s), and each was repeated three times; the
range of dT values was broad enough to test the effect of rhythm,
and yet compatible with smooth, consistent performance. The
sequence of trials was again randomized for each subject with the
constraint that the same period never occurred in successive trials.
In summary, the database consisted of 3 (subjects) X 3 (trajecto-
ries) X 3 (modalities; size ratio for 7\ and T3, period for T2) X 3
(repetitions) = 81 recordings.

Data Analysis

In all conditions tested the 10-s recording period was sufficient
for tracing the curves several times. The left panels in Figure 3
show examples of complete recordings for each template. Position
(X, Y), velocity (Vx, Vy), and acceleration (Ax, Ay) components at
the three landmarks of the curves (<2i, Q2, Q3), which are needed
to derive the minimum-jerk predictions, were measured for each
movement cycle. Whenever necessary, indices (e.g., Axl, Vy3) will
be used to identify the kinematic quantities corresponding to each
landmark. The position of the landmarks on the actual trajectories
was determined as follows. After moving the center of gravity of
the traces to the origin of the reference axes, we computed first and
second derivatives of the position components using the optimal
FIR (filtering and differentiating) algorithm (Rabiner & Gold,
1975; cutoff frequency: 20 Hz). Then, we applied the following
numerical criteria. For rl5 <2i and Q3 are the points where the
horizontal velocity component Vx changes sign; Q2 is the point
where curvature changes sign. There are two such points in each
cycle but, for our purposes, they were considered as equivalent.
For T2 (upper right lobe), Q: (Q3) is the point where the horizontal
(vertical) component of the acceleration becomes negative (posi-
tive), and the distance from the center of the coordinate axes is less
than !/4 of the average maximum. Q2 is the point where the
distance from the center is maximum. Because T2 has a fourfold
symmetry, there are four sets of equivalent landmarks in each
cycle. They were all referred to the upper right lobe. For T3, QT and
Q3 are the points where the horizontal velocity Vx changes from
positive to negative; the two points were discriminated by a
criterion on the distance from the center of gravity; Q2 is the point
where the horizontal velocity changes from negative to positive
(again, two points of the trajectory satisfy this criterion, but, as for
Tlt they were considered as equivalent). The landmarks identified
by applying this procedure to all movement cycles in the examples
of Figure 3 are indicated by circles superimposed to the traces.

Results

Geometrical Aspects of the Performance

As illustrated by the three typical examples on the left
side of Figure 3, subjects had no difficulty tracing the
required trajectories with smooth, continuous movements.
The examples are also indicative of the relatively small
variability of the traces from cycle to cycle. Accuracy and
consistency of successive cycles of movement were esti-
mated by computing averages and standard deviations (over
cycles, repetitions, and subjects) of the coordinates of the
landmarks identified on the recorded traces (Table 1). The
results show that both absolute and relative sizes of the
templates were reproduced faithfully in all conditions
tested. Despite the pooling over subjects and repetitions, the
variability of the position of the landmarks was quite small
(of the order of 0.5 cm).

Temporal Aspects of the Performance

Although the experimenters did not impose temporal con-
straints for the execution of Tl and T3, subjects spontane-
ously chose comparable rhythms for the three versions of
these templates. The average velocities over movement
cycles for Ta (all model curves had the same perimeter)
were 5t = 33.08 cm/s; S2 - 34.41 cm/s; S3 = 33.26 cm/s.
The corresponding values for T3 were: T31: Ŝ  = 44.94
cm/s; 52 = 43.81 cm/s; S3 = 46.84 cm/s; T32: Sl = 39.54
cm/s; S2 = 40.78 cm/s; S3 = 40.78; T33: 5j = 35.33 cm/s;
S2 = 36.30 cm/s; S3 — 37.34 cm/s. These results provide
further confirmation of the isochrony principle described
above: in all subjects the reduction in total perimeter be-
tween T3l and T33 (75 cm vs. 60 cm) spontaneously induced
a comparable reduction of the average velocity so that cycle
duration remained almost constant. The principle also ap-
plies within each movement cycle. Whenever the two parts
of Tl and T3 had unequal perimeters, the ratio rd = dl/d2

between the duration of the two parts was far smaller than
the corresponding perimeter ratio r (Table 2). To compare
the degree of within-cycle isochrony across conditions, we
defined the isochrony coefficient 7 = (r — rd)/(r — 1) which
takes into account the perimeter ratio (Pi/P2) and may range
between 0 (no velocity compensation) and 1 (perfect iso-
chrony). Although the value of / was significantly less
than 1 (pooling over subjects, ratio r and templates, the .99
confidence interval for / was (0.672 s 7m £ 0.791), the
corresponding average 7m = 0.732 indicates a strong ten-
dency toward within-cycle isochrony; such a value implies,
for instance, that a perimeter ratio r = 5 results in a duration
ratio of only about 2.

Subjects modulated the rhythm of execution for template
T2 as indicated by the experimenter. The duration of the
cycles was slightly but systematically shorter than the re-
quired one (average of dT across trials and subjects:
r?1 = 1.938 s; r22 = 2.314 s; T23 = 2.886 s). However,
differences among the durations of the four symmetric parts
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A

B

Figure 3. Comparison between actual and simulated trajectories. Patterns on the left are repre-
sentative examples of continuous tracing movements; each presents data from a different subject for
each pattern type. The total duration of the trial was 10 s, and the sampling frequency was 200
samples/s. Landmarks that were used for the quantitative analysis of the performance (circles
superimposed on the traces) were located automatically on the basis of kinematic and geometrical
criteria (see text for details). Patterns on the right represent trajectories predicted by the minimum-
jerk model for the specific trials shown on the left. Boundary conditions (vectors) and total durations
for the simulations were computed by averaging the corresponding experimental values over all
available cycles in the trial. The symmetries of the templates were forced onto the simulations.
Circles indicate landmarks and extrema of curvature.

of this curve were quite small and unsystematic. Fluctua-
tions of the rhythm within trials were also small and non-
significant.

Relation Between Geometry and Kinematics

The validity of the two-thirds power law was tested
separately for each trial. At a qualitative level, this was done
by plotting in a doubly logarithmic scale the tangential
velocity V(s) versus the quantity R(s)* = R(s)/[l + aR(s)].
On the basis of previous results (Viviani & Stucchi, 1992)
the parameter a was set in all cases to 0.05. According to
Equation 1, if the velocity gain factor K(s) were a true

piecewise constant (see above), the data points would clus-
ter along unconnected parallel segments of straight lines.
More realistically, one expects some kind of smooth tran-
sition between successive different K values and, conse-
quently, that these straight lines in the (log V — log R*)
plots be connected by some more complex segments. These
predictions were borne out by the results. For templates Tl
and T3, K was constant throughout most of the two loops
that compose the pattern; transitions (variable gain) always
occurred in the proximity of landmarks Q2 (inflections in T1
and transition between loops in T3; see Figure 3). No tran-
sition was instead visible for template T2 that was traced
with just one value of the velocity gain. These points are
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Table 1
X and Y Coordinates of Measured Landmarks for All Templates and Conditions

Landmarks Af SD TV M SD TV M SD TV

Gi

.63

Gi
G2
G3

Asymmetric lemniscate

Gi
G2

r
Gi
G2
G3

8.98
0.00

-8.77

0.07
-0.80
-0.10

0.44
0.85
0.29

0.31
0.49
0.40

9.15
0.00

-9.15

11.68
0.00

-6.33

0.02
0.01

-0.13

Cloverleaf

0.53
0.73
0.38

0.39
0.60
0.37

12.39
0.00

-5.87

13.07
0.00

-4.88

0.03
-0.09
-0.13

rai  7-22
X(Q2)

r(Ga)

6.52
6.33

0.57
0.45

6.79
6.79

6.28
6.26

0.61
0.47

6.79
6.79

0.62
6.26

0.45
0.72
0.27

0.40
0.60
0.32

^3

0.79
0.40

14.01
0.00

-4.18

6.79
6.79

6.26 0.76
-12.26 0.37
0.00 0.44

0.01 0.39
0.11 0.64
0.00 0.29

Oblate limacpn

6.63 9.42 0.59 10.04 13.07 0.45 14.01
-12.82 -9.47 0.38 -9.56 -6.28 0.33 -6.51
0.00 0.00 0.40 0.00 0.00 0.34 0.00

-0.24 0.29
0.17 0.88
-0.01 0.28

-0.02 0.38
0.07 1.09

-0.04 0.24
Note. Means, standard deviations (in centimeters) and theoretical values (TVs) calculated over
subjects and repetitions. Zero reference for X values was set at the average horizontal coordinate of
the intermediate landmarks (Q2 for 7 ;̂ Qj/Q3 for T2; Q3 for T3). All theoretical Y values for Tj and
T3 are zero.

illustrated in Figure 7 with the help of a few examples of
complete plots for each template.

A quantitative analysis of the two-thirds power law was
also performed by computing for each trial the linear re-
gression of log V against log R*. For 7\ and T3 separate
analyses were made for each loop in the trajectories. Tran-
sitions phases around the landmark Q2 were eliminated by
the empirical criterion of discarding the first and last one-
eighth portion of trajectory preceding and following Q2. For
T2 only one regression was performed on all available data
points. Figure 4 illustrates the results with a representative
example for each experimental condition. The slope of the
regression lines estimates the exponent /3 appearing in
Equation 1; the intercept estimates the logarithm of the
velocity gain K. Tables 3, 4, and 5 summarize the results for
7\, T2, and T3, respectively. In general, linear regressions
described the data points quite accurately (with a few ex-
ceptions, correlation coefficients exceeded 0.9). Also, the
overall average estimate of the exponent (j3 = 0.334) was
virtually identical to that measured in previous studies (cf.
above). However, f$ values for both Tl and T3 tended to be
higher for the small than for the large loop. Velocity gain
factors depended on all experimental variables. For T2, K
is directly proportional to the actual rhythm of execution
(Figure 5A). For the other two templates, the gain within
each loop is a power function of the corresponding perim-

eter. This is illustrated in Figure 5B, which shows that the
logarithm of AT is a linear function of the logarithm of the
actual perimeters of the loops (averages over all repeti-
tions). The existence of a relation between velocity gain
and perimeter, and the slopes of the regression lines for
the (log K - log P) scatterplots (« 0.5) are in excellent
agreement with the results of past experiments. As argued
in the introductory section and in more detail elsewhere
(Viviani, 1986; Viviani & Cenzato, 1985; Viviani &
Schneider, 1991), the fact that, within each unit of the
trajectory, K is an increasing function of the linear extent
of the unit provides an explanation for the phenomenon
of local isochrony.

Modeling

The minimum-jerk model simultaneously predicts the
trajectory and the kinematics of a movement constrained to
pass through a via-point. The prediction depends on a set of
boundary conditions: one must specify the duration of the
movement as well as position, velocity, and acceleration
vectors for both initial and terminal points of the movement.
As for the via-point, it is possible either to specify only the
position or to specify both position and velocity. The second
solution, slightly more constraining, was adopted in our



42 PAOLO VIVIAN I AND TAMAR FLASH

Table 2
Within-Cycle Isochrony for Asymmetric Lemniscate and Oblate Limayon

Subject
and

duration d dj/d2 I d

Pi/Pi

dt/d2 I d d,/d2 I
Asymmetric lemniscate

di
d2
dT

S2

d2
dT

3di
d2
dT

0.710
0.689
1.397

0.684
0.674
1.359

0.720
0.716
1.435

1.030

1.015

1.006

0.821
— 0.663

1.464

0.809
— 0.608

1.417

0.846
— 0.566

1.412

1.238 0.762

1.331 0.669

1.495 0.505

0.869
0.622
1.492

0.848
1.560
1.409

0.930
0.553
1.483

1.397

1.514

1.683

0.801

0.743

0.658

= 1.5
Oblate limagon

di
d2
dT

2di
d2
dT

3di
d2
dT

0.872
0.798
1.669

0.913
0.800
1.712

0.855
0.746
1.601

1.093 0.814

1.141 0.718

1.146 0.708

0.932
0.775
1.707

0.936
0.718
1.655

0.924
0.748
1.655

1.202

1.304

1.235

0.798

0.696

0.765

0.988
0.709
1.698

0.996
0.657
1.653

0.941
0.669
1.607

1.393 0.803

1.516 0.742

1.406 0.797

Note. The following data are reported for each subject (S) and each ratio between the perimeters
of the two parts of the template (r = Pi/P2)'- the duration of a complete movement cycle (dT), the
duration of each part (d1; d2), the ratio between durations (dj/d^), and the value of the isochrony
coefficient (/) defined in the text. Durations (in seconds) are averages over three repetitions. The
coefficient / is indefinite when the two parts of 7\ are equal (r = 1). Dashes denote values of / that
cannot be computed.

simulations. The mathematical derivation of the predicted
trajectories is similar to the one described in Edelman and
Flash (1987); the main difference with respect to the pro-
cedure followed in that study is the possibility for velocities
and accelerations at the initial and terminal points to have
nonzero values. Because templates were symmetrical, data
and predictions were compared only over part of a complete
cycle. For 7\ and T3 the half trajectory from landmark Q1

(starting point) to Q3 (end point) was modeled. For T2 we
considered only one lobe which, again, begins at Q1 and
ends at Q3. In all three cases landmark Q2 was the im-
posed via-point.3 Notice that there is more than one way
of defining the initial and terminal points for the model;
in particular, at least in the case of 7\ and T3, choosing
Q2 both as starting and end point would also be possible,
and, actually, would be in keeping with the reasonable
hypothesis that the small and large loops in these tem-
plates are construed by the control system as units of mo-
tor action. Indeed, it was verified that this solution leads
to simulated trajectories that are as satisfactory as those
presented here. The solution that we adopted, however,

has a major advantage: Because the two (half) units are
modeled simultaneously, and passage time at the via-point
is not provided as a boundary condition, one may assess
how the model predicts the relative duration of the units.
Obviously, this possibility would be precluded by the al-
ternative solution that requires one independent simulation
for each loop. Moreover, although via-point and terminal
constraints are dealt with differently from the mathemati-
cal point of view, their role in the simulations is some-
what interchangeable.

3 This is the only adequate procedure for dealing in general with
the single via-point case. The solution adopted by Wann et al.
(1988), which consisted of linking two piecewise-polynomial pe-
riodic functions at 90° phase, is computationally equivalent to our
procedure only in the special case of elliptical trajectories, but
cannot be extended to more complex curves. An ellipse can be
generated easily with the general procedure by placing both initial
and final points on one extremum of the ellipse, the via-point at the
other extremum, and by computing the boundary conditions from
the Lissajous parametric equations of the ellipse.
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-2

logR*

SEGMENT L S
SLOPE C.200 O.IJO
I N T E R C E P T 3.19i 2.750

SEGHEHT L S
SLOPE 0.291 0.336
INTERCEPT 3.113 2.590

Figure 4. Analysis of the data according to the two-thirds power law. Examples of the scatter
diagram that obtains by plotting in doubly logarithmic scales the tangential velocity versus the
modified radius of curvature R*. Each panel corresponds to the indicated modality (size ratio r or
cycle duration t) and template type (T). Data for Tlt T2, and T3 were obtained from subjects Slt S2,
and S3, respectively. For templates Tr and T3 the data points close to the transition between small
and large loops have been omitted. With the obvious exception of the (7\ — r^ combination, each
loop in these templates gives rise to a clearly identifiable cluster. Linear correlation analysis was
performed independently for each cluster. For template T2 all data points were plotted and analyzed.
The slope and the intercept of the regression line estimate the exponent of the law and the logarithm
of the velocity gain, respectively. Regression parameters for the examples shown here are given
inset.

Minimum-jerk predictions were generated for each trial
by using as boundary conditions the kinematic parameters
measured from the actual recordings (for Qt, [X1; Yt], [Vxl,
Vyl], [Axl, Ayl]; for Q2, [X2, Y2], [Vx2, Vy2], [Ax2, Ay2]; for
Q3, [X3, Y3], [Vx3, Vy3]). These values, as well as the total
duration of the cycle (a free parameter of the model), were
obtained by averaging the corresponding measures for all
complete cycles within a trial, and all degrees of symmetry
in the template. Appropriate sign changes were applied to
the components whenever necessary (e.g., when pooling the
components for the two Q2 landmarks in template 7\).

Qualitative comparisons. The right panels in Figure 3
illustrate with three examples (one trial in one condition for
each template) the accuracy with which actual trajectories
(left panels) are simulated by the procedure described
above. Predicted trajectories were completed by mirror re-
flection of the portion computed by the model. Velocities
and accelerations at the boundaries for these trials are indi-
cated by vectors. Templates were always reproduced as
accurately as indicated in these typical examples. Figure 6
extends the comparison to the kinematic aspects of the
movement. Each panel in this figure shows an example of
model fitting for a different combination of template and

condition. The experimental velocity curves for all com-
plete cycles within a trial (dotted lines) are superimposed
after normalizing the duration of the cycle. The continuous
traces superimposed on the data points are the correspond-
ing predictions of the model. The predictions, which are
based on the average boundary conditions over all cycles,
faithfully reproduce the main features of the experimental
data. Finally, Figure 7—which reports data from the same
trials—compares predictions and experimental results con-
cerning the relationship between geometry and kinematics.
The rectilinear portions of the scatterplots are clearly
present in the simulations. Notice that, unlike the plots of
Figure 4, all available data points have been reported here,
including those that, in 7\ and T3, correspond to the transi-
tions between small and large loops. As explained before,
the velocity gain factor within these transitions changes
rapidly, so that velocity and radius of curvature are no
longer related in a simple way. Nonetheless, it is apparent
from these typical examples that the minimum-jerk model is
able to capture accurately the (V — R) relationship even
during the transitions.

Quantitative comparisons. The accuracy with which the
model predicts the temporal aspects of the performance is
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Table 3
Analysis of Individual Data for Asymmetric Lemniscate According to the
Two-Thirds Power Law Model _

Loop size/
subjects

Large
Si
S2

3M
Small

Si
S2

S3
M

M

0.404
0.289
0.329
0.341

0.398
0.352
0.387
0.379

'i

CI

2
4
4

3
6
0

p M

Exponent

0.328
0.316
0.344
0.329

0.369
0.316
0.327
0.342

r2 ^

CI

0
3
1
7

1
6
1

p M

0.340
0.211
0.294
0.258

0.381
0.313
0.327
0.355

r3 - J

CI p

1
3
3

4
8
2

Large
Velocity gain factor K (log units)

Si
S2
S3

M
Small

Si
S2

3M

2.955
3.083
2.951
2.996

2.917
3.001
2.922
2.947

5
4
7

7
4
4

0.917
0.876
0.857
0.883

0.917
0.913
0.933
0.921

3.083
3.102
2.991
3.059

2.782
2.893
2.877
2.851

8
7
5

2
0
1

0.876
0.877
0.823
0.859

0.903
0.923
0.916
0.914

3.100
3.322
3.089
3.170

2.627
2.797
2.782
2.735

7
2
1

0
9
0

0.903
0.726
0.817
0.815

0.903
0.907
0.917
0.909

Note. The following data are provided for each ratio between small and large loop in the template
(r = P1/P2)' the averages over repetitions for subjects Slt S2, and £3, and the 95% confidence
intervals (CI) of the exponent /3 and of the velocity gain factor K. jS and K were estimated by linear
regression between tangential velocity and radius of curvature in logarithmic scales, p = coefficient
of correlation for the regression.

illustrated in Table 6. Because the model is time scalable,
total movement time is not independent of velocity and
acceleration boundary conditions; thus, it is meaningless to

compare actual and theoretical durations of a complete
movement cycle. By contrast, the passage time at the via-
point was not imposed. Thus, for 7\ and T3, the relative

Table 4
Analysis of Individual Data for Cloverleaf According to the
Two-Thirds Power Law Model

dT1 = 2.0

Subject

S2

S3
M

Si
S2
S3

M

M

0.368
0.321
0.287
0.325

2.834
2.811
2.933
2.859

CI

6
5
7

9
0
2

P

dT2 = 2.5 i

M CI P

Exponent |3

0.382 5
0.340 6
0.338 7
0.353

Velocity

0.945
0.927
0.876
0.916

gain factor

3.019
3.077
3.042
3.046

AT (log

9
9
1

units)

0.957
0.941
0.922
0.940

M

0.391
0.348
0.341
0.360

3.199
3.216
3.189
3.201

d^ = 3.0

CI

5
4
5

8
8
6

P

0.967
0.959
0.943
0.956

Note. The following data are provided for each indicated duration of one cycle (dT): the averages
over repetitions for subjects 5t, 52, and 53, and the 95% confidence intervals (CI) of the exponent
ft and of the velocity gain factor K. /3 and K were estimated by linear regression between tangential
velocity and radius of curvature in logarithmic scales, p = coefficient of correlation for the
regression.
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Table 5
Analysis of Individual Data for Oblate Limacon According to the
Two-Thirds Power Law Model

Loop size/
subject

Large
S1
52
S3

M
Small

sl
52

3M

Large
s.
S2
S3

M
Small

Sl
S2
S3

M

M

0.329
0.324
0.310
0.321

0.357
0.324
0.338
0.340

3.190
3.239
3.141
3.190

2.867
3.078
2.890
2.945

r\ = 1
CI

6
7
6

5
6
8

6
4
5

9
0
7

r- = 2

P

Velocity

0.976
0.975
0.969
0.973

0.989
0.983
0.966
0.979

M

Exponent ,

0.322
0.292
0.283
0.299

0.372
0.316
0.340
0.343

gain factor

3.149
3.248
3.192
3.196

2.666
2.907
2.801
2.791

£.

CI
(3

8
6
8

6
6
7

A" (log

3
4
8

1
0
3

P

units)

0.983
0.973
0.956
0.971

0.980
0.979
0.980
0.981

M

0.307
0.284
0.269
0.287

0.346
0.313
0.342
0.334

3.149
3.260
3.172
3.194

2.472
2.704
2.600
2.592

r3 = 3

CI

5
7
6

7
8
1

4
6
7

1
1
4

P

0.983
0.961
0.951
0.965

0.980
0.970
0.962
0.971

Note. The following data are provided for each ratio between small and large loop in the template
(r = Pl/P2): the averages over repetitions for subjects Sj, 52, and S3, and the 95% confidence
intervals (CI) of the exponent f) and of the velocity gain factor K. $ and K were estimated by linear
regression between tangential velocity and radius of curvature in logarithmic scales, p = coefficient
of correlation for the regression.

durations of the two loops and their variations across con-
ditions can be used to test the validity of the model. As
demonstrated by the excellent correspondence of the means,
and by the high values of the linear correlation coefficients,
the model accurately captures the phenomenon of within-
cycle isochrony that was illustrated in Table 2 and Figure
5B. No comparison is of course possible for Tz.

Comparison With Two-Thirds Power Law

We investigated how the minimum-jerk model compares
with the two-thirds power law in representing the relation
between kinematics and curvature. To make the comparison
as rigorous as possible, simulated movements were ana-
lyzed with the same procedures used to obtain the results of
Tables 3 to 5. Specifically, linear regressions between log V
and log R*  were calculated on comparable segments of
trajectories. For 7\ and T3 we eliminated the same transi-
tions between small and large loops that had been omitted in
the plots of Figure 4. For T2, instead, the entire upper right
lobe was included. Moreover, the number of simulated data
points used for calculating the linear regressions were made
approximately equal to the number of real data points (the
real data points are distributed over several cycles of re-
cording; the simulated ones are instead concentrated in just

one cycle). Intercepts and slopes of the regression lines
through simulated points have the same interpretation as the
analogous quantities already computed for the data (i.e., log
K and |3, respectively). Thus* the desired comparison was
finally obtained by performing a correlation analysis
over 27 pairs of values (3 subjects X 3 conditions X 3
repetitions) for each template. The results are reported in
Table 7 (velocity gain factor) and Table 8 (exponent /3). As
expected on the basis of the good agreement in the time
domain, the values of the velocity gain are highly correlated
(r > .9). The coefficient of linear correlation for the expo-
nent /3 is not nearly as high, but this is due to the very small
range of variability of this parameter across subjects, con-
ditions, and repetitions. Averages are actually quite compa-
rable. Even the small but significant differences between the
values of /3 in the two loops of Tl and T3 are captured by the
simulated data.

Discussion

We contrasted two ways of studying planar hand move-
ments, each characterized by a different strategy for dealing
with the excess degrees of freedom in the hand-arm system.
The first strategy attempts to identify certain principles of



46 PAOLO VIVIAN I AND TAMAR FLASH

A

3.5

3.3

g»3.1

2.9

2.7

3.4

3.0

2.6 L

-1.1 -.9 -.7

logf
-.5

-1 3.4

3.0

2.6

2.2

3 4

l o gP
Figure 5. Velocity gain factor and isochrony. Panel A: Results for template T2. The velocity gain
K is plotted in a doubly logarithmic scale as a function of the actual rhythm (/ = reciprocal of
period) of the movement. Data points are averages over repetitions for each indicated combination
of subject and rhythm (r1; t2, t3). Across conditions, K is approximately proportional to the rhythm.
A similar tendency can also be found if one considers only the spontaneous variations of rhythm that
occur within repetitions. Panel B: Results for templates 7\ and T3. The velocity gain K within each
loop is plotted as a function of the theoretical perimeter P of the loop (log-log scale). Empty and
filled symbols are relative to the large and small loops in these templates. Data points are averages
over repetitions for each combination of subject and condition. For both templates, the (P - K)
relationship is adequately described by a power function. The exponent of the relationship (slope
of the linear regression through the data points) is comparable in the two cases (T3 slope
for SJL = 0.501; S2 = 0.617; 53 = 0.482; for 7\ only one regression has been calculated:
slope = 0.419).

covariation between the trajectory and the kinematics of the
movement; the other strategy emphasizes instead the con-
cept of optimal control and leads to an explicit model for
movement planning. With the help of a potentially discrim-
inating set of data, we demonstrated an overlap between the
solutions that each approach offers to the degrees-of-free-
dom problem. In what follows we assess the extent of this
overlap, as well as the significance of the points of diver-
gence. The analysis of the global pattern of results sets the
stage for an attempt to formulate a common framework
wherein the two approaches can be reconciled.

In assessing the convergence of our strategies, a distinc-
tion has to be made between the two main regularities
present in the data. On the one side, the existence of a
principled relationship between the form of the trajectory
and the velocity of the movement was fully supported by the
predictions derived from the minimum-jerk hypothesis. At
least in the case of templates T2 and T3, an excellent fit to
the data points was obtained when each half-movement
cycle was characterized as an optimal movement with via-
point constraints; the minimum-jerk simulation captured
even some subtle details of the (log R*  - log V) plots (see
Figure 7) that eluded the formulation of the two-thirds
power law in which the gain factor is a true piece-wise
constant function. Moreover, the parameters /3 and K, esti-

mated by fitting the two-thirds power law to both experi-
mental and simulated data, were very similar (see Tables 3
to 5). This agreement extends the conclusions of Wann et al.
(1988) to the case of relatively complex trajectories that
cannot be generated by single harmonic components. Nev-
ertheless, it is difficult to see how the excellent fit of the
velocity curves obtained with a kinematic model (see Figure
6) could be improved by formulating the minimization
criterion in terms of dynamic variables, as these authors
claimed. The introduction of cost variables such as "wob-
ble" (Wann et al., 1988), torques (Uno et al., 1989), energy
(Nelson, 1983), or stiffness (Hasan, 1986) might be moti-
vated by physiological and developmental arguments, but
even more complex motor tasks than those studied here will
have to be considered before passing a final judgment on the
basis of empirical evidence.

As for the phenomenon of isochrony, the comparison
between our two approaches is more delicate. The motor
program view assumes that the execution stage has access to
a representation of the intended gesture which, among other
things, includes an estimate of the linear extent of the
trajectory. Thus, this view provides an adequate framework
for accommodating the finding that average velocity scales
with trajectory length. In fact, it was shown (Viviani &
Cenzato, 1985) that the case of complex trajectories com-
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movement cycle

Figure 6. Comparison between actual and simulated velocities. Each panel shows an example
relative to the indicated modality (size ratio r or cycle duration f) and template type (7). Data for Tlt

T2, and T3 were obtained from subjects 51; 52, and 53, respectively. The amplitude of the tangential
velocity across all available complete cycles of movement within a trial (represented by the light
dotted lines) is compared with the prediction of the minimum-jerk model for the same specific trial
(represented by the heavy, continuous lines). Boundary conditions and total durations for these
simulations were computed by averaging the corresponding experimental values over all cycles in
the trial. To facilitate comparison across experimental modalities, the horizontal (time) scales for
both actual and simulated curves were normalized to an arbitrary value. Notice the high cycle-by-
cycle stability of the motor performances and the excellent accuracy of the theoretical predictions.

posed of distinct subunits, in which local (within units) and
global (across units) velocity scaling interact, also can be
handled within this framework. By contrast, in minimum-
cost models both the trajectory and the law of motion are
specified concurrently by the initial, final, and via-point
conditions; the length of the actual trajectory is not sup-
posed to be represented internally. Because total movement
time is a free parameter, the phenomenon of global iso-
chrony cannot, even in principle, be deduced within the
minimum-jerk model, nor, in fact, within any other cost-
minimizing model that does not include movement duration
in the cost function. It is interesting, however, that relative
isochrony can be predicted and, indeed, the correlation
analysis showed that the variations across conditions of the
duration of the small and large loops in 7\ and T3 are
accurately reproduced by the model, even though the pas-
sage time through the via-point was not imposed.

Experimental and simulated data were analyzed within
the conceptual framework provided by the two-thirds power
law and isochrony. That fits to the data were satisfactory in
both cases proves that this framework is congruent with the
hypothesis of optimality. Small but significant differences
were present, however. The minimum-jerk model slightly

overestimated the longer durations of the small and large
loops in TI and underestimated the shorter durations (see
Table 6). Moreover, for Tl there was a discrepancy between
the estimates of the velocity gain factor obtained directly
from the experimental data points and those obtained from
the simulated movements (see Table 7). The agreement was
far better for T3, which has no inflection points, suggesting
that these discrepancies are at least in part due to the small
but inevitable differences between the portion of trajectory
taken into account for computing K (recall that segments
close to the inflections were discarded both in the actual
data and in the simulation). The same reason may also be
invoked for the significant difference between the estimates
of the exponent )3 (slope of the [log R*  - log V] relation-
ship) for Tj and T3 (see Table 8). However, by fitting the
two-thirds power law to the points generated by the mini-
mum-jerk model, one observes a similar difference between
the values of /3 for the small and large loop. Finally, the fact
that the velocity gain factor for T2 covaried with the exter-
nally imposed rhythm precisely as predicted (r = .985,
slope = .988) indicates that time-scalability of the model is
reflected in the relation between curvature and velocity
precisely as suggested by the two-thirds power law.
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Figure 7. Relation between tangential velocity and modified radius of curvature. (Comparison of
data [light dotted lines] and simulation [heavy, continuous lines].) Unlike the similar scatterplots of
Figure 4, all available data were included in each panel. Boundary conditions and total durations for
the simulations were computed by averaging the corresponding experimental values over all cycles
in the trial. Circles superimposed on the heavy lines indicate the points where the curvature of the
simulated trajectory attains an extremum. These points delimit the segments of trajectory used to
calculate the predicted parameters K and j3 (see text). Notice that the minimum-jerk model predicts
accurately the (R*  - V) relationship also during the transitions between loops in 7\ and T3.

Minimum-cost models are intrinsically more parsimoni-
ous than motor programming ones; as such, they ought to
be preferred whenever experimental evidence weighs
equally on both sides. Given the considerable success
with which the minimum-jerk model was able to account
for the relationship between velocity and curvature, with-
out making reference to any internal representation of the
entire intended trajectory, there is ground to ask whether
one should drop all reference to such a hypothetical
representation.

We see at least three reasons to resist such an iconoclastic
temptation. The first one is that, as we already emphasized
before, minimum-cost models deal satisfactorily with rela-
tive time structure across movement units, but cannot, by
definition, account for global isochrony. One would then be
forced to hold a rather contrived hypothesis, namely, that
local and global isochrony are generated at different stages
of the control process. Also, it would be equally unsatisfac-
tory to imagine that the length of an intended trajectory is
available to the control system, as it is necessary to explain
global isochrony, whereas the form of the trajectory is not
represented in any form.

The second reason for preserving the notion of internally
represented trajectory is because it affords a unified frame-
work for dealing with both spontaneous and pursuit tracking

movements (Viviani, 1990). It is generally admitted that, in
order to reproduce a target movement effectively, we must
anticipate certain aspects of its future course. If one as-
sumes, in tune with the general motor programming philos-
ophy, that kinematic details are specified by taking into
account the form of the intended trajectory, anticipation in
tracking tasks may exclusively concern the future position
of the target. The situation is different in minimum-jerk
planning where position at any time depends on velocity
and acceleration at some future point (via-point or end
point). Thus, if tracking movements were planned with this
logic, one would expect performance to depend on the
ability to predict kinematic variables. Experiments on
two-dimensional visuomanual pursuit tracking (Viviani,
Campadelli, & Mounoud, 1987; Viviani & Mounoud, 1990)
do not support this inference. In fact, it has been shown that
the accuracy of tracking performance depends critically on
the local relationship between velocity and curvature, and
not on future kinematic variables. Indeed, the single most
important predictor of the accuracy is whether the target
conforms with the two-thirds power law.

Finally, the third reason has to do with recent neuro-
physiological work by Massey, Lurito, Pellizzer, and
Georgopoulos (1992), Schwartz (1992), and Schwartz,
Kakavand, and Adams (1991). Massey et al. investigated
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Table 6
Comparison Between Experimental (Exp) and Predicted
Values of the Duration (in Seconds) of the Two Loops
in Template Tt (Asymmetric Lemniscate) and T3

(Oblate Limacon)

Loop size/
duration

Large
M
SD

Small
M
SD

Large
M
SD

Small
M
SD

Exp Model P
Asymmetric lemniscate

0.804 0.793 0.921
0.084 0.095

0.626 0.637 0.866
0.063 0.071

Oblate lima$on

0.929 0.936 0.980
0.055 0.045

0.735 0.728 0.979
0.056 0.050

Slope

1.157

1.249

0.985

0.938

A/B

4.978

3.812

9.928

9.797

Note. Linear correlation coefficient (p), slope of normal regres-
sion, and ratio between major and minor axes of the confidence
ellipse (A/B) were calculated over 3 (subjects) X 3 (condi-
tions) X 3 (repetitions) = 27 pairs of values. Experimental values
are averages over all complete cycles within a trial.

virtual three-dimensional trajectories produced by applying
forces to an isometric manipulandum. In their experiments
the components of the force along the sagittal, vertical, and
lateral axes were transformed into the coordinates of a light
point which, with the help of suitable stereo-imaging tech-
niques, appeared to the subject as moving in frontal space.
In one task, subjects had to generate forces that corre-
sponded visually to a dynamic three-dimensional scribble.
The coordinates of these displays can be manipulated ex-
actly as the coordinates of real movements; in particular,
one can compute the velocity of the point, the radius of
curvature of the virtual trajectory (within the osculating
plane), and investigate their mutual relationship. It was
found that the two-thirds power law applies to these virtual
movements with the same degree of accuracy observed for
real planar scribbles. Thus, whereas nothing in the isometric
forces corresponds directly to either velocity or curvature,
strength and timing of the motor commands are constrained
in a way that is well described by the power law. Moreover,
because the power law has been found to be congruent with
the hypothesis of optimal control, one can surmise that the
latter applies also to the isometric efforts investigated by
Massey et al.

Equally relevant are the results of Schwartz (1992), who
recorded the activity of single neurons in the primary motor
cortex of monkeys performing a visuomanual tracking task.
By analyzing the neural population vectors according to the
method pioneered by Georgopoulos and collaborators
(Georgopoulos et al., 1982), he was able to show that an
accurate representation of the kinematic parameters related
to arm's trajectory is shown in the discharge patterns of
motor cortical cells. Moreover, the discharge components

that relate to curvature and velocity are inversely related in
this internal representation, as suggested by the two-thirds
power law.

Taken together, these results strongly suggest that the
covariation between curvature and velocity corresponds to
functional principles that pertain to the motor control stage
where commands are planned; at the same time, they are
incompatible with the alternative interpretation of the co-
variation as an epiphenomenon of the movement execution
stage. Because similar regularities exist both in the force
field and in the displacement, it appears as though the
second-order dynamic transformation that turns forces into
movement does not destroy the relationship described by
the two-thirds power law. Because of the convergence be-
tween minimum-jerk and power law formalisms, it may be
supposed that, to the extent that the minimum-jerk model is
successful in predicting kinematic quantities, it might be
equally successful in predicting the evolution of the force
variables that are responsible for the movement. We return
momentarily to the possible significance of this observation.

To conclude, we suggest, in broad qualitative terms, a
framework for encompassing both the optimal control and
the motor program approaches. The argument is based on
the notion of virtual equilibrium trajectory introduced by
Feldman (1974) and elaborated further by a number of
authors (Bizzi, Accornero, Chappie, & Hogan, 1982;
Feldman, 1986; Flash, 1987, 1989; Hogan, 1984) in an

Table 7
Comparison Between Experimental (Exp) and Predicted
Values of the Velocity Gain Factor for the Two Loops
in Template T2 (Asymmetric Lemniscate) and T3

(Oblate Limacon) and for the Entire Lobe in
Pattern T2 (Cloverleaf)

Loop size/
lobe/duration

Large loop
M
SD

Small loop
M
SD

Lobe
M
SD

Large loop
M
SD

Small loop
M
SD

Exp Model p Slope

Asymmetric lemniscate

21.81 20.71 0.901 0.943
2.69 2.55

17.30 16.61 0.938 1.080
1.89 2.04

Cloverleaf

21.15 19.93 0.985 0.988
2.85 2.82

Oblate limagon

24.42 24.21 0.935 0.994
1.55 1.54

16.31 16.49 0.995 0.965
2.86 2.76

A/B

4.397

5.601

11.597

5.471

19.648

Note. Linear correlation coefficient (p), slope of normal regres-
sion, and ratio between major and minor axes of the confidence
ellipse (A/B) were calculated over 3 (subjects) X 3 (condi-
tions) X 3 (repetitions) = 27 pairs of values. Experimental values
are averages over all complete cycles within a trial.
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Table 8
Comparison Between Experimental (Exp) and Predicted
Values of the Exponent j3 for Two Loops in Template Tj
(Asymmetric Lemniscate) and T3 (Oblate Limacon) and
for the Entire Lobe in Pattern T2 (Cloverleaf)

Loop size/
lobe/duration

Large loop
M
SD

Small loop
M
SD

Lobe
M
SD

Large loop
M
SD

Small loop
M
SD

Exp Model p

Asymmetric lemniscate

0.317 0.369 0.753
0.054 0.063

0.359 0.419 0.270
0.030 0.032

Cloverleaf

0.346 0.385 0.833
0.038 0.026

Oblate limacon

0.302 0.305 0.255
0.045 0.027

0.341 0.343 0.772
0.035 0.045

Slope A/B

1.281 2.724

1.024 1.319

0.525 3.912

0.168 2.094

0.875 2.805

Note. Linear correlation coefficient (p), slope of normal regres-
sion, and ratio between major and minor axes of the confidence
ellipse (A/B) were calculated over 3 (subjects) X 3 (condi-
tions) X 3 (repetitions) = 27 pairs of values. Experimental values
are averages over all complete cycles within a trial.

attempt to allay certain problems of the mass-spring model.
Briefly, the idea put forward by these authors was that the
equilibrium point, which, in the mass-spring model controls
muscular synergies, is not abruptly shifted from the initial to
the final position, as in earlier versions of the model, but
evolves continuously along a centrally represented, virtual
trajectory. The gist of our proposal (cf. Flash, 1989, 1990),
then, is to assume that what is generated according to the
minimum-jerk model is not movement itself, as suggested
initiall y (Flash & Hogan, 1985; Hogan, 1984), but the
virtual trajectory that drives the movement in the mass-
spring scheme (Figure 8). Therefore, according to our hy-
pothesis, the congruence between experimental data and the
predictions of the model would simply reflect its adequacy
in representing the evolution of the virtual trajectory.

In order for this proposal to work certain conditions
should be met. First, the dynamic properties of neuromus-
cular transduction must preserve minimum-jerk optimality;
in other words, optimal virtual trajectories must map into
optimal real movements (the cost function possibly being
different). Second, in order to account for the neurophysi-
ological findings mentioned above, it must also be assumed
that, when movement is impeded, the relational properties
of the virtual trajectory map isomorphically into analogous
properties of the isometric force field. Third, the scheme of
Figure 8 should be able to deal with the hypothesis that
complex trajectories are generated by chaining smaller units
of motor action.

We can offer no experimental evidence that these condi-
tions are fulfilled. Plausible arguments can, however, be
advanced. As for the first point, one notes that neuromus-
cular transduction is generally approximated by second-
order differential equations (e.g., Equation 7 in Hogan,
1984; Equation 2 in Flash, 1987). From the functional point
of view, this amounts to describing movement as a
"smoothed" (low-pass filtered) version of the driving motor
command. It is then reasonable to suppose that a minimum
cost criterion that is based on smoothness may survive the
effect of such transduction. As for the correspondence be-
tween virtual trajectory and isometric force field, it cannot
be a simple one because, with the exception of a few special
situations, forces and displacements are not collinear. How-
ever, the relational properties that we are considering in-
volve exclusively differential quantities. As such, they
ought to be more robust than those involving absolute
quantities.

Finally, concerning the chunking of movement into units
of motor action, the most important question is the manner
in which the motor system may (a) maintain the correct
order of the units, and (b) assure smooth continuity at the
transition between units. The first requirement applies to all
models of motor behavior. As far as we see, in the case of
complex, learned sequences of units, it can only be satisfied
by resorting to the same conceptual device postulated by

Abstract representation
of intended movement

(coded as a set of
boundary conditions)

Generation of virtua l
minimum-jer k trajectory

Generation of actual
movement according to

mass-spring logic

Figure 8. Block diagram illustrating the conceptual relationship
among the hypothetical principles involved in the planning of the
movement.
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Lashley (1951) more than 40 years ago, namely a pointer
that scans a preset sequential table. The smooth continuity
condition is satisfied by the minimum-jerk model almost by
definition. In fact, the chaining of the units in the model is
obtained by identifying the end point of a segment with the
initial point of the next one, and by equating the correspond-
ing boundary conditions on velocities and accelerations.
This ensures continuity of the derivatives; moreover, it
provides a straightforward way of accounting for the cou-
pling between adjacent units, that is, for the experimental
observation that velocity gain factors of adjacent units are
not independent (Viviani & Cenzato, 1985).

The proposal outlined above compounds some interesting
features of both the cost-minimization and motor program
views. It retains the core notion that motor planning con-
forms to a principle of optimization, and, at the same time,
also the notion that the plan is represented internally prior to
its implementation. The covariations between geometry and
kinematics may well be emergent properties of the optimum
principle, but, by virtue of being properties of a centrally
represented plan, and not merely of the actual movement,
they may possess a functional role. In particular, the factor-
ization of the instantaneous velocity into a gain factor K and
a form-dependent term R*  (Equation 1) may capture the
intrinsic time-scalability of many hand movements, and
account for the fact that, in many cases, temporal scaling is
approximately ratiomorphic. At the same time, our proposal
also accommodates within a unified framework the phe-
nomenon of global isochrony that the minimum-jerk model
cannot account for (see above). In fact, to the extent that
virtual trajectories are construed as internal blueprints, they
may carry the metric information on trajectory length that is
necessary for global isochrony to exist. Finally, our pro-
posal does not contradict the spirit of recent attempts to
model the learning of point-to-point movements within the
framework of supervised neural networks (Jordan, Rash, &
Arnon, in press). In fact, it has been shown that these
models are intrinsically congruent with the criterion of
maximum smoothness that is at the basis of the minimum-
jerk model. We must acknowledge, however, that the
scheme outlined in Figure 8 makes no provision for dealing
with motor planning in pursuit tracking tasks, and therefore
does not solve the difficulty mentioned before.

In conclusion, the picture emerging from our comparison
between strategies for studying movement planning con-
firms and extends the observation by Flash and Hogan
(1985) and Wann et al. (1988) that velocity-curvature co-
variations are implicit in the minimum-jerk hypothesis.
However, the fact that our motor tasks were much more
complex than those considered previously, and that the
analysis was more thorough and quantitative, led us to
somewhat different conclusions. In particular, we do not
believe that either one of the two approaches discussed in
this article should be abandoned in favor of the other.
Pending future research, these approaches, and the concep-
tual background to which they refer, appear to be compat-
ible and, indeed, integrable into a unified framework.
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