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Abstract

What distinguishes the locations that we fixate from those that we do not? To answer this question we recorded eye movements

while observers viewed natural scenes, and recorded image characteristics centred at the locations that observers fixated. To inves-

tigate potential differences in the visual characteristics of fixated versus non-fixated locations, these images were transformed to

make intensity, contrast, colour, and edge content explicit. Signal detection and information theoretic techniques were then used

to compare fixated regions to those that were not. The presence of contrast and edge information was more strongly discriminatory

than luminance or chromaticity. Fixated locations tended to be more distinctive in the high spatial frequencies. Extremes of low

frequency luminance information were avoided. With prolonged viewing, consistency in fixation locations between observers

decreased. In contrast to [Parkhurst, D. J., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt

visual attention. Vision Research, 42 (1), 107–123] we found no change in the involvement of image features over time. We attribute

this difference in our results to a systematic bias in their metric. We propose that saccade target selection involves an unchanging

intermediate level representation of the scene but that the high-level interpretation of this representation changes over time.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The way that our visual system samples world is both

temporally and spatially constrained; sampling takes

place during periods of fixation that typically occur at
a frequency of 3–4 per second and is spatially con-

strained by sampling limits imposed by the retina. Given

these constraints the visual system is unable to sample

completely and uniformly the complex visual environ-

ment. Indeed, it is clear that during activities of daily life

there are large proportions of the visual surroundings

that we do not direct our eyes toward (e.g. Ballard

et al., 1992; Land & Hayhoe, 2001; Land, Mennie, &
0042-6989/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Rusted, 1999). When viewing paintings and images, vis-

ual complexity is greatly reduced; the scene is con-

strained to two dimensions and spatially limited to a

relatively small proportion of the observer�s field of
view. However, even under these conditions sampling
is not complete or uniform, with some regions of the

scenes receiving many more fixations than others (Bus-

well, 1935).

What are the processes that underlie this non-uni-

form sampling of the environment? Most researchers

would argue that eye movement targeting involves a

combination of bottom up and top down guidance fac-

tors. Some emphasise bottom up processes: implying
that the most important factor in non-uniform sampling

is the non-uniform distribution of ‘‘salience’’ in the

world (e.g. Braun & Sagi, 1990; Kowler, Anderson,

Dosher, & Blaser, 1995; Nakayama & Mackeben,

1989). The activity in low-level feature maps has been
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proposed to underlie saccade targeting (Itti & Koch,

2000; Itti, Koch, & Niebur, 1998; Niebur & Koch,

1996; Olshausen, Anderson, & Vanessen, 1993; Park-

hurst, Law, & Niebur, 2002; Treisman, 1988; Wolfe &

Gancarz, 1996). As evidence for the contribution of sali-

ence, the differences between the image statistics of fix-
ated and non-fixated locations in scenes are

emphasised; for example, Reinagel and Zador (1999)

showed that fixated locations have higher contrast than

non-fixated locations.

Other researchers emphasise the contribution of top

down processes: implying that the non-uniform sam-

pling is due mainly to high-level task demands. Pelz

and Canosa (2001) suggested that ‘‘look ahead’’ fixa-
tions (checking objects that will be manipulated several

seconds in the future) provide strong evidence that at

least these types of eye movements are not salience dri-

ven, but rather are task dependent and driven by top

down control. Shinoda, Hayhoe, and Shrivastava

(2001) similarly stressed the importance of top down

control, finding that detection of traffic signs in a driving

simulator was modulated by visual scene context and
task instructions.

While evidence that fixated and non-fixated locations

differ in their statistics may be seen initially as evidence

for the relative importance of low-level salience, this

may not be the case. A predominantly top down selec-

tion mechanism may also result in non-random selection

of low-level features. Most tasks require fixations on a

specific set of objects and these objects tend to be distin-
guished by differences in luminance, colour, contrast

and the occurrence of edges. Under this view, differences

in image statistics at fixation could be an artefactual re-

sult of people fixating objects, which tend to differ from

the background. Therefore, simply looking at the statis-

tics at fixated and non-fixated locations cannot differen-

tiate high- and low-level accounts.

One possible source of evidence is to investigate
whether any quantifiable characteristics of eye move-

ments change over viewing time. Both Buswell (1935)

and Yarbus (1967) found that over time, the consistency

between observers in where they fixated decreased.

While this was primarily a qualitative observation, if

confirmed quantitatively, it could place constraints on

the interaction between top down and bottom up proc-

esses. Specifically, in the current study we measure not
only the consistency of fixation locations, but also the

inferred salience at these locations over time. This allows

four possible frameworks to be distinguished. We call

these four frameworks (1) salience divergence, (2) sali-

ence rank, (3) random selection with distance weighting

and (4) strategic divergence.

The salience divergence model proposes that the bal-

ance between top down and bottom up control of sac-
cade target selection changes over time. Specifically,

the bottom up component is more influential early in
viewing, but becomes less so as viewing progresses; this

was suggested by Parkhurst et al. (2002). Such a frame-

work could account for an observed decrease in be-

tween-participant consistency over time. In addition to

a decrease in consistency, this framework predicts that

the difference between saliency at fixated locations and
at non-fixated locations will be greatest early in viewing.

A second possibility is that there is no change in

either the top down or bottom up components of sacc-

adic targeting over time. In the salience rank model,

locations in the scene are ranked according to their vis-

ual salience and the oculomotor system selects targets

sequentially according to this ranking; Itti and Koch�s
model uses a system for selecting successive targets for
attention based upon decreasing salience (Itti & Koch,

2000). In any scene it is likely that there will be few loca-

tions of high salience, many of medium salience and

even more of low salience, if salience is simply related

to the output of filters (Field, 1987). Therefore the sali-

ence rank model predicts a decrease in consistency be-

tween participants, and a decrease in the salience of

fixated locations over time.
The random selection with distance weighting frame-

work for target selection (Melcher & Kowler, 2001) sug-

gests that targets are selected using a proximity-

weighted random walk process. This proposes that fixa-

tion locations are essentially random with respect to

both bottom up and top down processes. The random

selection with distance weighting proposal predicts that

given a common starting location, the between-observer
consistency of saccades will decrease over time, but that

there should be no systematic change in the visual sali-

ency at fixation.

A fourth possibility is strategic divergence. Here the

influence of low-level visual feature salience on saccadic

targeting does not change during viewing. Instead, the

strategic divergence account proposes that the strategies

chosen by observers have the same bottom up frame of
reference for eye movements, but over time observers

use different top down strategies. This could predict an

increase in the variability of fixation locations, but no

change in the saliency at fixation over time.

As can be seen, the four models predict both an in-

crease in between-observer variability over time and dif-

ferent patterns of change in salience over time. We

therefore quantified changes in the between-observer
consistency in fixation locations as a function of viewing

time. Explicitly, we estimated the probability distribu-

tion of fixation locations for individual observers. We

then used an information theoretic measure (Kull-

back–Leiber divergence) to quantify the differences be-

tween these probability distributions. This quantity

was estimated both as a function of fixation number

and viewing time.
In order to quantify any difference in the visual sali-

ency of fixated and non-fixated locations, we extracted
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trials. See results section for details of this experiment.
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image features at fixation and compared these to image

features at non-fixated locations. The first regularity

that we explored was whether there are simple differ-

ences in luminance at fixated locations. It could be that

eye movements are attracted to extremes of luminance,

or potentially, because the brightest regions are often
highlights and the darkest are often uninformative shad-

ows, eye movements may avoid such extremes of lumi-

nance. The other three image features investigated

were based on a subset of properties represented early

on in the visual system. Retinal ganglion cells make ex-

plicit both contrast (the output of centre-surround

receptive fields) and chromaticity, and both may be rel-

evant in determining saccade target locations. In V1 a
much greater range of characteristics are made explicit,

but the majority of receptive fields are well characterised

by Gabors (making orientated edges explicit). Other fea-

tures are also made explicit such as stereo, motion, and

potentially orientation contrast, but for the purposes of

this study we concentrate on a representation of orien-

tated edges.

We defined a signal detection measure for characteris-
ing the visual salience of fixated locations for each of our

four image features. Essentially, this measure quantifies

the visual salience difference in terms of how reliably fix-

ated and non-fixated locations can be discriminated

based upon the underlying salience measure.

There already exist in the literature techniques for

quantifying both between-observer consistency (Man-

nan, Ruddock, & Wooding, 1995, 1996, 1997) and sali-
ency at fixation (e.g. Parkhurst et al., 2002; Parkhurst &

Niebur, 2003; Reinagel & Zador, 1999). Unfortunately

previous methods have a number of limitations. Nearest

saccade-based measures of consistency, such as those

used by Mannan and colleagues, have problems in that

they have to exactly specify a function relating distance

and similarity; they are insensitive to differences in the

probability distribution; and they confound within-
and between-observer variability. These limitations are

discussed in more detail in the methods section.

Measures of salience at fixation, such as employed by

Parkhurst and colleagues, quantify visual salience using

a significance test of the difference between statistics at

fixated and non-fixated locations. This method also suf-

fers from a number of limitations. First, significance and

effect size are confounded: a behaviourally insignificant
effect can be highly statistically significant given enough

data. Second, a measure based on parametric statistics

makes assumptions about the normality of image statis-

tics; image statistics tend not to be normally distributed

(Baddeley, 1996). Lastly, in defining measures of visual

salience, often arbitrary decisions need to be made about

such things as non-linearities. Parametric tests are highly

dependent on such arbitrary decisions. In the methods
section we identify a further confound, which arises

due to non-spatially uniform distribution of saliency in
natural scenes. This is important because it could arte-

factually indicate a change in saliency over time.

The present study describes two measures without the

above confounds. These are used to assess between-

observer variability as a function of time and the effect

of viewing time on saliency at fixated locations. Our
results are used to place constraints on possible models

of eye movement control.
2. Methods

2.1. Participants

Fourteen participants took part in this experiment.

All had normal or corrected to normal vision and had

never previously participated in eye movement

experiments.

2.2. Images

Forty-eight images of natural scenes were used in the
experiment, covering a variety of indoor and outdoor

scenes. Images were recorded using a handheld Fujifilm

MX-1500 digital camera and were displayed in

800 · 600 pixel format with 8-bit representation of red,
green and blue (a 24-bit image). The images were dis-

played on a 17
00
SVGA colour monitor with a refresh

rate of 74Hz and a maximum luminance of 55cdm�2.

The experiment was carried out in a darkened room.
The monitor was positioned at a viewing distance of

60cm; consequently, the images presented subtended

30� horizontally and 22� vertically.

2.3. Procedure

Each trial began with a central fixation box 1 on a

mid-grey background followed by display of one natural
image for a period that varied randomly between 1 and

10s, after which the display returned to the mid-grey of

the initial background. Presentation times were varied to

reduce predictability and prevent the employment of

unnatural strategies, such as systematically working

through the image. Images were blocked into three sets

and the order of these image-sets was varied systemati-

cally between participants, to minimise any potential or-
der effects on fixation patterns. Given any top down

effects, different strategies can result in different viewing

patterns. During free viewing, the number of strategies is

effectively uncontrolled, with different observers employ-

ing different strategies and effectively performing differ-

ent tasks. In order to minimise this variability, we
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resulted in serious edge artefacts. This streaming methods greatly

reduced these edge effects.
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asked observers to perform a memory task while view-

ing. Performing such a memory task does not reduce

high-level strategic factors, but is likely to promote the

employment of broadly similar high-level strategies be-

tween participants. Following each image presentation,

participants were asked two questions about the image
just viewed. Questions covered a range of possible as-

pects of the scene: what the image depicted, whether

items were present or not and a range of details about

objects including absolute position, relative position,

colour and shape. Objects tested varied in size from

0.04% to 32% of the total screen area. The position of

the item tested was also varied between questions and

scenes. Though not through design, this distribution
was slightly centrally weighted. Responses to these ques-

tions were not used in the analyses.

2.4. Eye movement recording

Eye movements were recorded using an EyeLink I eye

tracker, which uses infrared pupil tracking to sample eye

position data at 250Hz and compensates for head move-
ment. Eye position data were collected binocularly and

analysed for the eye that produced the better spatial

accuracy. A 9-point target display was used for calibra-

tion of eye position. A second 9-point display was used

to validate the calibration and return the mean spatial

accuracy of the eye tracker calibration. Further 9-point

validations of the calibration were carried out at regular

intervals throughout the experiment. If the validation
showed that the spatial accuracy of the eye tracker

had deteriorated to worse than ±1�, the eye tracker
was re-calibrated as described above. In this study, the

mean spatial accuracy of the eye tracker calibration

was 0.40�, with a standard deviation of 0.10�.
Analysis of the eye movement record was carried out

off-line after completion of the experiments. The timings

of eye movement and display events were extracted from
the raw data record along with the co-ordinates of sac-

cade and fixation start- and end-points. Extraction was

carried out using software supplied with the EyeLink I

eye tracking system. Saccade detection required a deflec-

tion of greater than 0.1�, with a minimum velocity of

35� s�1 and a minimum acceleration of 9500� s�2, main-
tained for at least 4ms. The extracted event data was used

in all subsequent MATLAB-based analysis protocols,
which were written specifically for these analyses. Trials

were discarded if the eye tracker set up resulted in a spa-

tial accuracy poorer than ±1�. As a result all trials for one
participant were discarded, but no other trials failed to

meet this criterion, leaving 624 usable trials for analysis.

2.5. Feature modelling

In order to assess quantitatively the extent to which

image properties are selected by the eye movement sys-
tem, four candidate image features were chosen: lumi-

nance, chromaticity, contrast and edge-content. The

models used to construct the feature maps for each of

these properties are described below. The smallest filter

used for modelling was 10.8 cycles per degree; this was

the highest frequency that could be displayed reliably,
given that the images were presented at 26 pixels per de-

gree. Feature maps were constructed at thirteen spatial

scales for each of the four image characteristics, ranging

from 0.42 to 10.8 cycles per degree (for edge informa-

tion, the spatial scale refers to the peak of the Gabor

carrier).

The processes involved in the construction of the sali-

ence maps for each of the features are illustrated in Fig.
1. The first step in the construction of feature maps for

luminance, contrast and edge-content was to convert the

colour bitmap viewed by participants into a greyscale

version of the image using the built-in MATLAB

conversion.

For all feature maps, it was important to minimise

any edge effects at the image boundaries (which would

result in false ‘‘activation’’ of the filters when they over-
lapped the edges of the image) in later stages of image

filtering; we found that the best method to achieve this

was as follows. At the start and end of each row or col-

umn in the (greyscale) image, the intensities of the five

pixels closest to the edge were averaged and this mean

intensity was streamed out from the end of the column

or row. At the corners, pixel intensity was calculated

by the nearest neighbouring pixel intensities. 2 Using
this streaming technique the images were extended by

eight times the standard deviation of the filter used in

the subsequent convolutions (see below) in all

directions. After convolution, the images were cropped

to the original image size, removing the extended

margins.

About the best model of receptor non-linearities is

the Naka–Rushton equation (Valeton & Vannorren,
1983). While this equation models saturation at high

and low light levels, it is essentially well-summarised as

a logarithmic relationship over three orders of magni-

tude; we therefore log-transformed the greyscale (and

now extended) image. The extended and transformed

images were convolved using filters specific to the fea-

ture map under construction. Luminance information

was extracted by convolving the images with a Gaussian
filter as described in Eq. (1), where x and y specify the

co-ordinates of each pixel in the image.

f ðx; yÞ ¼ exp � x2 þ y2

2r2

� �
ð1Þ
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Fig. 1. The processes involved in modelling images for each of the four features (full details in main text). For chromaticity modelling the individual

red (R), green (G) and blue (B) channels are separated out; for other features the images are converted to greyscale (GS). The first step was to log

transform the image (or channel) and embed it on a mean background. Following this the image was convolved with the relevant filter for the feature

in question. For edge-content modelling four filters were used to convolve the image and the outputs of these four filters were later combined and

normalised. At this point in the chromaticity modelling, the MacLeod–Boynton opponency maps were calculated (RG and BY). Common to all four

feature extraction procedures, the next step was to subtract the mean feature value in the models and square the output. This step served to capture

unsigned deviation from mean feature salience in the image. In the luminance, contrast and edge-content models this step produced the raw saliency

map (Map). However, in the chromaticity modelling procedure the raw map was produced by combining the two opponency maps. The raw feature

map was normalised by dividing by its standard deviation, in order to produce the final feature map (nMap). The modelling process was repeated for

each feature at each of 13 spatial scales.
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For contrast information, convolution was carried

out using a difference of Gaussian filter, described in

Eq. (2). One critical value is the ratio of surround to cen-

tre radius. Lee, Kremers, and Yeh (1998) found an aver-

age value of 3.28 in the primate retina, but this value

was significantly lower than that found by Croner and

Kaplan (1994) who found a ratio of 4.8 for M class cells
and 6.7 for P cells. As a compromise we used a ratio of

3.88, which incidentally was the average value for this

ratio found in the cat retina (Linsenmeier, Frishman,

Jakiela, & Enrothcugell, 1982).

f ðx; yÞ ¼ exp � x2 þ y2

2r2

� �
� exp � x2 þ y2

2r2

� �
ð2Þ
1 2
The image convolution step for the extraction of

edge-content information was carried out using each

of four oriented Gabor filters, the outputs of which

were normalised (by dividing by the standard devia-

tion) and combined (by finding the maximum value in

all four convolutions for each pixel in the image) after

convolution. The Gabor filters are described in Eq.
(3). h1 describes the orientation of the Gabor; four val-
ues were used: 0, �p/4, p/2, and p/4. The frequency of
the carrier is defined by h2 and was set at 0.4r (i.e.
0.4· standard deviation of the Gaussian component).
All of the parameters in our Gabor filters were chosen

to be within plausible biological ranges (Daugman,

1985).
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f ðx; yÞ ¼ sin 1

h2
x sin h1 þ y cos h1

� �
exp � x2 þ y2

2r2

� �

ð3Þ

For each of the features we were interested in captur-

ing unsigned difference from average in our feature

maps of the images. Thus our luminance feature maps,

for example, were designed to capture both ‘‘brightness’’
and ‘‘darkness’’ in the images rather than simply

‘‘brightness’’. In order to achieve this, the mean feature

salience value in each image was subtracted from the

convolved image and the output squared.

Different images in the experiment were likely to con-

tain very different ranges of luminance, contrast and

edge-content information. In order to allow meaningful

comparisons of feature maps between images, therefore,
the final step in the construction of the feature map was

to normalise the model by dividing by the standard devi-

ation of the output.

There exists a large variety of proposed spaces to rep-

resent colour. Important issues include not only how the

three receptor types are combined in a colour space but

also non-linearities, particularly in the yellow–blue sys-

tem (Wyszecki & Stiles, 2000). Most of these spaces con-
centrate on exactly matching perceptual differences (for

instance the CIE systems––Glassner, 1995) or just-

noticeable differences (Vorobyev & Osorio, 1998). Here

we are only interested in whether there are gross chro-

matic differences at saccaded to locations compared to

non-saccaded to locations. We therefore employed a

crude approximation to the MacLeod–Boynton colour

space (MacLeod & Boynton, 1979). In this space, chro-
maticity is represented by two channels: the difference

between the L and M receptors, and the difference be-

tween the S and a combined L and M channel. In our

study, rather than using cone fundamentals, we used

the RGB system provided by our camera and approxi-

mate L with the red channel, M with the green and S

with the blue channel. While this is only a crude approx-

imation, any large differences in chromaticity in the Mac-
Leod–Boynton space will also be large differences in

our space. Both spaces ignore potentially complicating

non-linearities (particularly in the blue–yellow system),

however this is less of a concern here as our salience

metrics are invariant to monotonic transformations of

the colour space. As a result, our RGB space is a reason-

able way to explore chromaticity based salience. Our

chromaticity filters therefore measure difference from
average chromaticity in each image, irrespective of the

actual colours.

The processes involved in the construction of the

chromaticity feature maps were largely similar to those

for the other three features. However, rather than ini-

tially converting the image to a greyscale version, the

image was separated into its individual red, green and

blue (RGB) channels. Each channel was then prepared
(extended and log-transformed) and convolved inde-

pendently, using Gaussian filters of the same form as de-

scribed in Eq. (1) for the convolution process. Following

the MacLeod–Boynton colour space, we subtracted the

green channel from the red and the sum of the green

and red channels from the blue channel (subtraction be-
cause the image was log-transformed), thus producing

two opponent maps. As for the other models, the next

step was to subtract the mean and square the output

in order to capture the maximum unsigned difference

in the two opponent channels. The final chromaticity

feature map was constructed by combining the two

opponent convolutions (using maximum values for each

pixel) and normalising the output by dividing by its
standard deviation.

Examples of the feature maps constructed for each of

the four image features at three of the spatial scales are

shown in Fig. 2, for a single image used in this study.

2.6. Measuring the difference in image characteristics

between fixated and non-fixated locations

Having constructed the saliency maps for each feature

and spatial scale, local image statistics at fixation were ex-

tracted from these maps. Local statistics were extracted

by centring a box with a diameter of 1� around the centre
of each fixation made by participants on the original im-

age (extracted from the EyeLink I eye tracker data). Lo-

cal statistics were defined as the maximum value of the

saliency map within this ‘‘foveal’’ patch for the particular
feature and spatial scale. Extraction was carried out for

all fixations that began after stimulus onset; fixations

beginning prior to onset were at the central fixation point

that initiated each trial and so were not analysed. After

the images had been processed and the saliencies at fix-

ated locations measured, a method was required to char-

acterise how different the image statistics at these fixated

locations were from non-fixated locations. Four issues
complicate the problem of characterising the relationship

between salience and fixated locations.

First, given the large amount of data collected using

our protocol (and in similar studies), even very small

and behaviourally irrelevant differences in the image

characteristics can be highly statistically significant.

Therefore, while it is important to check for the signifi-

cance of any estimated measure, we need a measure of
the differences in image characteristics that also captures

the interpretable magnitude of the difference. Such a

measure should take into account the variability of fix-

ated locations as well as that of non-fixated locations

and should also be independent of the number of data

points used in its calculation.

A second complicating issue is that the statistics of

natural images, and those of saliency maps derived from
them, violate two important conditions for the use of

parametric statistics. For reasons described in Baddeley



Fig. 2. Examples of feature maps for one of the images viewed by participants. (a) The original image (in greyscale). Feature maps are shown for

three of the 13 spatial scales (from fine scale information on the left to coarse scale information on the right) for (b) luminance, (c) chromaticity, (d)

contrast and (e) edge-content. Pixel intensity in the feature maps corresponds to the response of the feature filter at that position in the image; hence

how much of that feature was present at that location in the image. Feature salience is the squared difference from the mean feature value in the

image. For example, intensity in the luminance map specifies how bright or dark each position in the image is with respect to the average luminance in

the image; the high spatial frequency filter responds similarly to the dark chair legs and the bright wall.
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(1996), many interesting derived characteristics are far

from normally distributed, often being Laplace distrib-

uted (double sided exponentials). Importantly the vari-

ance is also far from spatially homogeneous (the local

variance is often approximately Gamma distributed
depending on the spatial scale, Baddeley, 1996).

Both of these characteristics violate assumptions for

ANOVA-based methods in particular, and for paramet-

ric methods in general, meaning a non-parametric meas-

ure is required.
Third, a related issue is that in generating our salience

maps, some arbitrary decisions had to be made. One

example is our use of a squared non-linearity. While this

is a plausible assumption, equally plausible models

based on rectification are possible. If our measure de-
pended critically on the nature of any non-linearities

then the result of the analysis would be less reliable. This

again argues that the measure must be non-parametric

and approximately invariant to monotonic transforma-

tion of the salience values.
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Lastly, a subtler and therefore more dangerous

requirement is that our metric should not be confounded

by one particularly subtle bias arising from the interac-

tion between two factors. Most photographs of scenes

have a small but reliable bias towards higher salience

in the centre than around the edges of the images (Fig.
3a). There are a number of causes of this effect (e.g.

sky in the upper visual field, uncluttered ground pane,

photographers� tendency to place subjects of ‘‘interest’’
at the centre), but this has been observed even for such

simple image features as the power spectra slope (Torr-

alba & Oliva, 2003). On its own this bias would not pre-

sent a major problem, but there is also a bias toward

making early fixations near the centre of an image
(Fig. 3b). The central fixation bias may reflect a general

tendency for observers to fixate near the centre of

scenes, irrespective of salience, or it may be that these

two biases are interrelated. However, whether or not

these two biases are related, they must be considered

and accounted for in any comparison of salience at fix-
Fig. 3. (a) Contrast feature map averaged across all 48 images and all 13 spat

images. (b) Distribution of fixations that occurred within the first second of v

was not uniform, but had a central bias. Only fixations that began after stimul

selecting non-fixated locations randomly from a uniform distribution. An a

locations for a target image but extracting the salience at the corresponding

Hence the extracted salience did not correspond to anything selected by the e

chosen randomly from a uniform distribution on the images, using our signa

et al.�s (2002) finding of higher salience for early fixations using this artificia
sampling of non-fixated locations (cf. our results using non-uniform selectio
ated and non-fixated locations. If centrally biased fix-

ated locations were compared to uniformly sampled

non-fixated locations this would result in an artificially

high salience (for similar arguments see also Parkhurst

& Niebur, 2003; Reinagel & Zador, 1999).

The combination of these two factors has two impor-
tant effects on measures of salience. First, fixated loca-

tions will show higher salience than non-fixated

locations, even if salience was irrelevant in selecting

these locations. Second, because early fixations show

even more of a central bias than later ones, early fixa-

tions will have higher salience than later ones, again

independent of any real role of salience in saccade target

selection. Parkhurst et al. (2002) observed this effect of
decreasing salience with fixation number on a scene,

but within our data this effect is entirely attributable

to the central biases. This problem can be dealt with

by correcting any statistical measure for this bias.

Two classes of measures can satisfy the first three of

the four constraints discussed above: signal detection
ial scales. There was a bias toward contrast salience in the centre of the

iewing, combined across all images and all observers. The distribution

us onset were included in this distribution. (c) The artefact produced by

rtificial set of ‘‘fixated’’ patches was generated by taking the fixation

location on an image selected randomly from the remaining image set.

ye. This artificial set of statistics was then compared to a set of patches

l detection based method (ROC). We can therefore replicate Parkhurst

l dataset and hence show that this effect is an artefact of the uniform

n in Fig. 7).
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theory or information theory based measures. These two

classes essentially differ in the nature of the structure

that they would find informative. An information theory

based measure of whether salience provides information

about whether locations are fixated or not, would be

sensitive to any differences between the statistics of fix-
ated and non-fixated locations (for example if they

had the same means but different variances). A signal

detection measure would only measure those differences

that would allow the distributions to be separated by a

simple threshold. While both are informative, we pro-

pose that a signal detection based measure is a better

characterisation of useable information and this is the

measure we use.
The exact signal detection measure that we chose is

the receiver operator curve area (ROC area, Green &

Swets, 1966). This metric determines how well fixated

and non-fixated locations can be discriminated by their

saliencies using a simple threshold. The ROC is a curve

that plots the false alarm rate (labelling a non-fixated

location as fixated) as a function of the hit rate (labelling

fixated locations as fixated). Systematically changing the
threshold used to discriminate between fixated and non-

fixated locations changes both the hit rate and false

alarm rate, and rather than simply choosing an optimal

threshold, the ROC area provides a measure summariz-

ing performance across all possible thresholds (the

threshold is systematically moved between the minimum

and maximum values in the data sets). For two distribu-

tions that it is not possible to discriminate, the ROC
area will be 0.5. For perfect discrimination, the value

will be 1.0, and when the system is predicting worse than

chance, the area will be less than 0.5.

This measure is invariant to monotonic transforma-

tion of the salience values and takes into account the

variability both of saliencies at fixated locations and

those at non-fixated locations. Therefore as a measure

of strength it has much to commend it. To allow statis-
tical inference to be preformed, we calculate the 99%

non-parametric confidence limits of the ROC area by

the use of the bootstrap technique (Efron & Tibshirani,

1993). Essentially we created 1000 surrogate data sets of

the same size as our original data set. This was done by

sampling with replacement from our data, and calculat-

ing the ROC areas using these surrogate data sets, and

then the distribution of these values was used to calcu-
late the confidence limits.

We are still left with problem of central fixation and

salience biases. We approached this problem by not

using randomly selected locations to collect the image

statistics for non-fixated saliencies, but choosing loca-

tions randomly from a distribution of all fixation loca-

tions for that observer that occurred at the same time,

but on other images (hence corresponding to a location
in the current image that was not selected by the obser-

ver). This means that both fixated and non-fixated distri-
butions have the same bias and we do not get positive

salience differences simply because observers tend to fix-

ate more to the centre of images. This problem we be-

lieve generates a number of artefacts in studies such as

that of Parkhurst et al. (2002) where they observed an

interaction of viewing time and salience. We also ob-
served such an interaction when we failed to correct

for central fixation bias (Fig. 3c) but they disappeared

when the appropriate correction was used (see results

below). In a more recent paper Parkhurst and Niebur

(2003) recognised that using appropriately-weighted

selection of non-fixated patches produced different re-

sults, but they have not applied this technique to an

investigation of the time course of selection (such as that
conducted in their earlier paper, Parkhurst et al., 2002).

Reinagel and Zador (1999) also highlighted the need to

bias sampling distributions for selecting non-fixated

locations in order to appropriately measure whether

salience was selected by the eye. While it is necessary

to account for central biases and our approach does this,

if the central fixation bias is due to the bias in salience,

then our method may underestimate the magnitude of
any salience effects.

2.7. Assessing the variability in saccade locations

The second aspect of our data that we wanted to

quantify was the consistency between fixation locations:

do different observers move their eyes to similar loca-

tions, and do eye movements become more variable with
time? This specific problem has been investigated previ-

ously in a series of papers (Mannan et al., 1995, Man-

nan, Ruddock, & Wooding, 1996, 1997), but using a

measure we believe has a number of limitations. We will

now consider briefly these limitations and how they can

be overcome by using the measure that we have

developed.

The method of Mannan et al. is based upon the sum
of squared distances between fixations. Given two col-

lections of eye movements, the difference is calculated

by going through every eye movement for observer A,

finding the nearest fixation location for observer B,

and making a running total of the squared distance to

this nearest location. This is repeated for observer B�s
fixations. After appropriate normalisation, this figure

is compared to the value found for ‘‘random fixations’’.
Nearest saccade-based metrics like that used by Man-

nan et al. and described above are limited by the fact

that there is not a natural metric to quantify how differ-

ent two fixation locations are. While two fixations that

place the fovea over the same region can reasonably

be classed as the same, is a location 20� away twice as
different as one 10� away? Should its similarity be scaled
according to the cortical magnification factor in the
superior colliculus, or is it four times as different, as it

would be classified using a sum of squared distance
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metric? By quantifying difference in terms of the squared

distance, the measure is dominated by the extreme fixa-

tions. Two essentially identical distributions of fixations,

with a single rogue eye movement will be characterised

as very different. The most effective solution to this

problem is simply to class two fixations that are directed
to the same location as the same, and two fixations that

are directed to different location as different. Because the

fovea subtends 1�–2� we define two locations as the
same if they lie within 2� of each other.
The second limitation of nearest saccade-based met-

rics is illustrated by the simple situation of two observers

viewing two objects. If the first observer fixated object A

95% of the time and object B only 5% of the time, while
the second observer showed exactly the opposite pat-

tern, it would be reasonable to claim that these two

observers displayed different eye movement patterns,

and this should be reflected in our measure. However,

nearest saccade-based measures would classify these

two distributions as identical. A measure based on the

probability distribution of locations would not have this

problem.
Lastly and most importantly, the nearest saccade-

based measure is not simply a measure of similarity be-

cause it is confounded by within observer variability.

Consider two observers viewing an image; the first ob-

server predominantly fixates the centre of this image

whereas the second observer�s fixations are distributed
randomly throughout the image. A third observer,

who predominantly fixates in the top right hand corner,
would be classed as more similar to the second observer

than the first, even though all three strategies are com-

pletely unrelated. Essentially the more evenly distributed

the saccades are in one population, the higher the

chance that a given saccade will be close to one of them.

This effect also leads to the problem that the measure

does not scale properly with differing data set sizes. Gi-

ven an infinite number of fixations for one observer, all
locations will have been viewed and a comparison fixa-

tion will always be of zero distance to one of them.

No amount of normalisation can adequately resolve this

problem. For a well-behaved measure, the results should

not depend critically on arbitrary decisions or be domi-

nated by outliers. It should be sensitive to differences in

distribution as well as simple location, should measure

only between observer similarity unconfounded by with-
in observer variability, and its measures should be con-

stant as a function of the amount of data used, simply

increasing in accuracy with increasing amounts of data.

Nearest saccade-based measures do not satisfy these

criteria.

We have developed an information theoretic measure

of the difference between fixation distributions that sat-

isfies the above criteria and avoids the limitations of a
sum of squared distance measure. Fixation location data

were used to estimate their spatial probability distribu-
tion, using a binning technique where the bins were cho-

sen to be 2� · 2� squared (a kernel method gave similar
results but was slower). As is common with such estima-

tors a prior (corresponding to a Dirichlet prior) was

used, implemented by adding a small constant (c in

Eq. (4)) to all bins. We used a value of our prior of
c = 10�5 but given the size of our data set, its value

was not critical. The probability of a saccade landing

at position x, y was represented as P(X,Y), and the num-

ber of saccades occurring in bin X,Y as F(X,Y):

P ðX ; Y Þ ¼ ðF ðX ; Y Þ þ cÞP
X 0 ;Y 0 ðF ðX 0; Y 0Þ þ cÞ ð4Þ

Following this an information theoretic measure (the

Kullback–Leiber divergence) was used to estimate the
difference between two probability distributions. Given

two such probability distributions Pa(X,Y) and Pb(X,Y),

the Kullback–Leiber divergence is defined as:

KL ¼ �PaðX ; Y Þ logðPbðX ; Y ÞÞ þ PaðX ; Y Þ logðPaðX ; Y ÞÞ
ð5Þ

The first term on the right hand side is the negative

log likelihood of Pb(X,Y) under distribution Pa(X,Y);

how probable was the distribution of fixations Pb(X,Y)

to be generated under Pa(X,Y). This does measures the

difference between the distributions but is confounded

by a within observer variability bias. This bias is simply

the entropy of Pa(X,Y) (the second right hand side term)

and by removing it we make our measure unbiased. The
Kullback–Leiber divergence can also be considered to

be the number of additional bits of information required

to describe distribution Pa(X,Y) given knowledge of

Pb(X,Y). Sampling error in this measure is dominated

by Pb(X,Y) so rather than compare every fixation distri-

bution to every other distribution, we compared each

observer�s distribution to the distribution based on all
other observers, and averaged over all observers. The
pattern of results from this measure is the same as that

from comparing every observer to every other observer

but the sampling variability is less.
3. Results

3.1. The scale of selection of visual features

We can assess the spatial scale at which the oculomo-

tor system selected image features for fixation by com-

paring the performance of the 13 different spatial

scales of feature modelling (see Section 2). The ROC

area statistic reflects the ability to discriminate between

fixated and non-fixated regions of the image on the basis

of the image feature and spatial scale chosen. By com-
paring ROC areas for each of the scales, those scales

most implicated in selecting fixation locations by the
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eye can be identified as those for which the ROC area is

highest. ROC areas for each of the four image features

analysed (luminance, chromaticity, contrast and edge-

content) are plotted for each of the 13 spatial scales of

salience in Fig. 4. An ROC area of 0.5 indicates that dis-

crimination between fixated and non-fixated regions in
the images is at chance. A value greater than 0.5 suggests

that the image feature is being selected for fixation. A

value below 0.5 suggests that the feature is being

avoided.

Generally, ROC areas were higher for the high spatial

frequencies than for the lower spatial frequencies. For

luminance, ROC areas were below 0.5 for spatial scales

coarser than 1.35cpd. ROC statistics did not fall below
0.5 for any of the other image features.
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Fig. 4. ROC area values for luminance (s), chromaticity (,), contrast

(h) and edge-content (�) of fixated locations compared to non-fixated

locations as a function of spatial scale. ROC area values measure the

difference between the distributions for fixated and non-fixated

locations. An ROC area value of 0.5 indicates no difference. The y-

scale is much enlarged. Error bars indicate 99% confidence intervals,

calculated using a bootstrap technique.

Fig. 5. Fixation locations (indicated by circles) for all observers combined (

second after stimulus onset, for one of the images viewed. There appears a gre

several seconds later.
By using ROC rather than ANOVA-based methods

we unconfounded the significance and strength of any

effect. An extremely strong effect can be non-significant

given noisy data and a small effect can be significant gi-

ven very large datasets (as in the case of our data). In

terms of significance, at the highest spatial frequencies
discriminability between fixated and non-fixated regions

was highly significantly different from chance for all im-

age features (p < 10�9). However, while the effect was

significant, it was not very strong. For luminance and

chromaticity, discrimination of fixated and non-fixated

regions was at 57% at its highest (at a spatial scale of

10.8cpd). For contrast and edge-content, discrimination

was at 63% at its highest (at 5.4cpd). Since ROC cap-
tures effect strength, we can use the values in Fig. 4 to

effectively rank the spatial scales according to the extent

of involvement in target position selection.

3.2. Temporal patterns of fixation target selection

Similar fixation locations were selected by different

participants in the first second of viewing (Fig. 5a),
but participants selected different fixation targets from

each other after several seconds of viewing (Fig. 5b).

3.2.1. Targeting the first few fixations on a scene

Consistency between participants can be assessed

using an information theoretic approach. Kullback–Lei-

ber divergence can be used to determine the entropy

(hence difference) between probability distributions con-
structed from the fixation positions of each participant

(see methods). The number of bits reflects the degree

of difference between the locations targeted by each par-

ticipant––a higher number of bits indicates a greater dif-

ference between participants. Fig. 6 shows the fixation

location entropy between participants as a function of

fixation number during viewing, for the first 14 fixations

after stimulus onset. The actual values of the Kullback–
Leiber divergence are not important here because they

depend on arbitrary decisions such as the number of
a) during the first second after stimulus onset, and (b) during the fifth

ater degree of consistency in the locations chosen early in viewing than
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participants, the bin size and prior employed in estimat-

ing the fixation probability distributions. Rather we are

interested in the pattern of change over the 14 fixations.

Difference between participants increased rapidly

over the first five fixations on the images but slowed

thereafter. One potential problem in our data is that
each trial began with a centrally located fixation mar-

ker. This common starting point for all participants

on each image may in itself account for early central

fixation bias (see Fig. 3b) and the greater degree of

consistency early in viewing found using our informa-

tion theoretic measure (Fig. 6a). While studies without

a central fixation marker (e.g. Canosa, Pelz, Mennie,
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Fig. 6. Mean Kullback–Leiber divergence (±1 SE) in fixation locations

between observers as a function of fixation number (a) when the pre-

trial fixation marker was always centrally located and therefore all

participants shared a common starting point, and (b) when the

position of the pre-trial fixation marker was varied randomly. In (a)

the difference is least for the first fixation and increases over the

following fixations. Fixation location consistency between observers is

highest for the first fixation and decreases over the course of several

fixations on a scene. In (b) the first fixation shows low consistency (as

would be expected given random starting positions, but thereafter the

pattern is similar to that shown in (a).
& Peak, 2003) still show a central fixation bias, we

cannot discount this possible explanation. In order

to investigate this issue, we recruited a further four

participants to take part in a replication of the main

experiment in which the pre-trial fixation marker was

randomly positioned before each trial; all other meth-
odological details were identical. The results of this

validation experiment are plotted in Fig. 6b. The first

fixation shows low consistency between participants,

as would be expected given random starting positions,

but consistency increases on the second fixation and

thereafter follows a very similar pattern of decreasing

consistency over several fixations as was found for

the experiment in which the pre-trial fixation marker
was always central (Fig. 6b cf. Fig. 6a). It would

therefore appear that our observed early consistency

between participants followed by a decrease in consist-

ency over the next few fixations is not an artefact of

the experimental design, but a reflection of the strate-

gies employed by observers when viewing the images.

The saliency models can be used to assess whether or

not the selection of image features changed over the
course of several fixations during viewing. The discrim-

inability between fixated and non-fixated locations is

shown in Fig. 7 as a function of fixation number during

viewing, for the first 14 fixations by all participants. The

magnitude of the ROC value reflects the involvement of

the chosen image feature in the selection of the location

of each of these fixations. Fig. 7 shows both the data for

the main experiment, where the pre-trial fixation marker
was always central (Fig. 7a) and for the validation

experiment where the pre-trial fixation marker was posi-

tioned randomly on each trial (Fig. 7b). As can be seen

in Fig. 7, there was no change in the involvement of im-

age features in selecting fixation targets over the course

of the first 14 fixations and this was not an artefact of

the central pre-trial fixation marker in the main experi-

ment; the curves are essentially flat as a function of fix-
ation number.

3.2.2. Targeting over the course of prolonged viewing

Changes in fixation location and selection of image

features over the first 14 fixations characterise any

changes in targeting by the oculomotor system that occur

soon after the onset of viewing. We can extend this inves-

tigation to look for any changes over prolonged viewing
(up to 9s). For this analysis we divided the viewing time

into nine one-second windows and compared fixation

positions using the same information theoretic and signal

detection theoretic methods as employed above, but this

time over a much extended period of viewing.

Fig. 8 shows the entropy between participants� fixa-
tion locations during each of these nine one-second

intervals of viewing. The most pronounced increase in
entropy (hence decrease in consistency) occurred during

the first three seconds of viewing. After this, the differ-
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fixation number in either (a) or (b), suggesting that the importance of

these image features in selecting fixation targets does not change. ROC

areas plotted are for image features extracted at a spatial scale of

5.4cpd.
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ence between participants continued to increase but at a

slower rate (although the rate of increase in divergence

did appear to increase again toward the end of the view-

ing period).
The involvement of image features in the selection of

fixation target positions over the nine one-second inter-

vals of viewing was characterised by the discriminability

between fixated and non-fixated regions extracted from

the saliency maps. Fig. 9 shows that there was no change

in the selection of image features over the nine second

viewing period.

While there was no change in the selection of image
features over the course of several seconds of viewing,

it is possible that the scale at which selection occurs

might vary. One indication of whether or not the scale
of features selected by the oculomotor system changes

during prolonged viewing is to compare the ROC

areas for each of the 13 spatial scales for fixations

occurring during the first second of viewing, with

ROC areas for fixations occurring during the 9th sec-

ond of viewing. There was no difference in the pattern

of selection of the different spatial scales in the first

and ninth seconds (Fig. 10) for any of the four image
features. Hence it would appear that the scale of selec-

tion of visual features did not change during the time

period studied.
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4. Discussion

We found that the consistency in fixation locations
selected by observers decreased over the course of the

first few fixations after stimulus onset; observers were

much more consistent in the locations they selected for

fixation early in viewing than they were later on. This

information theoretic result alone does not reveal the

source of the divergence between observers over time.

However, in conjunction with the signal detection tech-

niques using the bottom up salience modelling of visual
features, we can consider the possible source of change.

We can use our findings to evaluate the four models pro-

posed in Section 1.

The salience divergence model suggests that the bal-

ance between top down and bottom up control of sac-

cade target selection changes over time. Specifically,

the bottom up component is more influential early in

viewing, but becomes less so as viewing progresses. Such
a framework would account for our observed decrease

in between-participant consistency over time. In terms
of low-level image feature saliency, this framework

would predict that the difference between saliency at fix-

ated locations and at non-fixated locations would be
greatest soon after viewing began, but decrease thereaf-

ter. This pattern of decreasing saliency over a number of

fixations on a scene has been reported (Parkhurst et al.,

2002). However, the methodological limitations with the

technique applied by these authors that we discussed

earlier cast doubt on this result. Indeed our image sali-

ence measures show that there is no variation in discrim-

ination between saccaded to and non-saccaded to
locations over the course of several fixations or even sev-

eral seconds of viewing. It appears that Parkhurst et al.�s
findings are an artefact of their methodology. Because

we find no evidence for variation in the discrimination

between the salience at fixated and non-fixated locations

the current data do not support the salience divergence

account of saccadic targeting.

In the salience rank model locations in the scene are
ranked according to the salience of visual features.

The oculomotor system then selects targets sequentially
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according to this ranking (employed by e.g. Itti & Koch,

2000). In any scene it is likely that there will be only a

few locations of extremely high salience. These will be

selected first during viewing and the limited number of

such locations means that there will be a high degree

of consistency in the locations selected early in viewing
by all observers. Conversely, there are likely to be quite

a number of locations with similar, moderately salient

characteristics. Hence once the high salience locations

have been visited, there exists a much broader range of

possible saccade targets. If the oculomotor system se-

lects from among these possible targets at random, then

this would give rise to a lower degree of consistency be-

tween observers as viewing progresses. The salience rank
model is therefore able to account for the observed de-

crease in consistency between participants in where they

fixate and does not require any changes to either top

down or bottom up selection mechanisms. Once again

we can use our signal detection based salience measures

to assess this model. Sequential selection of targets

based upon visual salience rankings would predict large

differences between saliencies at saccaded to locations
and those at non-saccaded to locations early in viewing,

but smaller differences later on. Our data show that this

is not the case; there is no change in the discrimination

between the salience at saccaded to and non-saccaded to

locations; the current data do not provide support for

the salience rank model of saccadic targeting.

The random selection with distance weighting model of

target selection (Melcher & Kowler, 2001) suggests that
targets are selected using a proximity-weighted random

walk process. Within this model, the selection of loca-

tions for fixation is essentially random with respect to

both bottom up and top down processes. Such a frame-

work may at first appear to be consistent with our ob-

served data for between-participant consistency and

the influence of visual features over time, when consider-

ing the results of the main experiment in which all par-
ticipants commenced their viewing of the images from a

common starting point. Constant influence of bottom

up features would be expected given random selection

with respect to the physical properties of the stimulus.

Early consistency between locations fixation by partici-

pants, followed by later divergence would also be con-

sistent with a random walk mechanism given common

starting points in the image, as in the main experiment
reported here. While the data from the main experiment

does not allow us to discount the possibility that eye

movements on complex natural scenes may be driven

by the random selection with distance weighting model,

the data from the validation experiment can be used in

this way. In this validation experiment, starting posi-

tions were random and therefore a random selection with

distance weighting model would not predict inter-partic-
ipant consistency early in viewing under these condi-

tions. However, we did observe a similar early
consistency in this validation experiment and therefore

we argue that a random selection with distance weighting

model cannot fully explain our observations.

The fourth possible framework for saccadic targeting

is strategic divergence, where the influence of low-level

visual feature salience on saccadic targeting does not
change during viewing, but the top down strategic com-

ponent does vary. Within this model, it is this variation

that accounts for the observed decrease in consistency

between participants in the target locations selected for

fixation. This framework is entirely consistent with our

findings; fixation location consistency changes between

observers over time, but the influence of image features

does not. Thus the strategic divergence account proposes
that the strategies chosen by observers have the same

bottom up frame of reference for eye movements, but

over time observers use different top down strategies

to complete the memory task imposed in this

experiment.

The effect of observers� strategies upon the selection
of locations for fixation in complex scenes was demon-

strated in a classic study by Yarbus (1967). Yarbus
showed that fixation locations varied greatly within indi-

vidual observers when viewing the same painting but

with different instructions prior to viewing. This classic

experiment demonstrated that top down strategies can

have a large influence on the locations saccaded to.

We can use Yarbus� finding to explain the observed de-
crease in consistency between participants in our exper-

iments within the proposed strategic divergence

framework. Early consistency would reflect similar strat-

egies being selected by observers immediately following

stimulus onset. There are presumably many different

top down strategies that could be employed to complete

a memory task such as was required in our experiment

and it may be that there was time for several different

strategic approaches to be employed by an observer over

the course of several seconds of viewing. Given Yarbus�
demonstration that different strategies can produce large

differences in the locations that observers fixate, our re-

sults could be explained by strategy switching over time,

with different observers choosing different strategic

interpretations of the task over time.

Given the importance of high-level strategies, it is

important to consider the nature of the visual represen-

tation that a high-level system would require. Using raw
image intensities would be problematic because most

tasks do not uniquely define a target in terms of its

raw physical properties. However, an intermediate rep-

resentation, invariant to differences in the world such

as illumination, but which allows discrimination of

informative from non-informative locations, could be

of great utility. Simply because a system is driven largely

by top down mechanisms, need not imply that selection
cannot be defined in terms of a relatively low-level invar-

iant saliency based representation. Hence the search
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template used in high-level tasks (e.g. face recognition)

may not be encoded in terms of raw image intensities,

but may instead be encoded in terms of illumination

invariant informative characteristics of the image.

The two features that were most strongly implicated

in targeting, particularly for the high frequencies, were
contrast and edge-content. These two features are rela-

tively invariant to illumination variation. However, the

other two features, luminance and chromaticity, are

more prone to illumination confounds. Local luminance

will be dominated by illumination and failures of colour

constancy will invalidate any system based on colour.

In contrast to previous measures, our signal detection

measure unconfounds the significance and the magni-
tude of effects. Although we replicate the finding that

fixated and non-fixated locations are highly significantly

different in terms of their salience, the magnitude of the

effect is small. Maximum discriminability between fix-

ated and non-fixated positions in the image is 63% for

contrast and edge-content and 57% for luminance and

chromaticity. This is far from the perfect discrimination

(100%) that would be expected if saccades were driven
entirely by image statistics. We argue that this demon-

strates that the involvement of visual features is perhaps

weaker than has been implied in recent salience-based

models (e.g. Itti & Koch, 2000; Parkhurst et al., 2002).

Rather the magnitude of involvement of features ap-

pears consistent with our proposed intermediate invari-

ant representation. It should be noted that our study

does not offer an exhaustive survey of image features
and also does not consider the interactions between fea-

tures. It could be that another feature or a complex

interaction between features is more discriminatory than

those investigated here.

By comparing the performance of salience models at

different spatial scales, we are able to assess the relative

contribution of different spatial frequencies. It is clear

that high spatial frequencies are far more discriminatory
than low spatial frequencies for contrast, edge-content

and chromaticity. Parkhurst and Niebur (2003) ex-

tracted contrast, spatial correlation and spatial fre-

quency content at fixation using sampling patches of

different sizes, and compared the statistics of these

patches to non-fixated patches. They found greater dif-

ferences, and hence a stronger involvement of the image

features, for small patches, suggesting that finer scale
information was more strongly implicated in selection

than the coarser scales.

For low spatial frequencies discrimination between

fixated and non-fixated image locations was near chance

for contrast, edge-content and chromaticity, suggesting

that these low scales are not significantly involved in sac-

cade targeting. The results for brightness deviate slightly

from those for the above three features. At high frequen-
cies the results are similar; locations selected for fixation

are brighter or darker than expected if selection was ran-
dom. However, at scales lower than 1.35 cycles per de-

gree, ROC area values fall below 0.5, suggesting that

the eye is avoiding especially bright or dark low fre-

quency information in the image. This is consistent with

a selection strategy or representation that avoids regions

of sky or shadow in the images.
Preference for high spatial frequencies in target selec-

tion may arise from the task instructions. Given that

bottom up guidance can only account for up to 63%

of the fixation position data at best, top down modula-

tion is likely be involved. Hence the instructions given to

observers may have influenced the selection of positions

for fixation during viewing. In our experiments, observ-

ers essentially undertook a memory task; they were
asked questions about objects in the scenes after viewing

each image. The types of objects, their locations and

their sizes were varied, as were the types of questions

asked about the objects. This was done in order to keep

viewing as general as possible. However, the emphasis

upon objects in the questioning might produce a viewing

strategy biased toward the higher spatial frequencies.

This possibility is currently under investigation.
Our suggestion that saccadic guidance involves an

intermediate invariant representation can be seen to be

consistent with the strategic divergence framework for

saccade target selection. The suggestion that the low-

level component does not change over time would be

consistent with the existence of a constant intermediate

representation. It is the interpretation and inspection

of this intermediate representation that changes over
time and with varying task demands. This variation in

interpretation of the representation corresponds to the

suggested top down variation in the strategic divergence

model. Our findings open up an exciting new area of

study. Can we characterise more extensively the features

that are used to construct the intermediate representa-

tion upon which selection operates? When carefully con-

trolled for, can we investigate the influence of differing
higher level task demands on the interpretation and util-

ity of the intermediate representation and hence influ-

ence what the oculomotor system prioritises in the

representation as salient for selecting fixation targets?

Clearly, there is much to be done in this area, but our

proposition of an intermediate invariant representation

and of strategic divergence in the higher level interpreta-

tion of this representation offers a framework within
which further exploration can be structured.
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