
This excerpt from

An Invitation to Cognitive Science - 2nd Edition: Vol. 4.
Don Scarborough and Saul Sternberg, editors.
© 1998 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



Chapter 13

Separating Discrimination and Decision in

Detection , Recognition , and Matters of Life and

Death

John A . Swets

Editors
' 

Introduction

This chapter explains signal detection theory (SOT) and illustrates the remarkable variety of

problems to which it can be applied. When it was first developed (by the author of this

chapter, among others), SOT revolutionized the way we think about the perfonnance of sensory 
tasks, by explaining how perfonnance depends not only on sensory infonnation, but

also on decision process es. The theory also provided ways to disentangle these two aspects
of perfonnance- to decompose .or separate the underlying operations into sensory and
decision process es and to decide whether the decision process is optimal, given the sensory
infonnation. Now, after four decades of research, we are led to the surprising conclusion that

many tasks we perfonn, in domains ranging &om memory recall to airplane maintenance, are

analogous to sensory detection, and can be analyzed within the &amework of this theory.
SOT asserts that perfonnance in a discrimination or detection task must be divided into at

least two stages. In the first stage, infonnation about some situation is collected; in the second 

stage, this "signal
" is evaluated for decision making. The signal provided by the first

stage is often "noisy,
" which is to say, mixed with irrelevant material, and the second stage

must evaluate the noisy signal provided by the first stage. To take a simple example, if an
observer tries to decide whether she hears a faint sound, the message reaching her brain may
be contaminated by noise, such as the variable sounds of her own pulse and breathing. One

consequence of the noise is that decisions will sometimes be wrong. But the observer has
some control over the errors that she makes. To use John Swets's terminology, there are two

types of errors: false positives (e.g., asserting you heard something when there was nothing
there) and false negatives (e.g., asserting you did not hear anything when there really was a
sound). SOT explains how an observer can reduce the chance of one type of error, but only
at the cost of increasing the chance of the other. (Can you see how a jury verdict might be a
false positive or a false negative error, and how trying to reduce one type of error will affect
the chance of the other?) SOT also predicts how observers will choose to balance the two

types of errors.
SOT has its origins in work on noisy communication systems. Oevices such as radars,

radios, and TVs are all susceptible to electrical interference (one type of noise) and the engineering 
problem was how to determine when there was a "signal

" 
(e.g., a radar image of a

missile) within the obscuring noise. The big insight for psychology was that all communications 

systems, whether they be sensory systems, messages within the brain, or messages
between people, have to deal with noise, particularly when the signal is weak. Early studies
on perception showed that in audition and vision, the message that reached the brain
was indeed noisy. Later studies showed that the retrieval of a weak memory could also be



desaibed as an attempt to find the signal (memory) in the noise. SHII other studies have
shown that a radiologist examining an Xray for evidence of cancer or an airplane technician
examining a plane for evidence of stress cracks faces a similar situa Hon, as Swets describes in
this chapter. Other research shows that SDT can be applied to other important social questions

, such as the reliability of blood tests for AIDS. Unfortunately, too few people yet
appreciate the importance and broad applicability of SDT.

The work that Swets has done on many prac Hcal problems exemplifies the deep contributions 
that psychology can make. Swets discuss es how a doctor examines an Xray for

evidence of cancer. If you have ever seen an Xray , you know that it presents a vague
shadowy image. The doctor's task is to make a decision on the basis of this vague image.
This example illustrates a property of many decision-making situations. There may be several
tell-tale signs of cancer in the Xray , and the doctor must combine this information. Because
this is often difficult to do reliably, Swets and his colleagues have developed computer programs 

to help doctors in this situation. This applica Hon makes use jointly of the strengths of
humans and machines, and is therefore especially interesting in the context of cognitive
science. And SDT can make important contributions to many other practical decision-making
situations. It does not surprise us that in the 1994 White House policy report Science in the
National Interest, Swets's work on signal detection theory and its applicability in an array of
high-stakes decision-making set Hngs was selected to illustrate the importance of basic
behavioral science research.

Although there is a difference in terminology between Swets's discussion of the decision
problem in detection and Wickens's discussion of the testing of statistical hypotheses (chap.
12, this volume), you will discover strong similarities.
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a stimulus known to be present is of category A or category B. For example
, is this item familiar or new? The responses given in these tasks correspond 

directly to the stimulus categories : the observer says 
"A " or 1' 8."

The task of diagnosis can be either detection or recognition , or both .
In the cases of detection and recognition , the focus of this chapter will be
on tasks devised for the psychology laboratory , as in the study of perception

, memory , and cognition . In the case of diagnosis , the focus here
will be on practical tasks, such as predicting severe weather , finding cracks
in airplane wings , and determining guilt in criminal investigations . As a

specific example of diagnosis , is there something abnormal on this Xray
image, and, if so, does it represent a malignant or a benign condition ?

Diagnoses are often made with high stakes and, indeed, are often matters
of life and death.

In the tasks of primary interest , an organism , usually a human, makes observations 

repeatedly or routinely and each time makes a two -alternative
choice based on that observation . Though considered explicitly here only
in passing, the ideas of this chapter apply as well to observations (or
measurements) and choices made by machines.

13.1.2 The Tasks' Two Component Process es: Discrimination and
Decision

Present understanding of these tasks acknowledges that they involve two

independent cognitive process es- one of discrimination and one of decision
. In brief , a discrimination process assess es the degree to which the

evidence in the observation (for example, perceptual , memorial , or cognitive 
evidence) favors the existence of a stimulus of category A relative to

B. A decision process, on the other hand, determines how strong the evidence 
must be in favor of alternative A (or B) in order to make response

A (or B), and chooses A (or B) after each observation depending on
whether or not the requisite strength of evidence is met . We may think of
the strength of evidence as lying along a continuum from weak to strong
and the organism as setting a cutoff along the continuum - a "decision
criterion ,

" such that an amount of evidence above the criterion leads to a

response of A and an amount below , to a response of B.
The observed behaviors in such tasks need to be separated or II decomposed

,
" so that the discrimination and decision process es can be evaluated

separately and independently . We want to measure the acuity of discrimination
- how well the observer assess es the evidence - without regard

to the appropriateness of the placement of the decision criterion ; and we
want to measure the location of the decision criterion - whether strict ,
moderate , or lenient , say- without regard to the acuity of discrimination .
One reason to decompose is that an observed change in behavior may
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reflect a change in the discrimination or the decision process. Another
reason is that certain variables in the environment or in the person will
have an influence on observed behavior through their effect on the discrimination 

process while other variables will be mediated by the decision

process. Often we want to measure what is regarded as a basic process of
discrimination , as an inherent capacity of the individual , in a way that is
unaffected by decision process es that may vary from one individual to
another and within an individual from one time to another . But as we
shall also see, there are instances in which the decision process is the center 

of attention .

13.1.3 Diagnosing Breast Cancer by Mammography: A Case Study

The detection, recognition, and diagnostic tasks, and the decomposition
of their performance data into discrimination and decision process es,
are illustrated here by the diagnostic task that faces the radiologist in

interpreting X-ray mammograms. Radio logical interpretations assess the

strength of the evidence indicative of breast cancer and provide a basis for
deciding whether to recommend some further action. For our purposes,
we shall consider the Xrays as belonging to either stimulus category A,
"cancer,

" or stimulus category B, 
"no cancer"; and the corresponding

response alternative to be a recommendation of surgery to provide
breast tissue for pathology confirmation (i.e., a biopsy) or a "no action"

recommendation because the breast is deemed "normal" as far as cancer
is concerned.

13.1.3.1 Reading a Mammogram

It will help here to be concrete about how mammograms are interpreted
visually (how they are "read")- that is, what perceptual features of the

image are taken as evidence for cancer. And later in the chapter, we shall
see how perceptual studies can improve both the acuity of radiologists in

assessing those features and their ability to combine the assessments into
a decision.

Radiologists look for ten to twenty visible features of a mammogram
that indicate, to varying degrees, the existence of cancer. A perceptual
feature is a well-defined aspect or attribute of a mammogram or of some
entity within the mammogram. They fall into three categories: (1) the

presence of a "mass,
" which may be a tumor; (2) the presence of "calcifications

,
" or sandlike particles of calcium, which in certain configurations

are indicative of cancer, and (3) 
"
secondary signs,

" which are changes in
the form or profile of the breast that often result indirectly &om a cancer.

Though all masses, calcifications, and secondary signs are abnormal,
"
malignant

" abnormalities indicate a cancer, while "benign
" abnormalities

Separating Discrimination and Decision 639
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do not . Thus the diagnostic task in mammography is one of detection
(is there an abnormality present?) followed by recognition (is a present
abnormality malignant or benign ?).

Figure 13.1 illustrates some relevant features. Figure 13.la shows a
mass, seen as a relatively dark area, located at the intersection of the horizontal 

and vertical (crosshair) lines shown at the left and top of the breast.
This mass has an irregular shape and an irregular border formed of spiked
projections . These two features, of irregular mass shape and irregular border

, are highly reliable signs of malignancy . The lower part of the breast

image in figure 13.la (above the vertical line at the bottom ) shows some
calcifications . These particular calcifications are probably benign because,
compared to malignant ones, they are relatively large and scattered.

The arrow at the top left of figure 13.la points to two kinds of secondary 

signs: a slight indentation of the skin and an increased darkness of
the skin that indicates a thickening of the skin. Both are indicative of a

malignancy .
In figure 13.lb , the mass in the center of the image is likely malignant

because it has an indistinct or fuzzy border , indicating (as spiked projections 
do) a cancerous process spreading beyond the body of the tumor

itself . This mammogram also shows some calcifications - which can occur
inside of a mass, as they do here, or outside of a mass. Because these calcifications 

are relatively small and clustered, they suggest a malignancy .
The mass of figure 13.1c is benign and is, specifically , a relatively harmless 

cyst . A cyst has a characteristically round or oval shape and a clear
and smooth border .

I hasten to mention that figure 13.1 gives exceptionally clear examples
of malignant and benign abnormalities , to suit a teaching purpose; in

practice, these perceptual features may be very difficult to discern. I wish
also to draw a conceptual point from figure 13.1 that is fundamental to
detection , recognition , and diagnostic tasks: observers must often combine 

many disparate pieces of information into a single variable , namely ,
the degree to which the evidence favors one of the two alternatives in

question , category A relative to category B.
We can also think of this degree-of -evidence variable as indicating the

probability that the stimulus is &om category A . Then the observer who
must choose between A and B will set a cutoff , or criterion value, along
an evidence continuum viewed as a probability continuum - in effect,
along a scale from 0 to 100. A cutoff at 75, say, means that the probability 

that the stimulus is an A must be 0.75 or greater (and that the stimulus 
is a B, 0.25 or less) for the observer to choose A . As indicated earlier

and developed in more detail later, the evidence may be complex
- it may

contain many variables, or many 
"
qimensions

" - but , for purposes of a
two -alternative A or B response, it is best to boil the evidence down to
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one dimension, namely, the probability of one alternative relative to the
other.

13.1.3.2 Decomposing Discrimination and Decision Process es

There is a need to measure the fundamental acuity of the Xray mammo-

gram technique, that is, to measure precisely and validly how well this
technique is able to separate instances of cancer, on the one hand, from
instances of benign abnormality or no abnormality, on the other. We
desire a quantitative measure of acuity that is independent of (unaffected
by) the degree to which any or all radiologists are inclined to recommend
a biopsy. Several parties wish to know in general terms how accurate
Xray mammography is so that it can be fairly compared to alternative
diagnostic techniques, for example, physical examination (palpation), and
the other available imaging techniques of ultrasound, computerized axial
tomography (

"CAT scans" or CT), and magnetic resonance imaging (MRI
or MR). Hospital administrators and insurers, as well as physicians and
patients, wish to use a technique that is "cost-effective,

" one that provides
the best balance of high acuity and low cost. They need to appreciate that
the acuity of diagnostic imaging techniques is fundamentally determined
and set by the limitations of the technology as well as the perceptual
abilities of the interpreter, whereas the decision criterion may tend to vary
somewhat from one technique to another, and, indeed, can be adjusted
by agreement. Moreover, agencies that certify individual radiologists for
practice must know how acute the mammography technique is in each
practitioner

's hands, irrespective of decision tendencies.
Similarly, there is a need to know quantitatively how individual radiolo-

gists set their respective decision criteria, and how the profession generally
sets its criterion, for recommending biopsy. A very lenient criterion-

requiring only a little evidence to recommend biopsy (e.g., 5 on a 100-

point scale) might be adopted in order to identify correctly, or "find,
" a

large proportion of existing cancers. And, in fact, radiologists do set very
lenient criteria in reading mammograms, with the idea that early detection
of cancer reduces the risk of fatality. There are constraints, however, on
how lenient the decision criterion can be. A lenient criterion will serve to
find a large proportion of existing cancers, but, at the same time, it will
lead to many recommendations of biopsy surgery on noncancerous
breasts and thus increase the number of patients subjected unnecessarily
to such surgery.

Radiologists read mammograms in two different settings, which require
different placements of the decision criterion. In a "screening

" 
setting,

nonsymptomatic women are given routine mammograms (every year or
every few years), and the proportion of such women actually having
cancer is low, about 2 in 100 (Ries, Miller , and Hankey 1994). In a
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"referral" setting, on the other hand, patients have some symptom of
cancer, perhaps a lump felt in the breast. Among such patients, the proportion 

having cancer is consider ably higher, about 1 in 3. I suggest later
that a rather strict criterion is appropriate to the screening situation and a
rather lenient criterion is appropriate to the referral situation.

It is clear, in any case, that biopsy surgery is expensive financially and
emotionally so that unnecessary surgery needs to be curtailed. In fact, a
large number of unnecessary biopsy recommendations can beunmanage-
able as well as undesirable. As the government health agencies advise more
women to undergo routine, annual mammograms, and as more women
comply, the number of pathologists in the country may not be large
enough to accommodate a very lenient biopsy criterion. One way to
measure the criterion in this case is by the fraction of breast biopsies that
turn out to confirm a cancer: the "yield

" of biopsy. In the United States
the yield varies from about 2/ 10 to 3/ 10; approximately 2 or 3 of 10
breasts biopsied are found to have cancer (Sickles, Ominsky, and Sollitto
1990). England

's physicians generally use a stricter criterion; their biopsy
yield is about 5/ 10 (unpublished data from the UK National Breast Screening 

Centers, 1988- 1993).

13.1.4 Scope of This Chapter

Although, in using mammography as a case study, I have tried with continual 
references to make new terms concrete, it will be necessary to treat

the detection, recognition, and diagnostic tasks in formal terms, both to reflect 
their generality and to show how their performance data can be analyzed 
into discrimination and decision process es. Section 13.2 shows how

two variables considered in the previous discussion of mammography-
the proportion of cancerous breasts recommended for biopsy and the proportion 

of noncancerous breasts recommended for biopsy- are the basis
for separating and measuring the two cognitive process es. More generally

, the variables will be considered as the proportion of times that response 
A is given when stimulus A is present and the proportion of times

that response A is given when stimulus B is present. To show the interplay 
of these variables in defining measures of acuity and the decision criterion
, section 13.2 takes an excursion into a theory of signal detection that

is based on the statistical theory of decision making. Section 13.3 then
shows how both the theoretical ideas and the measures of discrim.ination
and decision performance can be represented simply and compactly in a
single graph.

Section 13.4 presents briefly some examples of successful separation of
the two cognitive process es- examples taken from psychological tasks of
perception and memory and from the practical tasks of polygraph lie
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detection, information retrieval, and weather forecasting. With that additional 
motivation, section 13.5 returns to theory and measurement in

order to reinforce the main concepts via a dice game that you are invited
to playas a calculational exercise.

Section 13.6 briefly describes the theory of how several observations
may be combined for each decision- much as the radiologist examines
several perceptual features of a mammogram- in order to increase discrimination 

acuity. Section 13.7 then shows how the radiologists can be
given certain aids to help them attend to the most significant perceptual
features, to assess those features better, and to better merge those individual 

feature assessments into an estimate of the probability that cancer
is present; and how these aids improve performance by simultaneously and
substantially increasing the proportion of cancers found through biopsy
while decreasing the proportion of normal breasts recommended for
biopsy. Ways of setting and monitoring the radiologist

's decision criterion 
are also discussed.

Section 13.8 treats briefly another practical example, that of human
inspectors using certain imaging techniques to detect cracks in airplane
structures. Data are presented on the state of the art that dramatically
illustrate the need for separating discrimination and decision process es, in
order to increase acuity and to set appropriate decision criteria- a need
that remains to be appreciated in the materials-testing field.

Finally, section 13.9 gives a historical overview, describing how in the
1950s the relevant theory was taken into psychology from statistics,
where it applied to testing statistical hypotheses (Wald 1950), via engineering

, where it applied to the detection of radar and sonar signals
(Peterson, Birdsall, and Fox 1954), to replace a century-old theory of an
essentially fixed decision criterion, equivalent to sensory and memory
thresholds (Green and Swets 1966). The diverse diagnostic applications of
the theory, growing &om the 1960s on, were based originally on psychological 

studies showing the validity of the theory for human observers in

simple sensory tasks (Tanner and Swets 1954; Swets, Tanner, and Birdsall
1961).

13.2 Theory for Separating the Two Process es

13.2.1 Two-by- Two Table

The statistical theory for separating discrimination and decision process es
is based on a two-by-two table, in which data from a task with two stimuli 

and two responses appear as counts or frequencies in cells of the table.
As shown in table 13.1, the stimulus alternatives (cancer and normal) are

represented at the top of the table in two columns, and the response
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alternatives (recommendation of biopsy and of no action ) are represented
at the side, in two rows . In general terms, as indicated in the table 13.1,
both the stimulus and response alternatives can be called either "

positive
"

(cancer exists; a biopsy recommendation is made) or "
negative

" 
(the

patient is normal ; no action is recommended ). The convention is to refer
to the stimulus of special interest (in our example, cancer) as "positive ,

"

. even when that stimulus produces negative affect. (Colloquially , when the

response is "positive ,
" the mammogram , or other medical test, is also said

to be "positive
"
).

To acknowledge some terminology that has been implicit in this discussion
, and needed beyond psychological studies, the two " stimulus "

categories (A and B) are generally regarded as two alternative "states of
the world ." They may be conditions or events that follow , instead of precede

, the "
response

" made to an observation . For example, the relevant
states of the world follow the "

response
" in weather forecasting . And

similarly , the "
response

" is more generally called a "decision "
; the decision 

is a choice between two alternatives that may follow or, instead,

anticipate , the occurrence of one or the other alternative . Establishing that
one or the other of the states of the world actually exists relative to a

particular decision (e.g., confirmation by biopsy ) is said to provide the
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decision outcomes.
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"truth" relative to that decision. And so we can ask, 
'Which stimulus

occurred?" or 'What is the truth?" For convenience, we shall use mostly
the "stimulus-response

" terms.
There are four possible stimulus-response 

"outcomes,
" as shown in

table 13.1. When the positive response coincides with the positive stimulus
- for example, when a response to make a biopsy is followed by the

pathologist
's confirmatory determination of cancer- the outcome falls in

the cell labeled " I " . It is called a "true positive
" 

(TP). Cell 2 represents the
coincidence of the negative stimulus and a positive response- for example

, when a biopsy is recommended for a normal patient; this outcome is
called a "false positive

" 
(FP). Proceeding, there are "false negative

" 
(FN)

and "true negative
" 

(TN) outcomes, as indicated in cells 3 and 4, respec-

tively . In FN no action is recommended even though cancer exists, and
in TN no action is recommended and none is necessary. Cells 1 and 4
represent correct (true) responses; cells 2 and 3 represent incorrect (false)
responses.

The counts or raw frequencies of the four possible co incidences of
stimuli and responses are denoted a, b, c, and d in table 13.2, for cells 1, 2,
3, and 4, respectively. As shown, the two column sums are a + c and b + d,
and the two row sums are a + b and c + d. The total number of counts is
N = a + b + c + d. The proportion of positive stimuli for which a positive
response is made is af(a + c) and is denoted here the "true positive proportion" 

(TPP). Similarly, we have bf(b + d) or the "false positive pro-
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Table 13.2-
The two-by-two table with cell entries indicating frequencies of stimulus-response outcomes,
to provide definitions of the four relevant proportions, as shown.

TPP = a/ (a + c)
FPP = b/ (b + d)

FNP = c/ (a + c)
TNP = d/ (b + d)

�
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portion
" 

(FPP). The remaining two possibilities are c/(a + c) or "false negative 
proportion

" 
(FNP), and d/(b + d) or "true negative proportion

"

(TNP). Note that the proportions defined for each column add to 1.0-
a/(a + c) and c/(a + c) in the left column and b/(b + d) and d/(b + d) in the
right column- and thus just two of the four proportions (one from each
column) contain all of the information in the four. As suggested earlier,
the two column proportions to be used here are those defined by cells 1
and 2, namely, TPP and FPP; these are the two proportions when apositive 

response occurs. In our example, recommendations of biopsy when
cancer exists give the TPP and those when no cancer exists give the FPP.

Finally, note that the proportions of positive and negative stimuli are,
respectively, (a + c)/N and (b + d)/N. Let us denote them P(S + ) and
P(S- ). The proportions of positive and negative responses are (a + b)/N
and (c + d)/N, respectively, and are here denoted P(R + ) and P(R - ). In
psychological experiments, the proportions of positive and negative stimuli 

can be set as desired (e.g., each at .50), whereas in real diagnostic tasks,
they are determined by the actual occurrences of positive and negative
stimuli in a given diagnostic setting, and may be very extreme, for example

, .01 (cancer present in only 1 percent of the stimuli) and .99 (normal).

13.2.1.1 Change in Discrimination Acuity

Table 13.3 shows hypothetical data that we shall take as a baseline to
consider the differential effects of a change in acuity and a change in the
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decision criterion . The proportions of positive and negative stimuli and

responses, indicated by frequencies in the marginal cells of the columns

(for the stimuli ) and rows (for the responses), are all .50 (50/ 100). The

summary measures of performance are TPP = .60 (30/50) and FPP = .40

(20/ 50).
Table 13.4 illustrates a change (specifically , an improvement ) only in

discrimination acuity : relative to table 13.3, the correct TP and TN decisions 
increase from 30 to 40 (TPP increases from .60 to .80) while the

incorrect FP and FN decisions decrease from 20 to 10 (FPP decreases from
.40 to .20). Acuity is greater because the proportions of true decisions of
both kinds increase while the proportions of false decisions of both kinds
decrease. Meanwhile , the marginal frequencies are unchanged; in particular

, P(R+ ) and P(R- ) remain at .50. Hence, there has been no change in
the tendency toward a positive response, which we shall see below
reflects no change in the decision criterion .

13.2.1.2 Change in the Decision Criterion

Table 13.5 shows, relative to table 13.3, a change in the decision criterion .
We can say that the criterion has become more lenient because both TPP
and FPP have increased, the former from .60 to .80 and the latter from .40
to .60. Overall , the proportion of positive responses has increased, P(R + )

changing from .50 to .70, consistent with a change to a more lenient criterion 
for making a positive response.
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Table 13.4

Hypothetical data indicating a change in disaimination acuity, relative to table 13.2.

Stimulus ( fruth )

Positive Negative
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~ ~
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~ ~ 10 40 SO
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SO SO 100

TPP = .80 FPP = .20
P(S+ ) = .50 P(S- ) = .50
P(R+ ) = .50 P(R- ) = .50



Separating Discrimination and Decision 649

Table 13.5
Hypothetical

pO itivf

a
 J \H

!

S
O

d
data indi~Hn~ a change in the decision criterion, relative to table 13.2.Stimulus (Truth)

40 30

10 20

TPP = .80 FPP = .60P(S+) = .50 P(S-) = .50P(R+) = .70 P(R-) = .30

Negative

(
U

O
! sp

aa

) as
uo

ds
a

' M

3 
A

 
H

e  S
3

 N

13.2.1.3 Separation of Two Process es

We would like to know if table 13.5 relative to table 13.3 indicates a
change in acuity as well as a change in the decision criterion. I shall defer
the discussion of quantitative particulars of that question with the promise
that an analysis of the relative changes in TPP and FPP will provide the
answer.

We can see now that considering TPP alone to be a measure of discrimination 
acuity, as has often been done in psychology and elsewhere, will

not provide the answer. That quantity increased from .60 to .80 in both
tables 13.4 and 13.5; although the increase in TPP in table 13.4 reflects an
acuity change only, as far as we know from the tables the increase in TPP
in table 13.5 is due partly, and perhaps entirely, to a change in the decision
criterion. Nor will looking only at the overall proportion of correct decisions

- namely, P(C) = (a + d)/N- provide the answer. One might be
tempted to infer that acuity has not changed from table 13.3 to table 13.5
because P( C) = .60 in both (30 + 30 and 40 + 20, respectively), but such
an inference is generally not justified. P(C) is not a reliable or valid measure
of acuity; both TPP and FPP need to be considered if the changes in the
decision criterion are to be partialed out to leave a pure measure of acuity.

13.2.2 Statistical Decision and Signal Detection Theories

Statistical decision theory and signal detection theory have much in common
. Here I present the more complete detection theory to show how



discrimination and decision effects can be separated in detection, recognition
, and diagnostic tasks.

13.2.2.1 Assumptions About an Observation

Signal detection theory incorporates three basic assumptions about an observation
: (1) it can be represented as a value along a single dimension-

which we shall call the "decision variable,
" x- that reflects the likelihood

of stimulus A relative to stimulus 5; (2) observations of stimuli from either

category A or category 5 will vary from one observation to another in
the value of x they yield; and (3) values of x for observations from one

category will overlap those from the other category. Let us consider these

assumptions briefly.

ASSUMPTION 1: The observation is one-dimensional. The x value might
represent an observer's confidence that stimulus A is present as opposed
to 5, as it does in mammography. Or it might be the amount of pressure
in an eye as measured by an ophthalmologist screening for glaucoma. In a

simple sensory task, the idea of a single dimension may seem plausible:

detecting a spot of light might depend only on the rate of neural impulses
in certain brain cells. However, no matter how many dimensions an
observation may have- variations in a spot of light, for example, in hue,
saturation, brightness, shape, duration, and so forth- the assumption of
detection theory is that the only thing that counts is the likelihood of A
relative to 5 implied by the several dimensions taken together. If there are
only two possible responses, then, for purposes of making a decision, the
observation need have only one dimension; indeed, it should be reduced
to one dimension if the best decisions are to be made.

ASSUMPTION 2: Observations of stimuli from either stimulus category
will vary. It is clear that Xrays of breasts with either benign or malignant
lesions will vary from one patient to another in the apparent likelihood of

malignancy. Some will show some particular signs of cancer and some
will show other particular signs, and more or less clearly. Similarly, samples 

from each stimulus category in a sensory detection experiment will
vary from trial to trial. For example, when observers try to detect the
occurrence of a faint tone within a background of white noise, the noise is
inherently variable and the tone can also vary because the tone generator
is not perfectly stable. Even without such a noise background, essentially
in quiet, the stimuli will appear variable to the observer because of natural
variations in the observer's physiological, sensory system. Thus, auditory
sensations affecting tone detection may result from the movements of
blood within the ear and visual sensations affecting light detection may
result from variations in blood pressure within the eye. (See Wickens,
chap. 12, this volume, for more discussion of sample variability and sample 

distributions.)
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ASSUMPTION 3: Values of the observation x &om the two categories
will overlap each other . A background of white noise in a tone detection
task has, by definition , energy at all audible &equencies, including the &e-

quency of the tone signal, and hence when the observer is attending narrowly 
to &equencies around the tone, the noise can produce observations

that sound like the signal . A malignant lesion may give little or no positive 
evidence in an Xray . A non liar in a polygraph exam may have a phys -

iological reaction as large as most liars. The overlap of observations will

vary &om small to large and discrimination acuity will vary accordingly .
If there is no overlap , then no detection , recognition , or diagnostic problem 

exists. This is because all x values produced by stimuli &om category
A will be larger than any x values produced by stimuli &om category B,
and an observer should have no difficulty discriminating between the two
stimulus categories.

13.2.2.2 Distributions of Observations

Look ahead, please, to figure 13.7, which shows a representation of the
three assumptions as a pair of histograms labeled "0" and "3" on a decision 

variable on the x-axis. You can ignore there the particular names of
the decision variable , which we have generally termed x, and of the two

histograms . The histogram distributions may look more familiar if you
imagine vertical lines &om each tick mark along the horizontal axis at the
bottom up to the dashed and solid lines, respectively , of the two distributions

; then observations at each value of the decision variable are

represented by vertical bars. The height of a given bar represents the

probability that its value of x will occur . We see in accordance with

assumption 2 that the observations &om each stimulus category vary -

&om 2 through 12 for the stimulus category shown on the left (
"
category

B" as represented by the histogram labeled "0"
) and &om 5 through 15

for the category on the right (
"A " or the "3" 

histogram ). In accordance
with assumption 3, the observations &om the two categories overlap one
another , such that the values 5 through 12 occur &om both categories .
There is surety in this case for the extreme values 2 to 4 and 13 to IS , but
such surety may not be evident in all cases.

To develop the analytical tools of signal detection theory , it is convenient 
to consider the distributions in a different form , namely , as continuous

probability distributions rather than as discrete histogram distributions .

Figure 13.2 shows a representation of the three assumptions as continuous 

probability distributions on the decision variable x. Again , category B

gives rise to values of the observation x according to the distribution on
the left ; category A , according to the distribution on the right . Each value
of x will occur with a probability , when B is present, that is represented
by the height of the B distribution at the particular value of x. And the



Figure 13.2.
Probability distributions of observations. or of the decision variable x. for stimulus alternatives 

A and B. with an illustrative decision criterion xc. and its corresponding areas or
probabilities FPP and TPP.

height of the A distribution, as one moves along the curve, gives the

probability that each value of x will occur when A is present.
Readers familiar with the testing of statistical hypotheses will recall a

picture similar to that of figure 13.2, with the null hypothesis on the left
and an alternative hypothesis on the right . In signal detection theory, the
two distributions are referred to as distributions of "noise alone" and
"
signal plus noise,

" 
respectively. This terminology arises for historical

reasons because with an electronic radar or sonar "signal,
" a stimulus from

category A is always viewed against a background of random interference
or static called "noise,

" that is, a stimulus from category B. This noise may
be generated in the environment or in the detection device. In the case of
a human detector, as mentioned, noise results from the physiological vari-

ability inherent in sensory systems and in the nervous system in general.
Thus, even though a stimulus from B is sometimes called a "null stimulus"

in a detection task, it is nevertheless a stimulus that impinges on the
organism, and one that may mimic, and be confused with, a stimulus from
A, or the signal. The occurrence of a signal adds something ("energy,

"

say) to the noise background; in general, values of x are larger for A or
the signal plus noise than for B or noise alone, and the distribution of x
for A is displaced to the right of the distribution of x for B. A good deal
of data from the tasks of interest here indicates that these probability distributions 

can reason ably, as well as conveniently, be considered as nor-
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mal (Gaussian) distributions , that is to say, as having the specific form of
the bell -shaped distribution that is portrayed in the figure . Ordinarily ,
however , despite their portrayal in figure 13.2, the distributions will have
different spreads or variances (e.g., the signal may add a variable quantity ,
rather than a constant quantity , to the noise, and the signal distribution
will then have a wider spread). Clearly , discrimination acuity will depend
on the separation of the two distributions : roughly speaking, the less

overlap , the less confusable are the stimuli . If, for example, the eye pressure 
test for glaucoma is perfectly acute, with pressure varying &om 30 to

50 physical units when glaucoma is present and &om 10 to 29 physical
units in normal eyes, then there is no overlap and the two categories of
disease and health will never be confused. If , however , the pressure test is
not very acute, for example, if glaucoma is associated with measurements
between 25 and 50 units and normal eyes with measurements between 10
and 35 units , then overlap exists between 25 and 35 units and the disease
and health categories will often be confused.

13.2.2.3 The Need for a Decision Criterion

In the face of such variability in observations and confusability in stimulus

categories, a rational decision maker will strive for whatever consistency
is possible . A basic kind of consistency is always to give the same response 

to a given value of the decision variable . In other words , the decision 
maker will attempt to adopt , at least approximately , some particular

value of x as the decision criterion - call it xc- such that values of x

greater than Xc always lead to response A and values of x less than Xc
always lead to response B. In our mammography example, the radiologist
will choose some level of confidence that cancer exists (e.g., 5 on a 100-

point scale) and use it as consistently as possible for the decision criterion .

Figure 13.2 shows a somewhat conservative decision criterion Xc as a
vertical line on the decision variable and represents the probabilities of
true positive outcomes (TPP) and false positive outcomes (FPP) that result
&om that criterion . To see how this is so, consider how an observer who
is being cautious about giving response A when response B is present
might adopt the criterion shown , where most observations will be to the
left of the criterion , each one occurring with a relative &equency or probability 

represented by the height of the B distribution at a given value of
x. But alternative B also produces values of x greater than xc- that is, to
the right of xc. The probability that a given value of x greater than Xc will
occur is represented again by the height of the distribution at that value .
However , the probability that any value of x greater than Xc will occur is

given by considering the probabilities of those several values of x relative
to the total probability of all values of x. As I justify in a later discussion,
the total area under the curve is taken to represent a probability of 1.0.



The probability that any value of x greater than Xc .will occur is equal to
the proportion of the total area under the curve that lies to the right of xc.

Specifically , FPP is equal to the proportion of the area under curve B to
the right of Xc and TPP is equal to the proportion of the area under curve
A to the right of xc, as shown by hatch lines. Both probabilities will
increase for more lenient criteria - as Xc moves to the left - and decrease
for stricter criteria - as Xc moves to the right . (Though not labeled in

figure 13.2, the proportions of area to the left of the decision criterion Xc
represent the two decision probabilities that are complementary to FPP
and TPP, respectively : the true negative proportion under curve B and the
false negative proportion under curve A .)

13.2.2.4 Decision Criterion Measured by the Likelihood Ratio

One general way to measure the location of the decision criterion -

independent of a particular decision variable , be it a mammographer
's confidence 

or the opthamologist
's physical measure of pressure in the eyeis 

by the quantity called " likelihood ratio " 
(LR). The LR at any value of X

of the decision variable is the likelihood that this value of x came from
distribution A relative to the likelihood that it came from distribution B.
In terms of figure 13.2, it is defined as the ratio (at that value of x) of the

height of the A distribution to the height of the B distribution . Thus, for

example, the LR is 1.0 where the two curves cross. As seen in figure 13.2,
the LR for a decision criterion increases (toward infinity ) as the criterion
moves to the right and decreases (toward zero) as the criterion moves to
the left . (If the two distributions have unequal spreads, the two curves will
cross a second time out at one or the other tail , but we shall ignore such
end effects for present purposes.) As one specific example, observe that in

figure 13.2 the illustrative criterion Xc is set at the midpoint of the righthand 
distribution , where the height of A happens in this picture to be a

little more than twice the height of B. More precisely , the LR at that point
is 2.5. Other measures of the decision criterion have been considered; an

advantage of LR, as we shall see next , is that it facilitates definition of the
best, or the "optimal ,

" criterion for any specific task. Let us denote acriterion 
value of LR as LRc.

13.2.2.5 Optimal Decision Criterion

In most tasks, particularly in diagnostic tasks, an observer /decision maker
will want to choose a location of the decision criterion that is best for some

purpose . In the mammography example, one desires an appropriate balance 
between the proportions of false positive and true positive responses,

FPP and TPP. This is because FP outcomes have significant costs and TP
outcomes have significant benefits; similarly with the other two stimulus -

response outcomes : false negative (FN) outcomes have costs and true
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LRc = ~~~ x benefit(TN) - cost(FP)
P(S+ ) benefit(TP) - cost(FN) 

.

That is, the expected value optimal criterion is specified by an LRc defined
as a ratio of the prior probabilities and a ratio of benefits and costs. (Because 

the costs are negative, one adds the absolute values of the benefits
and costs.) How benefits and costs may be assigned to decision outcomes
will be di~nJ~~pd lal-pr

In this way, any set of prior probabilities, benefits, and costs determines
a specific criterion value Xc, in terms of LRc, that is best for that set of
variables. It is best or optimal because it maximizes the payoff to the
decision maker.

Note that the negative alternative is represented in the numerator of
the probability part of the equation, P(S- ), and also in the numerator of

negative (TN ) outcomes have benefits. Further , the proportions of the

positive and negative stimuli , which we have denoted P(S+ ) and P(S- ),
will affect the location of the best criterion . We shall discuss this relation
later, but you can see now that if P(S+ ) is high - if , for example, in acertain 

breast-cancer referral setting , most of the patients seen have a malignancy
- one would do best to reflect that high P(S+ ) in a high proportion

of positive responses, P(R + ), and a lenient criterion toward the left of

figure 13.2 is needed to produce a high P(R+ ). Conversely , a low
P(S+ )- as in mammography screening of nonsyrnptomatic women - is
best served by a low P(R + ), which requires a strict criterion toward the

right of figure 13.2.
An optimal decision criterion can be defined quantitatively in various

ways . One very useful definition of the optimum is based, as discussed, on
the prior probabilities of the two stimuli , P(S+ ) and P(S- ), and the benefits 

and costs of the four decision outcomes, TP, FP, FN, and TN , shown
in table 13.1. This criterion is called the "

expected value" criterion because 
it maximizes the "mathematical expected value" of a decision - or

the net result of the benefits and costs that may be expected on average
when this criterion is used for many decisions (Peterson, Birdsall , and Fox
1954; Green and Swets 1966). Specifically , if we multiply the benefit or
cost of each of the four possible outcomes by the probability of that outcome 

(a I N , biN , etc., in table 13.2), and add these four products , we obtain
the expected (or average) value of the decision . (In this calculation , costs
must be taken as negative .) It is desirable to maximize that value over
many decisions because then the total benefit relative to the total cost is

greatest .

Although a fair amount of algebra is required , which we shall bypass, it
can be shown that the expected value is maximized when a criterion value
of LR, that is, LRc, is chosen such that



the benefit -cost part . Similarly , the denominators in both the probability
and benefit -cost parts represent the occurrence of the positive alternative .
Thus, for a fixed set of benefits and costs, the optimal LR, will be relatively 

large - and the criterion will be relatively strict - whenever P(S- )
is appreciably greater than P(S+ ). That is, one should not make the positive 

decision very readily if the chances are great that the negative alternative 
will occur. If, instead, the prior probabilities are constant and the

benefits and costs vary , the optimal LR, will be large and the optimal criterion 
will be relatively strict when the numerator of the benefit -cost part

of the equation is large relative to its denominator , that is, when more

importance is attached to being correct in the event the negative alternative 
occurs. Such might be the case when a surgical technique inquestion 

has substantial risks and its chances of a satisfactory outcome are
low . Conversely , the optimal LR, will be small and the optimal criterion
will be lenient when the benefit -cost denominator is large relative to its
numerator , that is, when it is more important to be correct when the positive 

alternative occurs. Such is the case in deciding whether to predict a
severe storm .

13.2.2.6 A Traditional Measure of Acuity

if a decision criterion value x, is placed midway between two distributions 
and the separation between the two distributions is increased, the

TPP will get closer and closer to 1.0 while the FPP is getting closer to O.
Thus, as can be seen in figure 13.2, one way to measure discrimination

acuity is to measure the difference , or distance, between the midpoints or
means of the two distributions . In some tasks, the distributions are available 

themselves from data; in tasks for which they are not , this measure
can be inferred from measured values of FPP and TPP. Usually , the difference 

between the means is divided by the standard deviation of one of the
distributions - as a measure of the spread of the distribution - and therefore 

is measured in the units of that standard deviation . (See Wickens ,

chap. 12, this volume , for a discussion of the standard deviation of a distribution
.) If the two distributions have the same standard deviation ,

which I have said in practice they usually do not , then this measure is
called d' 

(read "d-prime
"
). I mention d' here because it is ingrained in psychological 

uses of signal detection theory . Indeed, the LR, criterion value
has been termed p (

"beta "
) and the phrased -prime and beta" is used

often as shorthand to signify separation of the discrimination and decision

process es in psychology . Other discrimination measures have been defined 
and used that are variants of d', which are appropriate when the two

distributions differ in spread. Section 13.3 defines a measure I believe to
be preferable, and incidentally one that is commonly used in diagnostic
tasks.
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A simple and compact, graphical way of quantitatively separating discrimination 
and decision process es is the "relative operating characteristic"

(ROC). The ROC is a plot of TPP versus FPP, for a given acuity, as the
decision criterion varies (Peterson, Birdsall, and Fox 1954). Given a strict
(high) criterion corresponding to an Xc criterion toward the right side of
figure 13.2, both proportions are near 0; given a more lenient (low) criterion 

corresponding to an Xc value to the left in figure 13.2, they both
approach 1.0. Figure 13.3 shows an idealized ROC as a curve of decreasing 

slope running from 0 to 1.0 on each axis. It identifies three arbitrarily
selected (TPP, FPP) pairs along the curve, each corresponding to adifferent 

possible decision criterion.
Note that if the ROC fell along the dashed, diagonal line, it would represent 

zero acuity: everywhere along this line TPP is equal to FPP, which
is a result that can be obtained by pure guesswork or chance in choosing
between categories A and B, without making an observation. As acuity
increases, the ROC moves away from the diagonal, in a direction leftward
and upward toward the upper left comer of the graph, where acuity is
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Figure 13.3

13.3 The

The relative operatin~ maraderistic (ROC), with three nominal decision criteria.



perfect: TPP = 1.0 while FPP = o. Hence a suitable measure of acuity will
reflect the distance of the ROC from the diagonal line. For a particular
level of acuity, a given decision criterion produces a particular data point
along the ROC's curve and so a suitable measure of the criterion will represent 

the location of that point along the curve. The purpose of the ROC
is to measure discrimination acuity independent of any decision criterion
by displaying discrimination data at all possible decision criteria.

13.3.1 Obtaining an Empirical ROC

To obtain an empirical ROC for any observer or device at a particular
level of acuity, sufficient data points (each corresponding to a different
decision criterion) are obtained along the curve to fit the curve adequately

, that is, to determine quite reliably just where the curve lies. Five

points, each based on 100 or so observations, are usually thought to be
sufficient. One way to obtain these points is to vary from one group of
trials to another some variable or variables that will induce the observer
to adopt a different criterion for each group of trials. Thus one could

vary the prior probabilities of the stimuli A and B, or the benefits and
costs (rewards and penalties) of the decision outcomes, or both, and define
one ROC data point for each particular case. In such an experiment, the
observer makes a choice between the two alternative responses, A and B
in our general terms. In a signal detection problem, the response is either
"
yes

" 
(a signal is present) or "no" 

(no signal is present) and the two-

response method is often called the "yes-no method."

A more efficient way of obtaining data points on an empirical ROC is
the "rating method," in which the observers rate their confidence (e.g.,
on a six-category scale) that stimulus A is present. Here, the observer
chooses among multiple responses, six in this example, and the experimenter 

regards these different confidence responses as resulting from the
simultaneous adoption of a set of different criteria. Specifically, if an
observer establish es five different decision criteria, the decision variable is
divided into six regions, each corresponding to one of the six possible
responses. Then, in analysis, the experimenter treats different responses as

representing different decision criteria. In figure 13.2, you could picture
five vertical lines (corresponding to five values of xc) spread across the
decision variable. To illustrate, let us follow the convention that a rating
of 1 indicates the highest confidence that alternative A is present, and 6,
the lowest. Thus a rating of 1 corresponds to a very strict criterion (an Xc
to the right in figure 13.2) while a rating of 6 corresponds to a very lenient 

criterion (an Xc at the left in figure 13.2.) The data analyst first takes

only ratings of 1 to indicate a "yes
" 

(or positive judgment) and calculates
a data point (FPP and TPP) based on them. This point represents the
strictest criterion used by the observer. Next, the analyst takes ratings of
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both 1 and 2 to indicate a positive judgment and calculates a data point
based on them. This is the second strictest criterion used by the observer.
And so on for ratings 1, 2, and 3, ratings 1, 2, 3, and 4, and, finally, for
ratings 1, 2, 3, 4, and 5- the rating of 6 is never included as a positive
response, because then all responses would be positive and the trivial data
point at the upper right comer (FPP = 1.0, TPP = 1.0) would result. In
this way, progressively more rating categories are treated as if they were
positive responses and progressively more lenient criteria are measured.
In performing under the rating method, the observer adopts several criteria 

simultaneously- rather than successively in different groups of
trials- and thereby provides an economy in data collection.
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13.3.2 A Measure of the Decision Criterion

Although the ROC of figure 13.3 is shown with three possible decision
criteria, in theory, the criterion can be set anywhere along the decision
variable. Hence, if the decision variable is scaled finely enough to be essentially 

continuous, the ROC will be essentially continuous. One might,
for example, ask an observer to make a probability estimate that stimulus
A is present, that is, to use a 100-category rating scale, and thereby
achieve an approximately continuous ROC.

As remarked earlier, a criterion corresponds to, and can be measured
by, a value of likelihood ratio. Recall that the criterion value LR, is the
ratio of the heights of the two probability distributions at any given value
of the decision variable, x, (figure 13.2). It can be shown that the value of
LR, is also equal to the slope of the ROC at the data point that is produced 

by that criterion LR,. (Strictly, it is equal to the slope of a line tangent 
to the ROC at the data point.) Thus very strict criteria to the right in

figure 13.2, with high values of LR" produce a point on the ROC where
the slope is steep- at the lower left of the graph. A moderate criterion,
LR, near 1.0, produces a point near the middle of the ROC. A very lenient
criterion, to the left in figure 13.2, yields an ROC point where the slope is
approximately flat, near 0, at the upper right . This slope measure of the
decision criterion is denoted 5 (rather than LR,) in our further discussion.
Two illustrative values of 5 are illustrated in figure 13.4: 5 = 2 for a relatively 

strict criterion and 5 = 1/ 2 for a relatively lenient criterion. The
calculation of the slope measure is illustrated with data in section 13.5.

13.3.3 A Measure of Discrimination Acuity

Figure 13.5 shows ROCs representing three possible degrees of discrimination 
acuity. As mentioned, the range of possible ROCs runs from the

dashed diagonal line (where TPP = FPP and hence acuity is zero and
decisions are correct only by chance) to a curve that follows the left and
top axes (where acuity is perfect, TPP = 1.0 for all values of FPP). Thus it



1 .

.

.

. 
"

"

. 6 
"

"

. 5

. 3

. 2

S
=

SLOPE INDEX

. (
Two Illustrative Values

)

0 . 1 . 2 . 3 . . 5 . 6 . 7 . 8 . 9 1 . 0

Figure 13.4
The relative operating characteristic (ROC) with two i Uustrative values of the slope measure
of the decision criterionS .

is evident that the proportion of the graph
's area that lies beneath the

ROC is a possible measure of acuity. This area measure ranges from a low
value of .50 (for an ROC lying along the "chance" diagonal, where half of
the graph

's area is beneath the ROC) to a high value of 1.0 (for an ROC

running along the left and upper axes of the graph and subtending all of
its area). When normal distributions are assumed, as in section 13.2 above,
the area measure is denoted Az' because the units along the horizontal
axis of the normal distribution are called "z scores." Figure 13.6 shows
some illustrative values of Az.

It may help to provide some intuitive grasp of the values of this area
measure to know that it is equal to the proportion of correct choices in a
"
paired-comparison

" task- in which alternatives A and B are presented
together: in each observation and the observer says which is which. For

example, a radiologist might be shown two Xrays and would have to say
which shows the malignant condition. If the radiologist were correct 95

percent of the time in such a paired-comparison task, the yes-no or rating
method would yield the top curve (Az = .95) in figure 13.6 (Green and
Swets 1966).
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A measure of acuity drawn from the ROC is independent of any decision 
criterion that might be adopted; it reflects all possible decision criteria
. I emphasize now that such a measure is also independent of the

prior probabilities of the two stimulus alternatives that may inhere in any
particular situation because it is based on the quantities FPP and TPP,
which are independent of the prior probabilities- as shown in table 13.2
and related text. For example, changing P(S+ ) will change the column
sum a + c in table 13.2, but does not change TPP = a/(a + c). Hence an
ROC acuity measure is a general measure of the fundamental capacity
for discrimination and it represents the full range of situations in which
that particular discrimination might be called for. It is not specific to, or
dependent on, any of one them.

13.3.4 Empirical Estimates of the Two Measures

I merely note that it is possible to obtain graphical estimates of the criterion 
measureS and of an area measure of acuity, as when successive data

points in the ROC space are connected by straight lines. In this case, the
slopes of connecting lines between points give the criterion measure 5 for
each successive point (specifically, the slope of the line connecting two
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Figure 13.5
The relative operating characteristic (ROC) at three nominal levels of disaimination acuity.
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13 .4 Illustrations of Decomposition of Disaimination and

There follow five examples in which the ROC analysis was used to separate 
the two behavioral process es of interest , two examples from psychol -
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Figure 13.6
The relative operating characteristic (ROO at some illustrative values of the measure of discrimination 

acuity, Az.

points gives 5 for the higher point). The area beneath that ROC can be
measured graphically by adding up the areas in the trapezoids formed by
dropping vertical lines from the data points. In practice, however, acom-

puter program is used to fit smooth curves to ROC data and to calculate
the two measures along with estimates of their statistical variability (Swets
and Pickett 1982).

It should be clear now how the ROC indicates observed changes in behavior 
to be discrimination effects or decision effects, or both. If the entire

curve moves in the direction of the dashed diagonal line in figure 13.6,
that is, moves to contain more or less area beneath it, then there is a discrimination 

effect, whether or not there is a decision effect as given by the
measureS. If a data point (or set of points in the rating method) moves

along a given curve, then there is a decision effect. The quantitative measures 

give the sizes of such effects.

Decision

ogy and three from practical diagnostic tasks.



Outside the laboratory , signal detection must often be accomplished during 
a long observation period with in&equent signals occurring at random

times. Such is the case in military contexts , where the problem may be to
detect the approach of an enemy plane, and in industrial inspection , where
the problem may be to detect defective products on an assembly line .
Since such in&equent, random signals have been studied in the laboratory ,
beginning in about 1950, it has been found consistently that the true positive 

proportion falls off notice ably in only a half hour of observation - a
finding suggesting that enemy planes and faulty products will likely be
missed (Mackworth 1950; Mackle 1977). Investigators asked whether this
finding could reflect a decrement in discrimination acuity due to fatigue
or inattention , even though the time course of the decrement was very
short . Hundreds of studies over several years examined variables thought
to affect fatigue and alertness, including work -rest cycles, intersignal interval

, irrelevant stimulation , incentives , knowledge of results, introversion -
extroversion , temperature , drugs , age, and sex (Buckner and McGrath
1963; Broadbent 1971). At least five theories were proposed to account
for a decrement in acuity (Frankmann and Adams 1962).

Then, led by James Egan (Egan, Greenberg , and Schulman 1961) and
Donald Broadbent (Broadbent and Gregory 1963), investigators began
to ask whether the drop in the TPP reflected instead a change in the decision 

criterion . Might observers be setting a stricter criterion as time progressed- that is, requiring stronger evidence to say that a signal was
present--: conceivably because their estimate of the prior probability of
signal occurrence was going down as they experienced signals at a lower -
than-expected rate? If so, the FPP (as well as the TPP) should bedecreasing 

over time . False positive responses were then tallied and found to be
in fact decreasing. Another hundred or so studies have since shown that
for most stimulus displays , the principal , and sometimes only , change
over a vigil is in the decision criterion . .

Under some rather special conditions , changes in acuity are regularly
found , as well as changes in the criterion . For example, a change in acuity
is found when a discrimination must be made between two stimulus alternatives 

presented successively, which puts a greater demand on memory
than a discrimination between simultaneous stimuli . A high rate of stimulus
occurrence also produces a decline in acuity , perhaps because it requires
continuous observation , which may be difficult to maintain (Parasuraman
and Davies 1977).

Given the tendency for the criterion to change as the main effect, however
, task design has shifted to controlling it : Military commanders would

like their observers to use consistently a criterion that reflects realistically
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13.4.1 Signal Detection during a Vigil



the prior probability of attack and the benefits and costs of alternative
decision outcomes; similarly, manufacturers would like their inspectors to

employ a criterion that satisfies management
's objectives for the quality

of the product (Swets 1977).
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13.4.2 Recognition Memory

In a typical laboratory recognition memory task, the subject is asked to

say whether each of a series of items (e.g., a word ) was presented before

(
"old

"
) or not (

"new"
). Applying signal detection theory to obtain a pure

measure of "
memory strength ,

" 
analogous to acuity , depends on the assumption 

that all items lie along a continuum of strength , with the strength
of each item being determined by conditions of memorizing and forgetting 

(Murdock and Duffy 1972). The subject sets a decision criterion on

the strength continuum to issue a response of "old ,
" and the investigator

attempts to separate actual phenomena of memory from decision or response 

process es that may vary within and across subjects for reasons independent 

of memory (Egan 1958).
Several experimental effects that were presumed to reflect memory

strength were later shown to be effects of the decision criterion instead

(Swets 1973). These effects include the apparently better recognition of

more common words - in fact, there is evidence that recognition memory
is better for uncommon words (Broadbent 1971); the differences in recall

of familiar and unfamiliar associations (McNicol and Ryder 1971); the

buildup of false responses of "old " 
during a continuous recognition task

(Donald son and Murdock 1968); effects of interpolated learning (Banks

1969); changes in semantic or association context from acquisition to recall

(Da Polito , Barker, and Wiant 1971); and gender differences (Barr-Brown

and White 1971). Effects due both to memory and decision process es

were found for meaningfulness of items (Raser 1970), serial position
(Murdock 1968), and the similarity of distractor items (Mandler , Pearl-

stone, and Koopmans 1969). A study of elderly patients , including both

demented and depressed individuals , showed that an apparent memory
loss that seemed similar for both types of patients was, in fact, a true

memory impairment for demented individuals , but rather a criterion

(confidence or caution ) effect for depressed individuals (Miller and Lewis

1977).

13.4.3 Polygraph Lie Detection

Attempts to detect individuals who are lying about certain events- by

examining the various physiological measures (such as heart rate) that are

taken by a "
polygraph

" machine- aTe increasingly being made both in

court cases and in employment settings where security is important (Saxe,
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13.4.4 Information Retrieval

Conventional library systems manually retrieve documents from shelves
and facts from documents by means of familiar card indexes based on
cataloguing methods. Computer-based retrieval systems scan documents
electronically, looking for various properties of the text- for the appearance 

of key words, say- and give the documents a relevance score to
represent how likely they are to contain wanted information. In both
cases, a decision criterion must be established: how likely must the document 

be to satisfy the specified need for information in order to proceed

Dougherty, and Cross 1985). According to a recent article, the need to
separate discrimination acuity and the decision criterion is simply not
appreciated in this field:

Despite lengthy congressional hearings conducted during the preparation 
of the Employee Protection Act of 1988, no one ever explained 
the distinction between accuracy [acuity] and a decision

criterion to the legislators. Thus, the policy makers never learned
about a polygrapher

's predilection to err on the side of false positives 
or false negatives, constancy in the location of his or her decision 

criterion, or ability to change his or her decision criterion.
Individual differences among polygraphers with respect to their
decision criteria thus remain unknown, and persons appearing
before a polygrapher are- unknowingly- up against the "luck of
the draw." (Hammond, Harvey, and Hastie 1992, 84).

Studies have shown polygraphers to have widely different acuities
and also quite different decision criteria for accusing a person of lying
(Shakhar, Lieblich, and Kugelmass 1970; Szucko and Kleinmuntz 1981).
However, there is a general tendency toward a lenient criterion for concluding 

that an individual is lying, probably because accusations hold a
chance of eliciting a confession. In this respect, polygraphers may care
less about their technique

's acuity if it is effective in eliciting a confession
now and then. As a consequence, the ratio of persons falsely accused to
those truly accused is often quite high- in some studies, as high as 20 to
1 (Szucko and Kleinmuntz 1981). As attempts are made to expand the
domain of polygraphy, we can ask, should the criterion for accusation be
different for security screening in the workplace than for criminal cases?
Specifically, how do the prior probabilities, and especially the benefits and
costs, differ? Polygraphers find it rather easy to change their decision criteria

; as in mammography, they look for certain perceptual features of the
recording of physiological variables and can adjust the decision criterion
explicitly by requiring the presence of more or fewer of these features.



to retrieve it for further examination? The decision criterion might be

specified for computer systems in terms of the number of key words a
document must contain or in terms of how high its relevance score must
be. Here again, librarians considering alternative systems for use should
know the relative acuities of the systems- how well they separate the
wheat from the chaff- independent of any particular decision criterion.
Users will want to set a criterion to individual likings when the system is
in operation. In examining the retrieval performance of several alternative

systems with the relative operating characteristic (ROC) technique, I
found that their various approach es to the scoring of relevance led to

only negligible differences in acuity (Swets 1969). As examples of different 

approach es, one system might consider only specified key words,
whereas a second might also consider synonyms of the specified key
words; a third system might scan the full text, and a fourth, just the
abstract.

Incidentally, the typical acuities found suggest that the retrieval problem 
is more difficult than we might have thought. Consider a file of 3,000

documents and assume that for each query to the file 10 documents are

actually relevant. To retrieve 3 of the 10 relevant documents, one must

accept, on average, 3 false positives, that is, 3 unwanted, irrelevant documents
. To retrieve 6 of 10 relevant items, a more lenient criterion must be

effected, and then 30 false positives will occur. A user desiring to retrieve
9 of the 10 relevant documents will have to set a very lenient criterion
and then will have to winnow the 9 relevant documents from the approximately 

300 retrieved, some 290 of which will be just 
"noise."

13.4.5 Weather Forecasting
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Ian Mason (1982a) first applied signal detection theory to predicting various 
kinds of weather events. Weather forecasting represents a diagnostic

problem similar to information retrieval, medical diagnosis, materials testing

, and so forth, in that we want to measure acuity independent of the
decision criterion when alternative systems (or "models") for forecasting
are being evaluated prior to selecting one of them for use, and then want
to adjust the criterion to an appropriate level when the selected system is

operating in actual practice. Mason showed that predictions of various
kinds of weather give data that are fitted well by the ROC. He showed
further (1982b) that the several existing (non-ROC) measures of acuity
used in this field confound discrimination acuity and the decision criterion
and hence give unreliable measures of acuity.

Weather forecasters have recognized the operational problem of setting
decision criteria in recent years by giving probability estimates for weather
events, thus permit ting the forecast user to set his or her own decision
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criterion . The orange grower can decide, in terms of personal costs and
benefits, whether the likelihood of frost is high enough to set out the
smoke pots . You and I can decide whether or not to carry an umbrella .

13 .5 Computational Example of Decomposition : A Dice Game

A deep understanding of the theory discussed above comes quite easily by
way of a game (Swets 1991a). In the game, three dice are thrown repeat-

edly. Two are ordinary dice with 1 through 6 spots on the six sides; the
third die has 3 spots on each of three sides and blanks on the other three
sides. For each throw, you are given the total number of spots showing-

your observation- and you must say whether the unusual die showed a 3
(positive event) or a 0 (negative event). You win $1 on true positive and
true negative outcomes and lose $1 on false positive and false negative
outcomes. I assume that you will set a decision criterion at some particular
number of spots and consistently respond 

"3" when and only when that
number is met or exceeded. The optimal criterion is the one that maxi-
mizes your payoff and you will want to determine that number.

13.5.1 Distributions of Observations

Consider the initial steps in determining the optimal decision criterion.
You need first to calculate the distributions of observations under each
stimulus alternative: the probability of each of the possible totals 2 through
12 when the third die shows a 0 and the probability of each of the possible 

totals 5 through 15 when the third die shows a 3. So you construct
table 13.6 to show the number of different ways in which each total 2

through 12 can occur on two ordinary dice- relevant to throws on which
the third die shows a O. Reading along the positive diagonals from lower
left to upper right, you note that a total of 2 can occur on the two ordinary

Table 13.6
Pnccihlp .hrnwc whpn .hird dip ~hnw ~

2 3 4 5

1 2 3 4 5 6 7

2 3 4 5 6 7 8

Number of 

spots 

3 4 5 6 7 8 9

showing 

on

d di 

4 5 6 7 8 9 10

seton e

5 6 7 8 9 10 11

6 7 8 9 10 11 12

�
�

Number of spots showing on first die



dice in only one way (I , I ), a total of 3 can occur in two ways (I , 2, and 2,
I ), and so on. Because there are 36 different kinds of throws possible, the

probability of a 2 (which can occur one way ) is 1/36 (or .028), the probability 
of a 3 (which can occur two ways ) is 2/36 (.056), and so forth . The

appropriate table for the throws on which the third die shows a 3 is

obtained by adding 3 to each cell entry in table 13.6; these values are

shown in table 13.7.
You will need table 13.8, which lists the number of ways in which each

total can occur when a 0 shows (column 2) and when a 3 shows (column 3)
and also the probability of each total given a 0 (column 4) and given a 3

(column 5). Just as the numbers of ways a given total can occur (for 0 and

3, respectively ) add up to 36, so the probabilities (for each of the two

types of throw ) add up to 1.
Now you can construct the two probability distributions - as histo -

grams because your observations are of integer values only ; that is, they
are discrete rather than continuous . These distributions are shown in figure 

13.7, where the distribution for throws of 0 is on the left (dashed line)
and the distribution given a 3 is on the right (solid line). In earlier termi -

no logy , the totals of the two ordinary dice constitute the "noise" of signal
detection theory , and the third die either adds a signal to the noise or

does not . This dice game provides more surety than many more realistic

tasks in that certain observations very clearly and definitely come from

one or the other stimulus alternative . Specifically , in this case, there is no

uncertainty or decision problem for the totals 2 to 4 (which definitely
indicate a 0) or the totals 13 to 15 (which definitely indicate a 3).

Following up on our earlier discussion of continuous probability distributions 
in figure 13.2, picture vertical lines in figure 13.7 extended from

each tick mark on the horizontal axis up to the dashed and solid lines, so

that each total of the three dice (under each of the alternatives 0 and 3) is

represented by a vertical bar. If the bars are assumed to have a width of
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Table 13.7
Possible throws when third die shows 3

1
2
3
4
5

7
8
9

10

8
9

9
10
11
12

10
11
12
13

II
12
13
14

Number of spots
showing on
second die

7
8
9

�

Number of spots showing on first die�

1 2 3 4 5 6

5 6 7 8 9 10
6

6 10 11 12 13 14 15
10
11



Note: Columns 2 and 3, respectively, are the numbers of ways each total number of spots as
listed in column 1 can occur when a 0 is thrown, and when a 3 is thrown, on the third die;
columns 4 and 5 are the corresponding probabilities for each total listed in column 1; column
6 is the likelihood ratio for each total listed in column 1, namely, the ratio of column 5 to
column 4; the FPP in column 7 is the probability of observing a total number of spots that is
at least as great as the value in column 1, given that a 0 shows on the third die; similarly, the
TPP in column 8 is that probability given a 3 showing on the third die.
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Table 13.8
Probabilities of the various totals, the likelihood ratio, and the ROC coordinates.�

one unit, then the area of a bar (as well as its height) reflects the probability 
of its corresponding total of the three dice. Because the probabilities

for each histogram add up to 1, the total area under each histogram equals
1. Hence we can add the areas of the bars to the right of a decision criterion

, for the left and right histograms, to give the probabilities FPP and
TPP, respectively. This operation may help you to understand the way
areas yield FPP and TPP for the continuous distributions of figure 13.2.

13.5.2 The Optimal Decision Criterion for the Symmetrical Game

What total of the three dice do you choose for your decision criterion?
The answer is straightforward for this symmetrical game-

"
symmetrical

"

in the sense that the chances of a 0 and 3 are equal (there are three of each
on the third die) and all benefits and costs are equal. Here we need only to
determine which totals are more likely when a 3 occurs on the third die
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Figure 13.7
Histograms of the probabilities of occurrence of the totals of three dice (for the odd die
showing 0 on three sides and 3 spots on three sides), with the likelihood ratio for each total.

than when a 0 occurs and, conversely, which totals are more likely for a 0
than a 3. According to table 13.8, totals of 9 and greater are more likely
for a 3 than for a 0, and totals of 8 or less are more likely for a 0 than for a
3. If you think of the optimal criterion then as 8.5, you can note in figure
13.7 that it occurs exactly in the middle of the pair of histograms, that is,
where they 

"cross" each other. This result is intuitively proper for a symmetrical 
game.

Would you rather play the game when the third die has 4 spots on three
sides instead of 3 spots? For this new version of the game, the histograms
are further apart and so your acuity will be higher, and the decisions
should be better and produce a higher payoff. Specifically, the right-hand

histogram moves one unit to the right . ( Now the total of 5 is a sure sign
of a 0, along with totals of 2, 3, 4, and the new possible total of 16 is a
sure sign of a 4, along with totals of 13, 14, 15.) Because the optimal criterion 

also moves one unit to the right, to 9.5, here you say 
"4" for

totals ~ 10.

13.5.3 The Optimal Decision Criterion in General

Returning to the first version of the game, with 0 or 3 spots, what now if
the third die shows 3 spots on four sides, rather than three? Or on two
sides rather than three? How do such changes in the prior probabilities
affect the optimal criterion? Given our earlier discussion (in section



13.5.4 The Likelihood Ratio

To use this result, you need to know the value of the LR for each total
number of spots. Table 13.8 shows the values of the LR in column 6; they
are the ratios of values in column 5 (probability of a given total if 3
occurs) to those in column 4 (probability of a given total if 0 occurs)- just
as we defined the LR earlier in terms of heights of continuous distributions
(section 13.2.2.4). You note in table 13.8 that with an LR criterion of .20,
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13.2.2.5), you respond that having 3 spots on four sides leads to a more
lenient criterion, whereas having 3 spots on two sides leads to a stricter
criterion (than 8.5).

Further, consider a change in benefits and costs: say that the TN and FP
outcomes (possible when the third die shows a 0) remain at +$1 and - $1,
respectively, but that the TP and FN outcomes (possible when the third
die shows a 3) become +$5 and -$5, respectively. Because :t:$1 applieswhen a 0 occurs on the third die and :t: $5 applies when a 3 occurs, it is
more important to be correct when a 3 occurs, and you will want to say"3" more often, by setting a lower criterion number of total spots (lower
than 8.5). To determine just what that criterion number is, we need to
employ the formula for the optimal, expected value criterion presentedearlier in terms of the likelihood ratio criterion, LR" in section 13.2.2.5. It
is an "expected value" (EV) criterion you want because you want to maximize 

your average payoff over many plays of the game arid that is what
the EV is.

Again, to avoid a fair amount of algebra, we shall go through the operations of this example only in summary. First you multiply the probabilityof each outcome by its value (benefit or cost) to obtain its EV, and then
you add the two EVs for each possible decision (0 or 3) to get each deci-
sion's EV. At this point, were you to make some algebraic substitutions
and collect and rearrange some terms, you would find that if you choose 3
for those totals having a higher EV for 3 than 0 (and choose 0 for the
other totals), you will be saying "3" whenever the LR of a total is greaterthan LR" where

LR, = ~ x benefit (TN) - cost(FP)
P(3) benefit(TP) - cost(FN) ,

which is identical to the formula given in section 13.2.2.5. (As noted
before, a cost has a negative value; hence the absolute values of benefit
and cost are added.) For the game at hand, where the benefits and costs
are :f: $1 and :f: $5, you say 

"3" when the LR exceeds

.5 1 + 1 2- X = - = .20.

.5 5 + 5 10



you say 
"3" for totals of 5 or more - as it happens here whenever the

probability of 3 exceeds zero.
The LRs listed in table 13.8 are printed along the top of figure 13.7

where they indicate the ratios of heights of the histogram bars (the ratio
of 3's heights to O's heights) at each three-dice total. If you draw a vertical
line there, to represent LR = .20, at the tick mark between 0 and .25, and
extend it down to the bottom axis, you see again that an LR criterion of
.20 leads to saying 

"3" whenever the total is 5 or more (greater than 4.5).

13.5.5 The Dice Game's ROC

To construct the game
's ROC, we must know the probabilities for TP and

FP for each decision criterion. I designate these probabilities as I did their

proportions, TPP and FPP. We can calculate the relevant probabilities by
applying the ideas used in the rating method introduced in section 13.3.1.

They are shown in columns 7 and 8 of table 13.8. Note that in this table,
the criteria &om top to bottom (2 spots to 15 spots) run &om lenient to
strict, and thus, to maintain the convention of section 13.3.1, where we
started cumulating probabilities at the strictest criterion, we begin cumulating 

&om the bottom of the table. For illustration, consider first the prob-

abilities of various numbers of total spots showing when a 0 occurs on
the third die- in column 4- and the corresponding values of FPP for criteria 

set at those different numbers of total spots- in column 7. Reading
&om the bottom of column 4, we see that the probabilities of total spots
equaling 15 or more, 14 or more, and 13 or more are all .000. For 12 or
more spots, the probability in column 4 is .028, and thus the value of FPP
in column 7 is .028. For the criterion at 11 or more spots, we begin to
cumulate; we add the probability of .056 in column 4 to the probability of
.028 in column 7 to determine the value of .084 in column 7. Moving up,
the probability of .083 in column 4, for a criterion of 11 or more spots, is
cumulated with the .084 in column 7 to show .167 in column 7, for a criterion 

of 10 or more spots.
Look next at TPP in column 8, which is achieved by cumulating over

the probabilities of a given number of total spots showing when a 3
occurs on the third die, as shown in column 5. For 15 or more total spots,
the probabilites in both column 5 and column 8 are .028. Move up in column 

5 to the next row and cumulate .056 with the .028 in column 8 to
calculate the TPP of .084, for a criterion set at 14 or more total spots
showing, and so on.

In this way, by using the rating method described in section 13.3.1, we
determine values of FPP and TPP for each possible decision criterion in
the dice game, and thus can plot the game

's ROC. Plotting ROC points at
the FPP and TPP coordinates given in columns 7 and 8 of table 13.8 gives
points marked by IS along the ROC shown in figure 13.8. Thus, for exam-
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pIe, the symmetrical criterion at 8.5 total spots yields the point FPP = .278
and TPP = .723 as circled in figure 13.8. We can see that this criterion is
symmetrical because its point lies at the negative diagonal of the figure
where the error probabilities are equal: FPP = .278 and the false negative
proportion FNP is 1 - TPP or 1 - .723 = .278 (within rounding error).

Note that the slope measure 5 of the criterion is obtained from the
slope of the line connecting that criterion's data point and the data point
to its left. For example, the LR criterion that yields the circled point is
1.25, corresponding in table 13.8 to a total greater than 8.5. And the
slope of the line connecting the circled point to the squared point is 1.25.
Recall that a slope, here 5, is calculated as the ratio of the increment on
the y-axis (Ay) to the increment on the x-axis (Ax). Working from table
13.8, Ay = .723 - .584 or .139 and Ax = .278 - .167 or .111, and hence
the ratio Ay/Ax = .139/ .111 or 1.25.

13.5.6 The Game's Generality

The dice game makes concrete the random distributions of observations
that occur for the two different stimulus alternatives. As described so
far, the game

's two distributions have the same spread. The "signal plus
noise" distribution has the same variation as the "noise alone" distribution,
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Figure 13.8
Relative operating characteristic (ROC) for the dice game.
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because the signal (a throw of 3 on the third die) adds a constant value
(i.e., 3) to the variable noise-alone observation (the total of the two ordinary 

dice). However, as mentioned, data in most detection, recognition,
and diagnostic tasks yield distributions with different spreads. A small
change in the dice game serves to represent this case. For example, consider 

a version of the game in which the third die has 2 spots on one side,
3 on a second side, and 4 on a third side. (Your task is still to say whether
the third die shows spots or a blank.) In this case, there is variation in the

signal in addition to that in the noise-alone distribution, and the signal-

plus-noise distribution will have a larger spread than the noise distribution
. In particular, the spread of totals when the third die shows some

spots will range from 4 to 16, instead of from 5 to 15.
The dice game is a general representation of detection, recognition, and

diagnostic tasks in other respects as well, as noted in the preceding discussion
. Thus it illustrates calculation of an ROC based on the multiple

responses of the rating method, the adoption of a decision criterion in
terms of the likelihood ratio, the concept of an optimal (expected value)
criterion, and the measurement of that decision criterion by the slope of
the ROC at a particular point. An area measure of discrimination acuity is

appropriate.

13.6 Improving Discrimination Acuity by Combining Observations

This brief section is included because it is basic to applications of signal
detection theory and, specifically, is central to the case study of diagnosing 

breast cancer considered in the following section. The idea is that the
more observations that enter into each decision, the greater will be the
acuity afforded by those decisions (Green and Swets 1966).

Just how much discrimination acuity will increase as more observations
are considered in each decision depends heavily on how correlated or
redundant the observations are. Two diagnostic systems that are completely 

redundant- that is, are always in complete agreement- clearly
offer no more acuity together than either one alone. At the other extreme,
diagnostic systems that provide totally different information give the

greatest potential for increased acuity. As an example, you might expect
that repeated mammograms of a given patient taken by the same machine
and same technician and read by the same radiologist would provide
more correlated information than ones taken and read under diverse conditions

. Pursuing this example, you would expect that a physical examination 
of the breast and a mammogram would provide less correlated

information than two mammograms. The same is true for a computerized
tomography or ultrasound scan of the breast along with a mammogram,
relative to two images taken by one technique. These three techniques
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differ physically in the way anatomical and physiological information is

acquired and displayed , and are correspondingly uncorrelated .
The largest increase in acuity that can result from combining observations 

is when the systems that produce them are completely independent ,
or when the variability of a given system makes successive observations
from it completely independent . According to statistical theory , acuity is
then proportional to the square root of the number of systems considered
or the number of times a sample of observations is replicated . Hence a

doubling of systems or samples increases acuity by ~ , or 1.4. Thus a
substantial increase in acuity (40 percent) results from doubling the number 

of systems or the sample size (Green and Swets 1966).
We would like a way to predict the gain in acuity that results from

observations correlated to any specified degree. Then, in any particular
setting with any amount of measured or estimated correlation among
observations , we could determine whether the likely gain in acuity would

outweigh the cost of acquiring the additional observations . For example,
we could anticipate the gains in acuity of having mammograms read twice
by the same radiologist or by different radiologists . We further wish to
handle observations that are more or less informative in their own right ,
that is, observations that by themselves afford more or less acuity of discrimination

. In sum, if we have two observers looking for a given signal,
we wish to predict their combined acuity if one observer is partially
redundant with the other and one is inherently not as acute as the other ,
by particular amounts .

Theory exists to make such predictions (Metz and Shen 1992) and figure 
13.9 is presented here to illustrate one of the variables, namely , the

effect of correlation - but not the other variable , namely , the effect of different 
acuities because that is too complicated to show . The figure shows

along the horizontal axis the factor by which the number of observations
is increased- moving , for example, from one to two to three to four observers

, diagnostic tests in a clinic , or perceptual features in a mammo -

gram . On the vertical axis is shown the theoretical prediction of percent
gain in acuity . Separate curves are shown for six degrees of correlation
(as indicated by r, the correlation coefficient ) ranging from zero correlation 

(i.e., independent observations ) to perfect correlation (i.e., additional
observations provide no additional information ). When there are more
than two observations , the correlations listed are averages for all possible
pairs of observations .

It can be seen that predicted acuity increases sharply for uncorrelated
observers or tests (where r = 0), by 100 percent when increasing from
one to four . Any correlation between observers or tests or features acts to
reduce the possible gain in acuity from the additional three observations ;
for example, for r = .20, the maximum gain is about 50 percent . For high



correlations , additional observers or tests or features are hardly worth the
costs of employing them.

Data my colleagues and I obtained in a mammographic setting are very
close to these predictions (as reported by Metz and Shen 1992). For example

, on the scale of figure 13.9, and with an average correlation between

pairs of observers of .55, the gain in acuity from using two observers
rather than one was 10 percent in one test and 12 percent in another .
These differences in acuity correspond to differences in Az of .024 and
.029, and to differences in TPP at a value of FPP = .10 of .064 and 0.84.

These results are relevant to the study discussed in the next section, in
which the objective is to increase the acuity of mammography in detecting
breast cancer. With an imaging test such as mammography , radiologists
must know which perceptual features to look for , how much the acuity of

diagnosis increases with the number of perceptual features observed , and

how to merge the observations of features in a way that is sensitive to

their correlations and their relative contributions to acuity . Radiologists
should not , for example, 

"double count ,
" that is, give full weight to a feature 

that contains information fully redundant with the information of

anot~er feature previously taken into account .

13 .7 Enhancing the Interpretation of Mammograms
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Figure 13.9
Obtainable gain in discrimination acuity &om additional
their intercorrelations (&om Metz and Shen 1992).

observers or tests as a function of

We consider in this section some ways of enhancing the interpretation of

Xray mammography images in the diagnosis of breast cancer. This study



was carried out with my psychologist colleagues David Getty and Ronald
Pickett, and with radiologist and mammography specialist Carl D'Orsi. It
shows how the radiologist

's discrimination acuity can be increased and
illustrates the types of factors that are involved in choosing an appropriate 

decision criterion for a positive judgment. It has implications for
how performance and outcomes can be substantially improved in a wide
range of diagnostic tasks of importance to individuals and society (Getty
et al. 1988).

The practical significance of enhancing discrimination acuity in mam-

mography is indicated by the fact that approximately 175,000 new cases
of breast cancer were diagnosed last year in the United States. Further,
early detection can reduce the number of deaths caused by breast cancer,
now standing at approximately 45,000 each year. On the other hand, a
large number of breast biopsies is performed on patients without cancer;
as mentioned earlier, that proportion is approximately 7 or 8 out of every
10 breast biopsies done in the United States (counting .all breast biopsies
done for whatever reason). Thus large benefits would accrue &om increasing 

TPP and decreasing FPP (D
'Orsi et al. 1992).

13.7.1 Improving Discrimination Acuity

In mammography as practiced today, the "error rate" is thought to be
about 15 percent, meaning that the two error proportions FPP and FNP =
.15 (so TPP = .85). To increase discrimination acuity beyond that level,
we developed two aids for the radiologist. The first is an aid to perception
or discrimination and is here called a "reading aid." This aid is a checklist
of the types of observations the radiologist should make in reading every
image- or of the various perceptible features the radiologist should
attend to, as discussed earlier in section 13.1.2.1. Each perceptual feature
on the list is accompanied by a numerical scale that elicits from the
radiologist a quantitative judgment about the extent to which it occurs, or
the radiologist

's confidence that it is present, or a measurement by ruler.
The scale permits a more finely graded representation of perceptual information 

than the binary (present or absent) judgment that is typically
made.

The second aid, a "merging aid," is a computer program that merges
the several scale values for the features of each case into the single value
they imply of the final decision variable, namely, the probability of cancer.
In our earlier terminology, the computer supplies a value of the decision
variable x that the observer can compare to a decision criterion value xc.
In the merging, the program takes into account the relative importance or
relative "weight

" that each feature should have in estimating the overall
probability of cancer. That weight depends on how diagnostic the feature
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is and also on the degree to which it is correlated with other features, as
discussed in section 13.6. Radiologists can use the computer

's probability
estimate as advisory information in making their own estimate.

The intent of this approach is to retain for the human observer a task
that computers do not (at present) do well: detecting and recognizing
subtle perceptual aspects of an image- and to delegate to the computer a
task that humans do not do as well: remembering and optimally combining
several pieces of quantitative information. Several previous studies have
shown that an explicit formula for combining information gives greater
diagnostic acuity than an individual's intuitive combination (Davies and
Corrigan 1974; Ackerman and Gose 1972; Gale et al. 1987). Our approach 

further compensates for human frailties by supplying the checklist,
which forces the mammogram reader to be comprehensive in every image
viewed. In this study, we did not separate the magnitudes of the effects of
the two aids, which would require the reader to give an overall confidence
judgment before as well as after learning the computer-based estimate of
cancer. Another study we made of the interpretation of magnetic resonance 

images of the prostate gland, however, was designed to separate
the two effects (Seltzer et al. 1997).

Before these two aids could be specifically designed, we needed to determine 
carefully the perceptual features that should be included, and their

relative importances in diagnosis. In our approach, we begin with the
advice of mammography experts and proceed to certain perceptual tests
and statistical analyses. Our approach is systematic, as contrasted with the
usual, almost haphazard, way in which several separate investigators publish 

articles over a span of years about specific features they believe to
be useful in medical imaging. Our approach is carried out in a short time,
important in an era in which new medical imaging techniques appear at
a rapid rate and are soon modified, and does not await an individual's
motivation to collate and organize individual features in a review article
or book.

13.7.1.1 Detennining Candidate Perceptual Features

We took two steps to determine which perceptual features should be
examined as candidates for the final list to be implemented in the two
aids. The first step was a very direct approach. It consisted of a series of
interviews with five specialists in mammography in which they were
asked to mention all possibly useful features. The intent was to create an
exhaustive list, so that no feature of possible relevance was overlooked;
this step yielded about so features. In several instances, no doubt, the
same feature appeared with different names and notice ably different features 

probably occurred that were highly correlated or conveyed a good
deal of redundant information.
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The second step was a highly indirect approach, where the mammog -

raphy specialists made quantitative , nonverbal judgments , as described
below , about what they saw in a representative set of mammograms and
these judgments were analyzed by a statistical procedure to reveal the
perceptual features on which they were based. The objective of this second 

step was to reveal any features possibly affecting the radiologists
'

perception that were not previously verbalized and also to reduce and
refine the list of features that came from the interviews .

Specifically , in the second step, 24 mammograms were selected to
represent typical variations in both cancerous and normal cases and the
five mammography specialists (and three psychologists specialized in perception

) made judgments about the visual similarity of each of the 276
possible pairs of the 24 mammograms , on a 10-point scale. To these judgments

, we applied a statistical analysis- called "multidimensional scaling
"

(MDS )- that assumes that the degree of judged similarity between two
mammograms reflects the distance between them in a hypothetical perceptual 

(Euclidean) space of several dimensions (Shepard 1964; Shiffman,
Reynolds , and Young 1981). In this space, similar mammograms cluster
together and others diverge in various directions (and to various extents )
depending on the nature (and extent ) of the perceived dissimilarity . The
MDS analysis determines the several dimensions of the space implied by
the total set of similarity judgments and locates each mammogram in that
space; that is, it gives the coordinate value of each mammogram on each
dimension . We investigators then regarded these dimensions as candidate
features for the checklist .

The concepts and techniques of multidimensional scaling, and of similar 
indirect approach es to determining features, cannot be discussed here

in any detail . To appreciate something of this approach, you can imagine
that a set of ratings of the distances between all u .S. state capitals could
be analyzed to produce a familiar map, in two dimensions , of the United
States. (The point of using ratings of distances, rather than actual distances

, in this state capital analogy is to reflect the statistical variation
in human judgments of similarity .) The MDS analysis of distances
between state capitals would produce the east-west and north -south
dimensions and give the coordinate values (here, :r and y) of each capital
on these dimensions . A similar , two -dimensional analysis of mammo -

gram similarities /distances would show how two of the main features
of mammograms (e.g., irregular shape and irregular border of a mass)
serve to place all mammograms in a two -dimensional space. Those with
high values on both dimensions (high :r and y, upper right quadrant )
would likely be malignant and those with low values on both dimensions
(lower left quadrant ) would likely be benign . Similarly , a table of straight -
line distances between all pairs of a set of stars could be used to construct
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a three-dimensional space----a volume in which each star could be located
at its position relative to the others.

MDS analysis generally yields up to four to five dimensions for a given
set of ratings. In the present case, each reader made three similarity
ratings for each of the 276 pairs of mammograms in the selected set, one
for each of the three major qualitative categories of mammographic features 

(masses, calcifications, and secondary signs). With four or so dimensions 

produced by each of the three sets of ratings, the total analysis
produced about a dozen dimensions, and hence a dozen potential features.
The intent of using a judgment of similarity, that is, a global judgment
about image features, within a qualitative category, is to permit intuitive
and unlabeled aspects of the image to have an influence.

A virtue of MDS analysis is that it yields independent dimensions, that
is, the perceived value of one potential feature (for a given mammogram)
is not affected by, and hence not correlated with, variation in the perceived 

value of another potential feature (as scaled for that mammogram.)
Conversely, the features given by the specialists directly in interviews
are not assuredly independent. Also, the MDS analysis assigns weights
to the dimensions according to how well they represent the total set of
similarity judgments; those weights are an indication of the dimensions'

potential importances as diagnostic features.

13.7.1.2 Reducing the Set of Features and Designing the Reading Aid

With the MDS results in hand, the specialists were consulted as a consensus 

group to help select a set of the most promising features. The original 
fifty features they verbalized were available for their consideration

along with the features suggested by the MDS dimensions. The intent
was to select a set of features of small and workable size, while keeping all
features that were likely to be more than minimally predictive of malignancy

. The further intent was to determine what to name those features
and how to scale them.

To investigate the features possibly arising from the MDS analysis, the

twenty-four mammograms the specialists had judged were arrayed in
order for them along each perceptual dimension in turn, according to the

mammograms
' coordinate values on the given dimension. So the specialists 

could see and discuss what perceptual property seemed to be varying
on each dimension and agree on what it was best called. Taking some

examples from figure 13.1, the two masses in figures 13.la and 13.1c
would appear at the two ends of a particular array, which could be called
"
roughness/smoothness of border." The calcifications in figures 13.la and

13.lb would appear at the ends of other arrays, which could be called,
respectively, 

"
clustering of calcifications,

" "size of calcifications,
" and
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confidence

Figure 13.10
Illustration of a scale of a perceptual feature on a mammogram. Branching or curvilinear calcium 

elements are indicative of cancer (at right), whereas punctate elements are indicative of
a benign abnormality.

"
shape of calcifications ." Less extreme instances of these dimensions

would spread out in between . Pursuing the last of these examples, curvi -
linear calcifications versus noncurvilinear or "

punctate
" 

calcifications
would be a strong determination of visual similarity and hence would
define a dimension or feature. The investigators and specialists devised a
numerical scale for each such feature, as exemplified for curvilinear and
punctate calcifications in figure 13.10. For other types of features, the
scale was a reader' s confidence that a particular feature is present or, alternatively

, a physical measure of extent - for example, the length and
width of a mass or group of calcifications .

As mentioned , the MDS procedure reveals certain features to be highly
enough correlated with others so that not all need be retained . This information 

was used, along with the relative importances of the features, to
reduce the set of candidate features to about thirty . The features described
in connection with figure 13.1 were confirmed as important by the MDS
analysis and the experts

' 
consensus. Mammography is a well -established

imaging technique of many years
' 

standing , and the features revealed by
our MDS analysis were among those mentioned earlier in interviews .
Hence the MDS analysis served mainly to help us select among the features 

previously mentioned by mammographers . However , in our applications 
of MDS to newer techniques, for example, magnetic resonance

imaging of the prostate gland , MDS analysis has revealed previously unsuspected 
features. The same was true in a study of photographs of the

lens of the eye typically made to classify types of cataracts; features
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newly revealed by MDS analysis provided a more sensitive classification

than that previously available .

13 . 7 . 1 . 3 Determining the Final List of Features and Their Weights

We investigators believed that the set of thirty features that remained

after the consensus conference was too large to be workable and probably

contained several features that would not carry much weight in a diagnosis

, that is , would not be very predictive of malignancy . We therefore

made a second reading study and applied another statistical technique to

reduce the feature set to just the most important ones . We had in mind a

set of a dozen or so features . We wanted to know quantitatively how

predictive each of these features was so that we could assign a weight to

each , that is , a number reflecting its importance in diagnosis . We looked

ahead to a merging aid for the radiologist who , in reading mammograms ,

would assign a scale value to each feature , which would then be multi -

plied by the weight of that feature , such that the resulting products could

be linearly combined to calculate a probability of malignancy .

In the second reading study , the specialists applied the scales of the

thirty features that remained after the consensus conference to the images

of 100 new cases for which the diagnostic truth was known , including 50

cancers proven by biopsy and 50 noncancers established by one year of

follow -
up . The statistical procedure of 

"
discriminant analysis

" 
was then

used to determine which minimal set of features was necessary and sufficient 

to be retained in the final checklist , and to determine their relative

weights . This analysis shows specifically which features with which

weights serve to maximize discrimination acuity , where acuity is expressed

by a measure closely akin to the ROC area measure (Az ) defined earlier .

Twelve features were selected for the final set , to be used in creating a

checklist for radiologists . This final set of features included those with

high enough weights to contribute significantly , in our view , to discrimination 

acuity and excluded those making only a minimal contribution .

13 . 7 . 1 . 4 The Merging Aid

The same discriminant analysis was the basis for the merging aid , the

computer program that linearly combined the twel
~

e scale values given

to it by the radiologist for the twelve checklist features , appropriately

weighted , for each case read . The computer

'
s output , as mentioned , was

an estimate of the probability of cancer that radiologists could use in

making their own estimate . Readers might report a higher or lower probability 

value for cases where they thought there was something in the

mammogram that was not captured adequately by the feature scales .

The concepts and details of how discriminant analysis determines a final

set of features for a checklist and then serves as a merging aid are the



subjects of entire books and manuals (e.g., Lachenbruch 1975), but I will
attempt to capture briefly the intuitive essentials. Recall that the mammog-

raphy specialists gave a rating on each of thirty features (in a "master"

set) for each of 100 mammographic cases known to have cancer or not. A
simple way to determine which of the features are quantitatively the most
useful in distinguishing cancer from noncancer cases would be to calculate
from those ratings an ROC measure of acuity for each feature independently

. One problem with this approach is that there is no way to determine 
which of the thirty features constitute an appropriate smaller set.

Another problem with this approach is that there is no clear way to
merge a set of feature values into a single decision variable, namely, the
probability of cancer, especially because the features cannot be assumed
to be independent. The form of discriminant analysis we used address es
these problems by implementing a stepwise feature selection procedure,
in which features are selected in order of their acuity after taking their
intercorrelation into account. That is, the procedure first selects the most
discriminating feature and gives a measure of its diagnostic acuity, then
selects the feature that is second most discriminating, when only acuity
beyond that offered by the first is considered, and measures the additional
(uncorrelated) acuity the second feature provides, and so on. This particular 

second feature is not necessarily the one with the second highest
acuity when features are considered independently. The procedure can be
terminated when additional features are adding only insignificantly to
total diagnostic acuity. If you think of each mammogram as being represented 

by a point in a multidimensional space (as in MDS analysis) that
has the final set of features (say, twelve) as dimensions, then the mam-

mograms indicating cancer collect in one cloudlike region of the space
and those indicating no cancer collect in another. The discriminant analysis 

determines the direction, or vector, through the space that best separates 
the two clouds. This determination serves to reduce the number of

dimensions of the space to just one dimension, namely, the line represented 
by the vector. The equation for that vector is a linear function of

the dimensions, and the coefficients of the equation represent the relative
weights of the features in diagnosis. The equation is called a "discriminant
function."

This function constitutes the merging aid when individual mammogram
cases are read. Scale values assigned by the reader to the features of a
given case are multiplied by their respective weights (the function's coefficients

) and added together to yield a discriminant score. In effect, the
mammogram being read is represented as a point along the discriminant
vector. This point or score is then translated into a probability that the
mammogram at hand reflects the presence of cancer, and this probability
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is the advisory estimate that is given as an aid to the mammogram reader
(Getty et al. 1988).

13.7.1.5 Erperimental Test of the Effectiveness of the Aids

Six other radiologists, experienced but not specialized in mammog-

raphy, read a different set of cases (58 cancer, 60 noncancer) to provide an
evaluation of the effectiveness of the two aids. They read the cases first in
their usual manner without the aids (

"standard condition"
) and then, after

six months, with them (
"enhanced condition"

). In both instances, the
readers gave their degree of confidence, on a five-category scale, that a
cancer was present. The rating method described in section 13.3.1 was
used to construct an ROC for each reader in each condition. A group
ROC for each condition was obtained by pooling the rating data of the
individual readers.

Figure 13.11 shows the ROCs for standard and enhanced conditions for
the group of six readers. The lower curve, for the standard reading, has an
acuity measure (as defined in section 13.3.3) of Az = .81. The upper curve,
for the enhanced reading, has an Az = .87. All six readers showed an
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effect in the same direction, of about the same size; thus the finding is
highly unlikely to arise from chance or random variation.

As a control condition in the experiment, to help assure that the
observed difference was due to the aids, three of our readers reread the
cases in the standard mode just before making the enhanced readings and
the other three reread the cases in the enhanced manner six months after
the first enhanced reading. The Az values for rereadings in the standard
mode were essentially the same as the Az values for the original standard
reading, indicating that the passage of six months did not bring an increase 

in Az. Likewise, the Az values in the first and second enhanced
readings were almost identical, indicating that the enhancement produced
by the aids would be sustained over time. Incidentally, the aids brought
the non specialist s

' 
performance up to that of the specialists. That improvement 

may be even better than it looks, because our measure of the
specialists

' 
performance, while ostensibly in a standard condition, was

obtained after their experience in the interview, MDS study, and consensus 
conference, and we believe this measure is higher than it would be

had it been taken prior to that intensive experience.

13.7.1.6 Clinical Significance of the Observed Enhancement

More informative for purposes of this study than the overall acuity measures 
are the specific gains in TPP, reductions in FPP, or both that the aids

produced. Consider a decision criterion for recommending a biopsy
that yields a point on the "standard" ROC at FPP = .20, TPP = .67, as
indicated in figure 13.16 where the short dashed lines meet. It can be
seen that for the same value of FPP = .20, the "enhanced" ROC shows
TPP = .80- an improvement in TPP of .13, or an increase of 19 percent.
Turning instead to the gain in acuity afforded by the aids as a reduction in
FPP, it can be seen that for TPP = .67, the "enhanced" FPP = .08; this
value of .08 is .12 less than the "standard" FPP of .20 (a decrease of 60
percent). The indication here is that, for 100 patients with cancer, the aids
will permit detection of cancers in about 13 additional patients (an increase 

from 67 to 80); alternatively, for 100 patients without cancer, they
will permit avoidance of an unnecessary biopsy in about 12 additional
patients (a decrease from 20 to 8). Other balances are possible in making
use of the observed gain in acuity, for example, a simultaneous increase in
TPP and decrease in FPP of approximately .06 each (a 9 percent increase
in the TPP and a 30 percent decrease in the FPP).

Following this indication of the value of our feature-based approach to
mammography, we have begun to design a computer-based tutorial program 

for training new radiologists and for the continued education of
practicing radiologists (Getty et al. 1992). We consider the possibility-
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given that the perceptual feature approach does not depend on a knowledge 
of underlying anatomy and pathology- that paramedics can be

trained and assisted in reading mammograms with good acuity, a result
of especial value in areas or countries where radiologists are in short
supply.

13.7.2 Optimizing the Decision Criterion

Choosing an appropriate decision criterion in almost any practical setting
is difficult, and how to do so in mammography is by no means clear. The
aim of the next few paragraphs is to indicate that decomposing the discrimination 

and decision process es is critical and that concepts of the
optimal criterion provide a structure for analyzing the problem and for
moving toward a consensus.

13.7.2.1 The Expected Value Optimum

Can the expected value definition of the optimal decision criterion be
applied in this medical setting? As discussed in section 13.2.2.4, one
would need to estimate the prior probability of cancer in the population
of patients and to assign numerical benefits and costs to the four possible
diagnostic outcomes. Data are available on prior probabilities (called
"
prevalences

" in medicine) for two major populations, the population
involved in a screening program for women in general and the population
of patients who appear at a referral center because they have a high risk
for breast cancer or because a physical examination suggested the possibility 

of a lump. The prior probability of cancer in screening populations
is about .02; in referral populations, about .32. This implies a sixteen
fold difference in the optimal LR or slope measure 5 and, for any set of
benefits and costs, would call for a large difference in the decision criterion 

adopted in the two settings, with a far more lenient criterion being
appropriate for the referral setting. There have been several attempts,
as discussed in the literature on medical decision making, to develop ways
to assign benefits and costs to diagnostic outcomes (e.g., Weinstein and
Fineberg 1980). However, such an assignment is always very difficult
when human lives are evaluated, and individual opinions may differ
widely. One way to soften the demands of the expected value definition
is to quantify its overall ratio of benefits and costs without assigning all
four individual values: benefit (TP), cost (FP), benefit ( TN), and cost (FN).
One could say, for example, 

'1 would five times rather be right when
condition A exists (when cancer is present) than when condition B exists
(when cancer is not present).

" 
Combining just that ratio with the ratio of

prior probabilities is enough to specify an optimal criterion.



13.7.2.2 The Optimal Criterion Defined by a Particular False Positive
Proportion

Another way to bypass explicit benefits and costs is to select the criterion
that satisfies a specified limit on FPP. This definition of the criterion is
used in testing statistical hypotheses, where the limit on FPP (the "type I
error", or "level of significance

"
) is usually .05 (or .02 or .01). With this

criterion, benefits and costs are considered only tacitly in arriving at the
proportion of false positive errors that can be tolerated. Anecdotally, this
tolerable FPP is often thought to be around .10 in medical contexts.

13.7.2.3 Societal Factors in Setting a Criterion

The problem of choosing an appropriate decision criterion is illuminated
by looking directly at the values of FPP and TPP that are ~ttainable. Take
the top ROC in figure 13.5 as an approximation to the performance of
mammography (perhaps a little generous). The FPP = .10 just mentioned
allows a TPP = .80. There is a strong desire in medical circles to increase
that TPP- to .90, say- because missing 2 of 10 patients with cancer
seems like too many. But TPP = .90 brings along a FPP = .20. And a further 

increase to TPP = .95 carries an increase to FPP = .35. Consider
further those last two ROC operating points: TPP can be increased from
.90 to .95 at a price of increasing FPP from .20 to .35. Consider them in
connection with a screening population, wherein, as I mentioned, about 2
percent of the patients have a breast cancer. In a sample of 5,000 patients,
100 will have cancer and 4,900 will not; hence, at the more lenient criterion

, 95 instead of 90 of the 100 cancers will be detected. Meanwhile, the
number of unnecessary biopsies will increase by 735- from 4,900 xi   

= 980 up to 4,900 x .35 = 1,715. Detecting 5 more cancers at a price
of 735 more unnecessary biopsies does not make the more lenient criterion 

an obviously better balance of TPP and FPP than that of slightly
stricter criterion. Choosing between those or any two criteria would seem
to require some quantitative analysis of costs and benefits. Then again, the
wishes of individual patients and their physicians may dominate, and both
patients and physicians tend to read and interpret the odds very conservatively

. When physicians are asked to say how Iowa probability of
cancer will lead them to recommend biopsy, they indicate a range in the
neighborhood of .05.

That the yield of biopsy is 20 to 30 percent in the United States suggests 
that the decision criterion is set with the desires of individual

patients and physicians in mind, rather than with a focus on what might
be regarded as a cost-effective approach for society as a whole. England

's
yield of about 50 percent reflects a notice ably stricter criterion, one possibly 

more mindful of society
's requirements. Societal strictures may be
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effected by regulation or by the availability of services. As I observed
earlier, if the U.S. population were to follow the national guidelines for

mammographic examinations, thus requiring exams in much larger numbers
, and if the current criterion for biopsy were retained, there would

probably not be enough surgeons and pathologists available to supply
the resulting number of recommended biopsies. At that point, the issue of

choosing an appropriate decision criterion would take on a salience that is
not apparent now.

13.7.3 Adapting the Enhancements to Medical Practice

Now that we have a way to increase diagnostic acuity in mammography
and a way to think about the decision criterion for recommending treatment

, how might these results be put into practice? In a project just underway
, my colleagues and I are working on a computer system that will

embed these enhancements in a network of several related work stations. I
am pleased to say that the radiologists with whom we work have been
very cooperative. Some may regret systematization at the expense of art
in reading images, but radiologists are scientifically and quantitatively
minded and most can be expected to adopt a system that provides a
demonstrated gain in acuity.

Another benefit that derives &om the present approach is a stan-
dardization of radiologists

' 
reports to referring clinicians and surgeons.

There is now a good deal of clamor nationally among associations representing 
the recipients of those reports, and several government agencies

have worked with the American College of Radiology to bring about a
standardized vocabulary for the prose reports. In the system we are

building, the radiologist
's key presses (or spoken words) to indicate scale

values to the computer will be converted automatically to corresponding,
appropriate sentences in the report (Swets et al. 1995). In fact, the perceptual 

features as named in the study described above are the elements of a
standard vocabulary or lexicon currently espoused by the American College 

of Radiology (Kopans and D'Orsi 1992).

Though no data exist, I believe that standardizing perception in mam-

mography (the scaling of features) will give better results than standard-

izing language alone. The time saved for the radiologist by automatic

report generation may compensate effectively for whatever additional
time is required by explicitly scaling perceptual features in reading an

image. Moreover, the reports can be delivered to their intended recipients
as they are generated. Reports can also be stored in a database, along with

subsequent outcome data, which may afford several benefits. Individual

radiologists can be assisted to greater acuity by tutorials tailored to the

knowledge they need, for example, how better to scale particular features.



A database can also assist in standardizing decision criteria across the
radiologists in a given hospital, say, by reporting the yields of biopsies
they recommend. On another tack, digital imagery will permit radiologists
to secure second opinions &om anywhere, in feature-by-feature detail, and
to resolve differences of opinion by reference to quantitatively scaled
features. Finally, there is a possibility that the use of a standard, approved
procedure will reduce a practitioner

's liability in suits for malpractice.
The next section briefly describes another possible application to the

interpretation of diagnostic images. But note that images are not essential 
to this approach. Neither, for that matter, is a two-alternative response.

One might, for example, develop features related to a psychiatric patient
- the patient

's nonadaptive behavior, risk level for dangerous behaviors
or chemical dependencies, social resources, and so on- and, in turn,
develop a system that combines ratings of those features to enable a
choice among several graded treatment possibilities, ranging across standard 

outpatient treatment, more &equent visits, and acute inpatient care.

13.8 Detecting Cracks in Airplane Wings: A Second Practical
Example

The possibilities for improving discrimination acuity and adopting an

appropriate decision criterion , as demonstrated for mammography , exist
in similar diagnostic fields. Consider an example &om materials testing ,
wherein the imaging techniques of ultrasound and eddy current are used
to visualize flaws in metal structures . The specific example is the detection
of cracks in airplane wings by maintenance personnel . Incidentally , a

diagnostic extension of this simple detection task that involves recognition 
as well requires a characterization of the severity of a flaw in order

to project the time course of its developing into something still more
serIous.

13.8.1 Discrimination Acuity and the Decision Criterion

There is clearly a lot at stake here: a false negative decision can lead to a
catastrophic accident and dramatic loss of lives. Still, a false positive decision 

takes a plane out of service unnecessarily at substantial costs in dollars
and convenience. On balance, as in mammography, the costs and benefits
seem to suggest a lenient criterion for declaring a flaw. On the other
hand, the prior probability of a dangerous flaw, although increasing with
an aging fleet of airplanes, is still very low, and low prior probabilities,
even with moderate criteria, tend to produce a large number of false positives

, possibly so large as to be unworkable. Thus attention to both discrimination 
acuity and the decision criterion is required.
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13.8.2 Positive Predictive Value

The idea that airplane fleet operators cannot just proceed with a lenient
decision criterion, accepting many false positives in order to reduce false

negatives to near zero, may need support. An important concept in this
connection and many others is the predictive value of a positive decision.
The positive predictive value (PPV) is the proportion of positive responses
that are true. In the two-by-two array of table 13.2, it is defined as
af(a + b); that is, it is a TP proportion based on the occurrence of the response 

(row sum), rather than the TPP based on the occurrence of the
stimulus (column sum) that I have emphasized thus far. It is also referred
to as the "inverse TP proportion,

" because it goes backward from response 
to stimulus. Note that I introduced this concept in speaking of the

yield of the biopsy procedure in the mammography study. The point is
that low prior probabilities and lenient decision criteria conspire to produce 

a low PPV, such that the observer's decisions often "cry wolf " when
there is no wolf .

I have looked at the values of PPV that can be expected in another aircraft 

setting, where specialized sensors (detectors) give in-flight warnings
to pilots about various imminent dangers- including collision, engine
failure, ground proximity , and wind shear. Even when it is assumed that
the detectors are extremely acute and the decision criteria are very strict,
the PPV can easily be lower than .05, so that only 1 in 20 warnings is
valid (Getty et al. 1995). Such a low predictive value can be inappropriate,
for example, in a setting in which a simple 

"
fly-around" by a plane in final

approach to a major airport- a fly-around in response to a wind shear

warning, say- can put air traffic control under additional strain for several 
hours, and thus endanger many other aircraft in addition to the one

taking the first evasive action. In short, the cost of a false positive decision
is not negligible. In fact, pilots come to ignore warnings from unreliable

systems when they have other important things to do.
An example from medical diagnosis of the effect of low prior proba-

bilities on PPV comes from testing for the human immunodeficiency virus
(HIV) of AIDS. For low risk populations- for example, blood donors or a

company
's employees- the prior probability of HIV is about .003 (Bloom

and Glied 1991). Ordinarily , in such a setting, a positive outcome on a

typical screening test is followed by a more conclusive (and expensive)
confirmatory test (Schwartz, Dans, and Kinosian 1988). Using the College
of American Pathologist

's estimates of test performance (TPP and FPP) for
the best screening and confirmatory tests (Bloom and Glied 1991), I calculate 

that after a positive result on both tests, the PPV is .13. Hence, 6 of
7 individuals diagnosed as positive in this manner are told they have the
HIV when they do not in fact have the HIV (Swets 1992). As another
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example, the issue of Newsweek magazine that appeared as I write (19 April ,
1994) mentions a study in which 65 exploratory surgeries for ovarian
cancer were performed for every cancer found by the surgery- to many
of us, no doubt, an incredibly low yield for a risky surgical procedure. The
prior probability (lifetime risk) of ovarian cancer was said to be .015; even
for the category of patients at special risk for ovarian cancer because that
disease has occurred in the family, the prior probability is only .05.

13.8.3 Data on the State of the Art in Materials Testing

The U.S. Air Force kindly gave me access to the data &om its major study
of detecting cracks in airplane wings. In the study, 148 metal specimens
with and without flaws were carried to 17 air force bases, where they
were inspected, in total, by 121 technicians using ultrasound imaging and
133 technicians using an eddy current imaging technique.

The performance of each technician in this study is depicted by a point
on an ROC graph in figures 13.12 and 13.13. The impact of just a glance
at these graphs is the main result: the variation across technicians is about

Separating Discrimination and Decision 691
N

O
IJ

. Y
O

dO
Y

d 

3A
IJ

. I S
O

d 

3n
yJ

.

Figure 13.12
Relative operating characteristic (ROO data points for 121 technidans inspecting metal
speamens for cracks with an ultrasound technique.



1 . 0

. .

.

. 8 

.

.

.

. 6

.

.

. .

. 4 

. .

. .

2 

EDDY CURRENT

. 

N

=

133

0

0 . 2 . 4 . 6 . 8 1 . 0

FALSE POSITIVE PROPORTION

-
Relative operating characteristic (ROq data points for 133 technicians inspecting metal
specimens for cracks with an eddy current technique.

as large as it could be. Consider the FPP as a rough measure of the decision 
criterion and note that for ultrasound , FPP varies almost uniformly

from 0.0 to 1.0, across the entire possible range. Some technicians adopt a

very strict criterion , others adopt a very lenient criterion , and still others
are in-between . For eddy current , the variation is less but still very large:
most technicians give an FPP between 0.0 and 0.20, but several range
from 0.20 to 0.50 (Swets 1992).

Analyses not shown here indicate that substantial variation in the decision 
criterion existed within a given air force base as well as across bases.

The variation in acuity seen in figures 13.12 and 13.13- ranging from
chance acuity at the positive diagonal to very good acuity near the upper
left comer - indicates that this aspect of performance was also not under
control . In acuity , however , technicians at a given base were quite consistent 

with each other ; indeed, the average acuities of the several bases
varied almost uniformly across the full range of possible acuities (Swets
1992). This result suggests that the inspection techniques used at the bases
with high acuity could be analyzed and transferred to the others , much in
the way demonstrated for mammography . Similar variation across techni -
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clans in acuity has been found in other studies of materials testing , for

example, in the examination by eddy current of steam generators in power
plants (Harris 1991).

13.8.4 Diffusion of the Concept of Decomposing Diagnostic Tasks

As a counter to the example of medical radiology, where the ROC has
been used extensively, it should be noted that the ROC approach has not
been picked up in the materials-testing field. Over ten years, I carried the

message along with the data of figures 13.12 and 13.13 to the Air Force
and the Army, and also to the Federal Aviation Administration and a major
commercial aircraft manufacturer, and further to the research laboratory of
the U.S. electric power companies, to no avail. I am told that a tutorial
article in the field's professional magazine (Swets 1983) has begun
recently to have some impact ( W. S. Brown, personal. communication,
December, 1995), but I have not been able to obtain the reports.

There are also blind spots within clinical medicine. For example, the
several tests for screening for the HIV of AIDS have widely different
acuities and decision criteria (Swets 1992). Moreover, each test's decision
criterion is held constant across different settings, for example, whether
used on donated blood or to diagnose individuals- two applications in
which the cost of a false positive decision differs consider ably. Further,
those criteria remain fixed when screening different populations of individuals 

for which the prior probability differs greatly, say, from .003 (low-
risk blood donors) to .45 (methadone clinic attendees).

However, again on the brighter side, the idea of using an ROC measure
of acuity is making noticeable progress in weather forecasting, where it
is overcoming resistance from advocates historically of other measures
(Williams 1985; Brunet, Verret, and Yacowar 1987; Sarrazin and Wilson
1987). The ROC is generally accepted by evaluators in the field of information 

retrieval (Brookes 1968; Heine 1973). A laboratory of the National
Aeronautics and Space Administration is now examining the application
of signal detection theory and the ROC to in-flight warning systems
(Getty et al. 1995). If I have any idea about the unevenness in the acceptance 

of the decomposition concepts, it is a matter of the size of the diagnostic 
problem, and perhaps the scientific versus technological bent of the

people involved. University radiologists, laboratory meteorologists, and
information retrieval methodologists do studies and write articles, and
have the frame and peace of mind to want to do them right . Managing
the nation's aircraft travel, power plants, and disease epidemics no doubt
attracts individuals having a different frame of mind and gives them no

peace of mind. It is all the more a shame, but we can easily imagine that
technical matters that seem difficult or esoteric get blown off desks at the
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Federal Aviation Administration, the Department of
and Drug Administration (Swets 1991b).

13.9 Some History

For a century in psychology, beginning with the systematic study of sensory 
detection and recognition around 1850 (Fechner 1860), the dominant 
psychological position was that the two process es of discrimination

and decision were essentially one- that the discrimination process led
automatically to response A or response B. Decisions themselves were
thought not to be involved; rather, the discrimination process included
an automatic threshold device that detennined response A or response B
depending on whether a particular, fixed strength of evidence was exceeded 

or not, with the particular strength being detennined by the phys-

iological makeup of the organism. There was for some psychologists a
concern that attitude could affect the observer's responses, but in general,
it was thought that discrimination acuity could be measured without concern 

that the measures would be distorted or made unreliable by variation
in a separate decision process.

The decomposition of discrimination and decision into two measurable
process es was suggested and made possible about 1950 by a general
theory of signal detection. The theory was developed by engineers
Wesley Peterson and Theodore Birdsall for theoretical devices- called
"ideal observers"- in the context of radar (Peterson, Birdsall, and Fox
1954). The discrimination problem they addressed was to determine
which values of certain physical measurements of electronic wavefonns
indicated the presence of a signal that represents, for example, the
approach of an enemy plane. The generality of signal detection theory is
indicated by the similarity of this discrimination problem and that of
mammography.

The decision part of signal detection theory was derived from statistical
decision theory ( Wald 1950), which is an extension of the theory of testing 

statistical hypotheses developed by Jerzy Neyman and Egon S. Pear-
son in 1933. The earlier one-process view of detection and recognition in
psychology mirrored statistical hypothesis testing in the fonn popularized
by R. A . Fisher at about the same time (Gigerenzer and Murray 1987). In
detennining, for example, whether the mean of population A differs from
the mean of population B, a fixed decision criterion is assumed, akin to a
fixed threshold, such that the probability of deciding A ~ B when in fact
A = B (a "type I error") is no greater than .05 (or .02 or .01). In the
broader decision theory, the placement of a variable decision criterion in
any instance depends on the prior probabilities of A ~ B and A = B and
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on the benefits and costs of correctly and incorrectly deciding that A #= B
or that A = B. The use of Fisher's fixed criterion in statistical analysis
(with prior probabilities and benefits and costs being only tacit) is common 

when making an inference from data, that is, a "knowledge claim." A
variable criterion (with those situational variables being explicit) is more
appropriate when, instead, some action is to be taken.

Psychologist Wilson P. Tanner, Jr., and I (1954), working with the
signal detection theorists, proceeded to show that human observers in
simple sensory detection tasks (detecting brief tones or spots of light)
base their responses on a variable decision criterion that takes into account 

the prior probability that a "signal
" is present and the benefits and

costs associated with the various possible decision outcomes. Although
the human observers did not match exactly the optimal expected value
criterion, their criteria under different conditions of prior probabilities and
benefits and costs were highly correlated with the optimum. In general,
the empirical ROCs obtained from these observers looked like the theoretical 

curves shown in earlier sections (Swets, Tanner, and Birdsall 1961).
This inclusion of nonsensory factors in the theory of simple sensory

tasks- "
expectancy

" and "motivation" in psychological terms- was no
doubt part of the spirit of the times as cognitive psychology came into
view. Gird Gigerenzer and Richard Murray (1987) have recently developed
in some detail how perceptual and cognitive theory have followed statistical 

theory, how the human has been viewed as an intuitive statistician.
In the human sensory experiments first following on signal detection
theory, the decision criterion was actually manipulated by varying prior
probabilities of the stimuli and benefits and costs of the stimulus-response
outcomes. Without overt manipula Hon, you might suspect that decision
criteria would vary from one observer to another based on individual
impressions of implicit prior probabili Hes and implicit benefits and costs.
For example, one observer might want to demonstrate acuity by maxi-

mizing the true positive proportion, while another might want instead
not to issue a false positive response, perhaps because it might be viewed
as an hallucination. Distinguishing such different tendencies by isolating
decision effects is necessary if acuity is to be measured validly (Swets
1961; 1973; 1988).

James Egan (1958) soon extended the psychological coverage of signal
detection theory to recognition memory, that is, to deciding whether an
item presented (a word, say) was on a list shown earlier. Other psychologists 

then applied the theory to attention, imagery, reaction time, manual
control, learning, conceptual judgment, personality, and animal behavior
(Swets 1973). The first extension to a practical diagnostic problem was to
information retrieval, where one wishes to single out those documents in
a library that satisfy a par Hcular need for information and to avoid the
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irrelevant documents (Swets 1963). Lee Lusted (1968) showed the value
of the theory

's decomposition of diagnostic tasks in radiology, presaging
hundreds of published applications in clinical medicine.

Some aspects of signal detection theory, without the variable decision
criterion and ROC, were present in earlier psychological theory. For

example, in the 1920s, the innovative psychometrician Louis Leon Thur-
stone (1927a,b) proposed stimulus distributions such as those in figure 13.2
as part of an extensive statistical theory of discrimination, calling them
"discriminal process es." For Thurstone, however, the two stimuli were
not polarized as positive and negative, and the (response) criterion was
viewed in the theory as being fixed at the symmetrical location, where the
two curves cross. Hence his theory did not go on to separate decision and
discrimination process es.

The ROC was developed in signal detection theory, where it is called
the "receiver operating characteristic,

" and is a unique contribution of that
theory. I alert you to the tendency of statisticians to remark that the ROC
is "essentially the power curoe of statistics." Rather, the power curve is the
S-shaped curve of TPP plotted against the difference between the means
of two statistical hypotheses for a fixed, low value of FPP (e.g., .05). Thus,
although the power curve includes the same three variables as the ROC,
it shows how acuity and TPP vary together for a single FPP. It does not
show the interplay of TPP and FPP for each level of acuity, that is, a variable 

decision criterion, and thus gives no insight into the separation
of discrimination and decision process es. Indeed, what is essentially the

power curve appears also in signal detection theory, where it is called the
"
betting curve,

" and it has thrived for over a century in psychology,
where it is called the "psychometric function,

" without suggesting the

impact of the ROC (Green and Swets 1966).
Finally, a few comments on method and terminology, to help the reader

who may see the ideas of the chapter in psychological contexts. In early
sections of this chapter, I mentioned three data collection methods, which
I called the "

yes-no,
" "

rating,
" and "

paired-comparison
" methods. In

sensory psychology, where the incentive is to minimize criterion effects
in the simplest way, the frequently used paired-comparison method is
called the "two-alternative forced-choice" (2AFC) method. In connection
with the other two methods, both used to determine an ROC, I used the

general terms true positive and false positive proportions. In psychology,
where the legacy of signal detection theory is most familiar, these tend
to be called, respectively, 

"hit " and "false alarm proportions." The three
methods existed long before signal detection theory (SOT) was developed

, but tended to give different results. SOT related the three methods

quantitatively and rationalized them by showing theoretically that they
give, under fixed conditions, the same value of a common measure of dis-
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crimination acuity (Swets, Tanner, and Birdsall 1961). Empirical demonstrations 
of the validity of this theoretical prediction were important in

establishing the general validity of the concepts of signal detection
theory .

Suggestions for Further Reading
Three textbooks on signal detection theory and ROC analysis are those of Green and Swets
(1966), Egan (1975), and Maanillan and Creelman (1991). A collection of articles treats the
range of subjects of this chapter (Swets 1996). A pair of articles shows representative ROCs
&om several psychological and diagnostic tasks and develops the implications of their fonn
for alternative measures of discrimination acuity (Swets 1986a,b).

The examples given here of experimental decomposition of discrimination and decision
process es are treated further as follows: vigilance (Davies and Parasuraman 1982; See et al.
1995); recognition memory (Murdock 1974); polygraph lie detection (Shakhar, Lieblich, and
Kugelmass 1970; Swets 1988); infonnation retrieval (Swets 1963, 1969); and weather forecasting 

(Swets 1986b, 1988).
On combining observations to achieve greater acuity, see Green and Swets (1988), Metz

and Shen (1992), Seltzer et al. (1992), and Swets (1984). Articles describing the enhancement
of accuracy of mammography are by Getty et al. (1988), Swets et al. (1991), and D'Orsi et al.
(1992). A textbook treatment of evaluation methods in diagnostics is given by Swets and
Pickett (1982). Measures of diagnostic acuity in several settings are given by Swets (1988);
choosing the best decision criterion in diagnostics is discussed by Swets (1992).

For the background and history of signal detection theory in engineering, statistics, and
psychology, see Swets (1973, 1996) and Gigerenzer and Murray (1987).

Problems

13.1 Figure 13.2 shows probability distributions corresponding to stimuli A and B, respec-

tively , and a decision criterion Xc at the midpoint (mean) of the A distribution. The likelihood
ratio of this criterion is 2.5. The value of TPP resulting from the criterion is .50; the value of
FPP is .15; as represented by hatched and crosshatched areas. What would TPP, FPP, and LRc
be for a criterion at the midpoint of the B distribution?
13.2 The table below presents illustrative rating scale data. Plot the relative operating
characteristic (ROC) for these data. Estimate by a graphical method the slope measure 5 of
the decision criterion for each data point.

Stimulus

Abnormal Normal

Response (positive) (negative)

I . very likely abnormal 350 25
2. probably abnormal 50 50
3, possibly abnormal 40 75
4. probably normal 35 ISO
5. very likely normal 25 200

13.3 What are the expected payoffs (average over many decisions) of the diagnostic systems 
performing as in table 13.3 (system A), table 13.4 (system B) and table 13.5 (system C).

if the benefits and costs are TP = 10. FP = - 8, FN = - 4, and TN = 2? What is the optimal
likelihood ratio criterion. LRc. for each system?



13.4 Suppose that the ROCs of figure 13.6 give the acuities of three weather-forecasting
systems for predicting frost that are available to a fruit grower whose produce is susceptible
to damage by frost. System A (Az = .75) is the daily newspaper; system B (Az = .85) is the
National Weather Service's prediction given by telephone; and system C (Az = .95) is a
commercial service that focuses on frost and precise local areas. Suppose further that the
optimal decision criterion for a particular grower is LR, = 1.0. How would you express the
gains in forecast accuracy that may be achieved in moving from system A to B to a
13.5 Suppose that the data in tables 13.3, 13.4, and 13.5 were obtained in an evaluation of
three alternative detection systems designed to warn a pilot of the possibility of midair collision 

with another aircraft. The frequencies in the rows give the numbers of warnings issued
by the systems (positive response) and not issued (negative response) when the present condition 

was truly dangerous (left column) or not truly dangerous (right column).
Call the three systems A (table 13.3), B (table 13.4), and C (table 13.5). Which system

would you choose if you were required to put one of them into routine operation7 What is
the "positive predictive value" for each system that is implied by the data; that is, after a
large number of warnings by each, what proportion of warnings would have truly signified a
dangerous condition7
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influenced by instructions when trying to detect faint stimuli (e.g.. lights or tones).
Through a fellow graduate student. Wilson P. Tanner. Jr.. I met two graduate students
in electrical engineering who were working on the problem of interpreting the output
of unreliable or "

noisy
" electronic sensing devices. Tanner and I thought that their

work. based on statistical decision theory. might be an appropriate model for a cognitive 
theory of stimulus detection and recognition. Our work showed how a signal

detection theory based on these ideas applies to human decision making. as described
in this chapter. Others have shown that the theory applies to animals as well.
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detection process es and wrote a book with David M . Green. Signal Detection Theory
and Psychophysics (1966). With colleagues at BBN I developed the application of signal 

detection theory to the identification of complex stimuli and then to an array of
diagnostic tasks. such as the Xray cancer diagnosis problem described in the chapter.
It has been a career path I would follow again without hesitation.

I jumped at the chance to write this chapter because it was to be addressed to
undergraduates. who are told in most textbooks only about the old concept of fixed
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