
Less is More: Active Learning with Support Vector Machines

Greg Schohn GCS@JUSTRESEARCH.COM

David Cohn COHN@JUSTRESEARCH.COM

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Abstract
We describe a simple active learning heuristic
which greatly enhances the generalization behav-
ior of support vector machines (SVMs) on sev-
eral practical document classification tasks. We
observe a number of benefits, the most surpris-
ing of which is that a SVM trained on a well-
chosen subset of the available corpus frequently
performs better than one trained on all available
data. The heuristic for choosing this subset is
simple to compute, and makes no use of infor-
mation about the test set. Given that the training
time of SVMs depends heavily on the training
set size, our heuristic not only offers better per-
formance with fewer data, it frequently does so
in less time than the naive approach of training
on all available data.

1. Introduction

There are many uses for a good document classifier — sort-
ing mail into mailboxes, filtering spam or routing news ar-
ticles. The problem is that learning to classify documents
requires manually labelling more documents than a typical
user can tolerate. This makes it an obvious target for active
learning, where we can let the system ask for labels only on
the documents which will most help the classifier learn.

�

In this paper, we describe the application of active learn-
ing to a support vector machine (SVM) document classi-
fier. Although one can define an “optimal” (but greedy)
active learner for SVMs, it is computationally impractical
to implement. Instead, we use the simple, computationally
efficient heuristic of labeling examples that lie closest to
the SVM’s dividing hyperplane. Testing this heuristic on
several domains, we observe a number of results, some of
which are quite surprising. Compared with a SVM trained
on randomly selected examples, the active learning heuris-
tic provides significantly better generalization performance
for a given number of training examples.

�

See Tong and Koller (2000) in this volume for parallel re-
search on this topic.

When we train the SVM on a small subset of the avail-
able data chosen by our heuristic, its performance is fre-
quently greater than the performance of an SVM trained
on all available data. As such, it provides a win on two
fronts: it provides better generalization and requires using
fewer data than a passive learner trained on the entire data
set. Lewis and Gale (1994) observed similar phenomena
with their probabilistic classifiers. In the case of SVMs
however, there is an added bonus: given the superlinear
training cost, the smaller training set frequently yields this
improved performance using less computation time than
needed to achieve this performance from random examples.
A final contribution of this paper is the identification of a
heuristic stopping criterion that appears to reliably indicate
when peak generalization performance has been reached.

In the remainder of this section, we describe and motivate
the process of active learning, and briefly review our target
learning architecture, the support vector machine.

Section 2 discusses several active learning heuristics for
support vector machines. Sections 3 and 4 describe a se-
ries of experiments and results with one of those heuristics.
We consider the implications of our results in Section 5.

1.1 Active Learning

Formally, active learning studies the closed-loop phe-
nomenon of a learner selecting actions or making queries
that influence what data are added to its training set. Ex-
amples include selecting joint angles or torques to learn the
kinematics or dynamics of a robot arm, selecting locations
for sensor measurements to identify and locate buried haz-
ardous wastes, or querying a human expert to label a new
document in a document classification problem.

The primary motivation for active learning comes from the
time or expense of obtaining labeled training examples.
In some domains, such as industrial process modeling, a
single training example may require several days and cost
thousands of dollars to generate. In other domains, such as
learning to classify and filter email, obtaining examples is
not expensive, but may require the user to spend hours of
tedium labeling them.

The promise of active learning is this: when the exam-
ples to be labeled are selected properly, the data require-
ments for some problems decrease drastically. In special
cases, even the computational requirements decrease, and
some NP-complete learning problems become polynomial
in computation time (Angluin, 1988; Baum & Lang, 1991).

In this paper, we will focus on a form of active learning
called selective sampling. In selective sampling, the learner
is presented with a large corpus of unlabeled examples, and
is given the option of labeling some subset of them. Since
each label “costs” us something, we wish to choose a small
subset that maximizes our classification accuracy on the en-
tire corpus. In our case, this corpus is a collection of doc-
uments, which we wish to classify, perhaps into a Yahoo-
like hierarchy. The architecture which we will apply to this
problem is the Support Vector Machine.

1.2 Support Vector Machines

Given a domain
�

, a linear support vector ma-
chine (Schölkopf et al., 1999) is defined in terms of the
hyperplane ���������
	�� (1)

corresponding to the decision function�� ����	������ � ������������� (2)

for � �"!
# and ���$! . Given a set of labeled data% 	'& � � � �)(� ��� � ��*+�)(+*,���,-,-�-�� � �/.��)(,.���0 , where �/12��!
#
and (312��&54765�)�8690 , the optimal hyperplane is the unique
hyperplane that separates positive and negative examples
for which the margin is maximized:

*
:<;+=>@? A B :DCFEG5HJI�KFK ��4L� 1 KFK5M �N�O! # ���������P�Q	��SR�TN- (3)

When the data are not separable, a soft margin classifier is
used. This introduces a misclassification cost U , which is
assigned to each misclassified training example.

Equation 3 is usually optimized by introducing Lagrange
multipliers V 1 and recasting the problem in terms of its
Wolfe dual:

maximize: W@X 	�Y 1 V 1Z4 6[Y 1 ? \ V 1 V \ (,1](\ �/1^� \ (4)

subject to: �`_ V 1 _ U , and Y 1ba�c V 1 (1 	�� (5)

The �/1 for which V 1 are non-zero have a special meaning.
They are the training examples which fall on the margin,d

This notion of “optimality” is not directly tied to the perfor-
mance of the classifier. There is, however, evidence that maximiz-
ing the margin acts as a form of structural risk minimization (Vap-
nik, 1998).

and thus limit the position of the optimal hyperplane. These� 1 are the support vectors. The � 1 for which V 1 	 U also
have special meaning — these are bound examples, exam-
ples which are incorrectly classified or are within the mar-
gin of the hyperplane.

Support vector machines have demonstrated excellent per-
formance in many domains, particularly those involving
text classification (Joachims, 1998b; Dumais et al., 1998).
Recent advances (Joachims, 1998a; Platt, 1998) have also
sped up the optimization problem such that it is practical to
solve support vector problems involving tens of thousands
of documents in a reasonable amount of time.

The complexity of finding the optimal hyperplane and its
support vectors involves a form of quadratic programming
and, as such, is NP-complete in the worst case (Vavasis,
1991), with typical running times of e �gf * � in the size of
the training set. Given the superlinear time dependence on
the number of training examples, as well as the cost of ob-
taining labels for the examples in the first place, it is rea-
sonable to try to minimize the number of labeled examples
needed to achieve good performance.

2. Active Learning for
Support Vector Machines

Learners traditionally attempt to minimize error on future
data. In a probabilistic framework, an active learner can
do this by estimating expected future error, then selecting
training examples that are expected to minimize this ex-
pected future error. SVMs, however, are a discriminant
classifier; only recently have attempts been made to pro-
vide probabilistic estimates of a label’s confidence.

In this section, we describe two active learning criteria for
selecting data. The first is a probabilistically “correct,” but
impractical approach, while the second is a simple, efficient
heuristic inspired by the first. We find empirically that the
heuristic achieves remarkable performance at little cost.

2.1 A Greedy Optimal Strategy

Platt (1999) describes an intuitive means of assigning prob-
abilities to points in the space classified by a support vector
machine: project all examples onto an axis perpendicular
to the dividing hyperplane, and perform logistic regression
on them to extract class probabilities. By integrating the
probability of error over the volume of the space, weighted
by some assumed distributions of test examples, we can es-
timate the expected error of the classifier. hi

This integration would probably be done via Monte Carlo
methods, on a random sample of unlabeled examples sampled
or generated according to the test distribution. See Cohn et al.
(1996) for details.

From there, it is straightforward to compute the expected
effect of adding an arbitrary unlabeled example � :

1. Use logisic regression to compute class probability� � (�	 6 K ��� and
� � (�	�4�6 K ��� .

2. Add
� ����6,� to the training set, retrain, and compute the

new expected error ��� G5? ��� .
3. Remove

� � �,6�� , add
� � ��4�6�� to the training set, retrain,

and compute the new expected error � � G5?�� ���
4. Estimate expected error after labeling and adding ex-

ample � as
� G 	 � � (�	 6 K ��� � �	� G5? ��� � � � (�	 476 K �S�@� �	� G5?�� ��� .

The learner can then consider all available candidate points
and select from them the one that minimizes � G .
A non-probabilistic analogue of this approach would use
a “best worst-case” model: Define ��� G ? ��� and �	� G5?�� ��� as
the volume spanned by the margin. Then define � G 	:N;+= � �	� G5? ��� � �	� G5?�� ��� � , providing a lower bound on the de-
crease in uncertainty that labelling and adding a training
example will produce.

While this is arguably the best one can do in a greedy active
learning setting, both algorithms are impractical. Evaluat-
ing each candidate point requires solving two QP problems;
in a domain with thousands of available candidates, even a
single complete evaluation of each is expensive.

2.2 A Simple Heuristic

What we would like is a heuristic which will estimate the
expected change in error from adding an example without
requiring us to actually add the example and recompute the
resulting SVM. We investigate this by considering the ways
a new example may change the SVM to which it is added.

SVMs have shown the greatest promise in high-
dimensional domains such as text classification, where the
number of problem dimensions may be an order of mag-
nitude larger than the number of examples. In these cases,
the subspace spanned by a given a set of training examples
will cover only a fraction of the available dimensions. One
heuristic active learning criterion would be to search for
examples that are orthogonal to the space spanned the the
current training set, effectively giving the learner informa-
tion about dimensions it has not yet explored.

An alternative approach is to try to improve confidence in
dimensions about which we already have information. We
can accomplish this by attempting to maximally narrow the
existing margin. If we assume the “best worst-case” model,
examples that lie along the dividing hyperplane will on av-
erage divide the space up most quickly. Note that a point’s
location on the hyperplane with have a large effect on how
labeling it influences the hyperplane (see Figure 1). But la-
beling an example that lies on or close to the hyperplane is

guaranteed to have an effect on the solution, and appears to
be a simple and effective form of divide and conquer.

+ +

- -

o

o
+ +

- -

+ +

- -
o

too far out - displaces
hyperplane, but little
change in margin

large change in margin,
but little displacement
hyperplane

maximal displacement of
hyperplane and decrease
in size of margin

Figure 1. The location of an example on the dividing hyperplane
affects its displacement. The dashed line represents the old hy-
perplane, dotted lines are the old margin; ‘o’ denotes the exam-
ple being queried, and the solid line denotes the new hyperplane,
given a labeling of ‘-’.

Selecting training examples by their proximity to the divid-
ing hyperplane is computationally inexpensive: if we ex-
plicitly compute the dividing hyperplane, evaluating each
candidate requires only a single dot product computation.
As we discover in the next section, this criterion is also sur-
prisingly effective.

3. Experiments

In this section, we evaluate the effectiveness of selecting
training examples according to their proximity to the di-
viding hyperplane for a “linear” SVM. We describe exper-
iments in two text classification domains, and compare the
performance of our heuristic with that of training on ran-
domly selected examples.

3.1 Document Classification and the Vector Space
Model

One of the most successful approaches to document classi-
fication is the vector space model, which ignores word lo-
cation and context, and treats the document as an unordered
“bag of words.” The space of the model has one dimension
for each word in the corpus vocabulary, and the coordinate
of an example in that dimension is the number of times the
corresponding word appears in the document. Frequently
a list of “stopwords” — common but non-content-bearing
words such as “the,” “if,” and “it” are removed.

The vector space model can lead to a domain with more
�
See Baum and Lang (1991) for another example of applying

divide and conquer to identify hyperplanes in an active learning
setting.

than 100,000 dimensions, making many traditional ma-
chine learning approaches infeasible. The model however,
has been shown to work very well with naive Bayes classi-
fiers (Nigam et al., 1998) and SVMs (Joachims, 1998b).

3.2 Experimental setup

We ran experiments on two text domains: binary clas-
sification of four newsgroup pairs from the “20 News-
groups” data set (Nigam et al., 1998), and topic classifi-
cation on a subset of five topics from Reuters news arti-
cles (Lewis, 1997). Each document was normalized for
document length, but no other weighting (such as TFIDF)
was performed on the vectors.

0 100 200 300 400
0.65

0.7

0.75

0.8

0.85

0.9

0.95

training set size

ac
cu

ra
cy

4 per iteration
8 per iteration
16 per iteration
32 per iteration
64 per iteration

Figure 2. Effect of sample granularity of active learning for the
“earn” Reuters group. There is a large initial difference, but little
asymptotic effect from the number of training examples added on
each iteration.

For each class of two domains, we performed five runs with
independently-drawn 50%/50% test/training splits for both
the heuristic and the default strategy of adding example la-
bels at random. Each experiment began with four randomly
chosen positive examples and four randomly chosen nega-
tive examples. Successive examples were added in batches
of size � , chosen from the training set either randomly or
in order of proximity to the current dividing hyperplane.
We performed runs for values of � 	 � �����,6�� and � [new
examples per iteration. As expected, finer sampling granu-
larity leads to a sharper increase in performance for small
training set sizes (Figure 2). Computationally, this increase
must be traded off against the cost of re-solving a new QP
problem more frequently. The optimal time-vs.-label cost
tradeoff depends heavily on the domain; for simplicity, all
experiments discussed for the rest of the paper use �
	�� .

We used a QP solver based on Joachims (1998a) to train
the SVMs at each iteration for the USENET data. The
solver used the working set strategy (Osuna et al., 1997)
with four elements and the PR LOQO solver (Smola, 1998)
without shrinking to solve each QP sub-problem. We used
a version of Platt’s SMO algorithm (Keerthi et al., 1999)

to train the SVMs for the Reuters data. Both algorithms
produce comparable results on all data sets; the different
methods were chosen in the interest of computational effi-
ciency.

3.3 USENET – “20 Newsgroups”

We chose four pairs of newsgroups from the 20 News-
groups data set, selected to span a wide range of perceived
difficulties:

alt.atheism vs. difficult
talk.religion.misc
comp.graphics vs. moderately difficult
comp.windows.x
comp.os.ms-windows.misc vs. moderately easy
comp.sys.ibm.pc.hardware
rec.sports.baseball vs. easy
sci.cryptography

The goal was to learn the correct newsgroup that a mes-
sage belongs to, analogous to an email filter. The 20
newsgroups dataset does include a small number of cross-
posted articles, which makes some datasets inseparable un-
der any domain representation. All of the newsgroups have
approximately the same size (1000 documents). Articles
with uuencoded content were ignored and headers were re-
moved before classification.

3.4 Reuters

The second data set involved articles on five topics from
Reuters news articles. These articles were taken from
the Reuters-21578 Distribution 1.0 dataset (Lewis, 1997).
The dataset contains 21,578 Reuters newswire articles from
1987. Of those, the subset of 10,711 articles that have topic
labels were used. On each run, the articles were randomly
divided into equally sized test and train sets. We chose the
five topics with the largest number of “positive” examples:
acquisitions, earn, grain, crude oil, and money-fx. The
remainder of the 10,711 documents not bearing the selected
topic were labeled negative. The earn set had 3802 “posi-
tive” documents (those with the earn label), acq had 2327,
money-fx had 743, crude had 592 and grain had 589.

4. Results

4.1 USENET

In Figure 3 we plot test accuracy of the active learner and
random sampler as a function of training set size. The per-
formance of the active learner is slightly, but consistently
better than that of the random sample, and all learners reach
their asymptotes after relatively few documents. It is worth
noting that in these experiments, the number of positive and

negative examples (in both training and test sets) are ap-
proximately equal. A relatively large number of the train-
ing examples (40%-70%) become support vectors in the
final model, leaving relatively few insignificant examples.

It should also be noted that the USENET dataset contain
crosspostings; approximately 20% of the atheism/religion
newsgroup articles are posted to both newsgroups, limiting
a perfect learner to 90% accuracy. The atheism/religion
newsgroup exhibits a slight downward slope after half the
documents have been inspected. In this case, the dip may
be due to an increasing number of conflicts between la-
bels of the crossposted articles, we will encounter the phe-
nomenon again with the Reuters groups, which contains no
conflicting labels.

0 500 1000
0.5

0.6

0.7

0.8

0.9

training set size

ac
cu

ra
cy

atheism/religion

active
random

0 500 1000
0.4

0.6

0.8

1

training set size

ac
cu

ra
cy

baseball/cryptography

active
random

0 500 1000
0.4

0.6

0.8

1

training set size

ac
cu

ra
cy

graphics/X

active
random

0 500 1000
0.5

0.6

0.7

0.8

0.9

training set size

ac
cu

ra
cy

MS−Windows/PC−hardware

active
random

Figure 3. Accuracy on pairwise newsgroup classification is im-
proved slightly by the active learning heuristic. All learners reach
their asymptotes after relatively few training examples. Lines in-
dicate mean accuracy over five runs; dashed lines indicate stan-
dard error.

4.2 Reuters

The difference between active learning and random sam-
pling is much more pronounced on all of the Reuters sets
(Figures 4–8). The accuracies reported are the macro-
averaged

�

accuracies of both classes. The accuracy of the
active learner reaches a maximum long before that of the
random learner, which reaches its maximum using all of
the documents.

It is worth noting that the active learner’s performance
is strongest over other methods when the split between
categories is most uneven, where the smaller class can

�

The macro-average (Yang, 1999) is the average over each
class instead of each document. In other words, the average of
each classes accuracy.

0 2000 4000
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

training set size

ac
cu

ra
cy

earn

active
random

0 100 200 300 400 500
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

training set size

ac
cu

ra
cy

earn (closeup)

active
random

Figure 4. Accuracy curves for Reuters “earn” topic. Left is full
curve; right is close-up of initial segment.

0 2000 4000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

training set size

ac
cu

ra
cy

acquisitions

active
random

0 100 200 300 400 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

training set size

ac
cu

ra
cy

acquisitions (closeup)

active
random

acquisitions

Figure 5. Accuracy curves for Reuters “acquisitions” topic. Left
is full curve; right is close-up of initial segment.

be quickly exhausted. This is consistent with the rel-
ative parity between random and active learners on the
USENET data, where positive and negative classes were
evenly matched.

5. Discussion

In the previous section, we observed an unusual phe-
nomenon with the learning curves. When training exam-
ples were added at random, generalization increased mono-
tonically until all available examples were added. When
training examples were added via the heuristic, general-
ization peaked to a level above that achieved by using all
available data, then slowly degraded to the level achieved
by the random learner when all data had finally been added.
We are actually achieving better performance from a small
subset of the data that we can achieve using all available
data. In the name of cost and accuracy, we would like to
estimate when we have achieved this peak performance, so
we can stop adding examples.

0 2000 4000
0.6

0.65

0.7

0.75

0.8

0.85

training set size

ac
cu

ra
cy

money−fx

active
random

0 100 200 300 400 500
0.6

0.65

0.7

0.75

0.8

0.85

training set size

ac
cu

ra
cy

money−fx (closeup)

active
random

Figure 6. Accuracy curves for Reuters “moneyfx” topic. Left is
full curve; right is close-up of initial segment.

0 2000 4000
0.6

0.65

0.7

0.75

0.8

0.85

training set size

ac
cu

ra
cy

crude

active
random

0 100 200 300 400 500
0.6

0.65

0.7

0.75

0.8

0.85

training set size

ac
cu

ra
cy

crude (closeup)

active
random

Figure 7. Accuracy curves for Reuters “crude” topic. Left is full
curve; right is close-up of initial segment.

5.1 Stopping Criteria

One obvious way of estimating when we have reached peak
generalization performance is the use of crossvalidation, or
of a hold-out set. Crossvalidation on the training set is im-
practical, given the time needed to re-solve the SVM for
each crossvalidation split. Even if time were not an issue,
crossvalidation assumes that the training set distribution is
representative of the test set distribution — an assumption
violated by the active learning approach. Given that the
motivation of active learning is to use as few labeled exam-
ples, the alternative of requiring a held-out validation set
is counterproductive. Instead, we look for a self-contained
statistic.

Let us make the (unreasonable) assumption that our data
is linearly separable. If this is the case, then only unla-
beled examples within the margin will have any effect on
our learner. Labelling an example in the margin may shift
the margin such that examples that were previously “out-
side” are now “inside,” but once all unlabeled examples in
the margin have been exhausted, no future labelings will
affect the learner in the slightest.

Working from this assumption, it would be reasonable to

0 2000 4000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

training set size

ac
cu

ra
cy

grain

active
random

0 100 200 300 400 500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

training set size

ac
cu

ra
cy

grain (closeup)

active
random

Figure 8. Accuracy curves for Reuters “grain” topic. Left is full
curve; right is close-up of initial segment.

Table 1. Accuracy of active and random learners on Reuters top-
ics, averaged over five randomized runs. ‘Peak’ is the number
of training examples at which the active learner reached its mean
peak accuracy. The maximum accuracy for random learners was
achieved when all training data were used. ‘Cutoff’ indicates the
number of examples at which the stopping criterion was satisfied.
label peak max accuracy cutoff accuracy at cutoff

at active random active random
earn 504 0.95 0.93 875 0.95 0.922
acq 752 0.92 0.90 1050 0.917 0.882

money 456 0.846 0.817 675 0.842 0.771
crude 256 0.852 0.842 550 0.849 0.750
grain 272 0.89 0.87 580 0.883 0.741

stop labeling data once the margin has been exhausted. We
can compute this stopping criterion as a byproduct of eval-
uating candidates for labeling – if the best one (closest to
the hyperplane) is no closer than any of the support vec-
tors, our margin has been exhausted. Empirically, this stop-
ping criterion performs well; when the margin has been ex-
hausted, the number of new support vectors drops (recall
that it should go to zero only if our data is linearly separa-
ble). While this point generally lags the true peak, accuracy
at margin exhaustion appears to closely approximate peak
accuracy (see Figure 9 and Table 1).

0 1000 2000 3000 4000 5000
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

training set size

ac
cu

ra
cy

accuracy
number of support vectors

0 1000 2000 3000 4000 5000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

training set size

ac
cu

ra
cy

accuracy
number of support vectors

Figure 9. As examples are labeled and added to the training set,
there is a “knee” in the fraction of new points that become support
vectors. This point corresponds to the point where all unlabeled
examples within the margin have been labeled. Accuracy is plot-
ted along with the number of support vectors (not to scale) as a
function of training set size for “earn” (left) and “acq” (right).

5.2 Timing Considerations

As we remarked earlier, training an SVM requires timee � f * � in the number of training examples. Training with
all available data requires solving a single QP problem with
a large value of

f
. Active learning requires iteratively

solving QP problems for small but increasing values of
f

.
The superlinear time penalty for adding training data com-
bines well with the increased generalization performance
from active learning in our experiments. When the cut-
off point is

� � ���� � in the total number of examples, active
learning will be more efficient than batch learning on the
entire set. Though not always superior, the running times
for the active learning experiments on large datasets were
always competitive with, and in some cases clearly faster
than training just once on all available data (Figure 10).

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of kernel evaluations

A
cc

ur
ac

y
(%

)

earn

active
batch

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of kernel evaluations

A
cc

ur
ac

y
(%

)

acq

active
batch

Figure 10. Accuracy as a function of time (in terms of kernel eval-
uations) for earn and acq. Points represent results of five indepen-
dent runs on log scale; vertical lines represent the number of ker-
nel evaluations required by the five batch runs. Peak performance
for active learning requires, in general, no more time than batch
learning on all available data; achieving performance comparable
to that of batch learning requires an order of magnitude less.

5.3 Comparison with Bound Support Vector Removal

The peak in performance before the training data has been
exhausted is not an uncommon phenomenon for other
learning techniques. However, given the nature of a lin-
ear support vector machine, generalization should never be
lost as data increases. � However, as inconsistent examples
(those whose label differs from the model’s prediction) are
added, the hyperplane shifts, possibly to a position that
increases both the training and test error. Though (soft-
margin) SVMs are resilient to overfitting, they are suscept-
able to error introduced by noise.

Following the active learning heuristic, documents nearest
the hyperplane are added first. When an example that lies
inside the margin of a separable model is added to the train-
ing set, the resultant model must remain separable and will
�
Vapnik (1998) discusses similar effects when the problem is

ill-posed. In such cases minimizing an “obvious” resolution may
not yield results as good as the optimization of a “corrupted” func-
tion. Terminating the active learner early is analogous to solving
a corrupted function.

contain no bound support vectors. Therefore, when adding
one example per training iteration, the active heuristic can-
not add an example which will be misclassified — not un-
til all examples within the margin have been exhausted.
Examples which make the model inconsistent will not be
added until no more examples remain within the margin.

One hypothesis then, would be that it is these inconsistent
examples which lead to the degradation in performance,
and that the degradation could be eliminated by removing
inconsistent examples. Empirically, however, removing the
misclassified examples and retraining does not recover the
peak performance of the active learner. For instance, the
“earn” group from the Reuters experiments reaches 95%
accuracy through the active learner, but attains 87% accu-
racy on the entire set with bound support vector removal.
Although bound support vector removal sometimes helps, it
has shown no systematic improvement over traditional soft-
margin classifiers, while active learning has consistently
outperformed soft-margin classifiers built over all exam-
ples. Since the active learning heuristic we describe will
not reach misclassified examples until after the cutoff, it
may be benefitting from a better heuristic to remove noise.

5.4 Relation to Previous Work

Most SVM solvers reduce the size of original problem by
disregarding dormant examples in the training set. Chunk-
ing (Boser et al., 1992) and shrinking (Joachims, 1998a)
use heuristics to reduce the size of the training set. Chunk-
ing solves sub-problems by iteratively building a set of ex-
amples, using those that violate the optimality coniditions
the most. Shrinking, which may be viewed as chunking
in reverse, temporarily removes examples from the training
set that are not likely to become support vectors, trains the
model, then adds the examples and does a final optimiza-
tion. Since an active learner begins with a small training
set and iteratively increases its size, its computational per-
formance parallels that of chunking. � . An active learner at-
tempts to minimize number of labels for non-support vec-
tors (since they have no affect on improving the model),
active learning may also be thought of as a priori shrink-
ing: the only examples included in the labeled training set
are support vectors. It is important, however, not to for-
get a key distinction: in chunking and shrinking, we disre-
gard already-labeled examples that are unlikely to be sup-
port vectors, purely for computational gain. In active learn-
ing, we avoid asking for those (expensive) labels in the first
place — saving not only computation, but the time and ex-
pense of labelling unneeded data.
�
Though the sub-problems are solved with an SVM solver in-

stead of a QP solver, which in turn may or may not use pruning
techniques on the training set

References

Angluin, D. (1988). Queries and concept learning. Ma-
chine Learning, 2, 319–342.

Baum, E., & Lang, K. (1991). Neural network algorithms
that learn in polynomial time from examples and queries.
IEEE Transactions on Neural Networks, 2.

Boser, B. E., Guyon, I. M., & Vapnik, V. (1992). A training
algorithm for optimal margin classifiers. Proceedings
of the Fifth Annual ACM Workshop on Computational
Learning Theory (pp. 144–152). Pittsburgh, PA: ACM
Press.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Active
learning with statistical models. Journal of Artificial In-
telligence Research, 4, 129–145.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998).
Inductive learning algorithms and representations for
text categorization. Proceedings of the ACM CIKM In-
ternational Conference on Information and Knowledge
Management.

Joachims, T. (1998a). Making large-scale SVM learning
practical. In Advances in kernel methods: Support vector
learning. Cambridge: MIT Press.

Joachims, T. (1998b). Text categorization with support
vector machines: Learning with many relevant features.
Proceedings of the Tenth European Conference on Ma-
chine Learning.

Keerthi, S., Shevade, S., Bhattacharyya, C., & Murthy, K.
(1999). Improvements to Platt’s SMO algorithm for SVM
classifier design (Technical Report CD-99-14). Depart-
ment of Mechanical and Production Engineering, Na-
tional University of Singapore, Singapore.

Lewis, D. (1997). The Reuters-21578 text categorization
test collection. Available at
http://www.research.att.com/ lewis/reuters21578.html.

Lewis, D., & Gale, W. (1994). A sequential algorithm
for training text classifiers. Proceedings of the Twenty-
first Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T.
(1998). Learning to classify text from labeled and unla-
beled documents. Proceedings of the Fifteenth National
Conference on Artificial Intelligence.

Osuna, E., Freund, R., & Girosi, F. (1997). An improved
training algorithm for support vector machines. Neural
Networks for Signal Processing VII – Proceedings of the
1997 IEEE Workshop (pp. 276–285).

Platt, J. (1998). Fast training of support vector machines
using sequential minimal optimization. Advances in ker-
nel methods: Support vector learning. Cambridge: MIT
Press.

Platt, J. (1999). Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods. Advances in large margin classifiers. Cambridge:
MIT Press.

Schölkopf, B., Burges, C., & Smola, A. (1999). Advances
in kernel methods : Support vector learning. Cambridge:
MIT Press.

Smola, A. (1998). Quadratic optimizer for pattern recog-
nition. Unpublished manuscript, German National Re-
search Center for Information Technology. Available at
http://svm.first.gmd.de/software/loqosurvey.html.

Tong, S., & Koller, D. (2000). Support vector machine ac-
tive learning with applications to text classification. Sev-
enteenth International Conference on Machine Learn-
ing.

Vapnik, V. (1998). Statistical learning theory. New York:
John Wiley.

Vavasis, S. A. (1991). Nonlinear optimization: Complexity
issues. New York: Oxford Science.

Yang, Y. (1999). An evaluation of statistical approaches to
text categorization. Information Retrieval Journal, May
1999 (pp. 67–68).

