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Abstract

According to Wolpert's no-free-lunch (NFL) theorems [Wolpert, 1996b, Wolpert, 1996a], generalisation in the 
absence of domain knowledge is necessarily a zero-sum enterprise. Good generalisation performance in one situation
is always offset by bad performance in another. Wolpert notes that the theorems do not demonstrate that effective
generalisation is a logical impossibility but merely that a learner's bias (or assumption set) is of key importance in
determining its generalisation performance. However, in this paper it is argued that this may be an over-reading of the
results. Situations can be identified in which a learner's assumptions are effectively guaranteed correct. The
in-practice prevalence of these situations may account for the reliably good generalisation performance of methods
such as C4.5 and Backpropagation.
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Introduction

There has been lively controversy over Wolpert's no-free-lunch theorems [Wolpert, 1996b; Wolpert, 1996a; Wolpert,
1995b; Wolpert, 1992; Wolpert, 1995a; Wolpert and Macready, 1995] and Schaffer's closely related conservation 
law [Schaffer, 1994]. These results show that there is no guaranteed correct way of performing generalisation. They
thus affirm Hume's claim to the effect that the observation of `the frequent conjunction of objects' does not permit the
drawing of any particular inference concerning `any object beyond those of which we have had experience' [Hume,
1740].

The underlying idea behind these results is easily stated. Let's say we have a particular learning method and we would
like to know how well it will generalise on the problems from a specific domain. If we have no special knowledge
about the domain then all problems in the domain have to be considered uniformly likely, i.e,. the problems in the
domain have to be considered to follow a uniform distribution. In this context, the problems in the domain may be
organised into `opposites', such that the way the unseen (test) cases are classified in a particular problem is the reverse
of the way they are classified in its opposite. A particular learning algorithm generalises cases in a specific way. Thus,
if it performs slightly better than random guessing on a particular problem, it must perform slightly worse than
random guessing on the problem's opposite. On a random selection of problems from the domain, a learning algorithm
will therefore tend to produce above-chance performance on some problems and below-chance performance on other
problems. Since the chances of it producing above-chance performance are identical to the chances of it producing
below-chance performance, it will, on average, produce exactly the same performance as random guessing.
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At first sight, the NFL result appears to demonstrate that effective (i.e., above-chance) generalisation is impossible in
principle. But this is not the case. In the NFL scenario, we have the rather severe constraint that nothing is known 
about the domain. All problems have then to be considered equally likely and the process of applying a particular
learner to some random selection of problems necessarily produces chance-level performance (on average). The
explicit consequence of the NFL result is thus that in the situation where no domain assumptions can be made,
chance-level performance is the inevitable result. But the subtext of the NFL work is that it is the assumptions a
learner makes about its domain which are key.((Wolpert specifically mentions the requirement to prove that `the
non-uniformity in [the problem domain] is well-matched to your ... learning algorithm.' [Wolpert, 1996b, p. 19])) As
Michael Perrone has commented, `What makes NFL important is that it emphasizes in a very striking way that it is the
assumptions that we make about our learning domains that make all the difference.'((From a posting to the 
`connectionists' mail list.))

However, interpreting the NFL theorems in this way raises a new concern. As Wolpert has noted, the biases of
empirical generalisation methods are typically not made explicit and are only rarely justified in terms of the expected
application domain. He notes that `for many algorithms, no one has even tried to write down that set of [problems] for
which their algorithm works well.' [Wolpert, 1996b]. However, it is clear that generalisation methods are capable of 
performing well in practice across a wide variety of situations [Thrun et al. 1991]. In fact, in a recent article Holte
[1993] has shown that even rather trivial methods may perform well on a wide variety of real-world generalisation
problems. In practice, then, it seems as if generalisation methods are often able to `get away with' not being mindful of
their biases. How can we reconcile this with the assumption that biases `make all the difference?'

One possibility is that these learning methods are unwittingly applying generically appropriate biases, i.e., they are
exploiting a particular form of non-uniformity which turns out to be present in most or all application domains. But
what might this non-uniformity be? And how could we demonstrate its existence? Wolpert points out that we cannot
use any form of `prior knowledge' in order to justify any particular assumption of non-uniformity since such
knowledge cannot be guaranteed to be a correct guide to future outcomes. What is required, he says, is `a proof based
completely on first principles'. Anything less than this has to be regarded as inductively tainted and thus itself subject
to the NFL results.

The present paper aims to respond to this challenge by producing precisely the proof the Wolpert believes is required,
i.e., a proof of generic non-uniformity based exclusively on first principles. The proof will use a logical task-analysis
of the process of generalisation introduced in [Clark and Thornton, 1997, Thornton and Clark, Forthcoming]. This
analysis will be reviewed in section 2. Section 3 will investigate the caveats that have to be applied when the analysis
is applied to realistic scenarios. Section 4 of the paper will show how the analysis justifies certain a priori assumption
regarding generic non-uniformities. Section 5 is a summary.

The complexity of the learning task from first principles

Learning may involve the acquisition of new behaviour or the acquisition of new knowledge. However, for analytic
purposes it is often convenient to combine the two categories into one, treating knowledge acquisition as a type of
behaviour learning which produces novel `thought behaviour.' The advantage of this is that it allows us to decompose
any learning task along behavioural lines. In particular, it allows us to focus attention on how learning tasks always
involve acquiring a disposition to produce certain `actions' in certain `situations.'

Let us say we want a learner agent to acquire behaviour B, which involves producing actions A1 and A2. The salient
information (i.e., data) available to the learner may be internally stored or derived via sensors from an external
environment (or both). But for learning to be possible, this information must indicate in some way the situations in
which A1 and A2 should be produced. Learning the task thus involves (a) identifying the nature of this indication and
(b) consolidating it in the form of new behaviour. The difficulty of the latter operation depends entirely on the
properties of the agent and should not, therefore, be considered a part of the generic complexity of the learning task.
This should be estimated purely in terms of the identification operation.

Identifying the relevant indication involves identifying the connections that may exist between the learner's
informational data and the actions in question. The complexity of this depends on the number of possible connections
and this, in turns, depends on the nature of the connections. If the connections are to properties which are relational
with respect to the learner's information resource then the search space is potentially infinitely large, simply because 
there are generally an infinite number of possible relationships that may be defined over a given set of data.
Conversely, if the connections are to absolutes within the learner's information, then the search space is only finitely
large, because the number of combinations of absolute values extracted from a finite data source is necessarily finite.
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What this tells us is that learning tasks may be decomposed into two distinct complexity classes:

finitely complex non-relational tasks involving the identification of properties which are absolute with respect
to the learner's information resource, and

infinitely complex relational tasks involving the identification of properties which are relational with respect to
the learner's information resource.

Researchers have been familiar with this distinction for many years (cf. [Dietterich and Michalski, 1983, Clark and
Thornton, 1997]). It is, in fact, common practice to refer to methods specifically intended for use on relational tasks as
relational learning methods (cf. [Muggleton, 1992, Mitchell, 1997]). Following this practice, the present paper will
make a distinction between relational learning, meaning learning specifically adapted for relational tasks, and
empirical or non-relational learning meaning learning specifically adapted for non-relational tasks.

The complexity of the learning task in practice

Given the complexity properties noted above it is clear that, before addressing a specific learning task, a learner
should ideally decide if the task is relational or non-relational. Unfortunately, this decision often cannot be made with
any confidence. The distinction between relational and non-relational learning is clear in theory. But the task of
classifying problems as relational or non-relational is fraught with difficulty.

At first sight, it looks as if it should be possible to classify tasks as relational or non-relational depending on the
degree of clustering in evidence. Imagine that the data available to the learner agent take the form of combinations of
values of variables---a very common scenario---and that each particular combination of values is treated as an
n-dimensional datapoint. If the task is relational, we know that particular actions are contingent on relationships
among the value combinations and that actions should therefore not be correlated with absolute values (or datapoint
coordinates) in any way. Datapoints associated with the same action should not share coordinates and therefore not
cluster together. If, on the other hand, the task is non-relational, absolute values (datapoint coordinates) are associated
with particular actions; so datapoints should tend to share coordinates and should tend to cluster together.

In a relational task, then, we expect the data to show no clustering. And certainly, in extreme cases, this is precisely
what is found. Consider, the so-called `parity task.' In a parity task, the action and all the data values are represented
as binary digits. The nature of the task is such that the action `1' should be produced just in case there are an odd
number of 1s among the data. The action `0' should be produced in all other cases. A parity task involving
combinations of three data values can be written out textually as in figure-below.

0  0  0   -->   0
0  0  1   -->   1
0  1  0   -->   1
0  1  1   -->   0
1  0  0   -->   1
1  0  1   -->   0
1  1  0   -->   0
1  1  1   -->   1

3-value parity task.

Each line here shows the association between a particular action (to the right of the arrow) and a combination of three
data values (to the left of the arrow). Note how the action is `0' in those cases when there is an even number of 1s
among the data values, and `1' otherwise.

Parity is a perfectly relational task since the action depends exclusively on a relationship among the data. The net
effect is that the distribution of datapoints is `perfectly unclustered.' Due to the nature of the rule underlying the parity
task, a single increment or decrement of any data variable `flips' the associated action from 1 to 0, or vice versa. Thus,
in the data space, datapoints associated with one action always appear adjacent to datapoints with the opposite action.
Nearest neighbours within the space are thus guaranteed to have different actions. There is no clustering whatsoever: 
the action labels create a perfect checkerboard effect.

With respect to the parity tasks, the association between lack of clustering and relationality is thus quite clear. But
when we turn attention to other sorts of relational task, the association becomes more blurred. Consider, for example,
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the task shown in figure-below.

3  4  -->  0
8  2  -->  1
7  6  -->  1
8  9  -->  0
     .
     .
     .

Ambiguous task.

The rule here is that the action should be 1 just in case the first data value is greater than the second. This rule is
characteristically relational and we might expect that the problem---like parity---will exhibit no clustering. But if we
inspect the associated distribution of datapoints we find that this is not the case. The explanation is easy to find. The
task is less than perfectly relational. Actions do not depend exclusively on relationships among the data. Absolute
values do have some significance in the determination of output. Zero, for example, cannot be greater-than any other
non-negative integer. A zero as the first value thus constitutes evidence that the produced action should be `0'. The net
effect is that the data for this task do show a certain degree of clustering.

Characteristically relational problems, then, may embody non-relational aspects which `show through' in the form of
clustering. But this is not the only source of clustering effects we need to consider. It is also possible for a task to be
characteristically hybrid, i.e., to exhibit different associations based on totally unrelated types of effect. For example,
consider the problem in figure-below.

c  d  a  b  -->  f
a  b  d  b  -->  h
e  c  d  e  -->  h
c  b  a  e  -->  f
a  c  d  e  -->  f
b  c  a  e  -->  f
b  d  d  e  -->  h
e  d  a  c  -->  f
a  c  d  c  -->  h
c  d  a  c  -->  h
c  c  a  e  -->

Hybrid learning task.

Several of the cases with an `a' in the third variable have `f' as their action. There thus exists a cluster of points which
share `a' in the third variable and `f' as action. A learner observing this effect might classify the problem as
non-relational and attempt to find data/action associations based solely on absolute values. This might lead to the
learner guessing that a value of `a' in the third variable indicates that the action should be `f'. But the original
classification here is dubious. In addition to the association noted, there is also an effect in which cases exhibiting
duplicated data values tend to have `h' as their action. This effect is based on a relationship among the data. A learner
focussing on this effect might thus classify the problem as relational and proceed to a totally different conclusion.

We have to conclude, then, that clustering (or lack of it) is not a reliable indicator for relationality. There are a number
of possible sources of clustering in (the data for) a characteristically relational problem, e.g.

the task may have genuine, non-relational aspects and thus exhibit a degree of meaningful clustering. The
`greater-than' task is a good example.

The task may be represented to the learner in such a way as to create artificial non-relational aspects. An
example of this situation is a parity task whose representation includes an extra input variable whose value
always effectively records the parity status of the original inputs is an example.

In both of these situations, the exhibited clustering is useful for the purposes of learning, i.e., it can be used as the
basis for generalisation. There are two further situations, however, in which the clustering is of no use whatsoever.

The clusters may be an artifact of the way in which the learner's data have been selected or generated.

The clusters may be the results of some sort of noise or data error.
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In both of these cases, the clusters observed in the data are merely sampling artifacts and thus of no use whatsoever
within the learning process.

To summarise, in a characteristically relational task we may see clustering effects arising from non-relational aspects
of the task, characteristics of the task encoding, characteristics of the data selection process or noise/error. Effects due
to the task encoding, data selection or noise may be termed incidental, on the grounds that their relationship with the
underlying problem is not meaningful. Within this grouping, effects due to characteristics of the task representation
may be termed generalising while effects due to the data selection or noise may be termed non-generalising. The 
various possibilities are tabulated in figure-below.

Origins of clusters in characteristically relational problems.

Typical scenarios

Despite the difficulties noted, it remains the case that non-relationality does produce clustering while relationality
does tend to eliminate it. The existence or lack of clustering therefore can serve as a guide for tentative classification 
decisions. We have seen that almost all learning tasks show a certain degree of clustering. But the more clustering
they exhibit the stronger the evidence in favour of a non-relational classification. The range of possibilities is
illustrated in figure-below. Each task here is displayed as a 2-dimensional graph and is therefore assumed to be
defined in terms of two, numeric data variables and one action variable, whose value is either `1' or `0'. The problems
represent typical scenarios from the perfectly non-relational to the perfectly relational.

Clustering scenarios.

In the `perfect clustering' scenario, all the inputs whose output label is 1 are in the left half of the input space. Other
the inputs whose output label is 0 are in the right half of the space. The data are thus perfectly organised into two,
cleanly separated regions, definable in terms of a single, axis-aligned boundary.

Next, we have a scenario showing strong clustering. The inputs here are still cleanly separated into uniformly
instantiated regions. But the organisation is less than perfect. The clusters would need to be defined in terms of, say,
four circular regions.

The next scenario shows weak clustering. Now the input points are distributed in a more complex fashion. There are
some uniformly instantiated regions but these do not have particularly regular shapes. The situation might correspond
to a characteristically relational problem which shows some non-relational effects. Or it might simply correspond to a
complex non-relational problem.

Finally, we have the `perfect checkerboard' scenario. In this situation the two types of input are perfectly mixed up.
This is the extreme case of input data disorganisation, i.e., maximum `sensation entropy.' Every point has as its nearest
neighbour a datapoint with a different label. Absolute input values (i.e., coordinates) therefore have no significance
whatsoever in the determination of output.

The perfect checkerboard scenario is the logical extreme of the relational dimension. And as has already been noted,
all parity problems produce perfect checkerboard distributions. But do all checkerboards arise from valid parity tasks?
Recall that the parity task is defined in terms of binary data and action values. Thus each dimension of the data space
has only two values. If we draw out the checkerboard for a 2-bit parity problem then it has the appearance of
figure-below.

Checkerboard pattern for a parity problem.
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Checkerboards whose dimensions are all 2-valued can always be viewed as n-bit parity problems---n being the
number of dimensions. Problems such as the one shown in Figure 8-1, which have more than two values per
dimension, but only two distinct output values, obviously cannot be interpreted as parity problems. However, they can
be interpreted in terms of a modulus-addition operation, a generalisation of the parity rule.((Modulus addition behaves
the same as ordinary additionexcept that the result is constrained to lie between 0 and a maximum called the modulus
value. Applying modulus addition to some numbers involves finding their sum and then subtracting the modulus
value M until the value lies between 0 and M-1.)) A mapping such as the one shown in Figure 8-1 can be interpreted
as defining a modulus-addition function using input values which range between 0 and 7 and a modulus value of 2.

In fact, any scenario which is checkerboard-like in terms of having different output labels attached to all
nearest-neighbour datapoints, can be interpreted as defining a modulus-addition mapping as long as the number of
values in each dimension is a multiple of the modulus value. This is a simple consequence of the fact that, within a
modulus-addition operation, incrementing or decrementing any input value always has the effect of changing the
output value. The net effect is that within any modulus-addition mapping, nearest-neighbour datapoints always have
different outputs. Any modulus-addition problem thus necessarily has a checkerboard-like appearance. And, by the
same token, all problems with a checkerboard-like appearance can be viewed as modulus-addition problems.

The existence of universal non-uniformities

The analysis of learning-task complexity presented above involves two main steps. First we conceptualise all learning
as behaviour learning, i.e, as involving the acquisition of a disposition to produce certain `actions' in certain
`situations.' Second, we observe that this task has two distinct forms: a non-relational form, involving a finitely
complex search and a relational form involving an infinitely complex search. The strength of the argument derives
from the observation that any form of learning must involve identifying connections between elements of
informational data and that these connections may be rendered in terms of relational or non-relational properties.
There is no inductive element here whatsoever. The observations are derived using simple deduction. The argument is
therefore based purely on first principles. But is it the argument we want? Does it do the job Wolpert thinks needs to
be done? In particular, does it allow us to justify the assumption of generic non-uniformities?

Possible, probable and de facto non-uniformity

The analysis allows us to characterise the ways in which a generalisation problem may be solved. It thus implicitly
allows us to characterise generalisation problems which cannot be solved. In particular we can say that a a particular
generalisation task may be

non-relationally learnable,

hybridly learnable,

relationally learnable,

unlearnable.

A task falls into one of the three learnable categories if the relational (non-relational) effects exhibited in the training
data are also exhibited in the testing data. All tasks in which there is no such carry over of effects fall into the
unlearnable category. What does this tell us about the NFL result?

Recall that in the NFL scenario we assume nothing is known about the application domain. The result is that we
cannot assume any non-uniformity in the distribution of problems. With respect to a particular classification system
we must therefore assume that problems are uniformly distributed between the various categories. If we take the
categories to be as specified above (three learnable and one unlearable) then we have to make the assumption that one
quarter of all problems in an arbitrary domain will be unlearnable. For an effective learner, all unlearnable problems
will be problems on which performance is worse than chance. Thus in this scenario the expectation must be that an
average (effective) learner will perform better than chance on 50% of all problems and worse than chance on just 25%
of problems.((An alternative approach would be to treat the categories as just `learnable' and `unlearnable'. In this case
the situation becomes still more favourable for the effective learner. Our a priori expectation must be that it will
produce better than chance performance on all problems from the domain. This is, of course, the expectation that we
would have on intuitive grounds anyway.))
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The establishment of a principled distinction between learnable and unlearnable problems thus allows us to eliminate
the paradoxical NFL prediction that effective learners will perform no better than random guessing. But we can take
the argument one step further. For most intents and purposes, data fed to learning algorithms is derived by careful
sampling of a particular phenomenon (cf. the problems in the UCI repository of Machine Learning Databases). Such
datasets are constructed according to certain rules, the most prominent of which concerns the statistical independence
of the data variables. In general, `real-world' datasets (e.g., the `Breast Cancer' dataset) are generated in such a way as
to ensure that the data variables are maximally independent. The net effect of this is to effectively eliminate the
possibility of relational effects. The requirement for statistical independence among data variables tends to guarantee
that the associated dataset will constitute a non-relational learning problem.

On a conservative estimate perhaps as many as 95% of all real-world learning problems are represented in terms of
independent or approximately independent variables and must thus be considered non-relational by design. In practice 
then, most learning problems selected from, say, the UCI repository are effectively designed to be within the
non-relationally-learnable category. For the machine learning practitioner there is, then, a de facto non-uniformity 
which can be safely assumed on the basis of the principles of dataset design. A randomly selected problem is almost
certain to be contained within the subset of problems which are non-relationally learnable.

Geometric seperability of frequently-used datasets

We can demonstrate the non-relationality of typical learning problems empirically. We have already noted that the
solving of a non-relationally-learnable problem involves exploitation of data clustering. Thus, we expect any such
problem to exhibit reasonably well clustered data. One way to measure the degree of clustering in a particular dataset
is to compute its geometric seperability [Thornton, 1997] which is just the proportion of datapoints whose nearest
neighbours share the same output classification.

geometric-seperability(f) = \frac{\sum_{i=1}^{n}
    f(x_{i}) + f(x_{i}^{'}) + 1 \bmod 2} {n}

Here, f is a binary target function, x is the data set, x_{i}^{'} is the nearest neighbour of x_{i} and n is the total
number of data. The nearest neighbour function is assumed to utilise a suitable metric, e.g., a Manhalobis metric for
symbolic data or a Euclidean metric for spatial data.

Geometric seperability is a measure of the degree to which datapoints with the same action cluster together. In some
sense, it is a generalisation of the linear-separability concept [Minsky and Papert, 1988]. Although not a boolean
measure (i.e., a predicate), geometric seperability can be viewed, like the linear-separability concept, as differentiating
tasks which are appropriate for a particular learning strategy.((A satisfying property of geometric seperability is the
fact that it is zero for all parity tasks, as per expectation.)) The strategy in this case is non-relational (i.e.,
similarity-based) learning. Only if the geometric seperability for a particular task is high is this strategy likely to be
effective.

The geometric seperability values for 16 of the most frequently used Machine Learning datasets [Holte, 1993] is
tabulated in table-below. As we expect, in all cases the values are well above zero. The average geometric seperability
value is, in fact, 0.85.

Dataset BC CH GL G2 HD HE HO HY

GS 67.31 82.82 73.6 81.6 76.24 61.94 76.9 97.76 

Dataset IR LA LY MU SE SO VO V1

GS 94.0 94.74 77.03 100.0 93.19 100.0 92.87 87.47 

Interestingly, the geometric seperability values may be treated as expected generalisation levels for a 
1-nearest-neighbour classifier. The generalisation performance of a 1-nearest-neighbour classifier depends on the
degree to which data in the testing sample have nearest-neighbours in the training sample with identical target
actions.((We assume that the same metric is used for the nearest-neighbour classifier as was used in computing the
GS.)) The proportion of nearest neighbours in the dataset which share the same action is identical to the expected
proportion of such cases in a randomly selected testing set. Thus, on average, the 1-nearest-neighbour classifier will
produce a level of generalisation which is identical to the GS value.

Summary
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The NFL result seems, at first glance, to be `bad news' for learning and generalisation, since it seems to suggest that it
is impossible for a method to produce average performance which is any better than that achieved by random
guessing. However, Wolpert and others have been gone to great lengths to emphasise that the news is not quite this
bad. What NFL shows, they claim, is that it is the assumptions we make about the domain which make all the
difference. Provided appropriate assumptions about non-uniformities are made, arbitrarily good performance may be
obtained.

The aim of the present paper has been to suggest that even this may be an over-reading of the implications of the NFL
result. The NFL work assumes, rather counter-intuitively, that there is no a priori difference between learnable and
unlearnable problems and that therefore all input/output mappings definable over a given domain have to be
considered plausible learning problems. The net effect of this is that there can be no a priori reason why a particular
learner should encounter problems upon which it performs well and therefore no a priori reason why any learning
method should perform above the chance level on average.

However, once we accept that there is an a priori distinction to be made between learnable and unlearnable problems
we can eliminate a proportion of the input/output mappings from any domain on a priori grounds. The expected
performance of an arbitrary, effective learner is then automatically raised above the chance level. But establishing the
existence of an a priori distinction between learnable and unlearnable problems involves close analysis of what
learning involves.

The approach taken in this paper (almost certainly not the only approach possible) involves lumping all learning tasks
together under the heading of `behaviour learning.' We then decompose the learning (generalisation) task into two
subtasks: (1) the identification of connections between informational data and action events and (2) the
implementation of mechanisms designed to consolidate those connections. Given that the latter task is agent-specific,
learning-task complexity must be measured in terms of the former subtask. And as we have seen, the complexity of
this is related to the nature of the connections which need to be identified and in particular, to whether they are
instantiated in terms of relational or absolute properties of the learner's information resource.

This analysis, aside from offering a detailed characterisation of what `learnability' really means, has the advantage of
highlighting the fact that properly prepared learning problems tend to be non-relational by design. The net effect of
this is that learning methods which aim to solve problems in terms of non-relational effects (i.e., in terms of data
similarity((Learning methods which may be classified as similarity-based include the CART algorithms [Breiman et 
al. 1984], the competitive learning regime of Rumelhart and Zipser [1986], the Kohonen net [Kohonen, 1984] and 
in fact any algorithmic method which is based on the method of clustering [Diday and Simon, 1980]. Methods which
are clearly excluded from this class include the `BACON' methods of Langley and co-workers [Langley, 1977;
Langley, 1978; Langley et al. 1983; Langley et al. 1987] and related methods such as [Wolff, 1978; Wolff, 1980;
Lenat, 1982; Wnek and Michalski, 1994]. These carry out explicit searches for relational effects and in many cases
ignore similarity effects altogether.)) or data clustering) will tend to perform well across the board. The almost
universally good (i.e., above chance) performance of methods such as C4.5 and Backpropagation may be explained in
these terms.
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