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1. INTRODUCTION AND SUMMARY

1-1. Kuiper (1960) has proposed V, an adaptation of the Kolmogorov statistic, to test
the null hypothesis that a random sample of size N comes from a population with given
continuous distribution function F(x). If the sample distribution function is Fy(x), Vy is
defined b

ey Vo= sup (Fy@)-F@)- inf (Fy@)-F@). (1)

— 00 <xr<0 —00<r<oo

Kuiper showed that:

(@) the distribution of Vy, on the null hypothesis, is independent of F(x);

(b) if the observations are points on a circle, the value of ¥ obtained from (1) does not
depend on the choice of origin for measuring .

The Kolmogorov statistic Ky does not possess property (b). Vy is therefore very suitable
for observations on a circle: another statistic designed for use in this situation, and similarly
an adaptation of an older statistic, W%, is U%;, introduced by Watson (1961, 1962). Both
Vy and U% may also be used for observations on a line. The definitions of K, W% and U%
will be found in §5.

1-2. Throughout this paper, the distribution of Vy will refer to its distribution on the null
hypothesis. Kuiper gave the distribution, for large NV, by showing that

8z
3 \N 2

We give below the exact distribution of Vy, in both the upper and the lower tails. These
results, together with (2), make it possible to calculate significance points to make the good-
ness-of-fit test available for a complete range of values of V. The test, with the tables, is
described in §2. The two theorems concerning the distribution, preceded by the relevant
lemmas, are in §§3 and 4. In §5 are collected together a number of interesting results,
primarily concerning the relations between the asymptotic distributions of /N Vy, Ky,
W% and U3.

1-3. In practical applications, one will be interested in the relative performances of ¥V
and U% for circular observations. Tables for the test based on U% are in Stephens (1963,
1964). For observations on a line, they may also be compared, both with each other, and
with Ky and W%; for some alternatives, they might be expected to give greater power.
For a preliminary study along these lines, see Pearson (1963).

Pr(JNVy >2) = %12(4m2z2— 1)e—2m** 2 m2(4m22 — 3) e~2m*® 0(—117) . (2

2. THE GOODNESS-OF-FIT TEST BASED ON Vy

2-1. The test requires the steps set out below. A figure, with examples showing how ¥},
and the other test statistics are calculated, is in Pearson (1963). If the NV given observations

1 Research supported in part by the U.S. Office of Naval Research.
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are observations on a circle, any point on the circumference may serve as origin in steps (2)

and (3) below.
(@) Suppose the observations, in ascending order, are x;, %,, ..., Zy.
(b) Draw a figure, showing F(x) and the sample distribution function Fy(x), namely, the

step function defined by
Fy(x) =0, x < @y,
Fy®)=14/N, z;<x<zy;, 1<i<N-1,
Fy(x) =1, Ty < 2.
(¢) If 4 is the maximum value of (Fy(x) — F(x)), and B the maximum value of
(F(x)— Fy(x)), then Vy=A+B5B.

Table 1. Upper tail percentage points for Viy and (in parentheses) for /N Vy

Significance levels as percentages
Al

r

N 15:0 10-0 50 2:5 1-0 05 0-1
2 0-9250 0-9500 0-9750 0-9875 0-9950 0-9975 0-9995
3 776 -817 -871 -909 -942 -959 -982
4 -683 714 -768 -816 -864 -892 -937
5 -619 -652 -700 -740 789 -822 -881
6 0-571 0-601 0-646 0-687 0-732 0-762 0-824
7 -532 -561 -604 -641 -686 716 775
8 -501 -528 -569 -605 -647 -676 734
9 -475 -500 -539 574 -614 -642 -699
10 4527 4TT% 514 -547 -586 -613 -668
11 0-432 0-456 0-492 0-524 0-562 0-587 0-641
12 415 437 471 -503 -540 -565 ‘617
14 -386 408 .439 T.469 503 -527 -576
16 +363 -384 -414 441 473 496 -542
18 *343 -363 -392 -417 -448 -470 —
20 { 0-326 0-346 0-372 0-397 0-427 0-447 —
(1-460) (0-546) (1-665) (1-776) (1-908) (1-998) —
30 -269 -285 -307 -328 -352 -369 —
(1-476) (1-562) (1-684) (1-797) (1-930) (2:022) —
20 -235 -248 -268 -286 -307 -322 —
(1-484) (1-571) (1-695) (1-808) (1-941) (2:034) —
50 { 211 -223 -241 -256 -276 -289 —
(1-490) (1-576) (1-701) - (1-815) (1-949) (2-042) —
60 { 0-193 0-204 0-220 0-235 0-252 0-264 —
(1-494) (1-582) (1-705) 1-820 (1-955) (2:047) —
70 { 179 -189 -204 -218 -234 -245 —
(1-497) (1-585) (1-707) (1-824) (1-959) (2:051) —
80 { -168 178 -191 -204 -219 -230 —
(1-500) (1-588) (1-711) (1-826) (1-962) (2-055) —
100 151 -159 172 -183 -197 -206 —
1-505 (1-590) (1-716) (1-831) (1-967) (2-060) —
0 (1-537) (1-620) (1-747) (1-862) (2-001) (2-098) (2-303)

To assist interpretation for high values of IV, percentage points for 4/N Vy are given in parentheses.
The horizontal line in each column is explained in §§2-4 and 4-13.
+ These two percentage points have been found by making a special calculation of C*(z, d) for the

stage 04 < z < 0'5.
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(d) Enter Table 1 at the appropriate row for V; if ¥ exceeds an entry, the null hypothesis
is rejected at the corresponding significance level o. The entries in parentheses are used for
interpolation (see §4-13).

2-2. In the above, we assume that the test is being used against the usual alternative of
a poor fit. If it is necessary to test against too good a fit, Table 2 is used, the null hypothesis
being rejected at significance level « if ¥} is less than the corresponding entry. For an
example of this situation, see Pearson (1963).

2-3. Steps (b) and (c) above may be replaced, if convenient, by the following:

() Lety, = F(x;) (¢:=1,2,...,N).

(¢')y If 4 is the maximum value of (i/N)—y, for all ¢, and B the maximum value of
y,— (3/N) for all 7, then V;, = A + B.

Table 2. Lower tail percentage points for Vy and (in parentheses) for \|N Vy

Significance levels as percentages
A

r

N 15-0 10-0 50 25 1.0 05 01
2 0-575 0-550 0-525 0-513 0-505 0-503 0-501
3 -491 -462 425 -398 374 -362 -346
4 434 411 -378 -351 -325 -309 -285
5 -388 -370 -343 -320 -296 -280 254
6 0-356 0-337 0-314 0-295 0-273 0-260 0-234
7 -333 -315 -290 273 -255 -243 -219
8 -313 -296 274 -256 -239 -228 -207
9 -296 -281 -259 -243 -225 -215 -196
10 -282 267 -247 -231 214 -204 -187
11 0-270 0-256 0-237 0-221 0-205 0-195 0-178
12 259 -245 -227 213 197 -188 -170

14 241 228 -211 -198 -184 <175 -159

16 .297 215 .198 -186 <173 -165 -149
18 -215 -203 -188 176 -163 -156 -141

20 { 0-204 0-193 0-179 0-168 0-156 0-148 0-135

(0-913) (0-864) (0-798) (0-749) (0-696) (0-662) (0-601)

30 -169 -160 -147 -138 -128 122 —

(0-923) (-874) (-807) (-757) (-703) (-669) —
40 147 -139 -129 121 112 -107 —_
(-929) (-880) (-813) (-763) (-709) (-675) —
50 -141 125 ‘116 -108 -101 -095 —
(-934) (-885) (-817) (-766) (-714) (-681) —
60 0121 - 0115 0-106 0-099 0-093 0-088 —
(-937) (-889) (-821) (-769) (-717) (-684) —
70 ‘112 107 -098 092 -086 -082 —
(-940) (-891) (-823) (-772) (+720) (-687) —
%0 -105 -100 -092 -086 -081 077 —
(-942) (-894) (-826) (-773) (-722) (-689) —
100 { 095 -090 -083 -078 073 -069 —
(-945) (-897) (-829) (-777) (-725) (-692) —
) (-973) (-9275) (-8613) (-8095) (-7550) (-7212) (-6590)

To assist interpolation for high values of N, percentage points for ,/N Vy are given in parentheses.
The horizontal line in each column is explained in §§2-4 and 4-13.
20-2
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2-4. In the tables, in each column, the values below the horizontal line (except those for
N = o) are estimates. The construction of the tables is described in §4-13, together with
comments on their use.

3. THREE LEMMAS

3:1. When N observations are in ascending order we say they are in rank order, or are
ranked.

Lemma 1. Suppose x,,x,, ..., , are r independent observations from the uniform distribution
between 0 and 1, denoted by U(0, 1). Letz,d be positive, suchthatz+ (r— 1) d < 1. The probability
that

(@) 0L 2, <2y < ... <2, < 1,and also that

(0) 0<z; <2+ (—1)d, fori=1,2,...,r, is given by

A,(z,d) = -:—, (2+rdyr-1. (3)

Through(;ut this paper, d will be constant, and we write 4.(z,d) = 4,(2). Ay(2) is defined
equal to unity. We note that drir+ 1y
Ald) = (r+1)!°

The result (3) is quoted, with further comment on its proof, in Birnbaum & Tingey (1951).

Lemma 1 gives the probability for the special case where the order of selection of the
observations is the same as the rank order. With r independent observations, there will be #!
equi-probable original orders of selection which would give the same rank order. Thus we
have the following:

CororrarY. The probability that, after being placed in ascending order, r independent
observations from U (0, 1) will satisfy the conditions of Lemma 1, is r! A, (a,d).

3-2. Introduction to Lemma 2. Suppose x;, Z,, ..., %, are as above and further that

(@)0< 2, €2y... <2, < 1,and

() —1)d < x; < 2+ (¢—1)d, where z,d > 0, such that z+ (r—1)d < 1. We shall need
the probability that both (a) and (b) are satisfied together; this will be called C}(z,d). In
Lemma 2, an expression is derived for C(z,d), for the case when, in addition,

(¢) z = (r—1)d. When this expression is being used, the asterisk will be dropped, as in

equation (4) below.

Lemma 2. For the random variables x,, x,, ..., «, discussed above, the probability, given (c),
that (a) and (b) are jointly true, is _
C.(2,d) = (z+d+rd)2((z+d)2—rd?)/rl. (4)

As d will be a constant, we write C,(z, d) = C,(z), and define Cy(z) = 1.

Proof. We imagine the following figure. Suppose a rectangle, length z, height d, lies on the
z-axis, from 2 = 0 to z = z. On top of this rectangle lies a similar rectangle, moved a distance
d to the right. This is repeated until » rectangles are in the pile. The length of each rectangle
represents the permitted range of one of the x;. The height d has been chosen only to give the
type of figure which arises in the discussion of V. On the z-axis, at # = 2, a vertical line 4 is
drawn; z; must lie to the left of A while other x; may lie to the left or the right. Because
of the restriction (¢) on z and d, no «; lies wholly to the right of A. Let K, be the event that
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w; lies to the left of 4, and L, be the event that it lies to the right. Then, denoting the
probability of an event £ by P(E),

Cl?) = P(K Ly L,...L,) + P(K; K, Ly... L)+ ... + P(K, K,...K,_, L)+ P(K, K,...K,).

Giving the probabilities term by term, this is easily seen from the figure to be

C(2) = As(2) A, y(d) + Aga—d) A,_o(2d) + ... + A, _y(2— (r—2)d) Ay((r— 1) d)

+A,(z— (r—1)d) Ay(rd).
Thus Cz) = Z A(z—(—1)d) 4,_,(id)
, (e e 1)
(E=1)(r—19)!

The final bracket may be used to break the sum into two parts. This gives

IIM*: ...

1
T

0 =5 5 (i21) eorerap- L 5 (170) arterap

d(z+d)
r(r—2)!

= et drdy = (2 dy—ri)

=;z'(z+d+rd)’—1— (z+d+rdy—2

CoroLLARY. The probability that, after being placed in ascending order, r independent
observations from U(0, 1) will satisfy conditions (a) and (b) of Lemma 2, is r! C* (z,d); if 2
satusfies condition (c), the probability is then r! C,(z, d). The proof follows that for Lemma 1,
Corollary.

3-3. LEMMA 3. Let
Dsd)= 3 Cle—d)4,_(d) (r>0). (5)
1=0

Then D,(z,d) = (y"—2rdy™ 1+ r(r — 1) d2y"2)/r!, (6)
wherey = z+ (r+1)d.

Proof. We start with an identity due to Abel, quoted by Birnbaum & Pyke (1958). This
states that, for a, b real, and » an integer > 0,

(b—n) % (7:) (@+ 1)t (b—12)»1 = (a+b)~.
i=0 :
-1
Then S, (a,b) = nz (7:) (@+10) (b—3)"-1 = {(a+b)" — (a+n)}/ (b —mn).
i=0
S, (a,b) from the left-hand sum, is continuous at b = n. Therefore
Sn(a’ n) = lim ((a+ b)"—(a+ n)") /(b —n)
b—n
that is, S,(a,n) = n(a+mn)*1, (7)
Using (3) and (4) in (5), we have

(z +9d)i2 (22 —id?) d™L(1 47— z)’—’

Dy(z,d) = i 0 1 (147r—1)!
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By the identity 2 —id? = (2+1d)2— 2id(z +9d) + (¢ — 1) d?,
D,(z,d) is separated into three summations, S, + Sz +Sy. The first of these is

8, = 2’: d Yz +td): (1 +r—a)—*

i=0 I (14+r—1)!
dar rofr+1\ [z )¢ e ar .
_(r+1)!i§0( ¢ )(Zl"") (147r—1) —erﬂ(a,v%l).
' -7 2 ) o G DY
Using (7), we have S, _U’Tl)!(r-'-l) (d_”_l_l) _ R '

The other two sums, after similar manipulation, become

Sp = _T!Zdr(z+(r+ 1)dy-1

2
and So =%r(r—1)(z+(r-|— 1)d)y-2.

The above forms are used to show that Sz = 0 whenr = 0, and S; = 0 when r = O or 1. The
sum of these gives D,(z,d) in the form (6). We note that Dy(z,d) = 1.

4, THE DISTRIBUTION OF Vjy

4-1. Assumptions. We shall calculate the distribution of Vy, on the null hypothesis, by
supposing that the N independent observations are from a uniform distribution on a circle
of unit circumference. A specific observation, given by Lemma 4, will be chosen as the
origin for x, and the positive direction will be clockwise. These assumptions, as stated earlier,
do not affect the distribution of V.

4-2. The technique to be employed rests on the result of the following:

Lemma 4. If N points are given on a circle of ctrcumference 1, it is possible to determine at
least one point P, such that, if subsequent consecutive points clockwise are labelled Py, P, ..., Py,
the arc lengths P, P, < (¢ —1)/N, for 2 <1 < N.

Proof. Suppose that the points are consecutively labelled clockwise B,,B,, ..., By.
Assume H: the lemma is false. A particle may then start at any point, B;, and, for some &,
jump k points to B,,;, covering an arc distance greater than k/N. Imagine a succession of
such jumps. Since N is finite, the particle eventually arrives at a previously occupied point,
say B,. Since last at B, it has gone round the unit circle say C times, covering a distance C.
In so doing it has jumped CN points and, by H, has covered an arc greater than

(1/N)(CN) = C.

Thus we have a contradiction; H is false, and the lemma true.

Further, it may easily be shown that, with probability 1, P, is unique. We therefore choose
P, as the origin for z,and label the other observations, in order moving clockwise, Py, P, ..., Py.
Let P, have co-ordinate ;. The population and sample distribution functions (.¥.) are now
defined only for 0 < # < 1. The population n.F. is F(z) = z, 0 < z < 1; the sample D.F. is

By(@) = Fu(0) = 15

Fy(x) = (x; < @ < @49).

X
N
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4-3. Tt will be helpful to have a figure, which the reader may draw as follows:

(@) Draw the usual rectangular z, y co-ordinate axes, and let the origin at O be labelled
also P, and 4,. The observations are represented by points P, (= (x;, 0)), on the z-axis. Let
. the point 4; have co-ordinates ((¢—1)/N,0), for 1 < ¢ < N. Suppose D = (1,0), & = (1,1)
and F = (0,1). Draw the population p.F. (the line OF) and the sample ».F.

(d) Let d be 1/N. Parallel to OF, draw dotted lines y = x+nd, 1 < n < N —1. Draw also
the solid line L, given by y = x+2, and let L cut the horizontal lines y = id, 1 <i < N,in
points M, within the rectangle ODEF. Let L cut the y-axis in M.

(c) When 1—Kd < z < 1— (K —1)d, we say that z and the line L are in stage K. For
1 <4 < N, let y; = Fy(x,), and let @, be the point (z;, ;). When @, is above or on the line
L, Vy > Z; we shall then say that @, exceeds L. The smallest value of Vy is d, so that values
of z in stage IV are not considered.

(d) Event E,. We shall define an event E,, for 1 < s < K, as occurring when the sth @,
moving downwards from @, is the first to exceed L, though lower @’s may also do so. More
precisely, @y.;_s exceeds L while @,, for ¢ > N+1—s, does not exceed L, and @, for
j < N+1—s, may or may not exceed L. Clearly s is restricted to 1 < s < K when Lisin
stage K.

(¢) As illustration, suppose in the figure described above we have N = 12, and let z be
just greater than 7d. Suppose Fy(x) is such that the first eight observations are so crowded
together that Qg exceeds L and also @,, exceeds L, but no other @, exceeds L. Since ¢4is the
third @ moving downwards, the event E, is occurring.

4-4. Probability notations. Union of events A, B is denoted by 4 u B, and intersection
by AB or A ~ B; the intersection of 4 and the complement of B, if B is a subset of 4, is
denoted by 4 — B. P(E) is the probability of event E; P(Vy > z) is called Py(z).

4-5. If @, H are two points not necessarily on the x-axis, the statement ‘F,e GH’ or
‘x,€ GH’ will be used to mean that the point P;, co-ordinates (z;, 0), lies in the closed interval
G'H’ where @', H' are the projections of G, H on the z-axis.

4-6. The distribution of Vy, upper tail. Introduction to Theorem 1. We see that, for given z,
Vi = z whenever one of the mutually exclusive events E; occurs. Thus for given z, so that K

is known, K
Py(z) = .Ei P(E,) (8)

and we now seek P(Z,).

Probability of event E,. We are given N observations independently chosen from a uniform
distribution on a circle of circumference 1. Suppose these are divided into three groups as
follows: one is chosen, at random, to be P,; s—1 of the other observations are then picked
at random to be a set called S1; the N —s remaining observations form a set called 2. The
point P, is then chosen as the origin of #. Let the observations in §2, in ascending order, be
called z, to zy_,,,, and let those in S1, in ascending order, be called xy._,., to x). The event
E, will then occur, provided the following conditions are met.

For set S1: Sla: wz;eM;A;, N—s+2<j<N;
and for set S2: S2a: x;€eOMy_o;, 2<j<N-s+1
and 82b: x;€04;, 2<j<N-s+1.

These restrictions together state that the least in S1 must be greater than the greatest in
82: thus the way we have labelled the observations not only puts them in ascending order in
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each set, but also ranks them within the entire group of NV observations, i.e.

Ty < Xy < Xy... < Ty
The observations may be assigned to the three groups in N(¥~{) ways. Once this is done, the
event &, (that the observations in S1 satisfy condition Sla), and the event £, (that those

in 82 satisfy conditions S2a and S2b) are clearly independent. Thus the total probability of
event E is given b
vem Rl maTeR Yy P(E,) = NO=}) P(E,q) . P(By) (9)

and we now must find P(Z,,) and P(E).

4-7. Probability of event E,. The conditions on the variables in S1 are those of Lemma 2,
Corollary, with z now replaced by z—d. Thus

P(E,,) = (s—1)!C¥ ,(z—d,d). (10)
4-8. Probability of event Ey. For event B, we first define mutually exclusive events Gy, Gy,
G, ..., ete., as follows: Gy (2,60 y_y, 2<j<N—s+1},
Gy: {wjedy My oy, 2<j<N-s+1}
and,for3<m < K—s+1,
G {2;€04,, 2<i<m—1, w;ed, My .,, m<j<N—-s+1}.

The event G, — G, gives the event that all points in set 82 are in OM,__,,, with at least one
in 04,; G;— G, — G, gives the event that all points in S2 are in OMy_,,,, with at least one in
0A4,, and at least two in OA,. Thus it may be seen that event Z is given by

Ey=0,—G—0G3—...—Gg_o1, f 1<s<K-1;
and by E,=0, if s=K.
So, when 1 < 5 < K, P(H,) = P(G)— K'zs“P(Gm),} )
and when s = K, P(Ey) = P(G). "

We now need the probabilities P(G,,) (m=1,2,...,K—s+1). For event G,, we re-
quire that N —s independent observations all fall into the interval OMy_,,,, of length
1—z—(s—1)d. Thus P(G;) = (1—2z—(s—1)d)"-5. Forevent G,,, m > 2, we first must divide
the N —s members of set S2 into two subsets, S21 with m —2 members, and S22 with
N —s—m+ 2members. Subset S21, after being put in ascending order, will be x,, x3, ..., %,,_;
and will satisfy the conditions of Lemma 1, Corollary, with z equal to d. Subset §22 is all to
fall in the interval 4, My ..., of length 1—2z—(s+m—2)d. The subsets S21, S22 are
independent, so
P(G,) = (V=) (m—2)1 Ayy_y(d) {1 — 2 (s + m—2) dJV—s-mi2,

Thus in (11) we have, for 1 < s < K,

S (V—2s)!
PHg) = (1-2—(s—1)d)N—*— m2=2 (N=(s+m—2)}!

A, o(d) {1 —2—(s+m—2) d}NAstm=2),

(12)
We now have P(E,,) and P(E,) and can substitute in (9). However, if we wish to evaluate
P(E,) we mustimpose the condition of Lemma 2 to make it possible to calculate C%_ (2 —d,d).
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Thus we require z—d > (s—1)d for all s from 1 to K, and K is connected with z by the
relation 1 - Kd < z < 1— (K —1)d. These requirements lead to condition (a) in Theorem 1
below, restricting z to the upper tail. When this condition is met, we can say

PE,) = (s—1)!C,_;(z—d). (13)
We now are in a position to prove the following theorem.

4-9. TurEOREM 1. Distribution of Vy, upper tail.
(@) Let z satisfy the inequality: z > %, if N is even, or z > (N —1)/(2N), if N is odd;
(b) let M = [N(1—2z)], i.e. the greatest integer contained in N(1—z);
(c) lety =z+t/N, and let
Ty = y'ly>N —y*(3—2/N) + yt(t—1) (3—2/N)/N —t(t —1) (t — 2)/N2].

Then PV, = 2) = Py(z) = leo (ZZ) (1—z—td)yN—-17, (14)

=

Proof. When 2 satisfies (), we can use equations (12) and (13) in equation (9) to obtain
P(E;), and then get Py(z) from equation (8). The result is

Py(z) = Z P(E;) = sum A —sum B,

where sum 4 = ZN( D (-0 4(z—d){l—2—(s—1)d}V—
and
K—1K—s+1
sumB= Y ¥ NAZH (s—1)!1C,_4(z—4d)
s=1 m=2
{N ((iv+m) 2)}' m—2(d){1_z_(8+m_2) d}N—(s-!—m—2).

We first introduce g, for N(N — 1)...(N — ¢+ 1); then, in sum B, for given s change the variable
m to ¢, given by £ = s+m— 2. Sum B becomes

K-1K-1
sumB= ¥ X 9 Os—l(z - d) Al—s(d) (1—2z— td)N_t'
s=1 t=s
Reversing the order of summation gives

K-1 ¢
sumB = ¥ g(l—z—td)"* 2 C,_;(z—d) A4,_,(d)
t=1 s=1

= Ijz_ll g(1—2z—td)N-D,_,(2,d), using (5).
In sum 4 we change index s to_t given by ¢t = s— 1. Then
Pye) = 3, gia Ofe—d) (L—2— @)1=, g1 2~ )Y Dy,
= N1—z)V14 z‘, g1 —2—td)N-+1[(N — ) Ce—d) — (1 —2—td) D, (2, d)].

Wlth the results of Lemmas 2 and 3, the square bracket simplifies to 7}/t!, where 7is defined
in (c) above. Further, M has been defined in (b) so that M = K — 1. Thus

) = 3 (3 ) 0-a-mapam,
t=o0 \{

as given by (14).
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4-10. Distribution of Vy, lower tail. Theorem 1 may be used to give the values of Py(z) only
in the upper tail. Another method has been used to find the lower tail distribution and is
illustrated in the proof of Theorem 2. We use the same notation as in §§4-1-4-9.

THEOREM 2 (a). For 1/N <2 < 2/N,(N>2),

P(I/J'v <2)=1-Py(z) = N{(z— 1/N)N-L (15)
THEOREM 2 (b). For 2/N <z < 3/N, (N > 3),
— 1)1 {BN-1(1 N-1(1 _
POy <) = 1- By = S — e (=), (16)
where t = a, f are the solutions of the quadratic equation
22— (Nz—1)t+1(Nz—2)2= 0. (17)

Proof. THEOREM 2 (a). Vy takes its minimum value 1/V, when every F; is at 4;. For z
between 1/N and 2/N, and for Vy < 2, each P, may move to the left up to a distance z—1/V;
ie.id—z < x; < (¢—1)d, (2 < ¢ < N). The probability of this event, counting all orderings,
is easily seen to be N!(z—1/N)¥-1,

TaEOREM 2 (b). For Vy < 2, x;e M; 4, for all ¢ > 3. (Necessarily, x,€0A,.) M; A; has
length z—d. Suppose @, denotes the event that x,€ M; 4, ,, and R, the eventthatx;e 4, ; 4,.
Because of the ordering, if event @, occurs, the range of x;_, is restricted. The probability of
the compound event @, E;_;, for ¢ > 3, is

1=f (@—t)dt = }(6de—2*— 822,

We wish to describe the event £, in which the V — s largest variables x;, (s+1 < ¢ < N), are
each in the appropriate interval 4, ; 4, while the other variables, z;, (3 <k < s), still in
ascending order, are in the intervals M; 4;. Thus E, is described by an intersection of events
of the form B, = Ry Ry_,...R, ., Z,Z,_,...Zy R,, where Z, may be the event @, or the event
Ry, for 3 < k < s. In such a sequence for E,, a @ followed by R, as noted above, must be
treated as a compound event with probability I; but all other letters in the sequence will
represent independent events. Thus, e.g. R, Qs @5 B, @5 R, is the intersection of the events
B;n Qg n (@5 Ry) n (@5 Ry), with probability d(z— 2d)I2. The event B gives all situations,
for any one ordering, in which Vy < z. Thus we must find P(Ey) as follows. We start with
event B.
Event E4. This is given by s, u E,, where K, is Ry Ry_,...R, Ry R,, with probability
ug = d¥1and F,,is Ry Ry_,...R, Q3 R, with probability vy = d¥N-31. P(H,) is then uz+v,.
Event E,. Suppose we define the four mutually exclusive events following:
By, is RyRy_,...R;RB,R;R,, probability d¥-1;
B, if RByRy_;...RB;R,QsR, probability d¥—3I;
By, is RyRy_,...R;Q,R;R, probability d¥—4Id;
B, if RyRy_,...R;Q,Q;R, probability d¥-4yI,
where y = 2—2d. Then B, = E,, v E,,, where
E,, = En,v Ey, with probability u,,
and By, = By v By, with probability v,.
Then Uy =u3=vy and v, = Juz/d*+yv,/d.
Finally P(H,) = uy+v,.
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Event B, ,. In general, E, , is obtained from F by
(@) keeping R, as it is, producing events whose union we call £, ,, with probability
" Uy, and by _

(b) changing R, to Q,.,, producing events whose union we call £, , ,, with probability
Vst1

With this procedure, a new combination...Q,,; R,... replaces d2 by I, and a new combina-
tion...Q,,; Q... replaces d by y. Thus Uyoy = 0,40, (18)

I
and V1 = g5 st g V. (19)
Using (18) to eliminate » in (19) we have

Ugsa— (1+9/d) gy + (y/d —Id%) g = 0.
This difference equation is solved by standard techniques, using the known values for u, v,
to solve for the arbitrary constants. The result for u, is

uy = AV (1—a) — o2 (1 = )}/ (B —a0),
where a, # are the solutions of
22— (1+y/d)t+y/d—1]d®> = 0. (20)

When the expressions for y, d and I are substituted in (20), the equation for ¢ becomes (17).
For the rank ordering, therefore, P(Ey) = uy + vy, which, by (18), equals #y,,. Any of the
N!possible orderings of the observations might be the rank ordering, with equal probability.
The total probability P(Vy < z) is thus given by N!uy,,, which gives (16).

4-11. The mean of Vy. At this point we add one isolated result. This is the mean of V,
which may easily be deduced from equation (24) of Birnbaum & Pyke (1958). This gives the
mean of sup (Fy(x) — F(z)); the mean of inf (Fy(x) — F(x)) is the negative of this, and from
these results —1 ATi

N! N-1 e
BW = s Z, 51

4-12. Extensions to Theorems 1 and 2. Theorem 1 may clearly be extended if Cj(z,d) can
be evaluated to give P(#,,) in (10). Theorem 2 may also be extended upwards, though at
the next stage a quartic equation must be solved to give the solution of the finite difference
equation which arises. In principle it would be gratifying to find the complete solution and a
way of matching the two tails. This would perhaps make it possible also to obtain the com-
plete asymptotic distribution, i.e. the extension of (2), by the method which Lauwerier (1963)
has used to solve a similar problem. However, in practice, for the production of statistical
tables the need is not great as will be seen below.

4-13. Compilation of Tables 1 and 2. Theorems 1 and 2 have been used to compute by
inverse interpolation the exact significance points above the horizontal line in each column
of Tables 1 and 2. The points for larger values of N have been obtained with the help of (2).
This expression gives approximate points which are too low compared with the exact values
in the upper tail, and are too high in the lower tail. The error in significance level which is
given by using these approximate values is very small but, nevertheless, for higher values of
N, better estimates of significance points may be obtained by interpolation in a graph of
existing exact critical values of \/NVy against 1/N, including those for N = co. The re-
maining significance points have been obtained in this way, using the points given by (2) as

a guide.
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This interpolation may be continued for N > 100; to this end critical values of /N V}; are
included in the tables, placed in parentheses. Such interpolation will give better accuracy
than that given by using the asymptotic points; for example, when N = 100, use of the
asymptotic value of /N Vy, at the upper 59, level (1-747), gives very nearly a 4 %, test.
However, it should be pointed out that for these high values of N inaccuracies in the
measurement of x; may affect the conclusion of the test more than slight errors in signi-
ficance points.

5. RESULTS ON THE ASYMPTOTIC DISTRIBUTIONS

Some interesting relationships exist between the asymptotic distributions of the four
test statistics, J/N Vy, Ky, W% and U¥;, the last three being defined by

Ky= N sup ]FN(x)—F(x)|,

—o<zr<

W= " (B - Fordre

— 00

and vy =¥[" (B -~ ) -Funarw) dre).

Using the notation K2 for lim K% and ¢(f; K2) for the characteristic function of the null-

N—oo

hypothesis distribution of K2, and similarly for the other statistics, the known characteristic

functions are o i\ 1
B EY) = 11 (1-5)
j=1

- 2j
and é(t; U?) ]1:‘11 1 —53’;—2) -
To these we now add, defining 1\171_1}:0 JNVyas ¥,
B(t; V3) EII ( @; ) : (21)

Waitson (1961) had noticed the interesting fact that K2/72 and U2 have the same distribution,
and Pearson & Stephens (1962) that the sth cumulants of W2 and U?, say «, and «j re-
spectively, are connected by the relation k; = 2!25%,. Equation (21) has been derived from
the observation that the sth cumulant of V,, say «;, is connected with « by «§ = 27%«;.
Thus if we consider 4 new statistics, S;, Sy, S3, S,, derived from the above by the relations

S, = W24, S,= U2 §8;=K?3n? 8,=7Vin?
the sth cumulants, respectively Ky, Kaq K3 Kag Of their distributions are easily shown to be

connected by the simple relations
2K 15 = Kpg = Kgs = $K4s-
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