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INTRODUCTION

Multiple testing refers to the testing of more than one hypothesis at a time. It is
a subfield of the broader field of multiple inference, or simultaneous inference,
which includes multiple estimation as well as testing. This review concentraies
on testing and deals with the special problems arising from the multiple aspect.
The term “multiple comparisons” has come to be used synonymously with
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“simultaneous inference,” even when the inferences do not deal with compari-
sons. It is used in this broader sense throughout this review.

In general, in testing any single hypothesis, conclusions based on statistical
evidence are uncertain. We typically specify an acceptable maximum prob-
ability of rejecting the null hypothesis when it is true, thus committing a Type
I error, and base the conclusion on the value of a statistic meeting this specifi-
cation, preferably one with high power. When many hypotheses are tested, and
each test has a specified Type I error probability, the probability that at least
some Type I errors are committed increases, often sharply, with the number of
hypotheses. This may have serious consequences if the set of conclusions must
be evaluated as a whole. Numerous methods have been proposed for dealing
with this problem, but no one solution will be acceptable for all situations.
Three examples are given below to illustrate different types of multiple testing
problems.

SUBPOPULATIONS: A HISTORICAL EXAMPLE  Cournot (1843) described vividly
the multiple testing problem resulting from the exploration of effects within
different subpopulations of an overall population. In his words, as translated
from the French, “...it is clear that nothing limits...the number of features
according to which one can distribute [natural events or social facts] into several
groups or distinct categories.” As an example he mentions investigating the
chance of a male birth: “One could distinguish first of all legitimate births from
those occurring out of wedlock,...one can also classify births according to birth
order, according to the age, profession, wealth, or religion of the parents. ..usu-
ally these attempts through which the experimenter passed don’t leave any
traces; the public will only know the result that has been found worth pointing
out; and as a consequence, someone unfamiliar with the attempts which have
led to this result completely lacks a clear rule for deciding whether the result
can or can not be attributed to chance.” (See Stigler 1986, for further discussion
of the historical context; see also Shafer & Olkin 1983, Nowak 1994.)

LARGE SURVEYS AND OBSERVATIONAL STUDIES In large social science sur-
veys, thousands of variables are investigated, and participants are grouped in
myriad ways. The results of these surveys are often widely publicized and have
potentially large effects on legislation, monetary disbursements, public behav-
ior, etc. Thus, it is important to analyze results in a way that minimizes
misleading conclusions. Some type of multiple error control is needed, but it is
clearly impractical, if not impossible, to control errors at a small level over the
entire set of potential comparisons.

FACTORIAL DESIGNS  The standard textbook presentation of multiple compari-
son issues is in the context of a one-factor investigation, where there is evidence
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from an overall test that the means of the dependent variable for the different
levels of a factor are not all equal, and more specific inferences are desired to
delineate which means are different from which others. Here, in contrast to many
of the examples above, the family of inferences for which error control is desired
is usually clearly specified and is often relatively small. On the other hand, in
multifactorial studies, the situation is less clear. The typical approach is to treat
the main effects of each factor as a separate family for purposes of error control,
although both Tukey (1953) and Hartley (1955) gave examples of 2 x 2 x 2
factorial designs in which they treated all seven main effect and interaction tests
as a single family. The probability of finding some significances may be very
large if each of many main effect and interaction tests is carried out at a
conventional level in a multifactor design. Furthermore, it is important in many
studies to assess the effects of a particular factor separately at each level of other
factors, thus bringing in another layer of multiplicity (see Shaffer 1991).

As noted above, Cournot clearly recognized the problems involved in mul-
tiple inference, but he considered them insoluble. Although there were a few
isolated earlier relevant publications, sustained statistical attacks on the prob-
lems did not begin until the late 1940s. Mosteller (1948) and Nair (1948) dealt
with extreme value problems; Tukey (1949) presented a more comprehensive
approach. Duncan (1951) treated multiple range tests. Related work on rank-
ing and selection was published by Paulson (1949) and Bechhofer (1952).
Scheffé (1953) introduced his well-known procedures, and work by Roy &
Bose (1953) developed another simultaneous confidence interval approach.
Also in 1953, a book-length unpublished manuscript by Tukey presented a
general framework covering a number of aspects of multiple inference. This
manuscript remained unpublished until recently, when it was reprinted in full
(Braun 1994). Later, Lehmann (1957a,b) developed a decision-theoretic ap-
proach, and Duncan (1961) developed a Bayesian decision-theoretic approach
shortly afterward. For additional historical material, see Tukey (1953), Harter
(1980), Miller (1981), Hochberg & Tamhane (1987), and Shaffer (1988).

The first published book on multiple inference was Miller (1966), which
was reissued in 1981, with the addition of a review article (Miller 1977).
Except in the ranking and selection area, there were no other book-length
treatments until 1986, when a series of book-length publications began to
appear: 1. Multiple Comparisons (Klockars & Sax 1986); 2. Multiple Com-
parison Procedures (Hochberg & Tamhane 1987; for reviews, see Littell
1989, Peritz 1989); 3. Multiple Hypothesenpriifung (Multiple Hypotheses Test-
ing) (Bauer et el 1988; for reviews, see Lauter 1990, Holm 1990); 4. Multiple
Comparisons for Researchers (Toothaker 1991; for reviews, see Gaffan 1992,
Tatsuoka 1992) and Multiple Comparison Procedures (Toothaker 1993); 5.
Multiple Comparisons, Selection, and Applications in Biometry (Hoppe
1993b; for a review, see Ziegel 1994); 6. Resampling-based Multiple Testing
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(Westfall & Young 1993; for reviews, see Chaubey 1993, Booth 1994); 7. The
Collected Works of John W. Tukey, Volume VII: Multiple Comparisons: 1948
1983 (Braun 1994); and 8. Multiple Comparisons: Theory and Methods (Hsu
1996).

This review emphasizes conceptual issues and general approaches. In par-
ticular, two types of methods are discussed in detail: (@) methods based on
ordered p-values and (b) comparisons among normally distributed means. The
literature cited offers many examples of the application of techniques dis-
cussed here.

ORGANIZING CONCEPTS

Primary Hypotheses, Closure, Hierarchical Sets, and Minimal
Hypotheses

Assume some set of null hypotheses of primary interest to be tested. Some-
times the number of hypotheses in the set is infinite (e.g. hypothesized values
of all linear contrasts among a set of population means), although in most
practical applications it is finite (e.g. values of all pairwise contrasts among a
set of population means). It is assumed that there is a set of observations with
joint distribution depending on some parameters and that the hypotheses spec-
ify limits on the values of those parameters. The following examples use a
primary set based on differences 1, n2,..., ym among the means of m popula-
tions, although the concepts apply in general. Let &;; be the difference w; — u;;
let 9% be the set of differences among the means w;, wj, and p, etc. The
hypotheses are of the form Hij...:8jj%... = 0, indicating that all subscripted
means are equal; e.g. H1234 is the hypothesis u1 = u2 = u3 = u4. The primary
set need not consist of the individual pairwise hypotheses Hj;. If m = 4, it may,
for example, be the set Hi2, H123, H1234, etc, which would signify a lack of
interest in including inference concerning some of the pairwise differences
(e.g. H23) and therefore no need to control errors with respect to those differ-
ences.

The closure of the set is the collection of the original set together with all
distinct hypotheses formed by intersections of hypotheses in the set; such a
collection is called a closed set. For example, an intersection of the hypotheses
Hij and Hix is the hypothesis Hijk: Wi = wj = pk. The hypotheses included in an
intersection are called components of the intersection hypothesis. Technically,
a hypothesis is a component of itself; any other component is called a proper
component. In the example above, the proper components of Hijx are Hjj, Hix,
and, if it is included in the set of primary interest, Hjx because its intersection
with either Hjj or Hjx also gives Hjjx. Note that the truth of a hypothesis implies
the truth of all its proper components.
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Any set of hypotheses in which some are proper components of others will
be called a hierarchical set. (That term is sometimes used in a more limited
way, but this definition is adopted here.) A closed set (with more than one
hypothesis) is therefore a hierarchical set. In a closed set, the top of the
hierarchy is the intersection of all hypotheses: in the examples above, it is the
hypothesis Hi2...m, or u1 = w2 =...= wm. The set of hypotheses that have no
proper components represent the lowest level of the hierarchy; these are called
the minimal hypotheses (Gabriel 1969). Equivalently, a minimal hypothesis is
one that does not imply the truth of any other hypothesis in the set. For
example, if all the hypotheses state that there are no differences among sets of
means, and the set of primary interest includes all hypotheses Hj; for all i = j =
1,...m, these pairwise equality hypotheses are the minimal hypotheses.

Families

The first and perhaps most crucial decision is what set of hypotheses to treat as
a family, that is, as the set for which significance statements will be considered
and errors controlled jointly. In some of the early multiple comparisons litera-
ture (e.g. Ryan 1959, 1960), the term “experiment” rather than “family” was
used in referring to error control. Implicitly, attention was directed to relatively
small and limited experiments. As a dramatic contrast, consider the example of
large surveys and observational studies described above. Here, because of the
inverse relationship between control of Type I errors and power, it is unreason-
able if not impossible to consider methods controlling the error rate at a
conventional level, or indeed any level, over all potential inferences from such
surveys. An intermediate case is a multifactorial study (see above example), in
which it frequently seems unwise from the point of view of power to control
error over all inferences. The term “family” was introduced by Tukey (1952,
1953). Miller (1981), Diaconis (1985), Hochberg & Tamhane (1987), and
others discuss the issues involved in deciding on a family. Westfall & Young
(1993) give explicit advice on methods for approaching complex experimental
studies.

Because a study can be used for different purposes, the results may have to
be considered under several different family configurations. This issue came
up in reporting state and other geographical comparisons in the National
Assessment of Educational Progress (see Ahmed 1991). In a recent national
report, each of the 780 pairwise differences among the 40 jurisdictions in-
volved (states, territories, and the District of Columbia) was tested for signifi-
cance at level .05/780 in order to control Type I errors for that family. How-
ever, from the point of view of a single jurisdiction, the family of interest is the
39 comparisons of itself with each of the others, so it would be reasonable to
test those differences each at level .05/39, in which case some differences
would be declared significant that were not so designated in the national
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report. See Ahmed (1991) for a discussion of this example and other issues in
the context of large surveys.

Type I Error Control

In testing a single hypothesis, the probability of a Type I error, i.¢. of rejecting
the null hypothesis when it is true, is usually controlled at some designated
level a. The choice of « should be governed by considerations of the costs of
rejecting a true hypothesis as compared with those of accepting a false hy-
pothesis. Because of the difficulty of quantifying these costs and the subjectiv-
ity involved, a is usually set at some conventional level, often .05. A variety of
generalizations to the multiple testing situation are possible.

Some multiple comparison methods control the Type I error rate only when
all null hypotheses in the family are true. Others control this error rate for any
combination of true and false hypotheses. Hochberg & Tamhane (1987) refer
to these as weak control and strong control, respectively. Examples of methods
with only weak error control are the Fisher protected least significant differ-
ence (LSD) procedure, the Newman-Keuls procedure, and some nonparamet-
ric procedures (see Fligner 1984, Keselman et al 1991a). The multiple com-
parison literature has been confusing because the distinction between weak
and strong control is often ignored. In fact, weak error rate control without
other safeguards is unsatisfactory. This review concentrates on procedures
with strong control of the error rate. Several different error rates have been
considered in the multiple testing literature. The major ones are the error rate
per hypothesis, the error rate per family, and the error rate familywise or
familywise error rate.

The error rate per hypothesis (usually called PCE, for per-comparison error
rate, although the hypotheses need not be restricted to comparisons) is defined
for each hypothesis as the probability of Type I error or, when the number of
hypotheses is finite, the average PCE can be defined as the expected value of
(number of false rejections/number of hypotheses), where a false rejection
means the rejection of a true hypothesis. The error rate per family (PFE) is
defined as the expected number of false rejections in the family. This error rate
does not apply if the family size is infinite. The familywise error rate (FWE) is
defined as the probability of at least one error in the family.

A fourth type of error rate, the false discovery rate, is described below.
To make the three definitions above clearer, consider what they imply in a
simple example in which each of n hypotheses Hi...., Hn is tested individually
at a level oy, and the decision on each is based solely on that test. (Procedures
of this type are called single-stage; other procedures have a more complicated
structure.) If all the hypotheses are true, the average PCE equals the average of
the o, the PFE equals the sum of the o, and the FWE is a function not of the
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a; alone, but involves the joint distribution of the test statistics; it is smaller
than or equal to the PFE, and larger than or equal to the largest a..

A common misconception of the meaning of an overall error rate a applied
to a family of tests is that on the average, only a proportion a of the rejected
hypotheses are true ones, i.e. are falsely rejected. To see why this is not so,
consider the case in which all the hypotheses are true; then 100% of rejected
hypotheses are true, i.e. are rejected in error, in those situations in which any
rejections occur. This misconception, however, suggests considering the pro-
portion of rejected hypotheses that are falsely rejected and trying to control
this proportion in some way. Letting V equal the number of false rejections
(i.e. rejections of true hypotheses) and R equal the total number of rejections,
the proportion of false rejections is Q = V/R. Some interesting early work
related to this ratio is described by Seeger (1968), who credits the initial
investigation to unpublished papers of Eklund. Sori¢ (1989) describes a differ-
ent approach to this ratio. These papers (Seeger, Eklund, and Sori¢) advocated
informal consideration of the ratio; the following new approach is more for-
mal. The false discovery rate (FDR) is the expected value of Q = (number of
false significances/number of significances) (Benjamini & Hochberg 1994).

Power

As shown above, the error rate can be generalized in different ways when
moving from single to multiple hypothesis testing. The same is true of power.
Three definitions of power have been common: the probability of rejecting at
least one false hypothesis, the average probability of rejecting the false hy-
potheses, and the probability of rejecting all false hypotheses. When the family
consists of pairwise mean comparisons, these have been called, respectively,
any-pair power (Ramsey 1978), per-pair power (Einot & Gabriel 1975), and
all-pairs power (Ramsey 1978). Ramsey (1978) showed that the difference in
power between single-stage and multistage methods is much greater for all-
pairs than for any-pair or per-pair power (see also Gabriel 1978, Hochberg &
Tamhane 1987).

P-Values and Adjusted P-Values

In testing a single hypothesis, investigators have moved away from simply
accepting or rejecting the hypothesis, giving instead the p-value connected
with the test, i.e. the probability of observing a test statistic as extreme or more
extreme in the direction of rejection as the observed value, This can be concep-
tualized as the level at which the hypothesis would just be rejected, and
therefore both allows individuals to apply their own criteria and gives more
information than merely acceptance or rejection. Extension of this concept in
its full meaning to the multiple testing context is not necessarily straightfor-
ward. A concept that allows generalization from the test of a single hypothesis
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to the multiple context is the adjusted p-value (Rosenthal & Rubin 1983).
Given any test procedure, the adjusted p-value corresponding to the test of a
single hypothesis H; can be defined as the level of the entire test procedure at
which H; would just be rejected, given the values of all test statistics involved.
Application of this definition in complex multiple comparison procedures is
discussed by Wright (1992) and by Westfall & Young (1993), who base their
methodology on the use of such values. These values are interpretable on the
same scale as those for tests of individual hypotheses, making comparison
with single hypothesis testing easier.

Closed Test Procedures

Most of the multiple comparison methods in use are designed to control the
FWE. The most powerful of these methods are in the class of closed test
procedures, described in Marcus et al (1976). To define this general class,
assume a set of hypotheses of primary interest, add hypotheses as necessary to
form the closure of this set, and recall that the closed set consists of a hierarchy
of hypotheses. The closure principle is as follows: A hypothesis is rejected at
level a if and only if it and every hypothesis directly above it in the hierarchy
(i.e. every hypothesis that includes it in an intersection and thus implies it) is
rejected at level a. For example, given four means, with the six hypotheses Hij,
i =j=1,.., 4 as the minimal hypotheses, the highest hypothesis in the
hierarchy is H1234, and no hypothesis below Hi234 can be rejected unless it is
rejected at level a. Assuming it is rejected, the hypothesis Hi2 cannot be
rejected unless the three other hypotheses above it in the hierarchy, H123, H124,
and the intersection hypothesis H12 and H34 (i.e. the single hypothesis pu1 = p2
and u3 = ug), are rejected at level o, and then Hj is rejected if its associated
test statistic is significant at that level. Any tests can be used at each of these
levels, provided the choice of tests does not depend on the observed configura-
tion of the means. The proof that closed test procedures control the FWE
involves a simple logical argument. Consider every possible true situation,
each of which can be represented as an intersection of null and alternative
hypotheses. Only one of these situations can be the true one, and under a
closed testing procedure the probability of rejecting that one true configuration
is = a. All true null hypotheses in the primary set are contained in the intersec-
tion corresponding to the true configuration, and none of them can be rejected
unless that configuration is rejected. Therefore, the probability of one or more
of these true primary hypotheses being rejected is < a.

METHODS BASED ON ORDERED P-VALUES

The methods discussed in this section are defined in terms of a finite family of
hypotheses Hj, i = 1,..., n, consisting of minimal hypotheses only. It is as-
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sumed that for each hypothesis H; there is a corresponding test statistic 7; with
a distribution that depends only on the truth or falsity of H;. It is further
assumed that H; is to be rejected for large values of Ti. (The T; are absolute
values for two-sided tests.) Then the (unadjusted) p-value p; of H;is defined as
the probability that T; is larger than or equal to #;, where T refers to the random
variable and ¢ to its observed value. For simplicity of notation, assume the
hypotheses are numbered in the order of their p-values so that p1 < p2 <...< pp,
with arbitrary ordering in case of ties. With the exception of the subsection on
Methods Controlling the FDR, all methods in this section are intended to
provide strong control of the FWE.

Methods Based on the First-Order Bonferroni Inequality

The first-order Bonferroni inequality states that, given any set of events Aj,
A2,..., An, the probability of their union (i.e. of the event A1 or A2 or...or Ap) is
smaller than or equal to the sum of their probabilities. Letting A; stand for the
rejection of H;, i = 1,..., n, this inequality is the basis of the Bonferroni
methods discussed in this section.

THE SIMPLE BONFERRONI METHOD  This method takes the form: Reject H; if p;
= oy, wWhere the o; are chosen so that their sum equals a. Usually, the o; are
chosen to be equal (all equal to a/n), and the method is then called the
unweighted Bonferroni method. This procedure controls the PFE to be < o and
to be exactly a if all hypotheses are true. The FWE is usually < a.

This simple Bonferroni method is an example of a single-stage testing
procedure. In single-stage procedures, control of the FWE has the consequence
that the larger the number of hypotheses in the family, the smaller the average
power for testing the individual hypotheses. Multistage testing procedures can
partially overcome this disadvantage. Some multistage modifications of the
Bonferroni method are discussed below.

HOLM’S SEQUENTIALLY-REJECTIVE BONFERRONI METHOD The unweighted
method is described here; for the weighted method, see Holm (1979). This
method is applied in stages as follows: At the first stage, H1 is rejected if p1 <
o/n. If H is accepted, all hypotheses are accepted without further test; other-
wise, H2 is rejected if p2 < o/(n — 1). Continuing in this fashion, at any stage j,
Hj is rejected if and only if all H; have been rejected, i <j, and pj< o/(n —j +
1).

To prove that this method controls the FWE, let k be the number of hy-
potheses that are true, where k is some number between O and n. If k = n, the
test at the first stage will result in a Type I error with probability < a. If k =
n - 1, an error might occur at the first stage but will certainly occur if there is a
rejection at the second stage, so again the probability of a Type I error is s o
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[because there are n — 1 true hypotheses and none can be rejected unless at
least one has an associated p-value < o/(n - 1)]. Similarly, whatever the value
of k, a Type I error may occur at an early stage but will certainly occur if there
is a rejection at stage n — k + 1, in which case the probability of a Type I error
is = a. Thus, the FWE is < a. for every possible configuration of true and false
hypotheses.

A MODIFICATION FOR INDEPENDENT AND SOME DEPENDENT STATISTICS If
test statistics are independent, the Bonferroni procedure and the Holm modifi-
cation described above can be improved slightly by replacing a/k for any &k =
l..,nbyl-(1- (1)(1/ k), always > av/k, although the difference is small for
small values of a. These somewhat higher levels can also be used when the test
statistics are positive orthant dependent, a class that includes the two-sided ¢
statistics for pairwise comparisons of normally distributed means in a one-way
layout. Holland & Copenhaver (1988) note this fact and give examples of other
positive orthant dependent statistics.

Methods Based on the Simes Equality

Simes (1986) proved that if a set of hypotheses Hi, H3,..., Hy are all true, and
the associated test statistics are independent, then with probability 1 — a, p;i >
io/n for i = 1,..., n, where the p; are the ordered p-values, and « is any number
between 0 and 1. Furthermore, although Simes noted that the probability of
this joint event could be smaller than 1 ~ o for dependent test statistics, this
appeared to be true only in rather pathological cases. Simes and others (Hom-
mel 1988, Holland 1991, Klockars & Hancock 1992) have provided
simulation results suggesting that the probability of the joint event is larger
than 1 - o for many types of dependence found in typical testing situations,
including the usual two-sided ¢ test statistics for all pairwise comparisons
among normally distributed treatment means.

Simes suggested that this result could be used in multiple testing but did not
provide a formal procedure. As Hochberg (1988) and Hommel (1988) pointed
out, on the assumption that the inequality applies in a testing situation, more
powerful procedures than the sequentially rejective Bonferroni can be obtained
by invoking the Simes result in combination with the closure principle. Be-
cause carrying out a full Simes-based closure procedure testing all possible
hypotheses would be tedious with a large closed set, Hochberg (1988) and
Hommel (1988) each give simplified, conservative methods of utilizing the
Simes result.

HOCHBERG’S MULTIPLE TEST PROCEDURE Hochberg’s (1988) procedure can
be described as a “step-up” modification of Holm’s procedure. Consider the set
of primary hypotheses Hy,..., Hy. If pj s a/(n — j+ 1) forany j = 1,..., n, reject
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all hypotheses H; for i < j. In other words, if pn < o, reject all H;; otherwise, if
Dn-1=0/2,1eject Hy,..., Hn - 1, etc.

HOMMEL’S MULTIPLE TEST PROCEDURE Hommel’s (1988) procedure is more
powerful than Hochberg’s but is more difficult to understand and apply. Let j
be the largest integer for which pn — j + & > kou/j for all k = 1,..., j. If no such j
exists, reject all hypotheses; otherwise, reject all H; with p; < oJj.

ROM’S MODIFICATION OF HOCHBERG’S PROCEDURE  Rom (1990) gave slightly
higher critical p-value levels that can be used with Hochberg’s procedure,
making it somewhat more powerful. The values must be calculated; see Rom
(1990) for details and a table of values for small n.

Modifications for Logically Related Hypotheses

Shaffer (1986) pointed out that Holm’s sequentially-rejective multiple test
procedure can be improved when hypotheses are logically related; the same
considerations apply to multistage methods based on Simes’ equality. In many
testing situations, it is not possible to get all combinations of true and false
hypotheses. For example, if the hypotheses refer to pairwise differences
among treatment means, it is impossible to have @1 = p2 and p2 = p3 but pg =
u3. Using this reasoning, with four means and six possible pairwise equality
null hypotheses, if all six are not true, then at most three are true. Therefore, it
is not necessary to protect against error in the event that five hypotheses are
true and one is false, because this combination is impossible. Let # be the
maximum number of hypotheses that are true given that at least j - 1 hypothe-
ses are false. Shaffer (1986) gives recursive methods for finding the values ¢
for several types of testing situations (see also Holland & Copenhaver 1987,
Westfall & Young 1993). The methods discussed above can be modified to
increase power when the hypotheses are logically related; all methods in this
section are intended to control the FWE at a level < .

MODIFIED METHODS ~ As is clear from the proof that it maintains FWE control,
the Holm procedure can be modified as follows: At stage j, instead of
rejecting Hj only if pj < o/(n - j + 1), Hj can be rejected if pj < a/tj. Thus,
when the hypotheses of primary interest are logically related, as in the example
above, the modified sequentially-rejective Bonferroni method is more powerful
than the unmodified method. For some simple applications, see Levin et al
(1994).

Hochberg & Rom (1994) and Hommel (1988) describe modifications
of their Simes-based procedures for logically related hypotheses. The sim-
pler of the two modifications the former describes is to proceed from i =n, n —
1, n - 2, etc until for the first time p; < a/(n — i + 1). Then reject all H; for
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which p; = a/ti + 1. [The Rom (1990) modification of the Hochberg procedure
can be improved in a similar way.] In the Hommel modification, let j be the
largest integer in the set n, 12,..., f, and proceed as in the unmodified Hommel
procedure.

Still further modifications at the expense of greater complexity can be
achieved, since it can also be shown (Shaffer 1986) that for FWE control it is
necessary to consider only the number of hypotheses that can be true given
that the specific hypotheses that have been rejected are false. Hommel (1986),
Conforti & Hochberg (1987), Rasmussen (1993), Rom & Holland (1994), and
Hochberg & Rom (1994) consider more general procedures.

COMPARISON OF PROCEDURES Among the unmodified procedures, Hommel’s
and Rom’s are more powerful than Hochberg’s, which is more powerful than
Holm’s; the latter two, however, are the easiest to apply (Hommel 1988, 1989;
Hochberg 1988; Hochberg & Rom 1994). Simulation results using the unmodi-
fied methods suggest that the differences are usually small (Holland 1991).
Comparisons among the modified procedures are more complex (see Hochberg
& Rom 1994).

A CAUTION  All methods based on Simes’s results rest on the assumption that
the equality he proved for independent tests results in a conservative multiple
comparison procedure for dependent tests. Thus, the use of these methods in
atypical multiple test situations should be backed up by simulation or further
theoretical results (see Hochberg & Rom 1994).

Methods Controlling the False Discovery Rate

The ordered p-value methods described above provide strong control of the
FWE. When the test statistics are independent, the following less conservative
step-up procedure controls the FDR (Benjamini & Hochberg 1994): If p; <
o/n, teject all H; for i = j. A recent simulation study (Y Benjamini, Y
Hochberg, & Y Kling, manuscript in preparation) suggests that the FDR is also
controlled at this level for the dependent tests involved in pairwise compari-
sons. VSL Williams, LV Jones, & JW Tukey (manuscript in preparation) show
in a number of real data examples that the Benjamini-Hochberg FDR-control-
ling procedure may result in substantially more rejections than other multiple
comparison methods. However, to obtain an expected proportion of false
rejections, Benjamini & Hochberg have to define a value when the denomina-
tor, 1.e. the number of rejections, equals zero; they define the ratio then as zero.
As a result, the expected proportion, given that some rejections actually occur,
is greater than o in some situations (it necessarily equals one when all hy-
potheses are true), so more investigation of the error properties of this proce-
dure is needed.
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COMPARING NORMALLY DISTRIBUTED MEANS

The methods in this section differ from those of the last in three respects: They
deal specifically with comparisons of means, they are derived assuming nor-
mally distributed observations, and they are based on the joint distribution of
all observations. In contrast, the methods considered in the previous section
are completely general, both with respect to the types of hypotheses and the
distributions of test statistics, and except for some results related to inde-
pendence of statistics, they utilize only the individual marginal distributions of
those statistics.

Contrasts among treatment means are linear functions of the form Zcipi,
where 2¢; = 0. The pairwise differences among means are called simple
contrasts; a general contrast can be thought of as a weighted average of some
subset of means minus a weighted average of another subset. The reader is
presumably familiar with the most commonly used methods for testing the
hypotheses that sets of linear contrasts equal zero with FWE control in a
one-way analysis of variance layout under standard assumptions. They are
described briefly below.

Assume m treatments with N observations per treatment and a total of T
observations over all treatments, let y; be the sample mean for treatment i, and
let MSW be the within-treatment mean square.

If the primary hypotheses consist of all linear contrasts among treat-
ment means, the Scheffé method (1953) controls the FWE. Using the
Scheffé method, a contrast hypothesis 2ciw; = 0 is rejected if
| Sci yi | = VEc; AMSW/NY(m-1) Fon{ T-m:c., Where Fin — 1, T — m; « i the
a-level critical value of the F distribution with m — 1 and T — m degrees of
freedom.

If the primary hypotheses consist of the pairwise differences, i.e. the simple
contrasts, the Tukey method (1953) controls the FWE over this set. Using
this method, any simple contrast hypothesis &; = 0 is rejected if
| vi = Vj| 2 VMSW/N g, T-m;0., Where gm,T-mya is the a-critical value of the
studentized range statistic for m means and T - m error degrees of freedom.

If the primary hypotheses consist of comparisons of each of the first m — 1
means with the mth mean (e.g. of m - 1 treatments with a control), the
Dunnett method (1955) controls the FWE over this set. Using this method,
any hypothesis 8im = 0 is rejected if | yi — ym | =2 V2ZMSW/Ndm—1,1-m;a, Where
dm - 1, T- m; « is the a-level critical value of the appropriate distribution for this
test.

Both the Tukey and Dunnett methods can be generalized to test the hy-
potheses that all linear contrasts among the means equal zero, so that the three
procedures can be compared in power on this whole set of tests (for discussion
of these extended methods and specific comparisons, see Shaffer 1977). Rich-




N

Annual Re\éiew_s / i
www.annual reyiews.org/aronlin
P GA R O e

mond (1982) provides a more general treatment of the extension of confidence
intervals for a finite set to intervals for all linear functions of the set.

All three methods can be modified to multistage methods that give more
power for hypothesis testing. In the Scheffé method, if the F test is significant,
the FWE is preserved if m — 1 is replaced by m — 2 everywhere in the
expression for Scheffé significance tests (Scheffé 1970). The Tukey method
can be improved by a multiple range test using significance levels described
by Tukey (1953) and sometimes referred to as Tukey-Welsch-Ryan levels
(see also Einot & Gabriel 1975, Lehmann & Shaffer 1979). Begun &
Gabriel (1981) describe an improved but more complex multiple range
procedure based on a suggestion by E Peritz [unpublished manuscript (1970)]
using closure principles, and denoted the Peritz-Begun-Gabriel method by
Grechanovsky (1993). Welsch (1977) and Dunnett & Tamhane (1992) pro-
posed step-up methods (looking first at adjacent differences) as opposed to the
step-down methods in the multiple range procedures just described. The step-
up methods have some desirable properties (see Ramsey 1981, Dunnett &
Tamhane 1992, Keselman & Lix 1994) but require heavy computation or
special tables for application. The Dunnett test can be treated in a sequentially-
rejective fashion, where at stage j the smaller value din—j, T-m; o can be substi-
tuted for dm—1, T-m; .-

Because the hypotheses in a closed set may each be tested at level a by a
variety of procedures, there are many other possible multistage procedures.
For example, results of Ramsey (1978), Shatfer (1981), and Kunert (1990)
suggest that for most configurations of means, a multiple F-test multistage
procedure is more powerful than the multiple range procedures described
above for testing pairwise differences, although the opposite is true with
single-stage procedures. Other approaches to comparing means based on
ranges have been investigated by Braun & Tukey (1983), Finner (1988), and
Royen (1989, 1990).

The Scheffé method and its multistage version are easy to apply when
sample sizes are unequal; simply substitute N; for N in the Scheffé formula
given above, where N; is the number of observations for treatment i, Exact
solutions for the Tukey and Dunnett procedures are possible in principle but
involve evaluation of multidimensional integrals. More practical approximate
methods are based on replacing MSW/N, which is half the estimated variance
of yi - yj in the equal-sample-size case, with (1/2) MSW (1/N; + 1/Nj), which is
half its estimated variance in the unequal-sample-size case. The common value
MSW/N is thus replaced by a different value for each pair of subscripts i and j.
The Tukey-Kramer method (Tukey 1953, Kramer 1956) uses the single-stage
Tukey studentized range procedure with these half-variance estimates substi-
tuted for MSW/N. Kramer (1956) proposed a similar multistage method; a
preferred, somewhat less conservative method proposed by Duncan (1957)
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modifies the Tukey multiple range method to allow for the fact that a small
difference may be more significant than a large difference if it is based on
larger sample sizes. Hochberg & Tamhane (1987) discuss the implementation
of the Duncan modification and show that it is conservative in the unbalanced
one-way layout. For modifications of the Dunnett procedure for unequal sam-
ple sizes, see Hochberg & Tamhane (1987).

The methods must be modified when it cannot be assumed that within-
treatment variances are equal. If variance heterogeneity is suspected, it is
important to use a separate variance estimate for each sample mean difference
or other contrast. The multiple comparison procedure should be based on the
set of values of each mean difference or contrast divided by the square root of
its estimated variance. The distribution of each can be approximated by a ¢
distribution with estimated degrees of freedom (Welch 1938, Satterthwaite
1946). Tamhane (1979) and Dunnett (1980) compared a number of single-
stage procedures based on these approximate ¢ statistics; several of the proce-
dures provided satisfactory error control.

In one-way repeated measures designs (one factor within-subjects or sub-
jects-by-treatments designs), the standard mixed model assumes sphericity of
the treatment covariance matrix, equivalent to the assumption of equality of
the variance of each difference between sample treatment means. Standard
models for between-subjects-within-subjects designs have the added assump-
tion of equality of the covariance matrices among the levels of the between-
subjects factor(s). Keselman et al (1991b) give a detailed account of the
calculation of appropriate test statistics when both these assumptions are vio-
lated and show in a simulation study that simple multiple comparison proce-
dures based on these statistics have satisfactory properties (see also Keselman
& Lix 1994).

OTHER ISSUES

Tests vs Confidence Intervals

The simple Bonferroni and the basic Scheffé, Tukey, and Dunnett methods
described above are single-stage methods, and all have associated simultane-
ous confidence interval interpretations. When a confidence interval for a dif-
ference does not include zero, the hypothesis that the difference is zero is
rejected, but the confidence interval gives more information by indicating the
direction and something about the magnitude of the difference or, if the hy-
pothesis is not rejected, the power of the procedure can be gauged by the width
of the interval. In contrast, the multistage or stepwise procedures have no such
straightforward confidence-interval interpretations, but more complicated in-
tervals can sometimes be constructed. The first confidence-interval interpreta-
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tion of a multistage procedure was given by Kim et al (1988), and Hayter &
Hsu (1994) have described a general method for obtaining these intervals. The
intervals are complicated in structure, and more assumptions are required for
them to be valid than for conventional confidence intervals. Furthermore,
although as a testing method a multistage procedure might be uniformly more
powerful than a single-stage procedure, the confidence intervals corresponding
to the former are sometimes less informative than those corresponding to the
latter. Nonetheless, these are interesting results, and more along this line are to
be expected.

Directional vs Nondirectional Inference

In the examples discussed above, most attention has been focused on simple
contrasts, testing hypotheses Ho:8;; = 0 vs H4:0;; = 0. However, in most cases,
if Ho is rejected, it is crucial to conclude either w; > ; or w; < yy. Different
types of testing problems arise when direction of difference is considered: 1.
Sometimes the interest is in testing one-sided hypotheses of the form p; s pj vs
i > W, e.g. if a new treatment is being tested to see whether it is better than a
standard treatment, and there is no interest in pursuing the matter further if it is
inferior. 2. In a two-sided hypothesis test, as formulated above, rejection of the
hypothesis is equivalent to the decision w; = ;. Is it appropriate to further
conclude w; > w; if y; > y;j and the opposite otherwise? 3. Sometimes there is an
a priorni ordering assumption pi < W2 s...< Pm, or some subset of these means
are considered ordered, and the interest is in deciding whether some of these
inequalities are strict.

Each of these situations is different, and different considerations arise. An
important issue in connection with the second and third problems mentioned
above is whether it makes sense to even consider the possibility that the means
under two different experimental conditions are equal. Some writers contend
that a priori no difference is ever zero (for a recent defense of this position, see
Tukey 1991, 1993). Others, including this author, believe that it is not neces-
sary to assume that every variation in conditions must have an effect. In any
case, even if one believes that a mean difference of zero is impossible, an
intervention can have an effect so minute that it is essentially undetectable and
unimportant, in which case the null hypothesis is reasonable as a practical way
of framing the question. Whatever the views on this issue, the hypotheses in
the second case described above are not correctly specified if directional
decisions are desired. One must consider, in addition to Type I and Type II
errors, the probably more severe error of concluding a difference exists but
making the wrong choice of direction. This has sometimes been called a Type
III error and may be the most important or even the only concern in the second
testing situation.
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For methods with corresponding simultaneous confidence intervals, inspec-
tion of the intervals yields a directional answer immediately. For many multi-
stage methods, the situation is less clear. Shaffer (1980) showed that an addi-
tional decision on direction in the second testing situation does not control the
FWE of Type III for all test statistic distributions. Hochberg & Tamhane
(1987) describe these results and others found by S Holm [unpublished manu-
script (1979)] (for newer results, see Finner 1990). Other less powerful meth-
ods with guaranteed Type I and/or Type IIl FWE control have been developed
by Spjgtvoll (1972), Holm [1979; improved and extended by Bauer et al
(1986)], Bohrer (1979), Bofinger (1985), and Hochberg (1987).

Some writers have considered methods for testing one-sided hypotheses of
the third type discussed above (e.g. Marcus et al 1976, Spjgtvoll 1977, Beren-
son 1982). Budde & Bauer (1989) compare a number of such procedures both
theoretically and via simulation.

In another type of one-sided situation, Hsu (1981,1984) introduced a
method that can be used to test the set of primary hypotheses of the form Hi:;
is the largest mean. The tests are closely related to a one-sided version of the
Dunnett method described above. They also relate the multiple testing litera-
ture to the ranking and selection literature.

Robustness

This is a necessarily brief look at robustness of methods based on the homoge-
neity of variance and normality assumptions of standard analysis of variance.
Chapter 10 of Scheffé (1959) is a good source for basic theoretical results
concerning these violations.

As Tukey (1993) has pointed out, an amount of variance heterogeneity that
affects an overall F test only slightly becomes a more serious concern when
multiple comparison methods are used, because the variance of a particular
comparison may be badly biased by use of a common estimated value.
Hochberg & Tamhane (1987) discuss the effects of variance heterogeneity on
the error propetties of tests based on the assumption of homogeneity.

With respect to nonnormality, asymptotic theory ensures that with suffi-
ciently large samples, results on Type I error and power in comparisons of
means based on normally distributed observations are approximately valid
under a wide variety of nonnormal distributions. (Results assuming normally
distributed observations often are not even approximately valid under nonnor-
mality, however, for inference on variances, covariances, and correlations.)
This leaves the question of How large is large? In addition, alternative meth-
ods are more powerful than normal theory-based methods under many nonnor-
mal distributions. Hochberg & Tamhane (1987, Chap. 9) discuss distribution-
free and robust procedures and give references to many studies of the robust-
ness of normal theory-based methods and of possible alternative methods for
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multiple comparisons. In addition, Westfall & Young (1993) give detailed
guidance for using robust resampling methods to obtain appropriate error
control.

Others

FREQUENTIST METHODS, BAYESIAN METHODS, AND META-ANALYSIS  Frequen-
tist methods control error without any assumptions about possible alternative
values of parameters except for those that may be implied logically. Meta-analy-
sis in its simplest form assumes that all hypotheses refer to the same parameter
and it combines results into a single statement. Bayes and Empirical Bayes
procedures are intermediate in that they assume some connection among pa-
rameters and base error control on that assumption. A major contributor to the
Bayesian methods is Duncan (see €.g. Duncan 1961, 1965; Duncan & Dixon
1983). Hochberg & Tamhane (1987) describe Bayesian approaches (see also
Berry 1988). Westfall & Young (1993) discuss the relations among these three
approaches.

DECISION-THEORETIC OPTIMALITY Lehmann (1957a,b), Bohrer (1979), and
Spjatvoll (1972) defined optimal multiple comparison methods based on fre-
quentist decision-theoretic principles, and Duncan (1961, 1965) and coworkers
developed optimal procedures from the Bayesian decision-theoretic point of
view. Hochberg & Tamhane (1987) discuss these and other results.

RANKING AND SELECTION The methods of Dunnett (1955) and Hsu (1981,
1984), discussed above, form a bridge between the selection and multiple testing
literature, and are discussed in relation to that literature in Hochberg & Tamhane
(1987). Bechhofer et al (1989) describe another method that incorporates aspects
of both approaches.

GRAPHS AND DIAGRAMS  As with all statistical results, the results of multiple
comparison procedures are often most clearly and comprehensively conveyed
through graphs and diagrams, especially when a large number of tests is
involved. Hochberg & Tamhane (1987) discuss a number of procedures. Duncan
(1955) includes several illuminating geometric diagrams of acceptance regions,
as do Tukey (1953) and Bohrer & Schervish (1980). Tukey (1953, 1991) gives
a number of graphical methods for describing differences among means (see
also Hochberg et al 1982, Gabriel & Gheva 1982, Hsu & Peruggia 1994). Tukey
(1993) suggests graphical methods for displaying interactions. Schweder &
Spjgtvoll (1982) illustrate a graphical method for plotting large numbers of
ordered p-values that can be used to help decide on the number of true hypothe-
ses; this approach is used by Y Benjamini & Y Hochberg (manuscript submitted
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for publication) to develop a more powerful FDR-controlling method. See
Hochberg & Tamhane (1987) for further references.

HIGHER-ORDER BONFERRONI AND OTHER INEQUALITIES One way to use
partial knowledge of joint distributions is to consider higher-order Bonferroni
inequalities in testing some of the intersection hypotheses, thus potentially
increasing the power of FWE-controlling multiple comparison methods. The
Bonferroni inequalities are derived from a general expression for the probability
of the union of a number of events. The simple Bonferroni methods using
individual p-values are based on the upper bound given by the first-order
inequality. Second-order approximations use joint distributions of pairs of test
statistics, third-order approximations use joint distributions of triples of test
statistics, etc, thus forming a bridge between methods requiring only univariate
distributions and those requiring the full multivariate distribution (see Hochberg
& Tamhane 1987 for further references to methods based on second-order
approximations; see also Bauer & Hackl 1985). Hoover (1990) gives results
using third-order or higher approximations, and Glaz (1993) includes an exten-
sive discussion of these inequalities (see also Naiman & Wynn 1992, Hoppe
19934, Seneta 1993). Some approaches are based on the distribution of combi-
nations of p-values (see Cameron & Eagleson 1985, Buckley & Eagleson 1986,
Maurer & Mellein 1988, Rom & Connell 1994). Other types of inequalities are
also useful in obtaining improved approximate methods (see Hochberg &
Tamhane 1987, Appendix 2).

WEIGHTS In the description of the simple Bonferroni method it was noted that
each hypothesis H; can be tested at any level a; with the FWE controlled at
o =Zo;. In most applications, the o; are equal, but there may be reasons to
prefer unequal allocation of error protection. For methods controlling FWE, see
Holm (1979), Rosenthal & Rubin (1983), DeCani (1984), and Hochberg &
Liberman (1994). Y Benjamini & Y Hochberg (manuscript submitted for
publication) extend the FDR method to allow for unequal weights and discuss
various purposes for differential weighting and alternative methods of achieving
it.

OTHER AREAS OF APPLICATION Hypotheses specifying values of linear combi-
nations of independent normal means other than contrasts can be tested jointly
using the distribution of either the maximum modulus or the augmented range
(for details, see Scheffé 1959). Hochberg & Tamhane (1987) discuss methods
in analysis of covariance, methods for categorical data, methods for comparing
variances, and experimental design issues in various areas. Cameron & Eagleson
(1985) and Buckley & Eagleson (1986) consider multiple tests for significance
of correlations. Gabriel (1968) and Morrison (1990) deal with methods for
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multivariate multiple comparisons. Westfall & Young (1993, Chap. 4) discuss
resampling methods in a variety of situations. The large literature on model
selection in regression includes many papers focusing on the multiple testing
aspects of this area.

CONCLUSION

The field of multiple hypothesis testing is too broad to be covered entirely in a
review of this length; apologies are due to many researchers whose contribu-
tions have not been acknowledged. The problem of multiplicity is gaining
increasing recognition, and research in the area is proliferating. The major
challenge is to devise methods that incorporate some kind of overall control of
Type I error while retaining reasonable power for tests of the individual
hypotheses. This review, while sketching a number of issues and approaches,
has emphasized recent research on relatively simple and general multistage
testing methods that are providing progress in this direction.
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