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 The authors present and test a new method of teaching Bayesian reasoning, something about which pre-
vious teaching studies reported little success. Based on G. Gigerenzer and U. Hoffrage’s (1995) ecological
framework, the authors wrote a computerized tutorial program to train people to construct frequency
representations (representation training) rather than to insert probabilities into Bayes’ rule (rule train-
ing). Bayesian computations are simpler to perform with natural frequencies than with probabilities, and
there are evolutionary reasons for assuming that cognitive algorithms have been developed to deal with
natural frequencies. In 2 studies, the authors compared representation training with rule training; the
criteria were an immediate learning effect, transfer to new problems, and long-term temporal stability.
Rule training was as good in transfer as representation training, but representation training had a higher
immediate learning effect and greater temporal stability.

 

Statistical literacy, like reading and writing, is indispensable for an educated citizenship in a func-
tioning democracy, and the dissemination of statistical information in the 19th and 20th centu-
ries has been linked to the rise of democracies in the Western world (Porter, 1986). Interest in
statistical information such as population figures has been common among political leaders for
centuries (e.g., Bourguet, 1987). The willingness to make economic and demographic numbers
public rather than to treat them as state secrets, however, is of recent origin: The avalanche of
printed statistics after about 1820 both informed the public and justified governmental action to
the public (Krüger, Daston, & Heidelberger, 1987). Nevertheless, unlike reading and writing,
statistical literacy—the art of drawing reasonable inferences from such numbers—is rarely taught
(e.g., Garfield & Ahlgren, 1988; Shaugnessy, 1992). The result of this has been termed
“innumeracy” (Paulos, 1988).

In this article, we address the question of how best to teach statistical literacy. We focus on
the special case of Bayesian inference with binary hypotheses and binary information (for results
of training in reasoning about other kinds of statistical tasks, see Sedlmeier, 1999, 2000). Here
are two examples to which this form of statistical inference applies. First, consider the case of a
20-year-old man from Dallas who had a routine HIV test (Gigerenzer, 1998). The test result was
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positive; the young man assumed this meant he was infected with the virus and was plagued by
thoughts of suicide. But what is the probability that he really has the virus given a positive test?
Or consider the case of Alan M. Dershowitz, a Harvard professor and advisor to the O. J. Simpson
defense team. He stated on U.S. television that only about 0.1% of wife batterers actually murder
their wives and claimed that therefore evidence of abuse and battering should not be admissible
in a murder trial. But what is the probability that the husband was the murderer, given that he
battered his wife and the wife was killed (Good, 1995; Koehler, 1997)? 

 

Bayesian Inference 

 

Our goal is to design an effective method of teaching Bayesian inference. This goal might appear
to be doomed to failure for two reasons. First, a large body of experimental results suggests that
Bayesian inference is alien to human inference; second, a small number of studies actually at-
tempting to teach people Bayesian reasoning met with little or no success. These two reasons need
to be addressed in more detail. 

Since the pioneering work of Ward Edwards and his colleagues, an avalanche of experimental
studies has investigated whether people reason according to Bayes’ rule (for a summary, see
Koehler, 1996). Edwards’ (1968) major finding was “conservatism,” that is, that participants
overweighed base rates. In the 1970s, however, Kahneman and Tversky (1972) argued that “in
his evaluation of evidence, man is apparently not a conservative Bayesian: he is not a Bayesian at
all” (p. 450). Neglect rather than overweighing of base rates became the message of their heuris-
tics-and-biases program in the 1970s and 1980s. “The genuineness, the robustness, and the gen-
erality of the base-rate fallacy are matters of established fact.” (Bar-Hillel, 1980, p. 215) These
demonstrations that human inference deviated radically from Bayesian inference were not con-
fined to laboratory studies; some experts conducted studies in the field and reported similar
results. For instance, Eddy (1982) asked physicians to estimate the probability that a woman with
a positive mammogram actually has breast cancer, given a base rate of 1% for breast cancer, a hit
rate of about 80%, and a false-alarm rate of about 10%. He reported that 95 of 100 physicians
estimated the probability that she actually has breast cancer to be between 70% and 80%, where-
as Bayes’ rule gives a value of about 7.5%. Such systematic deviations from Bayesian reasoning
have been called “cognitive illusions,” analogous to stable and incorrigible visual illusions (von
Winterfeldt & Edwards, 1986; for a discussion of the analogy, see Gigerenzer, 1991).

If the analogy between cognitive illusions and visual illusions holds, the teaching of statistical
reasoning should have little hope of success. This conclusion seems to be confirmed by the results
of the few studies that have attempted to teach Bayesian inference, using mostly corrective feed-
back. Peterson, DuCharme, and Edwards (1968) repeatedly showed their participants binomial
sampling distributions to correct their “conservative” judgments. Yet, his training did very little
to reduce conservatism in further judgments of the same type. Schaefer’s (1976) statistically well
trained participants received corrective feedback on their estimations of probabilities and also
showed practically no training effect. Lindeman, van den Brink, and Hoogstraten (1988) gave
corrective feedback on participants’ solutions of problems like those used by Kahneman and
Tversky (1973). No transfer effect was found in the test phase. Finally, Fong, Lurigio, and
Stalans (1990) trained participants on the “law of large numbers” rather than on what they
called the “base-rate principle” and thereby only indirectly trained Bayesian inference; this
training enhanced the use of base-rate information in only one of several experimental condi-
tions. In these studies, training had little or no success.
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ristics-and-biases program (Kahneman & Tversky, 1996) and the meager results of the teaching
studies seem to suggest to many what Gould (1992) so bluntly stated: “Tversky and Kahneman
argue, correctly I think, that our minds are not built (for whatever reason) to work by the rules
of probability.” (p. 469)

 

Bayesian Algorithms Depend on Information Format

 

In the face of these results there seems to be little hope for a successful method of teaching Bayesian
inference and statistical reasoning in general. And we would not have tried had there not been
two novel results, both theoretical and empirical (Gigerenzer & Hoffrage, 1995). To understand
the novelty of the theoretical results, one needs to recall that research on statistical reasoning has
focused on whether cognitive algorithms correspond to the laws of statistics or probability (as
Piaget & Inhelder, 1951/1975, claimed for children aged 11 and older) or to simple nonstatistical
rules of thumb, as Kahneman and Tversky (1996) claim. However, to discuss human inference
only in terms of “what kind of rule?” is incomplete because cognitive algorithms work on infor-
mation, and information always needs representation (Marr, 1982). Take numerical information
and the algorithms in a pocket calculator as an example. Numerical information can be repre-
sented by the Arabic system, the Roman system, and the binary system, among others. These rep-
resentations are mathematically equivalent (an isomorphic mapping exists), but they are not
equivalent for a calculator or a mind. The algorithms of pocket calculators are tuned to Arabic
numbers as input data and would perform badly if one entered binary numbers. The human
mind seems to have evolved and learned analogous preferences for particular formats. Contem-
plate, for a moment, long division with Roman numerals.

The argument that cognitive algorithms are tuned to particular formats of numerical infor-
mation connects cognition with the environment and can be applied to Bayesian inference. As-
sume that some capacity or algorithm for inductive inference has been built up in animals and
humans through evolution. To what information format would such an algorithm be tuned? It
certainly would not be tuned to percentages and probabilities (as in the typical experiments on
cognitive illusions) because these took millennia of literacy and numeracy to evolve as tools of
communication. Mathematical probability and percentages are, after all, comparatively recent
developments (Gigerenzer et al., 1989). Rather, in an illiterate world, the input format would be

 

natural frequencies,

 

 acquired by natural sampling (see below).
The crucial theoretical results are (a) that Bayesian computations are simpler when informa-

tion is represented in natural frequencies compared with probabilities, percentages, and relative
frequencies and (b) that natural frequencies seem to correspond to the format of information hu-
mans have encountered throughout most of their evolutionary development (Cosmidcs & Tooby,
1996; Gigerenzer, 1994, 1998; Gigerenzer & Hoffrage, 1995; Kleiter, 1994). Let us illustrate the
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There were also attempts to improve Bayesian reasoning by focusing participants’ attention on certain parts
of Bayes’ formula. Fischhoff, Slovic, & Lichtenstein (1979, Study 1) tried to increase participants’ sensitivity
to the impact of base rates by varying the base rates of a Bayesian problem within the same individual but
without giving feedback on participants’ solutions. This manipulation had almost no generalizing effect on a
second task. In three experiments, Fischhoff and Bar-Hillel (1984) examined the effect of different focusing
techniques on performance of Bayesian inference tasks. They found that participants took the information
to which the experimenters called their attention into account, but this was done equally for relevant and
irrelevant information. In a recent study, Wolfe (1995, Experiment 3) found comparable results.



 

4

 

Teaching Bayesian Reasoning in Less Than Two Hours

 

concept of natural frequencies and how they facilitate computations with the mammography
problem introduced earlier, in the form in which it was used in our training study:

A reporter for a women’s monthly magazine would like to write an article about breast cancer.
As a part of her research, she focuses on mammography as an indicator of breast cancer. She won-
ders what it really means if a woman tests positive for breast cancer during her routine mammog-
raphy examination. She has the following data:

 

The probability that a woman who undergoes a mammography will have breast cancer is 1%.
If a woman undergoing a mammography has breast cancer, the probability that she will test positive is
80%.
If a woman undergoing a mammography does not have cancer, the probability that she will test positive
is 10%.
What is the probability that a woman who has undergone a mammography actually has breast cancer if
she tests positive?

 

The numerical information in the mammography problem is represented in terms of single-event
probabilities, that is, in a 

 

probability format.

 

 The three pieces of information are the base rate

 

p

 

(cancer) = .01, the hit rate 

 

p

 

(positive | cancer) = .8, and the false-alarm rate 

 

p

 

(positive | no can-
cer) = .1. The task is to estimate the 

 

posterior probability

 

 

 

p

 

(cancer | positive). The Bayesian algo-
rithm for computing the posterior probability from the probability format amounts to solving
the following equation: 

Both laymen and physicians have great difficulties with Bayesian inference when information
is given in a probability format (e.g., Abernathy & Hamm, 1995; Dowie & Elstein, 1988). For
instance, Hoffrage and Gigerenzer (1998; Gigerenzer, 1996) tested 48 physicians on four stan-
dard diagnostic problems, including mammography. When information was presented in terms
of probabilities, only 10% of the physicians reasoned consistently with Bayes’ rule. Gigerenzer,
Hoffrage, and Ebert (1998) studied how AIDS counselors explain what a low-risk client’s chanc-
es are that he actually has the virus if he tests positive. As an assumed client, one of the authors
visited 20 public health centers in Germany to have 20 counseling sessions and HIV tests. All the
counselors communicated the risks in probabilities and percentages (rather than in natural fre-
quencies, see below) and consistently overestimated the posterior probabilities of having the virus
given a positive test (15 of 20 counselors estimated the probability as 99.9% or higher, whereas
a reasonable estimate is about 50%), and some counselors even gave inconsistent probability
judgments without noticing.

Do these and similar results imply that people are not Bayesians? As the pocket calculator ex-
ample illustrates, such a conclusion may be unwarranted. Let us now change the format of infor-
mation from probabilities and percentages to natural frequencies. Natural frequencies represent
numerical information in terms of frequencies as they can actually be experienced in a series
of events. More technically, natural frequencies are frequencies that have not been normalized
with respect to the base rates; that is, they still carry information about base rates (Gigerenzer &
Hoffrage, 1995, 1999):
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A reporter for a women’s monthly magazine would like to write an article about breast cancer.
As a part of her research, she focuses on mammography as an indicator of breast cancer. She won-

p(cancer | positive) =

= .01 × .80/(.01 × .80 + .99 × .1)

= .075. (1)

p(cancer)p(positive | cancer)

p(cancer)p(positive | cancer) + p(no cancer)p(positive | no cancer)
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ders what it really means if a woman tests positive for breast cancer during her routine mammog-
raphy examination. She has the following data:

 

Ten of every 1,000 women who undergo a mammography have breast cancer.
Eight of every 10 women with breast cancer who undergo a mammography will test positive.
Ninety-nine of every 990 women without breast cancer who undergo a mammography will test positive.

 

Imagine a new representative sample of women who have had a positive mammogram. How
many of these women would you expect to actually have breast cancer? 

What is the Bayesian algorithm when the information is presented in natural frequencies?
There are 8 women with positive tests and breast cancer (P & C) and 99 women with positive
tests and no breast cancer. Thus, the proportion of women with breast cancer among those who
test positive is 8 out of 107 (8 + 99). Expressed in probabilities one gets

 

p

 

(cancer | positive = #(P & C)/#P = 8/107 = .075. (2)

Thus, Bayesian computations are simpler when the information is represented in a frequency
format (i.e., natural frequencies) rather than in a probability format (Gigerenzer & Hoffrage,
1995). In the frequency format, one can immediately “see” the answer: About 8 of 107 women
who test positive will have cancer. The general point here is that Bayesian algorithms are depen-
dent on the information format. Note that the two information formats—probability and fre-
quency—are mathematically equivalent, and so are the two equations: but the Bayesian algo-
rithms are not computationally and psychologically equivalent.

Consistent with the theoretical result that Bayesian algorithms are simpler to use with natural
frequencies than with the widely used probabilities, and the ecological thesis that, if the mind has
evolved Bayesian algorithms, these are likely to be tuned to natural frequencies, experimental
studies have shown that people are more likely to use Bayesian reasoning with natural frequen-
cies. Gigerenzer and Hoffrage (1995) tested laypeople on 15 Bayesian inference problems such
as the mammography problem and found that, in every single one, Bayesian reasoning occurred
more often when probabilities were replaced with natural frequencies (the two formats shown
earlier), with an average increase in Bayesian solutions from 16% to 46%. Bayesian reasoning was
measured both by process analysis and by outcome analysis. Similar results with laypeople were
found by Christensen-Szalanski and Beach (1982) and Cosmides and Tooby (1996). Hoffrage
and Gigerenzer (1998) tested physicians with an average of 14 years professional experience and
found that natural frequencies improve “insight” in physicians to about the same extent as in lay-
people. As mentioned earlier, with probabilities, physicians found the Bayesian answer in only
10% of the cases; when the same information was represented in natural frequencies, this number
went up to 46%.

We applied these theoretical and empirical results when designing a tutorial program for
teaching Bayesian reasoning, focusing on everyday situations rather than on the abstract world of
“urns and balls.”
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Natural frequencies must not be confused with frequencies that have been normalized with respect to the
base rates. For instance, the informaion in the mammography problem can be expressed in relative frequen-
cies that are normalized with respect to the base rates: a base rate of .01, a hit rate of 0.80, and a false positive
rate of 0.10. Also, absolute frequencies can be normalized: a base rate of 1 in 100, a hit rate of 80 in 100, and
a false positive rate of 10 in 100. Normalized frequencies, like probabilities or percentages, are normalized
numbers that no longer carry information about natural base rates (e.g., about the base rate of breast cancer).
They do not facilitate Bayesian reasoning.
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Teaching Bayesian Inference

 

Teaching representations is an alternative to the traditional program of teaching rules, that is,
teaching rules without simultaneously teaching representations (e.g., Arkes, 1981). A rule train-
ing program would try to teach Bayesian reasoning by first explaining Bayes’ rule in its abstract
form and then explaining how to insert single-event probabilities into the rule (Falk & Konold,
1992). We are not aware of any studies on rule training for Bayesian reasoning, but rule training
programs exist for other statistical rules, such as for the “law of large numbers,” more precisely,
for recognizing the impact of sample size (see Sedlmeier & Gigerenzer, 1997, 2000).
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 For in-
stance, Fong and Nisbett (1991) proposed rule training for the law of large numbers and found
moderate improvement over an untrained control; when generalization to a new domain was
tested after 2 weeks, this moderate effect was considerably diminished (Ploger & Wilson, 1991;
Reeves & Weisberg, 1993).

We propose an alternative method: teaching Bayesian reasoning by showing people how to
construct frequency representations. For this purpose, we designed two versions of frequency rep-
resentations. One, the 

 

frequency grid,

 

 has been suggested as a means to make the understanding
of statistical tasks easier (e.g., Cole, 1988), and the second, the 

 

frequency tree, 

 

is a variant of a tree
structure often used in decision analysis. In the frequency grid tutorial, participants learned how
to construct frequency representations by means of grids, and in the frequency tree tutorial, they
learned to construct frequency representations by means of trees. We also designed a rule training
tutorial as a control, with which participants were taught how to insert probabilities into Bayes’
formula. All three tutorials were implemented as a computer program on Macintosh computers,
written in Macintosh Common Lisp (Apple Computer, Inc., 1992).

In all conditions, the basic training mechanism was to have participants translate the infor-
mation in the problem text into a given format, that is, Bayes’ formula, the frequency grid, or the
frequency tree, and have them practice with those formats. The training procedure for each of
the tutorials had two parts. The first part guided participants through two inferential tasks—the
sepsis problem (see below) and the mammography problem. In the rule training tutorial, partic-
ipants were instructed how to insert probability information into Bayes’ formula. In the two tuto-
rials that taught frequency representations, the system showed participants how to translate prob-
ability information into either a frequency grid or a frequency tree. After they were guided
through each step in Part 1, the second part of the training required participants to solve eight
additional problems on their own with step-by-step feedback. The system asked them to solve
each step before going on to the next one. If participants had difficulties with following the re-
quests or made mistakes, the system provided immediate help or feedback. If, for instance, the
user was required to enter numbers in the formula or the frequency tree, and the numbers entered
were not correct, the system gave immediate feedback. The user always had a choice between try-
ing again or letting the system perform the corrections. If the user decided to try again, the system
supplied some hints that were specific to the format used. If, after several corrective interventions,
the user was still unable to fill in the numbers correctly and did not want to try again, the system
inserted the correct numbers into the respective nodes (frequency tree) or slots (formula). For all
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Other authors have provided advice on how to reason the Bayesian way but have not reported training stud-
ies. Such advice includes structuring the problem, modeling prior probabilities explicitly, stressing the statis-
tical nature of base rate information, clarifying causal chains, and providing individuating information about
base rates (e.g., von Winterfeldt & Edwards, 1986).
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training procedures, the help was sufficient to ensure that all participants would solve all prob-
lems correctly and complete the training.

We now describe the rule training procedure and the two frequency representation training
procedures (see Sedlmeier, 1997, for a detailed description of an extended version of the system,
and for a program that provides a comprehensive treatment of basic probability theory and that
includes Bayesian reasoning as a part, see Sedlmeier & Köhlers, 2001).

 

Rule Training

 

During training and in all three tutorials, participants saw three windows on the screen. The

 

problem window,

 

 located in the top right portion (see Figure 1) displayed the problem text, in
this case, the text of the sepsis problem. The 

 

tutor window

 

 (white area) provided the explanations
and instructions and asked the user to perform certain actions. The 

 

representation window

 

 (left
half of Figure 1) performed demonstrations and allowed the user to manipulate its contents.
Figure 1 shows a screen at the beginning of the first part of the rule training procedure. Just be-
fore, the program had explained to the participant that Bayes’ formula allows one to calculate the
probability that the walk-in patient who displays the symptoms mentioned in the problem has
sepsis. The program had also mentioned that to calculate that probability, one needs 

 

p

 

(H), 

 

p

 

(not
H), 

 

p

 

(D | H), and 

 

p

 

(D | not H). H is short for hypothesis, such as sepsis, and D stands for data
such as the presence of the symptoms. At the current point in the training, the system begins to
explain how to extract the numerical information from the problem text. The tutor window in
Figure 1 explains which information in the problem text corresponds to 

 

p

 

(H), the base rate. In
the next step (not shown), the base-rate information is “translated” into a component of Bayes’
formula. In this step, the empty slot in the representation window is filled with the base-rate value
of 0.1, and it is explained how the next piece of information, 

 

p

 

(not H), is calculated from the
value of 

 

p

 

(H) by subtracting it from 1. Then, analogously, the program explains which parts of
the problem text correspond to 

 

p

 

(D | H), the hit rate, and 

 

p

 

(D | not H), the false-alarm rate, and
inserts the respective probabilities, that is, 0.8 (the probability of the symptoms given sepsis) and
0.1 (the probability of the symptoms given no sepsis). When the slots for the four bits of infor-
mation are filled, the system creates an initially empty “frame” for Bayes’ formula and demon-
strates how the probabilities are to be inserted into the frame. Inserting the correct numbers into
that frame and calculating the result gives the posterior probability 

 

p

 

(sepsis | symptoms). Figure 2
shows this final state of the translation process for the mammography problem. All pieces of in-
formation needed in Bayes’ formula have been extracted from the problem text and inserted into
the respective slots (Figure 2, upper left). Then, the frame for Bayes’ formula has been filled with
the respective probabilities (lower left) and the result has been calculated (lower right). In the sec-
ond part of the training procedure, the upper part of the representation window, including the
formula, was shown immediately. The frame for Bayes’ formula appeared only when all the prob-
abilities had been correctly filled in.

 

Frequency Grid

 

In a frequency grid, each square represents one case. Figure 3 shows a screen at the beginning of
the first part of the frequency grid training procedure. Just before, the program had informed the
participants that the empty squares in Figure 3 represent 100 walk-in patients. Again, the tutor
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window explains which part of the problem text corresponds to the base rate. In the next step
(not shown), 10 of the 100 squares are shaded to represent the 10% of walk-in patients who suffer
from sepsis. Eventually, circled pluses (“positives”) are added to 8 of the 10 shaded squares
(corresponding to the hit rate of 80%) and to 9 of the 90 nonshaded squares (corresponding to
the false-alarm rate of 10%). Figure 4 shows the point in training when all the information nec-
essary to solve the sepsis problem is filled in on the frequency grid. The ratio of the number of
circled pluses in the shaded squares divided by the number of all circled pluses gives the desired
posterior probability, that is, 

 

p

 

(sepsis | symptoms).
Participants could choose between two grid sizes (100 and 1,000 cases) and were encouraged

to select the one that best represented the information given in a problem. For instance, for the
mammography problem, the 50 

 

× 

 

20 grid is superior to the 10 

 

× 

 

10 grid because, in the latter,
one would have to deal with “rounded” persons. Figure 5 shows the completely filled in frequen-
cy grid for the mammography problem, where the ratio of the number of circled pluses in the
shaded squares (8) divided by the number of all circled pluses (107) gives the desired posterior
probability 

 

p

 

(cancer | positive test) = .075.

Bayes-Formula Sepsis

You are working in an outpatient clinic where the
record shows that during the past year 10% of
the walk-in patients have had sepsis. A patient
walks in with a high fever and chills, and you also
note that he has skin lesions. According to the
records:
• If a patient has sepsis, there is an 80% chance

that he or she will have these symptoms.
• If a patient does not have sepsis, there is still

a 10% chance that he or she will show these
symptoms.

Looking at the problem, we find that 10% of the
walk-in patients have had sepsis.
Therefore the probability for a patient having
sepsis is 0.1 (10 divided by 100, or decimal point
moved from 10.0 to .1). This is the first piece of
information we need in the formula.

Continue

p(H) Sepsis

p(H|D) =
p(H) * p(D|H)

p(H) * p(D|H) + p(not H) * p(D|not H)

Figure 1.  Rule training (Bayes’ rule). Screen shot is from the beginning of the first phase of
training (sepsis problem).
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Frequency Tree

 

A frequency tree (Figures 6 and 7) does not represent individual cases but constructs a reference
class (total number of observations) that is broken down into four subclasses. The top node shows
the size of the reference class (100 in Figure 6, and 1,000 in Figure 7), which can be chosen freely
in the program. In Figure 6, the program explains how one obtains the base-rate frequency of the
walk-in patients to be inserted in the “sepsis” node (left middle node) from the problem text. In
the next step (not shown), 

 

10

 

 is inserted in the sepsis node and the program explains how one
obtains the number to be inserted in the “no sepsis” node (by subtracting the 10 patients with
sepsis from all 100 patients). Eventually, the 10 patients in the sepsis node are divided into 8
(80% of 10) showing the symptoms and 2 not showing the symptoms (left two lower nodes), and
the 90 patients in the no sepsis node are divided into 9 (10% of 90) showing the symptoms and
81 not showing the symptoms. The posterior probability 

 

p

 

(sepsis | symptoms) is calculated by
dividing the number in the left black node, the number of true positives, by the sum of the num-
bers in both black nodes, the total number of positives.

Figure 7 shows the complete frequency tree for the mammography problem: The two middle
nodes specify the base-rate frequencies, that is, the number of cases for which the hypothesis is
true (10 women with breast cancer) and the number of cases for which the hypothesis is false

Bayes-Formula Mammography

A reporter for a women’s monthly magazine would
like to write an article about breast cancer. As a
part of her research, she focuses on mammo-
graphy as an indicator of breast cancer. She
wonders what it really means if a woman tests
positive for breast cancer during her routine
mammography examination. She has the following
data:
• The probability that a woman who undergoes a

mammography will have breast cancer is 1%.
• If a woman undergoing a mammography has

breast cancer, the probability that she will test
positive is 80%.

• If a woman undergoing a mammography does
not have cancer, the probability that she will
test positive is 10%.

Calculating the probability that a woman has
actually breast cancer if she has a positive test
result finally gives .075.

Continue

.01p(H) Breast Cancer

p(not H) No Breast Cancer

p(D|H) Positive Test, if Breast Cancer

p(D|not H) Positive Test, if no Breast Cancer

.99

.8

.1

p(H|D) =
p(H) * p(D|H)

p(H) * p(D|H) + p(not H) * p(D|not H)

p(H|D) =

=

.01

.99

.8*

.01 .8 .1+* *

Figure 2.  Rule training (Bayes’ rule). Screen shot is from the end of the first phase of training
(mammography problem).
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(990 women without breast cancer). The four nodes at the lowest level split up the base-rate fre-
quencies according to the diagnostic information (the result of the mammography). The posterior
probability 

 

p

 

(cancer | positive test) is again calculated by dividing the number in the left black
node, the true positives, by the sum of the numbers in both black nodes, the total number of
positives.

 

Evaluation of Training Effectiveness

 

To measure the effect of training—representation or rule training—the test problems were
always given in a probability format. Before participants started to work on the problems, the
program was explained and it was made sure that they understood all instructions. Figure 8 shows
an example of a test problem presented to the participants, the cab problem (Tversky & Kahneman,
1982). The problem text and the question were always in two different windows. Participants did
not have to do the calculations; they were encouraged just to type in their solution as a formula.
A formula consisted of numbers, arithmetic operators, and parentheses. This answer format was
used to minimize errors due to faulty calculations. To avoid a systematic effect of problem diffi-
culty on training results, the order of problems was systematically varied between participants in
Study 1a and completely counterbalanced according to a Latin square in Studies 1b and 2.

100 cases Sepsis

You are working in an outpatient clinic where the
record shows that during the past year 10% of
the walk-in patients have had sepsis. A patient
walks in with a high fever and chills, and you also
note that he has skin lesions. According to the
records:
• If a patient has sepsis, there is an 80% chance

that he or she will have these symptoms.
• If a patient does not have sepsis, there is still

a 10% chance that he or she will show these
symptoms.

Now, looking at the problem, we see that 10% of
the population (walk-in patients) have had sepsis.
That means that 10 out of our 100 patients actually
have sepsis.

Continue

Figure 3.  An empty 10 × 10 frequency grid (grid size 100). Screen shot is from the beginning of
the first phase of training (sepsis problem).
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In all studies, training effectiveness was measured by comparing participants’ solution rates
immediately after the training (Test 2), about a week after the training (Test 3), and 1–3 months
after the training (Test 4) with the solution rates at baseline (Test 1).

 

Two Scoring Criteria

 

We used two criteria to classify an answer as a Bayesian solution, one 

 

strict

 

 and one 

 

liberal

 

. For
the strict criterion, the posterior probability calculated by the participant—either in the form of
a numerical value or a formula—had to match exactly the value obtained by Bayes’ rule, round-
ing up or down to the next digit (percentage point). This measure might, however, obscure the
fact that participants gained some “ballpark” insight that enabled them to produce a sound but
inexact response. To take this possibility into account, we also used a more liberal scoring crite-
rion, which counted a participant’s estimate as a Bayesian solution when it came within ± five
percentage points of the value obtained by Bayes’ rule. The liberal criterion, however, increased
the possibility that non-Bayesian reasoning is mistaken as Bayesian reasoning. As Gigerenzer and
Hoffrage (1995) have demonstrated, participants confronted with Bayesian tasks often use non-
Bayesian algorithms, which by accident might yield results that fall into the interval specified by
the liberal scoring criterion. The most frequent non-Bayesian algorithms they identified include
computing 

 

p

 

(H&D) by multiplying 

 

p

 

(H) and 

 

p

 

(D | H); computing 

 

p

 

(D | H) – 

 

p

 

(D | not H); or

100 cases Sepsis

You are working in an outpatient clinic where the
record shows that during the past year 10% of
the walk-in patients have had sepsis. A patient
walks in with a high fever and chills, and you also
note that he has skin lesions. According to the
records:
• If a patient has sepsis, there is an 80% chance

that he or she will have these symptoms.
• If a patient does not have sepsis, there is still

a 10% chance that he or she will show these
symptoms.

8 people who actually have sepsis test positive
(have the symptoms), but so do 9 of the people
who do not have sepsis. What is the probability
that one of these 17 people who test positive has
sepsis? Quite simply, we know that 8 out of the
17 have sepsis.
The solution to the problem is:
8/(8+9) = .47 (or 47%)
Note that we need to extract only TWO pieces
of the information from the problem.

Continue

Symptoms

Sepsis

Figure 4.  A filled 10 × 10 frequency grid (grid size 100). Screen shot is from the middle of the
first phase of training (sepsis problem).
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simply picking 

 

p

 

(D | H) or 

 

p

 

(H) from the problem description. In the mammography problem,
none of these alternative strategies leads to a result that would be misclassified by a liberal scoring
rule as a “Bayesian solution,” but this occurs in other problems. The “rubella problem” illustrates
this case:

In Germany, every expectant mother must have an obligatory test for rubella infection be-
cause children born to women who have rubella while pregnant are often born with terrible de-
formities. The following information is at your disposal:

 

The probability that a newborn will have deformities traceable to a sickness of its mother during preg-
nancy is 1%.
If a child is born healthy and normal, the probability that the mother had rubella during her pregnancy
is 10%.
If a child is born with deformities and it can be traced to some sickness of the mother, the probability
that the mother had rubella during her pregnancy is 50%.
What is the probability that a child will be born with deformities if its mother had rubella during her
pregnancy?

 

The Bayesian solution 

 

p

 

(H | D) is .048. But participants who use one of two non-Bayesian algo-
rithms, computing 

 

p

 

(H&D) = .005 or picking 

 

p

 

(H) = .01, will produce estimates that lie in the
interval of ±5 percentage points around the Bayesian solution. These cases would be misclassified

1,000 cases

Mammography

A reporter for a women’s monthly magazine would
like to write an article about breast cancer. As a
part of her research, she focuses on mamography
as an indicator of breast cancer. She wonders
what it really means if a woman tests positive for
breast cancer during her routine mammography
examination. She has the following data:
• The probability that a woman who undergoes a

mammography will have breast cancer is 1%.
• If a woman undergoing a mammography has

breast cancer, the probability that she will test
positive is 80%.

• If a woman undergoing a mammography does
not have cancer, the probability that she will
test positive is 10%.

Now let’s get back to the question:

What is the probability that a woman has
undergone a mammography actually has breast
cancer, if she tests positive?

The key to this is again the last part of the
question, IF SHE TESTS POSITIVE. How many
people out of our 1,000 cases test positive?

Continue

Positive
Test

Breast
Cancer

Figure 5.  A 50 × 20 frequency grid (grid size 1,000). Screen shot is from the end of the first phase
of training (mammography problem).
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by a liberal scoring criterion but not by a strict scoring criterion (for details, see Gigerenzer &
Hoffrage, 1995). To reduce the possibility of such misclassifications, we computed for each prob-
lem the results of the non-Bayesian algorithms, and when a participant responded with exactly
one of these results, it was counted as an non-Bayesian answer even though it was within the 5
percentage points range.

 

 Three Measures of Training Effectiveness

 

We measured three possible effects of the training: the immediate training effect (Test 1 com-
pared with Test 2), the generalization or transfer to new problems, and the temporal stability of
learning over time (Test 2 compared with Tests 3 and 4). The most interesting measure is stabil-
ity. Many who teach statistics have the experience that students often study successfully for an
exam but quickly forget what they learned after the exam: a steep decay curve. That statistical
reasoning does not turn into a habit of mind may not be entirely the students’ fault; rather, we
conjecture, it is linked to the widespread use of probabilities or percentages as representations for
uncertainties and risks. If the thesis is correct that natural frequencies correspond to the format
of information humans have encountered throughout most of their evolutionary development,
one should expect that decay should not be as quick as with rule training.

Frequency Tree Sepsis

You are working in an outpatient clinic where the
record shows that during the past year 10% of
the walk-in patients have had sepsis. A patient
walks in with a high fever and chills, and you also
note that he has skin lesions. According to the
records:
• If a patient has sepsis, there is an 80% chance

that he or she will have these symptoms.
• If a patient does not have sepsis, there is still

a 10% chance that he or she will show these
symptoms.

Now, looking at the problem, we see that 10%
of the population (walk-in patients) have had
sepsis. That means that 10 out of our 100
patients actually have sepsis.

Continue

Total Number
of Patients

100

Sepsis No Sepsis

No
Symptoms

No
Symptoms

Symptons Symptons

Figure 6.  A frequency tree. Screen shot is from the beginning of the first phase of training (sepsis
problem).



 

14

 

Teaching Bayesian Reasoning in Less Than Two Hours

 

Effect sizes rather than significance tests were used for the statistical analysis of training effects
(for reasons for using effect sizes, see Cohen, 1990; Loftus, 1993; Rosnow & Rosenthal, 1996;
Schmidt, 1996; Sedlmeier, 1996, 1999, Appendix C). Correlational effect sizes (

 

r

 

) in all studies
were calculated from the results of significance tests as follows (e.g., Rosenthal & Rosnow, 1991):
To evaluate immediate training effects for a given training condition, effect sizes were obtained
from repeated measures analyses of variance (ANOVAs) with tests (Test 1, Test 2) as the repeated
factors by calculating 

 

r

 

 = [

 

F

 

/(

 

F

 

 + 

 

df

 

)]

 

1/2

 

. To evaluate differential training effects for two given train-
ing conditions, that is, for how much better one training condition does than the other, the im-
provement scores for the short-term training effect (Test 2 – Test 1) and for the long-term training
effect (Test 4 – Test 1) were used. Effect sizes were obtained from 

 

t

 

 tests that compared these im-
provement scores between the two conditions by calculating 

 

r

 

 = [

 

t 
2/(t 

2 + df )]1/2. The tables that
report effect sizes also contain test statistics, that is, values for F and t and degrees of freedom so
that interested readers can easily look up p values from tables of the F and the t distributions.

Note that the effect sizes rely on comparisons between means and therefore rather under-
estimate the true effects if the distributions contain outliers. This was the case for all studies re-
ported here. Therefore, we report in the figures the more robust medians that can give a more
realistic picture. Unless specified otherwise, we report performance in terms of the liberal criteri-
on. Overall, the difference between the two criteria was only one of quantity and not of quality.
However, the Appendix shows the complete results, including medians, means, standard devia-
tions, and group sizes for both the liberal and strict scoring criteria.

Frequency Tree Mammography

A reporter for a women’s monthly magazine would
like to write an article about breast cancer. As a
part of her research, she focuses on mammography
as an indicator of breast cancer. She wonders
what it really means if a woman tests positive for
breast cancer during her routine mammography
examination. She has the following data:
• The probability that a woman who undergoes a

mammography will have breast cancer is 1%.
• If a woman undergoing a mammography has

breast cancer, the probability that she will test
positive is 80%.

• If a woman undergoing a mammography does
not have cancer, the probability that she will test
positive is 10%.

Now let’s get back to the question:

What is the probability that a woman has
undergone a mammography actually has breast
cancer, if she tests positive?

The key to this is again the last part of the
question, IF SHE TESTS POSITIVE. How many
people out of our 1,000 cases test positive?

Continue

Total Number
of Women

1000

Breast
Cancer

No Breast
Cancer

Positive
Test

No Positive
Test

Positive
Test

No Positive
Test

10 990

8 2 99 891

Figure 7.  A frequency tree. Screen shot is from the end of the first phase of training (mammog-
raphy problem).
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Study 1a

When people are taught to construct frequency representations, will their Bayesian reasoning im-
prove after training? Will teaching representations enable the transfer of these new skills to new
problems? Will performance decay over time or will there be some stability? The computational
result (that Bayesian calculations are easier with natural frequencies) and the evolutionary hypo-
thesis (that minds are tuned to frequency representations) gave us some hope for improvement,
transfer, and stability. We designed a training study to put our hopes to the test.

Method

Four groups of participants took part in the study. One group worked with the frequency grid,
one with the frequency tree, and one with the rule training. A fourth group did not receive train-
ing and served as a control. For the three training groups, the study consisted of three sessions
with four tests altogether. For the control group, there were two sessions and two tests. The train-
ing and all tests were administered on the computer.

Procedure.  Test 1 (first session) provided a baseline for performance. Participants were given
10 problems. Before they started to work on the problems, the program was explained and it was
confirmed that they understood all instructions. After the baseline test (Test 1), participants in
the three training groups received training on 10 problems (2 in Part 1 and 8 in Part 2). They

Please read carefully

A cab was involved in a hit and run accident at night. Two cab companies, the Green and the Blue,
operate in the city. You are given the following data:
• A witness identified the cab as Blue. The court tested the reliability of the witness under the same

circumstances that existed on the night of the accident and concluded that the witness correctly
identified each one of the two colors 80% of the time and failed 20% of the time.

• 85% of the cabs in the city are Green and 15% are Blue.

Please give your answer -- a number or a
formula.
Please keep in mind: Keep spaces on both sides
of +, –, /, and *.
When finished, click the OK button.

OK

What is the probability that the cab involved in
the accident was Blue rather than Green?

The question is:

|

Figure 8.  Testing session: The problem text (here, the cap problem) is in the upper window, the
question in the lower left window, and the insructions in the lower right window. Participants
can type in numbers of formulas consisting of parentheses and basic arithmetic operators.
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then had to solve another 10 problems (Test 2). The training lasted between 1 and 2 hr; the com-
puterized tutorials allowed participants to work at their own pace. The entire first session (includ-
ing Tests 1 and 2) lasted between 1 hr 45 min and 3 hr for training groups and between 15 and
30 min for the control group. The second session (1 week after the first session) and the third
session (5 weeks after the first session) served to test transfer and stability. Participants in the con-
trol group participated in Sessions 1 and 2 only, 1 week apart. In each of the tests, participants
had to solve 10 problems, most of them from Gigerenzer and Hoffrage (1995). Two of the prob-
lems, the sepsis problem and the mammography problem (see Figures 1 and 2), were used in all
four tests and in the training. Tests 3 and 4 each contained one additional “old” problem, that
is, a problem already used in the training. All the other problems were “new,” that is, not used
before, either in a test or in the training. The use of both old and new problems allowed us to
examine how well the training generalized to problems participants had not seen before. The
problems were counterbalanced across sessions, and participants were assigned randomly to one
of the four groups.

Participants.  Sixty-two University of Chicago students were paid for their participation in
two installments, after the first and third sessions, respectively. Six participants who achieved
60% or more correct solutions in Test 1 (baseline) were excluded from the study. Two partici-
pants did not complete the first session. We trained 14 participants in the grid condition, 15 par-

Baseline
(Test 1)

Post training
(Test 2)

One-week
follow up
(Test 3)

Five-weeks
follow up
(Test 4)
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Figure 9.  Median percentages of Bayesian solutions obtained in Study 1a (out of 10 possible) for
the three training conditions and the control condition (liberal scoring criterion). For the rule
training, values for all participants and those participants who completed all four tests are shown
separately.
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ticipants in the tree condition, 20 participants in the rule training condition, and we had 5 par-
ticipants in the control condition. We had some loss of participants over the 5-week period due
to heavy study loads (end of spring term). The number of participants in the second and third
sessions were 12 and 7, respectively, in the grid condition, 13 and 5 in the tree condition, and 15
and 10 in the rule training condition. Four of the five members of the control group took part
in the second session.

Results

Figure 9 shows the median percentages of correct solutions for the three training conditions and
the control group using the liberal scoring criterion.

Immediate effect.  At baseline (Test 1), the median percentage of Bayesian solutions was 10%
in the frequency conditions and 0% in the rule training condition. After training, there was a
substantial improvement in Bayesian reasoning in each of the three training conditions. The
median performance after rule training increased to 60%, whereas it was 75% and 90% for the
two frequency representation training sessions. In terms of correlational effect sizes, which ex-
press the immediate effect of a training procedure, the training effects were very large for each
training, with r > .90 for the representation training and r > .80 for the rule training (Table 1).
In contrast, the control group showed only minimal improvement.

Transfer.  To what extent were participants able to generalize from the 10 problems they
solved during training (training problems) to problems with different contents (transfer prob-
lems)? To test transfer, we compared the solutions for training and transfer problems. Recall that
2 of the training problems, the mammography problem and the sepsis problem, were given in all
four tests, and in Tests 3 and 4, participants encountered 1 additional training problem. To the
extent that a training method promotes the ability to generalize a technique—to construct
frequency representations or to insert probabilities into a formula—there should be little differ-
ence between training and transfer problems. A zero value for the difference between training and

Table 1
Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and 

Differential Training Effects Across Conditions in Study 1a

Liberal scoring Strict scoring

Training effect Test statistic r Test statistic r df

Immediate (Test 2 – Test 1)
   Frequency tree
   Frequency grid
   Rule training
Short-term differential (Test 2 – Test 1)
   Frequency conditions versus rule training
Long-term differential (Test 4 – Test 1)
   Frequency condition(s) versus rule training

82.04
81.56
44.39

  1.04

  1.95

.92

.93

.84

.15

.40

84.79
69.44
21.39

  2.40

  1.86

.93

.92

.73

.33

.38

14
13
19

47

20

Note.  The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs with tests
(Test 1, Test 2) as the repeated factors, and differential training effects were calculated from t tests of group differences
using improvement scores (Test 2 – Test 1 and Test 4 – Test 1). The table includes data for both liberal and strict scoring
criteria. For each comparison, it shows test statistic (F for immediate effects and t for differential effects), correlational
effect size r, and df.
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transfer problems would mean perfect transfer; a large positive value of the size of the difference
between training and transfer problems, that is, 60 to 80 percentage points, would mean com-
plete lack of transfer. 

The mean percentage of Bayesian solutions was generally almost as high for the transfer prob-
lems as for the training problems. With the liberal scoring procedure, the differences between
training problems and transfer problems were, on average, 7.2, 3.0, and –0.8 percentage points
for the frequency tree, frequency grid, and rule training methods, respectively, and with the strict
scoring procedure, they were 6.0, 6.3, and 5.3 percentage points. To summarize, each of the three
training programs led to high levels of transfer; that is, participants’ average performance in new
problems was almost as good as in old problems. Note that this result concerns the difference
between the number of Bayesian solutions in training and transfer problems, not the absolute
number of Bayesian solutions in transfer problems. The absolute number was consistently larger
for those participants who were taught to construct frequency representations (Figure 9).

Stability.  For the rule training, Figure 9 shows that, 5 weeks after training, Bayesian reason-
ing is down to a median of 20%—almost back to where it was before training. The students who
were taught to construct frequency representations, however, show a different curve. The higher
immediate effect of training is not lost, and 5 weeks after training, there is even an increase in the
median number of Bayesian inferences in the frequency grid condition. The calculation of a cor-
relational effect size that expresses the difference in the long-term training effect (Test 4 _ Test 1)
between the combined frequency conditions and the rule training condition resulted in a medi-
um to large effect size according to Cohen’s (1992) conventions (see Table 1, long-term differ-
ential training effect).

However, there is possibly an alternative interpretation of the long-term stability: the high
attrition rate toward the end of the study. If predominantly weaker participants had dropped out,
then the long-term results would be upwardly biased because they would mainly reflect the
achievement of the stronger participants. Is there evidence for this conjecture? We checked
whether the performance of participants who completed all four tests differed from those who
did not. For both representation training versions, the median performance of those who com-
pleted all tests was the same as that of the total group shown in Figure 9, except for one point—
the frequency grid group at Test 2 matched the median of the frequency tree group. Thus, the
results of the representation training seem to be uninfluenced by the attrition. For the rule train-
ing, there was a small difference, which is shown in Figure 9. The dotted line shows the perfor-
mance of those participants who completed all tests. Their performance was slightly above the
total group but showed the same pattern of decay. This analysis indicates that the results in
Figure 9 are not much influenced by a potential difference between those participants who
dropped out and those who completed all four tests.

Discussion

Study 1a showed that all three training programs can improve Bayesian reasoning. The degree of
improvement was, as it should be, larger than Gigerenzer and Hoffrage (1995) had reached with-
out training, that is, by merely presenting information in natural frequencies (46% on average,
with a strict scoring procedure). The difference between the representation and the rule training
was most pronounced in the temporal stability of what participants had learned. The time needed
for teaching representations was short, between 1 and 2 hr (not counting the time needed for the
tests), depending on the speed of the individual participant.
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Study 1a, however, had its limits and therefore should be assigned the status of a pilot study.
First, there was the high attrition rate. Although the participants who completed all four tests did
not seem to differ from those who completed only the first two or three tests, the high attrition
rate may have affected the reliability of the results in Test 4. Second, the study does not necessar-
ily show that the distinction between probabilities and frequencies was the only factor that made
a difference because the training conditions differed not only in whether frequency or probability
formats were used but also in whether the conditions relied on a graphical aid. Graphics might
have been an important factor in achieving training success. Study 1b addressed the first conjec-
ture, and Study 2 addressed the second.

Study 1b

This study investigated whether the results of Study 1a could be replicated in the absence of high
attrition rates. To help prevent high attrition rates, participants were paid only at the end of
Session 3 rather than in two installments, as in Study 1a. Furthermore, Study 1b addressed the
question of whether results are influenced by performance-contingent payment (participants in
Study 1a were paid a flat sum, independent of their performance). If a flat fee is paid, participants
might not be motivated to do their best (Hertwig & Ortmann, 1999).

Method

Two of the three training programs from Study 1a were used in this study: the frequency tree
training and the rule training. German versions of the programs were used because participants
in Study 1b were German.

Procedure.  Two groups of participants took part in the study. One group was taught with the
frequency tree and the other with rule training. About half of the participants in each group were
told at the beginning of the first session that the 20% of participants who achieved the best results
overall would receive a monetary bonus. The first session contained a baseline test (Test 1), the
training, and a posttest (Test 2). Testing and training proceeded as in Study 1a. The German
participants took more time than did their American counterparts in Study 1a. Observation of
participants suggested that the Germans took the task more seriously than did their American
counterparts. If they could not solve a task, they did not easily switch to the next one, a behavior
that was frequently observed in the American participants.

To achieve average times comparable to those needed in Study 1a, that is, about 2.5 hr for
tests and training combined, the number of tasks was reduced to seven per test, and the number
of training tasks was reduced to six (two in Part 1 and four in Part 2). Each test contained two
“old” tasks, the sepsis and mammography tasks, that were also used in the training and five “new”
tasks, that is, tasks not previously used in either test or training. The second session (Test 3, about
1 week after the first) served to assess transfer and short-term stability. Finally, the third session,
which was held, on average, about 5 weeks after the first, measured long-term stability. 

Participants.  Fifty-six students at the Free University of Berlin, Germany, were paid for their
participation. Unlike in Study 1a, none of the participants in Studies 1b and 2 reached more than
60% solutions at the baseline test; thus no participants were excluded in these studies. Twenty-
eight participants were trained in each condition. Fourteen participants in the frequency tree
condition and 13 in the rule training condition were told that they would receive a monetary bo-
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nus if their results were among the best 20%. With the help of the revised payment schedule,
there was no attrition of participants over the course of the study.

Results

Figure 10 shows the performance for both training methods (Figure 10a) and this performance
broken down to participants with and without the performance-contingent bonus (Figures 10b
and 10c).

Immediate effect.  Similar to the American participants in Study 1a, the German participants
showed little or no skills to solve Bayesian tasks: At Test 1, the median number of problems
solved is zero. The immediate training effect (Test 2 – Test 1) is of very similar magnitude as
for the American participants in Study 1a: Both teaching methods improve Bayesian reasoning,
with a median of 64% for the rule training and 86% for the representation training. This dif-
ferential effect was more pronounced for participants who were not told about a bonus than for
those who could expect to earn one (compare Figures 10b and 10c). The effect size analysis that
relied on the more conservative means rather than the medians gives a similar picture (Table 2).
All effect sizes measuring the immediate effect were large and were more pronounced in the fre-
quency tree condition than in rule training, in particular when payment was not performance
contingent (Table 2, short-term differential training effect). In no single test, regardless of
whether there was a prospect of a bonus, did the rule training performance surpass that of the
representation training.

Transfer.  To test transfer, the solutions in the two “old” tasks that were used in all tests as
well as in the training were compared with the results in the “new” tasks that were used only once.
Transfer was excellent in both training programs. The average difference between old and new
tasks was only 2.4 percentage points in the frequency tree condition and zero in the rule training
condition, with the liberal scoring criterion (with the strict scoring criterion, the corresponding
values were 4.6 and 2.4 percentage points, respectively). Transfer was not influenced by whether
a bonus could be expected. The difference between old and new tasks in the bonus and no-bonus
subgroups differed from those in the overall analysis by, at most, 0.9 percentage points. 

Stability.  Figure 10a shows basically the same pattern shown in Figure 9, except that the
decay in the rule training is not as strong—after 5 weeks, performance is down to only 43% com-
pared with 20% (Figure 9). But this direct comparison between the two studies would be mis-
leading because it aggregates over the bonus and no-bonus groups in Study 1b, which show dif-
ferent performance patterns (Figures 10b and 10c). When participants could not win a bonus,
the performance was almost identical with that in Study 1a, where participants were also not
offered bonuses. The decay curve found in the rule training condition of Study 1a could be
replicated almost perfectly (compare Figure 9, “Frequency Tree” and “Rule Training,” with
Figure 10b): After 5 weeks, a median of only 14% Bayesian solutions was found. If, however, par-
ticipants had the prospect of a bonus, there was no decay in the rule training condition (see Fig-
ure 10c). In contrast, the results in the frequency tree condition were not influenced by whether
participants could expect to receive a bonus. For instance, in the no-bonus group, the perfor-
mance remained at a median of 86% Bayesian solutions over 5 weeks, from Test 2 to Test 4. 

Taken together, the no-bonus group provides an almost exact replication of the results found
in Study 1a. Also, the effect sizes for the long-term differential training effect, that is, how much
better participants learned in the frequency tree than in the rule training condition, are compa-
rable to the one found in Study 1a (Table 2, long-term differential training effect, “No bonus”).
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Figure 10.  Median percentages of Bayesian solutions obtained in Study 1b (out of seven possi-
ble) for the two training conditions (liberal scoring criterion). Combined results (Panel a) and
separate results for bonus and no-bonus subgroups (Panels b and c) are shown.
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Table 2
Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and 

Differential Training Effects Across Conditions in Study 1b

Liberal scoring Strict scoring

Training effect Test statistic r Test statistic r df

Immediate (Test 2 – Test 1)
   Frequency tree
      Bonus
      No bonus
  Rule training
      Bonus
      No bonus
Short-term differential (Test 2 – Test 1)
   Frequency tree versus rule training
      Bonus
      No bonus
Long-term differential (Test 4 – Test 1)
   Frequency tree versus rule training
      Bonus
      No bonus

90.34
35.61
54.56
41.04
26.24
16.00

  1.65
  0.70
  1.57

  1.98
  0.41
  2.47

.88

.86

.90

.78

.83

.72

.22

.14

.29

.26

.08

.43

71.16
33.07
35.51
39.38
25.15
15.34

  1.63
  0.83
  1.39

  2.58
  0.62
  3.20

.85

.85

.86

.77

.82

.71

.22

.16

.26

.33

.12

.52

27
13
13
27
12
15

54
25
27

54
25
27

Note.  The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs with tests
(Test 1, Test 2) as the repeated factors, and differential training effects were calculated from t tests of group differences
using improvement scores (Test 2 – Test 1 and Test 4 – Test 1). For each comparison, the test statistic (F for immediate
effects and t for differential effects), correlational effect size r, and df are shown.
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Figure 10 continued.  Median percentages of Bayesian solutions obtained in Study 1b (out of
seven possible) for the two training conditions (liberal scoring criterion). Combined results
(Panel a) and seperate results for bonus and no-bonus subgroups (Panels b and c) are shown.
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The combination of a bonus with rule training, however, led to a new result. We try to explain
this result in the next section.

Discussion

Study 1b reduced the attrition rate to zero and replicated the major findings of Study 1a: Both
the representation and the rule training led to a substantial and immediate improvement in
Bayesian inference, with about the same advantage for representation training as in Study 1a;
both types of training were equally excellent in transfer; and the representation training provided
temporally stable improvements, whereas the rule training showed decay. This holds true for
both the median solution rates and the effect sizes based on the means. The new finding was that
the rule training did not show a decay when participants were offered a bonus (there was none in
Study 1a).

What could be the reason for this bonus effect? We suggest the following: Many German high
school students and most German university students have heard about Bayes’ formula. At min-
imum, our participants probably knew where they could find out about the formula: in mathe-
matics school books for Grades 10 to 13 and in statistics textbooks. Thus, some of the partici-
pants who were motivated by the prospect of a bonus may have looked up Bayes’ rule in the
books. To check this hypothesis, we tried to contact all 13 participants in the rule training who
were told about the bonus. Because of address changes and other reasons, we were able to reach
only 7 participants. Of these, only 1, a law student, reported that he had learned the formula dur-
ing the training and remembered it well over the whole period without thinking much about it.
The other 6 conceded that they had recognized the formula from some statistics course and had
thought about it before the retests. Two of the participants said that they had looked it up in sta-
tistics textbooks, and 1 admitted to having made a copy of the formula from the training session
and practicing with that copy at home. Thus, it seems that additional effort is a plausible expla-
nation for the better results of those participants in the rule training condition who could expect
to receive a bonus. 

In contrast, there was no way that participants could learn about the frequency tree because
German mathematics or statistics textbooks do not introduce that kind of representation. This
interpretation suggests that financial incentives can play an important role in statistical train-
ing, in leading to additional efforts to look up the formula outside the laboratory. Nobody
denies that students can, in principle, learn to apply Bayes’ rule successfully (otherwise, there
would be no experts in statistics), and this study has shown that monetary incentives help. Fre-
quency representations, however, still lead to slightly better (and cheaper) results without a
monetary motivation.

Study 2

Study 1b successfully replicated the difference in learning effect between a training program using
a frequency representation and one relying on the use of rules. However, the results of both
Studies 1a and 1b still left open an alternative explanation for the superiority of the representa-
tion training over the rule training: Perhaps it was not the difference between frequency and
probability formats, but rather whether graphical aids were used, that was responsible for the dif-
ference in training results. The main aim of Study 2 was to test this objection. Furthermore, this
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study examined whether the stability over time found for the representation training in the pre-
vious studies holds for a longer period of time—15 weeks rather than 5 weeks. To avoid the po-
tential influence of looking up Bayes’ rule outside the laboratory, no bonus was offered in this
study. As in Study 1b, participants were paid at the end of Session 3.

A graphical aid, the tree, was used for both the frequency and the probability formats. If the
graphical aid is the decisive factor in Bayesian inference training, then there should be no system-
atic difference in results between the probability and frequency conditions. The tree conditions
were compared against the standard rule training used in the previous studies.

Method

Two of the three training methods used in this study, the rule training and the frequency tree
training, were identical to the ones in Study 1b. We refer to the third training method as the
“probability tree” training.

Probability tree.  In a probability tree (Figure 11), the top node contains the value 1, that
is, the probability that the respective hypothesis is true or not true. In the specific example that
uses the mammography task (see earlier example), this is the probability that a woman who has
undergone a mammography does or does not have breast cancer. The two middle nodes show
the base-rate probabilities of breast cancer (p = .01) and its complement, no breast cancer

Probability Tree

p(Breast Cancer
or no Breast Cancer)

1

p(Breast Cancer)

.01

p(no Breast
Cancer)

.99

 p(Positive
 Test)

.008

(p(no
Positive
Test

.002 .099

 p(Positive
 Test)

.891

(p(no
Positive
Test

Figure 11.  Probability tree as used in Study 2. Screen shot is from the first phase of training 
(mammography task).
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(p = .99). The four nodes at the lowest level split up the base-rate probabilities according to the
diagnostic information—in our case, the result of the mammography. Only the values in the
two shaded nodes are needed to calculate the posterior probability, p(cancer | positive test), be-
cause p(cancer | positive test) = p(cancer & positive test)/p(positive test), where p(cancer & pos-
itive test) is represented by the left black node, and the sum of both black nodes gives p(positive
test). Thus, calculation in the probability tree is identical to that in the frequency tree except
that the value in the top node is always 1.

Procedure.  Three groups of participants took part in the study. One group worked with the
frequency tree, the second with the probability tree, and the third with Bayes’ formula. Partici-
pants used German versions of the tasks from Study 1a and completed three sessions. The first
session contained a baseline test (Test 1), the training, and a posttest (Test 2). Testing and train-
ing proceeded as in Study 1b. The second session (Test 3, about 1 week after the first) served to
assess transfer and short-term stability. Finally, the third session, which was held about 15 weeks
after the first, measured long-term stability. The average intervals between training and Test 4
for the frequency tree, the probability tree, and the rule training condition were 15.4 weeks,
14.8 weeks, and 14.8 weeks, respectively. This prolonged time interval allowed us to test to what
degree the excellent stability observed in Studies 1a and 1b, 5 weeks after training, still existed at
the later time.

Participants.  Seventy-two students at the University of Munich, Germany, were paid for
their participation. Twenty-four participants were trained in each of the three conditions. The
data for one participant in the rule training condition were lost due to a computer breakdown.
There was no attrition in the first two sessions, but there was attrition in the third session
(Test 4), probably due to the long time interval (14 weeks) between Sessions 2 and 3. The num-
ber of participants in Test 4 was n = 21, n = 21, and n = 18 in the frequency tree, probability tree,
and rule training conditions, respectively.

Results

The same two scoring criteria as in Studies 1a and 1b were used. Figure 12 shows the median
percentages of Bayesian solutions, for the liberal scoring criterion. Again, results for liberal and
strict criterion differed in quantity but not in quality.

Immediate effect.  As in the previous studies, the baseline test (Test 1) indicated that partici-
pants had few skills for solving Bayesian tasks. Before the training, the median percentage of
Bayesian solutions over all participants was 14%. The immediate training effect was strong for
all three training programs and again yielded large effect sizes that were comparable to those ob-
tained in the previous studies (see Table 3).

Transfer.  As in the previous studies, transfer was excellent in all three training programs. On
average, using the liberal scoring criterion, the difference between old and new tasks was 0.6 per-
centage points in the frequency tree, 4.9 in the probability tree, and 4.8 in the rule training con-
dition (using the strict scoring criterion, the corresponding values were 2.1, 3.8, and 1.2 percent-
age points, respectively).

Stability.  In the previous studies, the effect of the representation training was stable over a
5-week period. In rule training, by contrast, the effect faded away over time (with the notable ex-
ception of the bonus group in Study 1b). Can participants still maintain their representation skills
15 weeks after training? Do we still obtain the difference between the rule and representation train-
ing as in Studies 1a and 1b? Figure 12 shows that, consistent with the results in the previous stud-
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Table 3
Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and 

Differential Training Effects Across Conditions in Study 2

Liberal scoring Strict scoring

Training effect Test statistic r Test statistic r df

Immediate (Test 2 – Test 1)
   Frequency tree
   Rule training
   Probability tree
Short-term differential (Test 2 – Test 1)
   Frequency tree versus rule training
   Frequency tree versus probability tree
   Probability tree versus rule training
Long-term differential (Test 4 – Test 1)
   Frequency tree versus rule training
   Frequency tree versus probability tree
   Probability tree versus rule training

143.98
  50.98
115.00

    1.88
    1.05
    1.00

    3.11
    2.98
    0.07

.93

.84

.91

.27

.15

.15

.46

.43

.01

  94.00
  63.42
187.29

    0.74
0 

    0.85

    2.69
    2.02
    0.77

.90

.86

.94

.11
0 

.13

.40

.30

.13

23
22
23

45
46
45

37
40
37

Note.  The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs with tests
(Test 1, Test 2) as the repeated factors, and differential training effects were calculated from t tests of group differences
using improvement scores (Test 2 – Test 1 and Test 4 – Test 1). For each comparison, it shows test statistic (F for imme-
diate effects and t for differential effects), correlational effect size r, and df.
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Figure 12.  Median percentages of Bayesian solutions obtained in Study 2 (out of seven possible) 
for the three training conditions (liberal scoring criterion).
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ies, no decay occurred in the group that received representation training (frequency tree). Here,
the immediate training effect of a median of 93% Bayesian solutions remained stable over the
whole period of 15 weeks. In fact, it even increased to 100% Bayesian solutions at Test 4. In con-
trast, the rule training group began high, at a median of 86% Bayesian solutions, and ended up at
a median of 50% after 15 weeks. The probability tree training shows a similar pattern of results as
the rule training. There is some decay from Test 2 to Test 3 and a more pronounced decay from
there to Test 4, with a final level of 57% Bayesian solutions. A comparison of the long-term im-
provement scores (Test 4 – Test 1) between the frequency tree condition on the one hand and the
probability tree and rule training conditions on the other hand again yields medium- to large-sized
effects. The difference between the two probability conditions is, by contrast, small, especially
when the liberal scoring criterion is used (Figure 12; see Table 3, long-term differential effect).5

Discussion

Studies 1a and 1b left open a possible alternative explanation for the superior results in the rep-
resentation training as compared with the rule training. The former used graphical aids, whereas
the latter did not, and therefore the graphical aid might have made the difference. In Study 2,
both a frequentistic and a probabilistic condition used the same graphical aid, a tree structure.
The immediate training results were very high in both tree conditions, but they differed markedly
in the stability of the training success over time. The frequency tree training enabled participants
to retain what they had learned more than 3 months before, whereas the effect of the probability
tree training decayed over time, to a median of 57%.

How much could the probability training gain by using a graphical aid? Figure 12 shows that
performance was slightly better after 15 weeks, but overall, there is little, if any, difference. This
holds despite the rule training group having to learn a more complicated formula (Bayes’ rule for
probabilities) than the probability tree group. The similar performance in the two probability
training programs indicates that the important question is not whether a graphical aid should be
used in teaching statistical literacy but what is a proper representation for a graphical aid.6 It also
indicates that the superior effect of natural frequencies is not due solely to computational sim-
plicity, which is the same for probability trees as for frequency trees except that the decimal point
is moved to the left. The results in Study 2 are consistent with Gigerenzer and Hoffrage’s (1995)
conclusion that natural frequencies constitute a proper representation of uncertainties.

5 There is one notable exception from the finding that the results based on the strict and liberal scoring criteria
differ only in quantity, in Study 2. According to the strict scoring criterion, there is a relatively large differ-
ence in the median percentages at Test 4 (36 percentage points) between rule training and probability tree
conditions, which is much smaller when expressed in means (6 percentage points) and which is not found
when applying the liberal criterion (see Figure 12 and the Appendix). The large difference is, however, due in
part to the coarse step size that determines the possible median percentage values. Recall that with eight pos-
sible values (0 to 7 problems solved) a difference of one problem solved amounts to a difference of 14.3 per-
centage points.

6 An alternative way to disentangle the possible influence of a graphical aid from that of the information rep-
resentation (frequentistic vs. probabilistic) would have been to dispense with graphical aids in both represen-
tations (rather than to use them in both representations, as in Study 2). We did not proceed with this route
because it has already been shown by Gigerenzer and Hoffrage (1995) that frequency representations yield
solution rates about three times as high (about 50% correct solutions) as probability representations—both
without graphical aids.
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Conclusion

Gigerenzer and Hoffrage (1995) have stressed the importance of studying cognitive algorithms
in tandem with the information format for which they are designed. The thesis is that humans
and animals more easily encode information about uncertain environments in terms of natural
frequencies compared with probabilities, and one can show that Bayesian computations are sim-
pler when information is represented in natural frequencies. Both the frequency grid and the
frequency tree are realizations of natural sampling of frequencies.

We applied Gigerenzer and Hoffrage’s work to an unresolved problem: how to design a meth-
od for teaching Bayesian reasoning that is built on psychological principles and can overcome the
lack of success reported in previous studies. The central idea is to teach people to represent infor-
mation in a way that is tuned to their cognitive algorithms. Whether such cognitive algorithms
are the direct result of evolution or whether they rely on evolved mental architectures and are
shaped to a large extent during ontogenesis by learning processes does not matter much for our
argument. For instance, Sedlmeier (1999) showed that an associative learning model also arrives
at the prediction that Bayesian algorithms crucially depend on information format. Our research
emphasizes the role of the information representation at encoding. If information is encoded in
terms of natural frequencies, probability judgments can be quite exact (Sedlmeier, 1999,
pp. 161–163).

 This psychological approach was contrasted with the traditional approach to the teaching of
statistical reasoning, which emphasizes how to insert the right numbers into the right rule. Sim-
ilar to prior training attempts on the impact of sample size (e.g., Fong & Nisbett, 1991), the rule
training method showed a substantial short-term increase in performance, and relative to this in-
crease, an excellent transfer. After several weeks, however, Bayesian reasoning had undergone the
well-known decay function. When participants were taught representations instead of rules, the
initial training effect was noticeably higher, transfer was equally good, and there was no loss of
performance after 15 weeks.

Let us reflect on the larger context in which the present approach to teaching stands. First,
there is an ecological perspective: Cognitive algorithms (or rules) are adapted to specific informa-
tion formats in the environment. Specifically, the external representation of information can
“perform” part of the computations. Second, there is the evolutionary distinction between the
past environment to which the cognitive processes of an organism are adapted and the present
environment in which an organism lives (e.g., Buss, Haselton, Shackelford, Bleske, & Wakefield,
1998; Cummins, 1998). When environments change, such as by the invention of new forms for
the representation of information such as probabilities, cognitive processes may no longer func-
tion as well as before, and “illusions” can be a consequence. As an example from vision, consider
color constancy, an impressive adaptation of the human perceptual system. It allows people to
see the same color under changing illuminations: under the bluish light of day as well as the red-
dish light of the setting sun. Color constancy, however, fails under certain artificial lights such as
sodium or mercury vapor lamps, which were not present in the environment when mammals first
evolved (Shepard, 1992). The same type of argument can be made for statistical reasoning
(Gigerenzer, 1998), where natural frequencies correspond to the format of information a forag-
ing organism would have encountered before the invention of books and statistics, and probabil-
ities and percentages correspond to an information environment that has been changed by the
invention of mathematical probability. 

Compared with the earlier emphasis on demonstrating cognitive biases in statistical reason-
ing, or so-called “inevitable” illusions (e.g., Piattelli-Palmarini, 1994), the ecological perspective
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can actually advise us how to help people understand statistical information. Here, the external
representation of numerical information, and the internal translation of one representation into
another, can be a major tool for helping people to attain insight. This is not to say that frequency
representations are the only tool. Study 1b, for instance, indicated that offering monetary incen-
tives can motivate students to make additional effort and can enable them to perform about as
well as those who had a representation training. 

We conclude with some open questions and possible extensions of the present work. First,
we have dealt with only an elementary form of Bayesian inference, and we do not know how these
results generalize to situations in which hypotheses and data are not binary but multivalued or
continuous. Second, we have not dealt with situations in which there is more than one piece of
diagnostic information, such as two medical tests in sequence. Multiple pieces of information can
be reduced to the sequential application of two frequency representations, and Krauss, Martignon,
and Hoffrage (1999) have shown that the effect of natural frequencies remains as strong with two
pieces of information as it is with one. This result suggests extending teaching representations to
situations with multiple pieces of information. Third, an extension of the training program
would be to teach Bayesian shortcuts, as described in Gigerenzer and Hoffrage (1995). For in-
stance, when a disease is rare (low base rate) and can be easily detected (high hit rate) and false
positives are numerous, as compared with true positives, then the ratio between base rate and
false-alarm rate is a good approximation of the Bayesian estimate. For instance, assume that only
2 out of 10,000 men have HIV; the hit rate of an ELISA test is very high; and there are about 20
false positives among those 9,998 men who do not have the virus. The probability that a man
who tests positive actually has the virus can be approximated by simply dividing the base-rate
frequency (2) by the false-alarm frequency (20); this shortcut results in a value of 1 in 10. A final
extension of the training program would be to teach participants to understand and judge the
assumptions for the applicability of Bayes’ rule (e.g., Earman, 1992) as well as other, competing
statistical methods for inference.

Tutorial programs could play a useful role in education for mathematical and statistical liter-
acy and in overcoming innumeracy (Paulos, 1988; Sedlmeier, 1999, 2000). Because the repre-
sentation training lasts only 1–2 hr, it can be used, for instance, in high school curricula to teach
young people how to evaluate the results of pregnancy, HIV, or drug tests. Similarly, it can be
used to teach both patients and physicians to estimate the chances of actually having breast cancer
after a positive mammogram, and the like. Computerized programs have been proven to attract
the attention of young and old alike, and we have observed in our participants a high degree of
involvement and desire to succeed. The teaching of statistical literacy can take advantage of
human psychology.
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Appendix

Median and Mean Percentages, and Standard Deviations and Group Sizes, for All Tests 
in Studies 1a, 1b, and 2

Liberal scoring Strict scoring

Measure Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4

Study 1a
Frequency tree
Median
M
SD
n
Frequency grid
Median
M
SD
n
Rule training
Median
M
SD
n
Control
Median
M
SD
n

10
18
23
15

10
16
15
14

 0
  6
11
20

  0
10
22
  5

90
80
20
15

75
71
23
14

60
56
37
20

90
77
30
13

70
72
18
12

30
48
39
15

  5
18
28
  4

  90
  80
  26
    5

100
  70
  42
    7

  20
  41
  38
  10

  0
10
16
15

  5
10
14
14

  0
  4
  8
20

  0
  8
18
  5

80
73
25
15

70
64
23
14

35
41
38
20

90
75
32
13

60
62
23
12

20
42
43
15

  5
18
29
  4

90
74
31
  5

90
63
45
  7

15
36
39
10

Study 1a, complete data sets
Frequency tree (n = 5)
Median
M
SD
Frequency grid (n = 7)
Median
M
SD
Rule training (n = 10)
Median
M
SD

10
12
13

10
16
18

  0
  4
  7

90
86
  9

90
79
25

65
55
33

90
86
21

70
73
22

45
53
37

  90
  80
  26

100
  70
  42

  20
  41
  38

  0
  0
  0

  0
10
19

  0
  4
  7

80
76
  6

70
70
22

40
42
36

90
86
15

70
66
28

40
46
42

90
74
31

90
63
45

15
36
39

Study 1b
Frequency tree
Median
M
SD
n
Rule training
Median
M
SD
n

  0
10
14
28

  0
10
17
28

86
71
32
28

64
55
38
28

79
67
37
28

57
47
39
28

  86
  69
  37
  28

  43
  47
  41
  28

  0
  4
10
28

  0
  5
14
28

71
61
37
28

50
46
38
28

71
60
36
28

57
42
39
28

86
66
40
28

43
40
39
28
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Note.  The appendix shows median and mean percentages of Bayesian solutions, as well as standard deviations  (SD ) and
group sizes (n) for all Tests in Studies 1a, 1b, and 2. The results are shown according to both a liberal and a strict scoring
criterion (see text). For Study la, the data of those participants who took part in all three sessions are shown separately
(Study 1a, complete data set). For Study 1b, data are also shown separately for those participants who had the chance to
earn a monetary bonus (“Bonus”) and those who did not (“No bonus”). Values for medians, means, and standard de-
viations are percentages rounded to the next digit.

Appendix (continued)

Liberal scoring Strict scoring

Measure Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4

Study 1b (continued)
Bonus
Frequency tree
Median
M
SD
n
Rule training
Median
M
SD
n
No bonus
Frequency tree
Median
M 
SD
n
Rule training
Median
M
SD
n

  0
  9
14
14

  0
13
18
13

  0
11
15
14

  0
  7
15
15

79
68
34
14

71
63
36
13

86
75
32
14

57
49
40
15

71
58
41
14

71
58
37
13

86
76
31
14

14
38
39
15

  86
  65
  39
  14

  71
  63
  38
  13

  86
  73
  36
  14

  14
  34
  39
  15

  0
  2
  8
14

  0
  8
17
13

  0
  6
12
14

  0
  3
11
15

57
58
38
14

71
53
36
13

71
63
37
14

29
41
41
15

71
55
38
14

57
56
36
13

71
64
34
14

  0
30
38
15

86
60
43
14

57
56
38
13

86
71
38
14

  0
27
35
15

Study 2
Frequency tree 
Median
M
SD
n
Probability tree
Median
M
SD
n
Rule training 
Median
M
SD
n

14
17
26
24

14
17
15
24

14
18
22
23

93
85
21
24

86
77
24
24

86
70
31
23

93
85
22
24

79
73
30
24

86
70
35
23

100
  85
  24
  21

  57
  49
  41
  21

  50
  48
  39
  18

  0
  8
25
24

  0
  5
13
24

  0
  9
20
23

86
76
25
24

86
73
23
24

86
69
32
23

86
76
30
24

71
68
34
24

86
66
40
23

86
76
34
21

57
47
42
21

21
41
44
18


