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1. INTRODUCTIONAND SUMMARY 

1.1. Kuiper (1960) has proposed V,, an adaptation of the Kolmogorov statistic, to test 
the null hypothesis that a random sample of size N comes from a population with given 
continuous distribution function F(x). If the sample distribution function is FN(x), V, is 
defined by V, = sup (F,(X)-F(x))- inf (2i;v(x)-F(x)). (1) 

-m<x<m -m<x<m 

Kuiper showed that: 
(a) the distribution of V,, on the null hypothesis, is independent of P(x); 
(b) if the observations are points on a circle, the value of V, obtained from (1) does not 

depend on the choice of origin for measuring x. 
The Kolmogorov statistic KN does not possess property (b). V, is therefore very suitable 

for observations on a circle :another statistic designed for use in this situation, and similarly 
an adaptation of an older statistic, W&, is U&, introduced by Watson (1961, 1962). Both 
V, and U& may also be used for observations on a line. The definitions of KN, W& and U& 
will be found in $ 5 .  

1.2. Throughout this paper, the distribution of V, will refer to its distribution on the null 
hypothesis. Kuiper gave the distribution, for large N, by showing that 

We give below the exact distribution of V,, in both the upper and the lower tails. These 
results, together with (2), make i t  possible to calculate significance points to make the good- 
ness-of-fit test available for a complete range of values of N. The test, with the tables, is 
described in $2. The two theorems concerning the distribution, preceded by the relevant 
lemmas, are in $$3 and 4. I n  $ 5  are collected together a number of interesting results, 
primarily concerning the relations between the asymptotic distributions of ylNV,, K,, 
W&and Ui. 

1.3. I n  practical applications, one will be interested in the relative performances of V, 
and U& for circular observations. Tables for the test based on U& are in Stephens (1963, 
1964). For observations on a line, they may also be compared, both with each other, and 
with KN and W&; for some alternatives, they might be expected to give greater power. 
For a preliminary study along these lines, see Pearson (1963). 

2.1. The test requires the steps set out below. A figure, with examples showing how V, 
and the other test statistics are calculated, is in Pearson (1963). If the N given observations 
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are observations on a circle, any point on the circumference may serve as origin in steps (2) 
and (3) below. 

(a) Suppose the observations, in ascending order, are x,, x,, . .., x,. 
(b) Draw a figure, showing F(x) and the sample distribution function FN(x), namely, the 

step function defined by 

PN(x)= 0, x < xl, 
FN(x)= i/N, xi < x < xi+,, 1 < i < N-1, 

FN(x)= 1, xN < X. 

(c) 	If A is the maximum value of (PN(x) -P(x)), and B the maximum value of 


(P(x) -PN(x)), then V, = A + B. 


Table 1. Upper tail percentage points for V, and (in parentheses) for 4N VN 
Significance levels as percentages 

A ---
7 	 > 

N 15.0 10.0 5.0 2.5 1.0 0.5 0.1 

To assist interpretation for high values of N, percentage points for JNVN are given in parentheses. 
The horizontal line in each column is explained in SS2.4 and 4.13. 

t These two percentage points have been found by making a special calculation of C*,(z, d) for the 
stage 0.4 < z d 0.5. 
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(d) Enter Table 1 at  the appropriate row for N; if VNexceeds an entry, the null hypothesis 
is rejected a t  the corresponding significance level a.The entries in parentheses are used for 
interpolation (see $4.13). 

2.2. In  the above, we assume that the test is being used against the usual alternative of 
a poor fit. If it is necessary to test against too good a fit, Table 2 is used, the null hypothesis 
being rejected at significance level a if VN is less than the corresponding entry. For an 
example of this situation, see Pearson (1963). 

2-3. Steps (b) and (c) above may be replaced, if convenient, by the following: 

(b') Let y, = P(x,) (i=1,2, ...,N). 
(c') If A is the maximum value of (i/N) -y, for all i, and B the maximum value of 

yi- (i/N) for all i, then VN= A + B. 

Table 2. Lower tail percentage points for VNand (in parentheses) for 4N VN 

Significance levels as percentages 
A 

N 
r 

15.0 10.0 5.0 2.5 1.0 0.5 
'I 

0.1 

2 
3 
4 
5 

0.575 
-49 1 
a434 
.388 

0.550 
.462 
a411 
a370 

0.525 
a425 
.378 
.343 

0.513 
-398 
a351 
a320 

0.505 
.374 
.325 
.296 

0.503 
.362 
.309 
.280 

0.501 
.346 
.285 
.254 

To assist interpolation for high values of N, percentage points for JNVN are given in parentheses. 
The horizontal line in each column is explained in SS2.4 and 4.13. 
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2.4. I n  the tables, in each column, the values below the horizontal line (except those for 
N = oo)are estimates. The construction of the tables is described in $4.13, together with 
comments on their use. 

3.1. When N observations are in ascending order we say they are in rank order, or are 
ranked. 

LEMMA1. Suppose x,, x,, ...,X, are r independent observations from the uniform distribution 
between 0 and 1, denoted by U(0,l). Let z, d bepositive, such that z + (r- 1) d < 1. Theprobability 
that 

(a) 0 < x, < x, < ... < x, < 1, and also that 
(b) O < x , < z + ( i - l ) d , f o r i = 1 , 2  ,...,r,isgivenby 

Throughout this paper, d will be constant, and we write A,(z, d) = A,(z). Ao(z) is defined 
equal to unity. We note that dr(r+ 1)'

A,(d) = ( r + l ) !  ' 

The result (3) is quoted, with further comment on its proof, in Birnbaum & Tingey (1951). 
Lemma 1 gives the probability for the special case where the order of selection of the 

observations is the same as the rank order. With r independent observations, there will be r! 
equi-probable original orders of selection which would give the same rank order. Thus we 
have the following: 

COROLLARY.The probability that, after being placed in ascending order, r independent 
observations from U(0,l) will satisfy the conditions of Lemma 1, is r! A,(a, d). 

3.2. Introduction to Lemma 2. Suppose x,, x,, ...,x, are as above and further that 

(a)O < x , < x  ,... < x , <  1,and 

(b) (i-1)d < x, < z+(i-1)d,  where z,d > 0, such that z+(r-1)d < 1. We shall need 

the probability that both (a) and (b) are satisfied together; this will be called CF(z, d). In  
Lemma 2, an expression is derived for C:(z, d), for the case when, in addition, 

(c) z 2 (r- 1) d. When this expression is being used, the asterisk will be dropped, as in 
equation (4) below. 

LEMMA2. For the random variables x,, x,, ...,x, discussed above, the probability, given (c), 
that (a) and (b) are jointly true, is 

C,(z, d) = (z+d +rd),-, ((z +d), -rd2)/r!. (4) 

As d will be a constant, we write C,(z, d) = C,(z), and deJine Co(z) = 1. 

Proof. We imagine the following figure. Suppose a rectangle, length z, height d, lies on the 
x-axis, from x = 0to x = z. On top of this rectangle lies a similar rectangle, moved a distance 
d to the right. This is repeated until r rectangles are in the pile. The length of each rectangle 
represents the permitted range of one of the xi. The height d has been chosen only to give the 
type of figure which arises in the discussion of 'V,. On the x-axis, a t  x = z, a vertical line A is 
drawn; x, must lie to the left of A while other x, may lie to the left or the right. Because 
of the restriction (c) on z and d, no x, lies wholly to the right of A. Let K, be the event that 
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xi lies to the left of A, and Li be the event that it lies to the right. Then, denoting the 
probability of an event E by P(E),  

C,(z) = P(Kl  L, L,.. .L,) +P(K, K, L,. ..L,) + ...+P(Kl K,. ..KT-, L,) +P(Kl K,. ..KT). 

Giving the probabilities term by term, this is easily seen from the figure to be 

Thus 

1 ( ~ d ) ~ - ~(z+d)i-l (z - (i-1)d)= - C  
r z=1 (i- l)!(r-i)! 

The final bracket may be used to break the sum into two parts. This gives 

= -
1 

(z+d +rd)T-2 ((z +d), -rd2).
r ! 

COROLLARY.The probability that, after being placed in ascending order, r independent 
observations from U(0,l)  will satisfy conditions (a) and (b) of Lemma 2, is r! C: (z, d); if z 
satisfies condition (c), the probability is then r! C,(z, d). The proof follows that for Lemma 1, 
Corollary. 

3.3. LEMMA3. Let 
a. 


Then D,(z, d) = (yr-2rdyr-I +r(r-1)d2yr-2)/r!, 
where y = z+( r+  1)d. 

Proqf. We start with an identity due to Abel, quoted by Birnbaum & Pyke (1958). This 
states that, for a, b real, and 2% an integer 2 0, 

Then Sn(a,b) = n51(q) (a+i)' (b-i)"-"-' = ((a+b)%- (a+n)")/(b -n).
i = O  

#,(a, b) from the left-hand sum, is continuous a t  b = n. Therefore 

Sn(a, n) = lim ((a +b)" - (a+n)lz)/(b-n) 
b+n 

that is, Sn(a, n) = n(a+ 
Using (3) and (4) in (5), we have 



By the identity z2-id23 (z+ id)2-2id(z+ id)+ i(i- 1) d2, 


D,(x, d) is separated into three summations, S, + SB+ S,. The first of these is 


Using (7), we have SA = -
d' 

( r + l )  (;+r+l) = 
(z+(r+l)d) '  

( r+  I)! r ! 

The other two sums, after similar manipulation, become 

and S, = 
d2

r(r-1) (z + (r+ 1) d)T-2, 
r . 

The above forms are used to show that SB = 0 when r = 0, and Sc = 0 when r = 0 or 1. The 
sum of these gives D,(z, d) in the form (6). We note that D,(z, d) m 1. 

4. THE DISTRIBUTION OF VN 
4.1. Assumptions. We shall calculate the distribution of VN,on the null hypothesis, by 

supposing that the N independent observations are from a uniform distribution on a circle 
of unit circumference. A specific observation, given by Lemma 4, will be chosen as the 
origin for x, and the positive direction will be clockwise. These assumptions, as stated earlier, 
do not affect the distribution of VN. 

4.2. The technique to be employed rests on the result of the following: 

LEMMA4. IfN points are given on a circle of circumference 1, it is possible to determine at 
least one point P, such that, if subsequent consecutive points clockwise are labelled P2, P,,.. .,PN, 
the arc lengths PIP,< (i- 1)/N, for 2 ,< i < N. 

Proof. Suppose that the points are consecutively labelled clockwise B,, B,, . . . ,BN. 
Assume H: the lemma is false. A particle may then start at  any point, Bi, and, for some k, 
jump Ic points to B,,,, covering an arc distance greater than k/N. Imagine a succession of 
such jumps. Since N is finite, the particle eventually arrives at  a previously occupied point, 
say B,. Since last a t  B, it has gone round the unit circle say C times, covering a distance C. 
In so doing it has jumped CN points and, by H,  has covered an arc greater than 

(1/N) (CN) = C 

Thus we have a contradiction; H is false, and the lemma true. 
Further, it may easily be shown that, with probability 1, P, is unique. We therefore choose 

PIas the origin for x, andlabel the other observations, in order moving clockwise, P,, P,, . .. ,PN. 
Let P, have co-ordinate xi. The population and sample distribution functions (D.F.) are now 
defined only for 0 < x < 1. The population D.F. is F(x) = x, 0 < x < 1; the sample D.F. is 
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4.3. It will be helpful to have a figure, which the reader may draw as follows: 
(a) Draw the usual rectangular x, y co-ordinate axes, and let the origin at  0 be labelled 

also P, and A,. The observations are represented by points Pi ( = (xi, 0)), on the x-axis. Let 
. the point A, have co-ordinates ((i- l)/N,O), for 1 < i < N. Suppose D = (l,O),E = (1,l)  

and F = (0,l) .  Draw the population D.P. (the line OE) and the sample D.F. 

(b) Let d be 1/N. Parallel to OE, draw dotted lines y = x+nd, 1 < n < N -1. Draw also 
the solid line L, given by y = x+z, and let L cut the horizontal lines y = id, 1 < i < N, in 
points Mi, within the rectangle ODEF. Let L cut the y-axis in M,. 

(c) When 1 -Kd < z < 1- (K-1) d, we say that z and the line L are in stage K. For 
1< i < N, let y, = FN(xi), and let Q, be the point (x,, y,). When Q, is above or on the line 
L, VN 2 25; we shall then say that Q, exceeds L. The smallest value of VN is d, so that values 
of z in stage N are not considered. 

(d) Event E,. We shall define an event E,, for 1< s < K, as occurring when the 8th Q, 
moving downwards from Q,, is thefirst to exceed L, though lower Q's may also do so. More 
precisely, Q,+,-, exceeds L while Q,, for i > N +  1-8, does not exceed L, and Qj, for 
j< N +  1-8, may or may not exceed L. Clearly s is restricted to 1 < s < K when L is in 
stage K. 

(e) As illustration, suppose in the figure described above we have N = 12, and let x be 
just greater than 7d. Suppose FN(x) is such that the first eight observations are so crowded 
together that Q, exceeds L and also Q,, exceeds L, but no other Qi exceeds L. Since &,,is the 
third Q moving downwards, the event E, is occurring. 

4.4. Probability notations. Union of events A, B is denoted by A u B, and intersection 
by AB or A nB; the intersection of A and the complement of B, if B is a subset of A, is 
denoted by A -B. P(E)is the probability of event E ;  P(VN 2 x )  is called PN(x). 

4.5. If G, H are two points not necessarily on the x-axis, the statement 'P,e GH' or 
x ,  EGH' will be used to mean that the point P,, co-ordinates (xi, 0), lies in the closed interval 
G'H' where G', H' are the projections of G, H on the x-axis. 

4.6. The distribution of VN,upper tail. Introduction to Theorem 1.We see that, for given x, 
VN 2 z whenever one of the mutually exclusive events E, occurs. Thus for given x, so that K 
is known, 

and we now seek P(E,). 

Probability of event E,. We are given N observations independently chosen from a uniform 
distribution on a circle of circumference 1. Suppose these are divided into three groups as 
follows: one is chosen, at  random, to be P,; s -1 of the other observations are then picked 
at random to be a set called 81  ; the N -s remaining observations form a set called 82. The 
point P, is then chosen as the origin of x. Let the observations in S2, in ascending order, be 
called x, to xN-,+,, and let those in 81, in ascending order, be called xN-,+, to x,. The event 
E, will then occur, provided the following conditions are met. 

For set 81  : Sla:  xjeMjAj, N - s f 2  <j< N; 

and for set 82: S2a: 2 < j < N - s f 1x ~ E O M ~ - , + ~ ,  

and S2b: xj60Aj, 2 < j < N - s f l .  

These restrictions together state that the least in S1 must be greater than the greatest in 
82: thus the way we have labelled the observations not only puts them in ascending order in 



each set, but also ranks them within the entire group of N observations, i.e. 

The observations may be assigned to the three groups in ways. Once this is done, the 
event E,,, (that the observations in 8 1  satisfy condition Xla), and the event Esb (that those 
in 82  satisfy conditions S2a and X2b) are clearly independent. Thus the total probability of 
event E, is given by 

and we now must find P(ES,) and P(Esb). 

4.7. Probability of event Esa. The conditions on the variables in 81  are those of Lemma 2, 
Corollary, with x now replaced by z -d. Thus 

P(Es,) = (s- l ) !  C;-,(Z -d, d). (10) 

4.8. Probability of event Esb. For event Esb we first define mutually exclusive events G,, G,, 
G,, ...,etc., as follows: 

G1:{~j~OMN,+l, 2 < j < N - 8 + 1 ) ,  

G,: {xieOAl, 2 Q i < m-1, xj~A,M,-,+,, m Q j < N-s+1). 

The event G, -G, gives the event that all points in set S2 are in OMN-,+,, with at  least one 
in OA,; G, -G, -G, gives the event that all points in S2 are in OM,-,+,, with at  least one in 
OA,, and at least two in OA,. Thus it may be seen that event Esbis given by 

and by Esb= G,, if s = K. 

K-s+l 
So, when 1 < s < K, ~ ( ~ s b )= p(~l:,)c- P(G,),\ 

m= 2 

and when s = K, P(Esb)= p(G1). I 
We now need the probabilities P(G,) (m=1,2,...,K -s + 1). For event G,, we re-
quire that N -s independent observations all fall into the interval OMN-s+l, of length 
1-x - (s-1) d. Thus P(G,) = (1-x - (s-1) For event G,, m >, 2, we first must divide 
the N-s members of set 82 into two subsets, 821 with m -2 members, and 822 with 
N -s -m+2 members. Subset X21, after being put in ascending order, will be x,, x,, . . .,x,-, 
and will satisfy the conditions of Lemma 1, Corollary, with x equal to d. Subset 822 is all to 
fall in the interval A,MN_,+,, of length 1 -x - (s +m- 2) d. The subsets 821, S22 are 
independent, so 

P(G,) = (:I;) (m-2)! A,-,(d) (1 -z -(s +m-2)d}N-S-m+2. 

Thus in (11) we have, for 1 Q s Q K, 

We now have P(Es,) and P(Esb) and can substitute in (9). However, if we wish to evaluate 

P(Es) we must impose the condition of Lemma 2 to make it possible to calculate C$-,(z -d, d). 
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Thus we require z -d 2 ( s- 1 )  d for all s from 1 to K ,  and K is connected with z by the 
relation 1-K d  < z < 1- (K- 1 )  d. These requirements lead to condition ( a )in Theorem 1 
below, restricting z to the upper tail. When this condition is met, we can say 

P(Es,) = ( s- 1 )! CS-,(x -d ) .  (13 )  
We now are in a position to prove the following theorem. 

4.9. THEOREM upper tail. 1. Distribution of V,, 
( a )  Let z satisfy the inequality: z 2 +,i f  N i s  even, or z 2 ( N -  1 ) / ( 2 N ) ,  if N i s  odd; 
( b )  let M = [ N ( 1 -  z ) ] ,  i.e. the greatest integer contained in N ( 1 - 2 ) ;  

( c )  let y = x +t / N ,  and let 

T h e n  

Proof. When z satisfies ( a ) ,we can use equations (12)and (13)in equation ( 9 )to obtain 
P ( E s ) ,and then get PN(x)from equation (8 ) .The result is 

K 
PN(z)= C P ( E s )= sumA -sum B, 

s= 1 
K 

where sum A = C N ( ~ z : )  ( s -  l ) !Cs-l(z-d){l  - x - ( s -  1)  dIN-s 
s=l 

and 

( N - s ) !
X 

{ N - ( s + m - 2 ) ) !  
( d )  ( 1  -z - ( s+m-2) d}N-(S+m-2). 

We first introduce g, for N ( N  - 1) ...( N-t + 1 ) ;then, in sum B, for given s change the variable 
m to t , given by t = s +m-2. Sum B becomes 

K - l  K-1 
sum B = C 2 gt CS-,(z -d )  At-,(d) ( 1  -z -td),-,.

s=l t=s 

Reversing the order of summation gives 
K- l  t 

sum B = I; g,(l -z - td)N-t E CS-,(z -d )  A,-,(d) 
t=l  s=1 

K-1 
= I; g,(l -z -td)N-t Dl-,(z, d ) ,  using (5). 

t=l 

In sum A we change index s to t given by t = s - 1. Then 

= N ( 1 -  z ) ' ~ - l  +-I;-gt( l-z - td)N-t-1 [ ( N  -t )  C,(z -d )- ( 1-z - t d )  D,_,(z, d ) ] .  
t=1 

With the results of Lemmas 2 and 3, the square bracket simplifies to T,/t! ,where Ttisdefined 
in (c) above. Further, M has been defined in ( b )so that M = K - 1. Thus 

PN(z)= 5 (y)( 1-2- td)N-t-lq, 
t = O  

as given by ( 14) .  



4.10. Distribution of V,, lower tail. Theorem 1 may be used to give the values of P,(z) only 
in the upper tail. Another method has been used to find the lower tail distribution and is 
illustrated in the proof of Theorem 2. We use the same notation as in $8 4.1-4.9. 

THEOREM2 (a). For 1/N < z < 2/N, (N >, 2), 

P(V, < z) E 1-PN(z)= N!(x- l/N)N-l. (15) 
THEOREM2 (b). For 2/N < x < 3/N, (N >, 3), 

(N- 1)! {(pN-l(1- a)-ai"-1(1-PI)P(V, < 2) = 1-P,(z) = 
NN-, ((p -a) , 

where t = a,/!i'are the solutions of the quadratic equation 

t2- (Nz-1) t + ~ ( N z-2), = 0. (17) 
Proof. THEOREM 2 (a). V, takes its minimum value 1/N, when every 4 is at  A,. For z 

between 1/N and 2/N, and for V, < x, each 4 may move to the left up to a distance x- 1/N; 
i.e. id-z < x, < (i-1) d, (2 < i < N). The probability of this event, counting all orderings, 
is easily seen to be N!(z - 1IN)N-l. 

THEOREM2 (b). For V, < x, xi EMi Ai, for a11 i >/ 3. (Necessarily, x,EOA,.) Mi Ai has 
length x -d. Suppose Q, denotes the event that xi EM, A,-,, and Ri the event that xi EAi-, A,. 
Because of the ordering, if event Qi occurs, the range of xi-, is restricted. The probability of 
the compound event Q, R,-,, for i >/ 3, is 

We wish to describe the event E,, in which the N -s largest variables xi, (s + 1 < i < N),are 
each in the appropriate interval A,-, A, ,while the other variables, x,, ( 3  < k < s), still in 
ascending order, are in the intervals Mj A,.. Thus E, is described by an intersection of events 
of the form E, = RN RN-l.. .Rsfl Z, Zs-,.. .Z3 R,, where Z, may be the event Q, or the event 
R,, for 3 < k < s. In  such a sequence for E,, a Q followed by R, as noted above, must be 
treated as a compound event with probability I;but all other letters in the sequence will 
represent independent events. Thus, e.g. R, Q, Q, R, Q, R, is the intersection of the events 
R, n Q, n (Q, R,) n (Q, R,), with probability d(z -2d)12.The event ENgives all situations, 
for any one ordering, in which V, < x .  Thus we must find P(EN) as follows. We start with 
event E,. 

Event E,. This is given by E,, u E, where E,, is RN RNPl.. .R, R, R,, with probability 
u, = dN-1 and E, is RN RNF1.. .R, Q, R, with probability v, = dN-,I. P(E,)is then u, + v,. 

Event E,. Suppose we define the four mutually exclusive events following: 

E,,, is RN RNF1.. .R, R, R, R,, probability dN-l; 
E,,, if RN RN-,. ..R, R, Q, R,, probability dN-,I; 
E,,, is RN R,-, ...R, Q, R, R,, probability dN41d; 

if RN R,-,. ..R, Q, Q, R,, probability dN-%I, 

where y = x -2d. Then E, = E,, u E,,, where 

E,, = E,,, u E,,,, with probability u,, 
and E,, = E,,, uE,,,, with probability v,. 
Then u, = u, =v, and v, = Iu,/d2 + yv,/d. 
Finally P(E4)= u4+ v4. 
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Event E,+,. In general, E,+, is obtained from E, by 
(a)keeping R,,, as it is, producing events whose union we call E,,,, .,with probability 

Us+,, and by 
(b) changing R,,, to Q,,,, producing events whose union we call E,+,, ,, with probability 

V,+l. 

With this procedure, a new combination.. .Q,+, R,.. . replaces d2 by I,and a new combina- 
tion.. .Q,+, Q,. .. replaces d by y. Thus 

us+, = us + vs (18) 

and vS+,= -I u + Y-vs.
d2 d 

Using (18) to eliminate v in (19) we have 

Us+2 - (1+ ~ l d )Us+,+ (YP-Ild2) us = 0. 
This difference equation is solved by standard techniques, using the known values for u,, V, 

to solve for the arbitrary constants. The result for us is 
zc = dN-1 s 2 

S {P - (1-a)-aS-2(1-P))/(P-a), 
where a ,  ,8are the solutions of 

t2 - (1+ y/d) t + y/d -I/d2= 0. (20) 

When the expressions for y, d and I are substituted in (20), the equation for t becomes (17). 
For the rank ordering, therefore, P(EN)= U, +vN, which, by (18), equals UN+,. Any of the 
N! possible orderings of the observations might be the rank ordering, with equal probability. 
The total probability P(VN 6 x )  is thus given by N! UN+i, which gives (16). 

4.11. The mean of VN. At this point we add one isolated result. This is the mean of VN, 
which may easily be deduced from equation (24) of Birnbaum & Pyke (1958). This gives the 
mean of sup (FN(x) -H(x)); the mean of inf (FN(x) -P(x ) )is the negative of this, and from 
these results 

4.12. Extensions to Theorems 1 and 2. Theorem 1 may clearly be extended if CF(z, d) can 
be evaluated to give P(Esa)in (10). Theorem 2 may also be extended upwards, though at 
the next stage a quartic equation must be solved to give the solution of the finite difference 
equation which arises. In principle it would be gratifying to find the complete solution and a 
way of matching the two tails. This would perhaps make it possible also to obtain the com- 
plete asymptotic distribution, i.e. the extension of (2), by the method which Lauwerier (1963) 
has used to solve a similar problem. However, in practice, for the production of statistical 
tables the need is not great as will be seen below. 

4.13. Compilation of Tables 1 and 2. Theorems 1 and 2 have been used to compute by 
inverse interpolation the exact significance points above the horizontal line in eachcolumn 
of Tables 1and 2. The points for larger values of N have been obtained with the help of (2). 
This expression gives approximate points which are too low compared with the exact values 
in the upper tail, and are too high in the lower tail. The error in significance level which is 
given by using these approximate values is very small but, nevertheless, for higher values of 
N ,  better estimates of significance points may be obtained by interpolation in a graph of 
existing exact critical values of dNVN against 1/N, including those for N = m. The re- 
maining significance points have been obtained in this way, using the points given by (2) as 
a guide. 



This interpolation may be continued for N > 100; to this end critical values of JN VN are 
included in the tables, placed in parentheses. Such interpolation will give better accuracy 
than that given by using the asymptotic points; for example, when N = 100, use of the 
asymptotic value of 4NVN, at the upper 5 % level (1.747), gives very nearly a 4 % test. 
However, it should be pointed out that for these high values of N inaccuracies in the 
measurement of xi may affect the conclusion of the test more than slight errors in signi- 
ficance points. 

Some interesting relationships exist between the asymptotic distributions of the four 
test statistics, JNVN, KN, W& and Uk, the last three being defined by 

and U& = N S ~  -~ b )  -~ ( y ) )  ~ F ( X ) .kN(x)  -/* (yN(Y) ~ F ( Y ) )  
-00 -00 

Using the notation K2 for lim K& and #(t; K2) for the characteristic function of the null- 
N-too 


hypothesis distribution of Hi2, and similarly for the other statistics, the known characteristic 
functions are 

and 

To these we now add, defining lim JN VN as E ,  
N+00 


m 

Watson (1961) had noticed the interesting fact that K2/n2 and U2 have the same distribution, 
and Pearson & Stephens (1962) that the 8th cumulants of W2 and U2, say K, and K: re-
spectively, are connected by the relation K: = 21-2S~s.Equation (21) has been derived from 
the observation that the 8th cumulant of E ,  say K:, is connected with K: by K':, = ~ T ~ ~ K : .  

Thus if we consider 4new statistics, S,, S2, S,, S,, derived from the above by the relations 

S, = W2/4, S2= U2, S3= K2/n2, S4= V:/n2, 

the 8th cumulants, respectively K,,, K,,, K,,, K,,, of their distributions are easily shown to be 
connected by the simple relations 

2Kls = K2, = KQs = &K,,. 
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