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Introduction 

Psychophysical approaches to motor control 

John F Soechting and Martha Flanders 

University of Minnesota, Minneapolis, USA 

A variety of experimental approaches have recently helped identify the 

reference frames and coordinate systems that describe the control of eye and 

limb movements. These descriptions apply at the behavioral level and also, 

despite the distributed nature of neural processing, to the population responses 

of different neural structures. Studies on the process of adaptation to altered 

environments have also provided new insights into the controlled variables 

for movements: although handpaths can be adapted to extrinsic demands, the 

adaptation is, in some cases, in an intrinsic frame of reference. 

Current Opinion in Neurobiology 1995, 5:742-748 

The title of this review promises more than it can deliver. 

Psychophysical approaches to motor control encompass a 

large variety of studies aimed at resolving many different 

questions. It would be impossible to review all the 

work on this topic that has been published in the past 

two years. Accordingly, in this review we focus on 

two main issues. Firstly, whether or not the concept 

of ‘frames of reference’ is useful to understanding neural 

processing and, if so, how does one identify the neurally 

implemented reference frame? Secondly, what iusights 

can be gained by studying the process of movement 

adaptation to various perturbations? While WC have 

restricted the number of topics, we have tried to unify 

insights gained from two lines of investigation in motor 

control: eye and limb nlovements. At the end of the 

review, we will briefly nlention notable results on related 

topics. 

Reference frames and coordinate systems 

The concepts of reference frames and coordinate systems 

have been used widely in the study of eye and limb 

movements, especially when these movements are not 

limited to a single degree of freedom (reviewed in [1,2]). 

A reference frame is invoked automatically whenever 

we make a measurement or describe an experimental 

result: for example, describing the position of the eyes 

relative to the head (a head-fixed frame of reference), 

or relative to the trunk (body-fixed frame of reference), 

or relative to the world (an inertial or gravitational 

frame of reference). Coordinate systems come into play 

whenever we use a set of axes fixed to the frame 

of reference to make our measurements. For example, 

the superior, anterior and medial directions deflue a 

Cartesian coordinate system in a body-fixed ti-anle of 

reference. 

Despite their obvious utility for making measurements 

and describing data, the question has ariseu whether 

or not these concepts have any biological relevance 

[3,4]. That is, are they alien ideas from engiueering 

and physics that may actually diminish rather than 

enhance our understanding of how the nervous system 

works? The argument is as follows: neural processiug is 

essentially distributed in uature and, therefore, in general, 

no two neurons will encode the same parameter(s). 

If that is so, then each neuron would have its own 

frame of reference and its own coordinate system, 

implying that there are as nlauy reference tiames nud 

coordinate systems as there are neurons. Furthernlore, 

in general, each of these reference frames would be 

a hybrid: ti,r example, fixed not in space, nor to the 

body, nor to the head. If that were so, trying to 

understand neural control of movenlent iu terms of 

reference frames and transformations between different 

reference fraules would not be a particularly fruittill 

undertaking and one might be well advisrd to shift to 

a different line of inquiry: for example, elucidating the 

cellular mechanisms by which neural networks n~~nagc 

to organize themselves. 

Several investigations, published in the past two yrnrs 

ou a wide variety of topics ranging from the vestibulo- 

ocular reflex to posture control, suggest that reports of 

the demise of the coucept of reference frames in motor 

systems research may be premature. 

Eye movements 

Angelaki and Hess [So*] have shown that the vestibulo- 

ocular reflex (VOR) is organized in a gravitational frame 

- 
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of reference (i.e. one that is aligned with gravity) and 

not in a fiance of reference that is head centered. They 

suggest that the transformation from the head-centered 

reference frame of the semicircular canals to a franle 

of reference aligned with gravity is accomplished by 

the ‘velocity storage integrator’ [h] in the brain stem. 

This conclusion stems from a series of measurements 

of tha: direction of nystagnlus following the cessation of 

head rotation at constant angul.lr velocity, and builds on 

earlier work [7] concerning the direction of nystapnus 

after optokinetic stimulation (OKAN) has ceased. 

Whe:tl nmnkcys are subjected to constant velocity 

head rotations about diEerent axes in space and the 

orientation of the monkey’s head with respect to gravity 

is suddenly changed at the end of the constant-velocity 

rotation, there is a re-orientation (in a head-fixed 

frame of reference) of the direction of post-rotatory 

nystaigmus [5**]. The axis of eye rotation shifts so that 

it re-aligns itself with the axis of head rotation (in the 

inertial frame of reference) thnt provided the original 

stimulus. Subsequent work by Angelaki and Hess [8*] 

has demonstrated that this coordinate transformation 

involves signals from otolith nfferents and deteriorates 

following lesions of the vestibulo-cerebcllunl. 

The utility of organizing the VOR in a gravitational 

frame of reference is clear, as the VOR acts to stabilize 

gaze (i.e. eye position in space). The work reviewed 

above implicates the velocity storage mechanism and the 

vestibulo-cerebellunl in the spatial transformation 6onl a 

head-fixed to a spatial frame of reference. Angelaki and 

Hess [8*,‘9] suggest that the combination of semicircular 

canal and otolith signals processed by these structures 

allow the head angular velocity to be detected within 

an imrtial frame of reference (,;ee also [ 10,l 11). Such a 

signal may be useful not only for eye nlovenlents, but 

also f;zr controlling posture and limb movcnlents. 

Anatomically, there is a segregation of the velocity-to- 

position integrator into a part dealing with horizontal 

eye movenlents (nucleus prepo\itus hypoglossi) and one 

dealing \vith the vertical and torsional components 

(interstitial nucleus of Cajal [INC]) [12]. Single cells 

in the INC are tuned to the vertical components of 

a sactrade [ 13,141. These cells also exhibit directional 

tunin>g during whole body rotations eliciting a VOR. 

Under these conditions, the directional tuning found in 

the INC appears typical of a distributed system 1151, in 

that it vnrics between cells. Some respond similarly to 

vertical canal afferents, others smlilarly to motoneurons 

innervating vertical eye muscles, and some are aligned 

with neither canals nor muscles, suggesting no particular 

coordinate frame for this structure [ 16,171. 

An allnlysis of the result of INC inactivation [18**] 

leads to a different conclusion. Lesions of the neural 

integrator lead to a failure to Iuaintain gaze following 

a saccade [ 12,191. When the post-saccadic drift evoked 
by inactiv,ltion of the IN<: is described in a reference 

fiance that is fixed in space, the post-saccadic drift has 

horizontal, as well as vertical and torsional, components 

that are dependent on eye position. However, in the 

tinme of reference defined by Listing’s plane, the 

horizontal component becomes negligible. (Listing’s 

plane is defined behaviorally: eye position at the end of 

a saccade can be defined mathcnlatically as a rotation 

of the eye about some axis in spncc from one initial 

posture; the rotation axes are found experimentally to 

be confined to a plane.) Crawford [ lS**] has taken 

advantage of the fact that the orientation of Listing’s 

plane may vary fi-on1 day to day in the same subject, 

demonstrating an invariance of the post-saccadic drift 

only when it is defined in that particular frame. His 

results show a way out of the dilemma posed in the 

introduction to this section: even though the tuning of 

individual neurons may vary and not be suitable to define 

a unique frame ofreference, the population response may 

nevertheless be appropriate to detine reference frames 

and coordinate systems. 

In the reference frame defined by Li5ting’s plane, eye 

positions afier saccades have zero torsion (reviewed in 

[20*,31]), As this is not true for the VOR [22], Listing’s 

law represents a neural constraint. The question of 

whether or not the same constraint holds for head and 

arm movements has received considerable attention in 

recent years [23-251. The consensus has been that it 

does not, but that head, trunk and arm movements do 

obey Donders’ law [26’,27’], which states that is there 

is a unique orientation of the head, trunk or arm f-or 

any particular target direction. However, this does not 

hold true ti,r arm postures when subjects grasp objects 

[28,29*], and the conclusion has alto been challenged for 

pointing niovements [XP]. 

According to the example described above, inactivation 

of a neural structure provides one way of deciphering 

the frame of reference of the population response of 

that structure. Another nleans of identitjiing putative 

ti-ames of reference is by silnulations based on neural 

network models. Such an approach has been used by 

Andersen and colleagues [31,32,X3”] to show that a 

neuronal population in posterior parletal cortex could 

potentially encode the location of a visual stimulus tn an 

Inertial frame of reference. Sin& neurons have responses 

that are tuned to the retinal location of a spot of light. 

This tuning does not change when the eye position 

in the head or the posture of the head relative to the 

trunk changes (i.e. a ctimulus at a particular location 

in a retinotoplc frame of reference alwnvs gives the 

best response). However, the amplitude of ;he response 

also depends on the eye position in the head and the 

head position relative to the trunk. The sensitivity to 

the latter two paranlcters is orderly, such that neural 

discharge depends in a multiplicative fashion on stimulus 

location in a retinotopic tiamc of reference and on 

the gaze direction [3P]. Thus, single neurons do not 

encode the stimulus location in my intuitively simple 

reference frame. However, simulations show that the 

population response has the potential to encode stimulus 
location ill a reference iranle that is fixed in space. 
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Although this approach is less direct than the earlier one, 

it suffices to at least establish the feasibility of a particular 

model for neural information processing. Well-designed 

behavioral paradigms (such as the one described in [P]) 

and reversible inactivation studies [lS**] provide some 

of the means for explicit tests of this type of model’s 

predictions. 

Posture and arm movements 

The past few years have seen considerable progress 

towards identifying coordinate systems that describe the 

control of posture. Cat posture exhibits stereotyped 

behavioral responses under both static and dynamic 

conditions. When the support surface on which the cat 

is standing is displaced transiently, the tangential ground 

reaction forces generated by the limb’s musculature are 

restricted to directions that are approximately -t45” 

with respect to the midsagittal plane, irrespective of the 

direction of displacement of the platform [34]. Recent 

iuvestigations [35*,36,37*] have described the conditions 

under which this invariant response is maintained 

by varying the distance between the forelimbs and 

hindlimbs, and by investigating the etl’ect of previous 

experience. 

Studies on the kinematics (posture) and kinetics (contact 

forces) under static conditions have identified the 

coordinate system in which the kinematic aspects of 

the posture are controlled. In particular, it seems that the 

length and orientation of each limb are the parameters 

that represent the limb’s geometry [X3,39] and that 

they may be controlled independently. In a recent 

study, Lacquaniti and Maioli [40”,41**] elaborated on 

these conclusions by describing cat posture under a 

wide variety of experimental conditions: varying the 

tilt of the platform, the interfoot distance, and head 

orientation, and in the presence of applied loads. They 

concluded that kinematics and kinetics were regulated 

independently of each other. They found a large amount 

of variability in limb posture, as defined by the length 

and orientation variables, but that the three joint angles 

of each limb (e.g. hip, knee and ankle for the hindlimb) 

were linearly dependent on each other (i.e. their values 

were restricted to one plane). In an analytical tmtr 

dc _/&c they examined several hypotheses that could 

account for such a linear dependence [41”], and were 

able to exclude a variety of possible explanations. The 

biological solution appears to be one that favors motor 

equivalence, in that different combinations of joint 

angles are compatible with a single value of length 

and orientation, and one that permits the independent 

control of these two variables. 

To define the joint angles of a limb, Lacquaniti 

and Maioli [40**] found it advantageous to use a 

hybrid coordinate system, in which some joint angles 

were defined with respect to the vertical (absolute 

angles), whereas others were defined as the angle 
between adjacent segments (relative angles). It had 

previously been suggested, on the basis ofpsychophysical 

observation [42], that human arm posture is sensed 

in terms of the limb’s orientation with respect to the 

vertical direction plane and nlidsagittal plane (i.e. as 

absolute angles). Scott and Loeb [43*] have deveioped all 

interesting approach to study this problem. Under the 

assumption that muscle spindles are largely rcsponsiblc 

for transducing limb posture, the authors computed the 

distribution of muscle spindles that would be optimal ti)r 

eucoding limb posture in different coordinate systcllls, 

absolute and relative. Each coordinate system give\ .I 

different prediction. For example, two-joint muscles arc 

optimal for encoding absolute orientation of the distal 

limb segment. Comparing the predicted distribution of 

spindles with data for humans, they found that the actual 

distribution did uot match any of the predicted ones. 

Their study supports the conclusion that inforlllatioll 

from muscle spindle afferents may be used k>i,r a variety of 

purposes in a variety of coordinate systems, aud that the 

actual distribution may reflect a compromise bet\vecn 

conflicting demands. 

Results from several recent studies suggest that the 

orientation of the hand is defined iu a hybrid fmnlt~ 

of reference. Subjects are able to orient the hand so 

that it is aligned with the axis of an elongated object 

when the hand is at the remembered location of the 

object. However, they make consistent errors whellcvcr 

the hand is not at the object’s location [28,34*]. The bias 

in these errors suggests that hand orientation is defined 
neither in a frame of reference fixed to the arnl, Ilor 

in one fixed in space. This can also be demonstrated 

by asking subjects to orient a grasped object either in 

the inertial frame of reference (e.g. at 45” relative to 

the vertical) or in the arm’s frame of reference (e.g. 

perpendicularly to the arm) [45*]. I II either case, subjects 

exhibit a bias towards the other frame of reference. 

In our review of this topic, we have come fill1 circle. 

We began with the consideration that the activity of 

individual neurons is generally defined in a hybrid ti-amc 

of reference that di@ers from neuron to neuron, but that 

the population response will be expressed in a well 

defined and often intuitively simple reference ti-ame. 

Accordingly, the behavior should also express itself in 

such simple frames of reference. We have discussed 

examples where this is so, but, as we have showu. there 

are also cases where it is not. 

Adaptation 

Human subjects can adapt their motor output to 

compensate for a large variety of perturbations. For 

example, as Held [4h] showed long ago, when subjects 

view an object through prisms that displace the perceived 

location of the object, they initially make errors 

in reaching movements. These errors dinlinish with 

practice. If the displacing prisms are then removed, 
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subjects nlakc errors in the opposite direction. Results of 

such studies demonstrate the remarkable plasticity of the 

central nervous system, and they can also provide insight 

about what is controlled and the information that is used 

in error correction. 

Two rxent studies [47**,38**] provide illustrative es- 

amples. In both studies, subjects made pointing move- 

ments in velocity-dependent (viscous) force fields that 

displaced their arm from the intended trajectory. 111 

o11c study [47-j, a destabilizing perturbation with a 

Grly complicated dependence on hand location was 

generared by torque motors. Initially, trajectories on the 

center-.out task popularized by Georgopoulos [ 151 were 

severely distorted, but gradually returned to normal, 

with nliuinlal curvature. As oue might expect, subjects 

showed after-effects on trials in which no forces were 

applied. The unique aspect of this study is that the 

authors used this paradigm to i8denti@ what aspect of 

these adnptcd nmvements subjects do generalize when 

they are asked to make umvemmts in a different part 

of the workspace. The investigators contemplated two 

alternatives: subjects generalize the forces on the hand, 

or they generalize the joint torques. To ditferentinte 

between these two alternatives, the force fields for 

lnovenleuts initiated in a diKerent part of the work 

space corresponded to the force field used f& adaptation 

in oIle of- t\vo ways: either in Cartesian coordinates 

or in joint torque coordinates. only when they lvcre 

identical in joint torque coordinates was there a transfer 

of adaptation. 

This result leads to the conclusion that ndaptatiou takes 

place at the level of joint coordiuatcs and not in 

the extrinsic coordiuates of wrist displacement. In this 

experilnent. the elbow angle was the same in both 

parts of the workspace, nnd only the shoulder angle 
was changed. The extent to which subjects are able 

to generalize when both shoulder and elbow auglcs 

change should provide additional iusight into the form of 

the intcrnnl dynamic model subjects use, as the equations 

ior torque contain terms that depend explicitly ou elbow 

angle [49,SO]. 

In the second study [48**], no forces were applied 

directly to the subjects’ arms. They were generated 

indirecrly when subjects were instructed to make 

pointing movements in a room that rotated at a 

constant angular velocity. In this condition, there is a 

Coriolis Lrce that is perpendicular to the direction of 

arm motion and the axis of thy room’s rotation, and 

proportional to the speed of the movement. This force 

led to a lateral displacement of the final steady-state 

position of the hand. Even iu the absence of pressure 

cues from coutnct forces on the arm, subjects adapted 

and also showed the expected after effects. Curiously, 

adaptatiou was facilitated if cubjccts had available tactile 

cues provided by contact of the fmgers with the surface 

on wh:lch the target rested (but not with the target 

itself, which was a light-emitting diode located below 

a transLxnt surface). This study also provides one 

additional refutation of the equilibrium point hypothesis: 

according to the hypothesis, viscous forces, because they 

vanish at zero velocity, should not lead to steady-state 

errors. 

As we have already mentioned, handpaths during poin- 

ing movenm~ts are generally nearly straight. Wolpert er 

‘I/. (51*.X?*] have induced adaptations in the handpath 

by manipulating visual feedback of- the trajectory as 

displayed on a monitor during the nlovcnlent. When 

the visual display of the handpath is distorted, subjects 

modi& the trajectory so that the displayed path bcconm 

straighter, the actual path no\v being substantially 

curved. In the second study, the authors showed that 

the displacement of a cursor along a gently curved 

path (corresponding to an actual hnndpath obtained in 

nnothcr espcrinlent) is perceived as being straight. The 

authors emphasize the role played by visually mediated 

spatial perception in shaping umveulcnt kinematics. 

Neural network models have been used to idcntie 

the substratcs ior learuiug and adaptation. Two notable 

recent examples [53,53] deal with the topics discussed 

above: how straight line movements may-be learned, and 

how a body-centered rcpresentntion of target location 

can bc derived from visual information in a retinotopic 

frame of reference, incorporating inforlmtion about rye 

and head positiou. A ulodel dealing with transformations 

between visual and kinesthetic coordinates [S-S] is 

also notable for attempting to reconcile the behavior 

of neurons iu motor and pre-motor cortex with 

psychophysical observations on pointing umvmlents. 

We would be remiss not to mention adaptation in the 

VOR. This has been a long-standing \ubjeit fix study 

[%.S7]. and the question of which neurons in this 

reflex arc undergo modification has bee11 the subject of 

considerable controversy. A series of rcceut publications 

by Lisbcrger and colleagues [S8-60] ha? done much to 

cl,u$ this topic. It has been the subject of a recent 

review [61**]. 

Related topics 

The past year has sc‘cn a continuation in the kiue- 

matic analysis of more complex behavior in humans 

[h2-651, monkeys [CL)] and cats 1071. Errors in pointing 

movements have also continued to receive considerable 

attention [f&71]. There is also an increasing trend 

to use complex behaviors to describe deficits in 

motor performance following cerebcllar lesions [72-741, 

pnrietal lobe lesions [75-771, and iu patients who are 

functionally denfferentcd 17%801. 

Conclusions 

The concepts of reference frames and coordinate sys- 

tems, borrowed from classical physics, have contributed 
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to our understanding of motor control both at the 
behavioral level and in terms of the response of 
a population of neurons. A variety of experimental 
approaches have been developed to identify putative 
coordinate systems. Recently, there has been progress 
on two fronts: culling out the population response 
from the widely disparate tuning of single units, and 
the realization that the reference fi-ames in which 
behavior manifests itself may be labile. Studies on motor 
adaptation to altered environments have a long history. 
Recent studies in this genre have shed light on exactly 
what is learned during the process of adaptation and 
what kind of sensory information is used. Results from 
such studies may generalize to provide an understanding 
of how skilled movements are normally learned and 
controlled. 
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