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Phase Transitions and Critical Fluctuations in the Visual Coordination
of Rhythmic Movements Between People

R. C. Schmidt, Claudia Carello, and M. T. Turvey
Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs,

and Haskins Laboratories, New Haven, Connecticut

By watching each other's lower oscillating leg, 2 seated Ss kept a common tempo and a particular
phase relation of either 0° (symmetric mode) or 180° (alternate mode). This study investigated
the differential stability of the 2 phase modes. In Experiment 1, in which Ss were instructed to
remain in the initial phase mode, the alternate phase mode was found to be less stable as the
frequency of oscillation increased. In addition, analysis of the nonsteady state cycles revealed
evidence of a switching to the symmetric phase mode for the initial alternate phase mode trials.
In Experiments 2 and 3, Ss were instructed to remain at a noninitial phase angle if it was found
to be more comfortable. The transition observed between the 2 phase modes satisfies the criteria
of a physical bifurcation—hysteresis, critical fluctuations, and divergence—and is consonant with
previous findings on transitions in limb coordination within a person.

The coordination of movements between people is an
omnipresent aspect of daily life. Such coordinations consist
of the very natural and commonplace coordinations exhibited
by people walking and talking together and the very practiced
and refined coordinations exhibited by people playing sports
or music, or dancing. The degree of coordination between
basketball players moving downcourt or the degree of coor-
dination between two ballet dancers is quite obvious. The
coordination of movements between speaker and listener
(Kendon, 1970), however, or between mother and infant
(Bernieri, Reznick, & Rosenthal, 1988) is more subtle and is
apparent only through study. In all such cases a coordinative
relationship is formed through an interaction of two individ-
uals in order to produce some goal (e.g., score a basket, have
a conversation). The unique challenge for an account of
between-persons coordination—the durations, spacings, and
phasings of movements and their components—resides in the
fact that the two individuals share neither a common cognitive
nor neural mechanism.

Because of the cooperative nature of the relationship, the
two individuals can be thought of as a single organism (Asch,
1952; Newtson, Hairfield, Bloomingdale, & Cutino, 1987), a
dyadic synergy. A common property of dyadic synergies is
the entrainment of rhythmicities (Davis, 1982; Newtson et
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al., 1987); that is, the spatial and temporal aspects of the two
individuals' movements are related congruently—they are
entrained—and the movements repeat (either periodically or
stochastically)—they are rhythmic. Entrainment and sus-
tained periodic behavior are properties of nonlinear dissipa-
tive systems, and it is from this dynamical perspective that
we will attempt to understand between-persons coordination.

The experiments reported in this article are directed at the
questions of whether certain entrainment phenomena found
in within-person coordination also hold for between-persons
coordination, and whether the same very general dynamical
principles govern both. There are two kinds of entrainment
that two physically coupled oscillators can enter into. When
the two oscillators are related stably in their timing, they are
said to be frequency entrained. When they are related stably
in their spatial positions within a cycle, they are said to be
phase entrained or phase locked. A perturbation of the oscil-
lators in the former case will produce a return to the preper-
turbation frequency, and in the latter case to the prepertur-
bation relative phase angle. Dynamically speaking such be-
havior reflects the existence of an attmctor. Assuming that a
set of variables has been found to define the coordinate space
(state space) of the dynamical system's behavior, an attractor
is a set of points (the limit set) within the state space that the
system will settle on if unperturbed for a long period of time.
Investigations of bimanual within-person coordination have
yielded evidence that this kind of dynamical entity, an attrac-
tor, is a basic control structure that underlies frequency en-
trainment and phase locking found in the coordination of
limbs. This study investigates whether such a dynamical inter-
pretation can be given to the visually coordinated phasing of
limbs between two people.

The hypothesis that the coordination of limbs is the out-
come of nonlinear dissipative dynamics was proposed origi-
nally by Kugler and his colleagues (Kelso, Holt, Rubin, &
Kugler, 1981; Kugler, Kelso, & Turvey, 1980, 1982; Kugler,
Turvey, & Shaw, 1982). It has since been advanced on several
fronts, both theoretical and empirical, by a number of inves-
tigators (e.g., Beek, 1989; Beek & Beek, 1988; Haken, Kelso,
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& Bunz, 1985; Kay, 1986, 1988; Kay, Kelso, Saltzman, &
Schoner, 1987; Kelso, Schoner, Scholz, & Haken, 1987; Ku-
gler, 1986; Kugler & Turvey, 1987, 1988; Saltzman, 1987;
Schoner & Kelso, 1988a, 1988c; Turvey, Rosenblum,
Schmidt, & Kugler, 1986). The theoretical claim is that or-
ganisms have evolved to balance the extraordinary burden of
coordination between their cognitive and/or neural mecha-
nisms and the principles of self-organization found in the
dynamical properties of their movement systems as physical
systems (Kugler & Turvey, 1987).

Recognizing that coordinated movements involve many
variables of cellular, muscular, and skeletal origin, the dynam-
ical perspective aims at understanding how these biological
state spaces of high dimensionality reduce lawfully to control
spaces of low dimensionality. Or alternatively, it aims to
understand how the many degrees of freedom of the move-
ment system's physiology become compressed so that they
can be controlled by an intentional agent. The dynamical
entity of an attractor has been suggested as the means by
which this necessary compressing of degrees of freedom occurs
(Saltzman & Kelso, 1987). For a dynamical attractor to
operate in the coordination of the movements of an organism,
the organism must interact with it in two ways. First, the
organism must set up the conditions that will allow the
dynamical control structure to emerge, such as intentional
constraints that allow muscle synergies and their concomitant
metabolic engine processes to be formed. Second, the orga-
nism must "tune" the control structure through a parameter-
ization of the control structure's functionally relevant prop-
erties to accomplish a given task in a changing environment.
The interaction between the dynamical control structure and
the organism can be interpreted in a number of different
ways—neural, cognitive, or perceptual—depending on the
perspective of the researcher. The claim that an organism's
movement system has a dynamical organization can be ac-
commodated by any of these theoretical positions. The per-
spective subscribed to here is one based on the Gibsonian
concept of information as morphological form (Kugler et al.,
1980). It has been suggested that the formation (Kugler &
Turvey, 1987) and tuning (Fitch, Tuller, & Turvey, 1982) of
coordinated states are inherently perceptual processes, based
on the perception of dynamic properties of the actor's body
segments, dynamic properties of the environment, and the
relations between the actor and the environment.

Dynamical Basis of the Phasing of Limbs
Within a Person

The argument for a dynamical basis of the phasing observed
in the coordination of oscillating limbs begins with the evi-
dence that only two stable relative phase angles (or phase
modes) are observed, one at 0° relative phase angle (symmetric
mode) and one at 180° relative phase angle (alternate mode;
Kelso et al., 1987; Stafford & Barnswell, 1985; von Hoist,
1939/1973). The symmetric phase mode occurs when the
limbs are at the same point of their cycles at the same time
(Limb 1-Limb 2: flexion-flexion, extension-extension), and
the alternate phase mode occurs when the limbs are in op-

posite points of their cycles at the same time (Limb 1-Limb
2: flexion-extension, extension-flexion). That only two
modes of phase locking are observed suggests that there are
perhaps two attractors underlying phase entrainment, whose
limi t sets are at 0" and 180" relative phase.

If a dynamical system is forced through some parameteri-
zation away from its limit set, as is often the case in systems
open to outside energy sources (Prigogine, 1980; Prigogine &
Stengers, 1984), the behavior of the system becomes less
stable. Yaminishi, Kawato, and Suzuki (1980) have noted in
bimanual finger-tapping experiments that tapping at metro-
nome-driven phase differences other than 0° and 180° pro-
duces greater deviations from the intended phase and greater
fluctuations. They also found that the fluctuations at the in-
between phase differences decrease in the direction of the
phase differences of 0° and 180°. These results are again
consistent with the claim that there are two point attractors
underlying the phasing of movements at 0° and 180" that
draw nearby trajectories toward them. A dynamical model of
this attractor landscape has been presented by Kelso et al.
(1987) that predicts the observed patternings of deviations
from the intended phase and fluctuations found by Yaminishi
etal. (1980).

The limbs of the same girdle in locomoting quadrupeds
relate in either the alternate mode at low-speed gaits such as
the walk or the symmetric mode at high-speed gaits such as
the gallop. Sharp transitions occur between one gait and
another as the speed of locomotion increases; and these
transitions within a girdle correspond to a transition from an
alternate mode of phasing to a symmetric mode of phasing.
Hoyt and Taylor (1981) have provided evidence that such
gait transitions have a dynamical basis: The gait transitions
occur in quadrupeds to produce the least energetically costly
coordination for a given speed.1 For bimanual oscillations of
the wrists or index fingers, Kelso and his associates (Kelso,
1984; Kelso & Scholz, 1985) found that the alternate phase
mode becomes unstable before a transition to the symmetric
phase mode when the frequency of oscillation is increased.
No transition is observed when the frequency is increased
starting in the symmetric phase mode. This kind of nonlinear
change in phase-locked modes has the characteristic property
of a physical bifurcation or catastrophe: a one-way sudden
jump between two modes of functioning with inaccessible
regions between the two modes (Gilmore, 1981; Haken,
1978). Such a jump is caused by the annihilation of the
attractor at the 180° phase mode as the frequency of oscillation
is increased. Kelso and his colleagues presented a model of
this phenomenon as a physical bifurcation (Haken et al.,
1985; Schoner, Haken, & Kelso, 1986) and tested the model's
various predictions affirmatively (Kelso, Scholz, & Schoner,
1986; Scholz, Kelso, & Schoner, 1987).

1 Although humans do not exhibit transitions in the phasing of
their limbs as quadrupeds do (for obvious reasons), they exhibit many
more transitions in the phase locking of their limb and respiratory
rhythms than do quadrupeds. Bramble and Carrier (1983) have
suggested that this capacity of humans to change limb/respiratory
phase locking is perhaps an alternative strategy for regulating energetic
cost.
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The nonlinear jump from the 180° phase mode to the 0°
phase mode that occurs with increasing frequency has the
structure of a physical bifurcation, and as such is further
evidence for a dynamical control structure governing the
phasing of limbs. This phenomenon also demonstrates that
the alternate phase mode is intrinsically less stable than the
symmetric phase mode. Kelso et al. (1986) have shown that
before the bifurcation, the fluctuations in relative phase in-
crease dramatically for the alternate mode but remain con-
stant for the symmetric mode at all frequencies of oscillation.
This differential stability of the two modes has been inter-
preted as a reflection of the differential topology of the two
phase attractors (Haken et al., 1985).

In summary, evidence exists to indicate that the phasing of
limbs within a person is dynamically organized. The control
structure governing phasing has an attractor landscape with
limit points at 0° relative phase and 180° relative phase. The
relative phases in between are catchment regions (Thompson
& Stewart, 1986) for these two point attractors: A trajectory
perturbed to any other phase angle between 0° and 180° will
proceed to one of these limit points. But the stability or
attractiveness of the two phase attractors is not equal (Turvey
et al., 1986). The alternate mode attractor is less stable,
especially as the frequency of oscillation is increased when a
complete annihilation of the steady state is observed.

Contrasting Circumstances of Within-Person and
Between-Persons Coordination

This study investigates whether the control structure un-
derlying the phasing of oscillating limbs visually coordinated
between two people is dynamical. Is the dynamical solution
to the degrees of freedom problem (stated earlier) for within-
person coordination so general that it will apply to the coor-
dination of the movements of two people as well? Some
studies that have investigated the cooperative activities of
social organisms suggest that this is a possibility. For example,
both termite nest building and bird flock organization in flight
have been modeled dynamically (Kugler & Turvey, 1987).

The two cases of between-persons and within-person coor-
dinations differ in many respects. Most notably, they differ in
the populations of neurons involved (the nervous systems of
two people vs. the nervous system of one person) and in the
perceptual system that is primarily involved in achieving the
coordination (the visual perceptual system in between-persons
coordination vs. the haptic perceptual system in within-person
coordination). The uniqueness of the between-persons situa-
tion is that the control structure for coordination must occur
over both nervous systems that are necessarily linked by
perception. As such, we test not only if a dynamical control
structure exists in between-persons coordination, but also the
claim that the interaction of an organism with a dynamical
control structure used to coordinate its movements (the for-
mation and tuning of the control structure) is based on
perception. The question addressed here is whether perception
is a process that sustains the dynamical coordination of the
activities of two perceivers; that is, whether perceptual infor-
mation specific to the dynamical landscape of phasing of

limbs exists so that it can harness the phasing of the limbs.
That this is possible in visual perception is supported by visual
perception studies that have shown that dynamical properties
such as mass (Bingham, 1987; Runeson & Frykholm, 1981),
momentum (Todd & Warren, 1982), and the amount of
energy about to be exerted (Warren, 1984) can be perceived
on the basis of kinematic and geometric properties in the
optical structure created by events.

Experiment 1

Experiment 1 investigates whether the general characteristic
properties of the two modes of limb phasing in within-person
coordination also exists in between-persons coordination.
Two seated subjects were asked to coordinate visually their
lower legs either in symmetric phase mode or alternate phase
mode while oscillating them at a tempo dictated by an audi-
tory metronome pulse. Of interest is the relative stability of
the two modes of phasing in the between-persons situation:
whether the magnitude of the fluctuations in relative phase
angle and the likelihood of a breakdown in phase locking of
the two phase modes grow as the frequency of oscillation is
increased.

Method

Subjects. Twelve undergraduates, 10 women and 2 men, from
the University of Connecticut served as subjects in partial fulfillment
of a course requirement. They were between the ages of 18 and 23,
and had no physical disabilities of any kind. The subjects signed up
for the experiment in pairs and may or may not have known each
other. Because movements were coordinated between the 2 subjects,
the 2 subjects constitute what is called a subject pair (SP). There were,
then, six subject pairs: five with 2 female and one with 2 male
subjects.

Materials and procedure. Subjects sat on stools 1 m in height,
approximately 1.5 m from each other, and facing the same direction
but turned slightly (about 20°) toward each other (Figure 1). Each
subject swung the lower part of his or her outer leg. The stools were
modified with a padded plank of wood that protruded 10 cm from
the outside corner of the stool to support the leg underneath the knee
joint. This allowed for comfortable and free movement of the lower
part of the designated leg in the anterior/posterior plane—the left leg
for the person seated on the left and the right leg for the person seated
on the right. A metronome tape was devised that consisted of eight

Figure 1. Seating arrangement of the subjects for the experiments.
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frequencies from 0.6 Hz to 2.0 Hz at 0.2-Hz intervals. Each frequency
lasted 5 s before the next one began. Leg displacements were recorded
by a Panasonic Camcorder PV-320 that was oriented perpendicular
to the leg movements 2 m from the side of the subject on the right
(approximately 3.5 m from the subject on the left).

The experimental session began with a short introduction about
between-subjects coordination. Next, the experimenter demonstrated
the limb movement required by the task. Subjects were asked to
swing the appropriate leg at the frequency dictated by the metronome
pulse and consciously coordinated their movements in either sym-
metric or alternate phase modes relative to the other person's move-
ments. Symmetric mode was described to them as coordination in
which their limbs were at the same place in a cycle at the same time.
Alternate mode was described as coordination in which their limbs
were at opposite places in a cycle at the same time. The two modes
of phasing the limbs were also demonstrated with hand motions.
After this, one trial from the metronome tape was played for the
subjects to complete their familiarization with the details of the task.

Al l subject pairs were required to coordinate their movements in
both phase modes. Most subject pairs found both of the coordinative
modes natural and comfortable to maintain at initial tempos, al-
though one subject pair had trouble coordinating initially in the
alternate phase mode. The subjects were told that phasing of the
limbs may become more difficult as the frequency of oscillation
increased. In that case, the subjects were told to keep the frequency
of oscillation in pace with the metronome pulse and to try to keep
the original phase mode. The three trials of each phase mode condi-
tion were blocked. One or two practice trials were performed at the
beginning of a phase mode trial block to ensure that the subject pair
was performing the task adequately. The order that each subject pair
received the two mode conditions was alternated.

Data reduction. The video data records were dubbed from a 0.5-
in. videotape to a 0.75-in videotape so that a Sony U-matic video
editor could be used to do a frame-by-frame analysis of the relative
phase angle between the limbs. This analysis allowed us to record the
time of each peak extension of each subject's leg. The units of time
were the reciprocal of the video frame rate, namely, 33.3 ms. The
beginning of the trial was arbitrarily designated as the first leg exten-
sion of the left subject. From the peak extension times, the frequency
of each subject for the n* cycle was calculated as

fa = (time of peak extension,, — time of peak extension,, + ,),

and the relative phase for the nlh cycle as

*„  = 360°[(peak extension̂ - peak extension2n)/(peak extensioni,
- peak extension̂ + 0],

following Yaminishi, Kawato, and Suzuki (1979); \n refers to the nlh

cycle of the subject on the right and In refers to the n'h cycle of the
subject on the left. The phase values were normalized to index the
deviation from the steady phase relations at 0° and 180° for the
symmetric and alternate modes, respectively. Phase values greater
than 180° were normalized by the transform 180 - |*  - 180|, and
phase values less than 0° were normalized by the transform |3> — 0|.
The relative phase values (*) referred to in this article are the
normalized values.

Results and Discussion

After the initial practice trials, the subjects tracked the
metronome pulse with relative ease. When asked which of
the phase modes they found harder to maintain, they over-
whelmingly answered that it was the alternate mode. Although
breakdowns in the phasing occurred in both modes, it oc-

curred more often in the alternate mode than in the symmetric
mode. Sometimes these breakdowns led to a settling into the
other phase mode. Because the subjects were instructed to
maintain the original phase mode, these transitions to the
other phase mode were always temporary and were followed
by an attempt to return to the original phase mode.

To analyze the relative stability of the phasing in the two
modes, two dependent variables were used, the standard
deviation of relative phase and the mean deviation from
intended phase (*  for the symmetric mode and 180 - $ for
the alternate mode). These two dependent variables were
calculated over the cycles at each of the eight frequencies of
oscillation. Because the observed frequencies were generally
some small deviation from metronome-specified frequencies,
the cycles that fell in a frequency range corresponding to half
way to the next metronome frequency (metronome frequen-
cy,,  |metronome frequency, - metronome frequency,, + i|)
were used to calculate the mean deviation from the intended
phase and the standard deviation of the relative phase values.

The standard deviations of the relative phase at each met-
ronome frequency are plotted in Figure 2. At the lower
frequencies of oscillation, the standard deviations of the rela-
tive phase angle are about equal in magnitude for the two
phase modes. At higher frequencies, the fluctuation in relative
phase for the two modes diverge: The alternate mode increases
at a faster rate than the symmetric mode. The standard
deviations reach a maximum of 47.9° at 2.0 Hz for the
alternate mode and a maximum of 28.9° at 1.8 Hz for the
symmetric mode. A two-way analysis of variance (ANOVA)
with within-subject variables of phase mode (symmetric and
alternate) and metronome frequency (0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0 Hz) yielded a significant interaction of phase
mode by metronome frequency, F(l, 35) = 3.37, MS, = .001,
p < .01. Simple-effects tests of this interaction indicate that
the fluctuation in the two phase modes differed significantly
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Figure 2. Standard deviation of relative phase at each frequency of
the pacing metronome for the two phase modes, symmetric and
alternate, in Experiment 1. (Open squares are symmetric mode; closed
circles are alternate mode.)
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at the four highest frequencies of oscillation (at 1.4 Hz: F[l,
5] = 50.877, MS, < .001,p < .001; at 1.6 Hz: F[l,  5]  = 9.069,
MSe = .001, p < .05; at 1.8 Hz: F[l,  5] = 17.716, MSC <
.001, p < .01; and at 2.0 Hz: F[l, 5] = 7.71, MS, = .001, p <
.05) but not at the lower frequencies (at 0.6 Hz: F[l,  5] =
0.759, MSC = .001, p > .05; at 0.8 Hz: F[l, 5] = 0.505, MSe

<  .001, p > .05; at 1.0 Hz: F[l,  5] = 2.006, MSt = .002, p >
.05; and at 1.2 Hz: F[l,  5] = 2.967, MSC < .001, p > .05).
These results point to a difference in the stability of the two
phase modes at the higher frequencies of oscillation.

Further tests of simple effects at each phase mode were
performed separately and revealed a significant increase in
the fluctuations of relative phase for the alternate phase mode,
F(l, 35) = 10.125, MSe = .001, p < .001, but not for the
symmetric phase mode, F(l, 35) =1.149, MS. = .001, p >
.05. This analysis indicates that the stability of the symmetric
phase mode remains constant but the alternate mode becomes
progressively less stable with increases in the frequency of
oscillation.

How well the subjects maintained the intended relative
phase angle for the two modes of phasing can be seen in
Figure 3, in which the mean deviation from the intended
phase is plotted against the metronome frequency. A two-way
ANOVA with within-subject variables of phase mode (symmet-
ric and alternate) and metronome frequency (0.6, 0.8, 1.0,
1.2,1.4,1.6,1.8, and 2.0 Hz) performed on these data revealed
that the deviation from the intended phase became greater
as the frequency of oscillation increased, f\l, 35) = 6.785,
MS. = .003, p< .001. More important, the analysis indicated
that the deviation from the intended phase was different for
the two phase modes, F(l, 5) = 19.209, MSe = .007, p < .01,
with the deviation being greater for the alternate mode
(61.02°) than the symmetric mode (34.20°). The Phase Mode
x Metronome Frequency interaction was not significant, F(l,
35) = .983, MSe = .063, p > .05.
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Figure 3. Deviation from intended relative phase at each frequency
of the pacing metronome for the two phase modes, symmetric and
alternate, in Experiment 1 . (Open squares are symmetric mode; closed
circles are alternate mode.)

Although this interaction is not significant, the differences
in the magnitudes of the deviations in the two phase modes
indicate qualitative differences in the phase locking that oc-
curs in the two modes. Studies of the steady state phasing of
pendulums held and swung in the right and left hands, in
which the pendulums differ in the magnitudes of their dimen-
sions, have revealed a maximum deviation from the intended
phase of approximately 50° (Rosenblum & Turvey, 1988).
Studies of the transition from the alternate mode to the
symmetric mode of phasing in within-person bimanual co-
ordination have noted deviations from the intended phase at
the transition point of approximately 90° (Kelso et al., 1986).
This value occurs when phase locking breaks down com-
pletely. In fact, it must occur when two oscillators are not
phase locked at all but are moving continually from one
relative phase angle to another. The symmetric mode mean
deviations from the intended phase are all at or below the 50°
expected of steady state relative phase angles. However, the
alternate mode mean deviations from the intended phase for
the last four metronome frequencies are all above the 50°
observed in steady state and are approaching the value (90°)
observed in a breakdown of phase locking (1.4 Hz: 65.1°, 1.6
Hz: 75.6°, 1.8 Hz: 84.3°, and 2.0 Hz: 82.5°). Inspection of the
time series reveals that there are many periods at higher
frequencies within the alternate mode trials in which a steady
relative phase angle is not maintained.

In order to investigate the nonsteady state aspects of the
mean deviations from the intended phase, an analysis of the
mean number of nonsteady state cycles per trial was per-
formed. The nonsteady state cycles were separated into three
groups corresponding to the nonsteady state regions of the
relative phase (Figure 4) to which they belong. The relative
phase space has one steady state region for each phase mode
(from 0° to 50° for the symmetric mode and from 135° to
180° for the alternate mode) and three nonsteady-state regions
for each phase mode: one from the steady state boundary (50°
for symmetric mode or 135° for alternate mode) to the tran-
sition point (90°), another from the transition point to the
steady state boundary of the other mode (135° for symmetric
mode or 50° for alternate mode), and the last from the steady
state region of the other phase mode. These nonsteady state
regions will be denoted as NSR 1, NSR 2, and NSR 3
(Nonsteady State Regions 1, 2, and 3), respectively. A three-
way ANOVA with within-subject variables of phase mode (sym-
metric and alternate), region (NSR 1, NSR 2, and NSR 3),
and metronome frequency (0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8,
and 2.0 Hz) was performed on the mean number of transitory
cycles per trial. A significant three-way Phase Mode x Region
x Metronome Frequency interaction was found, suggesting
that the relationship of phase mode and metronome frequency
was different for the nonsteady state cycles in the different
regions, F(\4, 70) = 2.011, MS. = .475, p < .05. Simple-
effects tests of this interaction at each of the three different
nonsteady state regions revealed significant Phase x Metro-
nome Frequency interactions for NSR 2, F(l, 35) = 3.584,
MSe = .283, p < .01, and NSR 3, F(7, 35) = 2.710, MSe =
.727, p < .05, but for NSR 1, only a significant main effect of
frequency was found, F(7, 35) = 3.959, MS, = .773, p < .01
(Figure 5). These analyses indicate that the differences in the
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Figure 4. Steady and nonsteady regions of the relative phase space.

stabilities of the two phase modes occur in terms of the
number of nonsteady state cycles that are past the transition
point to the other mode, that is, the number of cycles of
broken phase locking that are indicative of transition behav-
ior. The alternate phase mode has a greater number of non-
steady state cycles that are past the transition point to the
symmetric phase mode, and the number of these cycles in-
crease with the frequency of oscillation. This can be taken as
preliminary evidence that a bifurcation phenomenon could
occur in visually coupled limbs analogous to that observed in
gait transitions and within-person bimanual coordination.
Experiment 2 investigates this possibility using the same task
with different instructions.

Experiment 2

Experiment 1 provided evidence that some of the properties
that exist in the two modes of limb phasing in within-person
coordination also exist in the two modes of limb phasing in
between-persons coordination. In the within-person phasing
of limbs, the alternate phase mode grows less stable as the
frequency of oscillation increases, whereas the symmetric
mode remains relatively stable at all frequencies. The same
pattern was observed in Experiment 1 in the between-persons
phasing of limbs using the standard deviation and mean
deviation from the intended phase as indices of stability.
Furthermore, in the within-person phasing of limbs, the grow-
ing instability of the alternate mode leads to a breakdown of
phase locking followed by a transition to the symmetric mode
of phasing. Preliminary evidence for a breakdown of the
alternate mode phasing in between-persons coordination was
found in Experiment 1: More cycles were observed beyond
the transition point and in the other phase mode for the
alternate mode than for the symmetric mode trials at high
metronome frequencies. Experiment 2 investigates whether

the between-persons coordination task used in the Experiment
1 can be constrained to demonstrate the transition proper
from the alternate phase mode to the symmetric phase mode
(but not vice versa) as in between-persons coordination. A
positive outcome would favor the hypothesis that the control
structure that harnesses the coordination between two people
is the same dynamical control structure that is operating in
the coordination of limbs within a person.

In Experiment 1, subjects were instructed to oscillate the
lower part of their legs at the same frequency and remain in
the initial mode of phasing. Given these constraints, the
intention of each subject of a subject pair after a breakdown
in phase locking was to try to return to the initial phase mode
even if it meant not being phase locked at all. Indeed, the
data of Experiment 1 demonstrate that the subjects spent
some time in neither phase mode in the alternate mode trials.
In Experiment 2, the task demands were changed. The sub-
jects were again asked to oscillate their legs at a common
frequency and to begin in either of the two phase modes.
However, the subjects were told that if a breakdown occurred
in the phasing of the limbs, they were to remain in the new
phase mode if they found it more stable than the initial phase
mode. Compared with Experiment 1, these demands are more
analogous to those in the experiments that demonstrated the
within-person bimanual phase transition (Scholz, 1986; and,
presumably, are more analogous to the tacit intentions of gait
transitions).

Method

Subjects. A 27-year-old male graduate student (LR) and
a 33-year-old female professor (CC), both associated with the
University of Connecticut and Haskins Laboratories, partici-
pated in the experiment. Both were right-handed, and neither
had motor disabilities of any kind.
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Materials and procedure. The same experimental arrange-
ment was used as in Experiment 1. LR oscillated his lower
left leg and CC oscillated her lower right leg (Figure 1) at the
same frequency. Symmetric mode was described to them as

coordination in which their limbs were at the same place in a
cycle at the same time. Alternate mode was described as
coordination in which their limbs were at opposite places in
a cycle at the same time. The subjects found both of these
coordinative modes natural and comfortable to maintain at
initial tempos. Leg displacements were measured by a Teka
PN-4 Polgon goniometer. Polarized light sensors were at-
tached 10 cm above the knee and 12 cm below the knee of
each subjects' outer leg. The data were recorded onto FM-
magnetic tape and later digitized at 200 samples/s using a
Datel ST-PDP 12 bit analogue-to-digital converter.

The simplest version of the phase transition methodology
was used in which the experimenter determined when the
frequency was to be increased, but the subjects determined
how much the frequency was to be increased (Kelso, 1984;
Kelso et al., 1986). After 10 s of a mutually comfortable
tempo in either phase mode, the subjects were asked to
increase the movement frequency slightly. Every 10 s there-
after, the experimenter signaled another frequency increase.
Subjects were instructed to maintain the initial phase mode
as the oscillation frequency increased. It was suggested, how-
ever, that maintaining the initial phase-locked state might
become difficult and that switching to another phase mode
was allowed (and might occur). If this new phase mode was
more stable, they were instructed to remain in it. A total of
10 trials for initial alternate mode and 5 trials for the initial
symmetric mode were performed on 2 separate days. The
alternate mode trials were collected on the 1st day and the
symmetric mode trials were collected on the 2nd day. The
trials of a condition were blocked together.

Data reduction. The digitized data records were smoothed
using a Bartlett (triangular) moving average procedure with a
window size of 35 ms. Software analysis routines determined
the frequency of oscillation of each subject's leg for each cycle
and the normalized relative phase between the legs of the 2
subjects using the formulas presented in Experiment 1.

Results

The subjects had three goals in these trials: to oscillate their
legs at a common frequency, to increase this frequency of
oscillation steadily, and to phase their limbs initially in the
alternate or symmetric phase mode while trying to keep this
phasing comfortable. Each of these goals will be evaluated in
turn.

Degree of synchrony. The degree of synchrony between
the 2 subjects can be evaluated through a regression of the
cycle frequencies of one subject on the cycle frequencies of
the other subject. For a system in a state of perfect synchrony,
such a regression analysis would reveal a slope of unity, an
intercept of zero, and an r2 of unity. The results of such an
analysis on the inverse of frequency (period) for both phase
modes are presented in Figure 6. For symmetric and alternate
modes, respectively, the slopes are effectively unity (0.992
and 1.000), the intercepts are near zero (0.003 and -.019),
and the r's are near one (r2 = .969, F[l,  269] = 8354.451,
p < .001, and r2 = .909, F[l, 318] = 3161.182, p < .001.

Rate of frequency increase. The frequency ranged from
0.694 Hz to 2.381 Hz in the symmetric mode condition and
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from 0.637 Hz to 2.326 Hz in the alternate mode condition.
Regression analysis can be used to evaluate whether the rate
of frequency increase across the cycles of a trial was uniform
for the two modes of coordination. In the regression of mean
frequency of the 2 subjects on cycle number, the slope is an
index of the speed of the increase of the entrainment fre-
quency, the intercept is an index of the initial frequency, and
the r2 is an index of how steadily an increase was maintained.
The r2s are expected to be less than unity because the instruc-
tions demand a frequency increase once every 10 s. Significant
linear regressions were obtained for all trials in both condi-
tions, indicating that the subjects were increasing the fre-
quency of oscillation steadily within a trial. The rate of
frequency increase became greater after the second trial of the
alternate mode condition; hence, regressions were performed
on the first two and last eight alternate mode trials separately.

Pooled trials for each condition yielded regression equations
of 0.022JST+ 1.141, with r2 = .748, F(l, 269) = 799.169, p <
.001, for the symmetric mode; and 0.012X + .765, with r2 =
.771, P(l, 82) = 275.770, p < .001, for first two trials; and
0.030X + .895, r2 = .856, F( 1,234) = 1396.672, p < .001, for
the last eight trials of the alternate mode. A statistical com-
parison of the regression equations for the symmetric mode
and the last eight trials of the alternate mode found the
equations to differ significantly in their intercepts but not
their slopes, t(\, 504) = 6.242, p < .001. This result indicates
that the rate of frequency change (i.e., the slope) was uniform
across the two experimental conditions, but that the initial
frequency deemed comfortable by the 2 subjects was higher
for the symmetric mode (1.141 Hz) than for the alternate
mode (0.895 Hz).

Relative phase. The subjects were to maintain a phase-
locked state in either the symmetric or alternate phase mode
as the frequency of oscillation increased. They reported that
maintaining a steady and comfortable phasing was easy at all
frequencies in the symmetric mode and at the lower frequen-
cies in the alternate mode. However, at some point in the
alternate mode phasing, the phase locking would break down
and thereafter only the symmetric mode was comfortable to
maintain. This occurred in all 10 recorded trials. Typical
position and relative phase time series for both the mode
conditions are portrayed in Figure 7.

To summarize phase locking across the trials of a condition,
we broke down each trial into segments containing 0.2-Hz
frequency steps in a range from 0.6 Hz to 2.0 Hz. For each
segment of a trial, the mean frequency and the mean relative
phase were calculated from cycles that fell in that particular
0.2-Hz frequency range. Summary means of the relative phase
and frequency for each frequency segment of the symmetric
mode condition, calculated across all trials, are plotted against
each other in Figure 8 (upper panel). The range of mean
relative phase exhibited across the frequencies was between
12° and 25°. By the criteria mentioned in Experiment 1, these
values indicate steady state phase locking at all frequencies of
oscillation.

An identical plot would not be legitimate for the alternate
mode trials because the frequency at which the transition
occurred was not the same for all trials, ranging from 1.087
Hz to 1.575 Hz, with a mean of 1.301 Hz and a standard
deviation of 0.167. Because these transitional frequency val-
ues fell into different 0.2-Hz frequency segments, summary
means calculated on the basis of segments with the same
frequencies would average transitional states with steady
states. To remedy this situation, alternate mode trials were
aligned so that the frequency segment of the transition was F,
and the frequency segments before and after the transition
were Ft_i and Ft+i,  respectively, where i is the number of
segments that a given segment is from the transition. The
mean relative phase was calculated for these segments and
averaged across trials. Data points that represented transi-
tional values were eliminated from steady state segments'
means. A plot of the mean relative phase aligned in relation
to the transition for all the alternate mode trials is presented
in Figure 8 (lower panel). There is a sudden jump in the
alternate mode trials from the relative phase values that are
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Figure 7. Relative phase and position time series for the symmetric mode (upper pair of panels) and
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phase relation between the two limbs in degrees; for the lower panel it is the amplitude of the rhythmic
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characteristic of steady state alternate mode phasing ($ >
130) to those that are characteristic of steady state symmetric
mode phasing (4> < 50), with a transitional nonsteady state
phase value in between (*  « 83).

The similarities between the characteristics of the two phase
modes performed between the limbs of a single person and
the limbs of two people are quite remarkable. In both cases,
the stability of the alternate mode decreases dramatically
relative to the stability of the symmetric mode as the fre-
quency of oscillation increases. Furthermore, under the
proper task constraints, in both cases, this decrease in stability
of the alternate mode is seen to precipitate a jump from this
mode to the symmetric phase mode. Given these similarities,
Experiment 3 will test whether the control structure underly-
ing the between-persons phasing of limbs exhibits a dynamical
organization identical with that of the control structure un-
derlying the within-person phasing of limbs.

Experiment 3

Haken et al. (1985) modeled the sudden jump from the
alternate mode to the symmetric mode as a physical bifurca-
tion. This kind of nonlinear reordering is found rather gener-
ically in physical systems. It occurs in a physical system when
the attractor governing the system's behavior is made sud-
denly unstable by virtue of continuous scaling of some control
parameter (Gilmore, 1981). The phenomenological mode of
the attractor layout underlying the transition from the alter-
nate to the symmetric phase mode proposed by Haken et al.
interprets the alternate and symmetric coordinations as point
attractors found at the minima of the potential function

K(* ) = -acos(*) - 6cos(2*).

This potential function satisfies symmetry requirements of
the phenomenon and is derivable from the equations of
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motion of the component oscillators. Following the basic
ideas of synergetics — a school of thought dealing with coop-
erative phenomena generally (Haken, 1978, 1983) — the rela-
tive phase * is identified as an order parameter (i.e., a quantity
representing the macroscopic ordering of component parts)
with relaxational dynamics

For b/a < .25, * = 0° and * =  180° are minima; at b/a =
.25, the local minima at  180° become unstable. Haken et
al. provide an account of how the preceding potential function
can be derived from component oscillator equations with a
nonlinear coupling. Computer simulations demonstrate that
the function mimics the observed bifurcation as the frequency
is scaled.

A stochastic generalization of the analysis (Schoner et al.,
1986) predicts important dynamical accompaniments of the
destabilization leading to a phase transition, namely, an in-
crease in fluctuations in relative phase and an increase in the
time to return from a perturbation to a steady state trajectory
(known as relaxation time). Empirical studies have affirmed
these predictions. Kelso and Scholz (1985) paced the move-
ment frequency with a metronome pulse that increased from
1.25 to 3.0 Hz in 0.25-Hz increments every 4 s. Fluctuations
in phase (standard deviation of $) were found to increase as
the transition was approached and decreased to minimal
values after the symmetric mode was attained. Because the
system before the transition is approaching a critical point,
the state of the system is characterized by increasing criticality
and the fluctuations observed are referred to as critical fluc-
tuations.

The existence of critical fluctuations before the transition
was replicated in two separate experiments (Kelso et al., 1986).
However, in a later experiment in which the amount of time
the oscillation remained at a specific frequency was increased
from 4 s to 10 s, critical fluctuations were not observed
(Scholz, 1986; Scholz et al., 1987). These results indicate that
the bifurcation from the alternate to the symmetric mode
occurs in this case before the potential minimum at 180°
becomes very unstable. This is to be expected when the
frequency plateau time is not much less than the time needed
for a change from the minimum at 180° to the minimum at
0° to occur probabilistically (i.e., the "random walk" time or
the first passage time; Gilmore, 1979, 1981; Scholz et al.,
1987).

Hence, whether critical fluctuations are observed before a
bifurcation depends on two different states of affairs: Either
the system remains in the first mode until the attractor is
completely annihilated and critical fluctuations are observed,
or a stochastic perturbation knocks the system into the second
mode before the attractor is completely destroyed and critical
fluctuations are not observed. These two different states of
affairs are called the delay convention and the Maxwell con-
vention, respectively, by some theorists (e.g., Gilmore, 1979,
1981). Other theorists discuss the difference in terms of the
relationship of different time scales operating in the phenom-
enon (Schoner et al., 1986). The delay convention holds if
the fast time scale Treu,ation associated with the relaxation back
to the alternate phase mode is notably less than the time scale
^control of change in the control parameter, which, in turn, is
notably less than the slow time scale Tpassage associated with
the first (probabilistic) passage from the alternate to the sym-
metric phase mode (i.e., Trelaxati0n «*: r^m  ̂« Tp^^). In this
case, there is a change of coordination only when the old
coordination becomes unstable and when critical fluctuations
are observed. Alternatively, order parameter fluctuations do
not anticipate the sudden behavioral change when the time
scale of the passage between equilibria is less than the time
scale of the control parameter; that is, rp^̂  <sc Tcontrol. In this
case, the Maxwell convention holds. Under such conditions,
the switch between coordinations occurs before the old coor-
dination destabilizes. The practical point of all this is that, in
an experiment, conditions should be devised to account for
the operation of both possible states of affairs, that is, condi-
tions with different control parameter change times (Tcontro,).
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In summary, Kelso and associates (Kelso et al., 1986; Scholz
et al., 1987) have provided evidence that the transition from
the alternate to the symmetric phase mode is the result of the
increasing instability of the attractor underlying the phase
locking of limbs. The characteristic properties of this phase
transition are (a) a sudden jump between two modes of
functioning that represents, (b) a divergent response to the
scaling of frequency, (c) inaccessible regions between the two
modes, (d) hysteresis in the transition (slowing down after the
transition does not yield a shift back to the alternate mode),
(e) critical fluctuations before the transition when the change
time is less than the first passage time, and (f) an increase in
relaxation time as the transition is approached.

Experiment 3 investigates whether these properties occur
in between-persons visual coordination of legs oscillated about
the knee joint. An affirmative answer would indicate a dy-
namical basis for the control structure governing between-
persons phasing of limbs. The experiment was performed to
determine if the sudden jump exhibited criterial properties of
a physical bifurcation: divergence, critical fluctuations, and
hysteresis. If the spontaneous behavioral discontinuity ob-
served in between-persons coordination has these criterial
properties, then the claim can be made that the coordination
of movements between people can have a dynamical basis.
Furthermore, given the dependence of this kind of coordina-
tion on the availability of light structured by and specific to
the movements of the limbs, a claim can then be made for
the role of information, in Gibson's (1966, 1979) specifica-
tional sense, in the expression of dynamical principles (Kugler
&Turvey, 1987).

Method

Subjects. The same 2 subjects from Experiment 2 served as
voluntary participants. A third volunteer associated with Haskins
Laboratories, a 32-year-old right-handed man (GB) with no motor
disabilities was added to permit three possible pairings of the subjects:
SP 1 included CC and LR, SP 2 included CC and GB, and SP 3
included LR and GB.

Materials and procedure. The same basic materials and data
collection procedure as in Experiment 2 were used. However, as in
Experiment 1, a metronome pulse played from a cassette tape over a
loudspeaker was used to scale the frequency. Time records of the
metronome pulse and lower leg displacement were recorded on FM
tape and later digitized at 200 samples/s.

Again, the 2 members of a subject pair were instructed to oscillate
the lower part of their legs at the same frequency in either symmetric
or alternate phase modes as the frequency of oscillation was increased
by the metronome. As in Experiment 1, the metronome pulse re-
mained at a frequency for a given amount of time before it was
moved to a frequency 0.2 Hz greater. The amount of time the pulse
remained at a frequency is referred to as the frequency plateau time.
Because the stationarity (i.e., absence of linear trends) of the time
series produced by the method used in Experiment 2 can be called
into question (Kelso et al., 1986), the metronome scaling procedure
with its plateaus of steady state frequencies was used to reduce the
likelihood that the time series are nonstationary.

Because different results have been found for studies using different
frequency plateau lengths (see Scholz, 1986; Scholz et al., 1987), two
different frequency plateau times were used, 5 s and 10 s. For each
frequency plateau time, 10 symmetric and 10 alternate mode trials
were performed by each subject pair. Each trial began with the

subjects' establishing and maintaining a phase-locked state in one of
the two phase modes at 0.6 Hz for twice the frequency plateau time
(10 s or 20 s). Thereafter, the frequency was increased in increments
of 0.2 Hz every 5 s or 10 s, depending on the frequency plateau
condition, to a final frequency of 1.8 Hz or 2.0 Hz. The final
frequency differed for the two frequency plateau conditions and the
different subject pairs.

A hysteresis condition was run for one subject pair (SP 1). In these
four trials, the initial coordination in the alternate mode was scaled
in frequency as in the 5-s frequency plateau trials. Once the final
frequency of 1.8 Hz was reached, the metronome pulse began to
decrease the frequency of oscillation back to 0.6 Hz in the same way
that it was increased. These trials were performed to determine the
frequency at which a transition back to alternate mode would occur
(once the symmetric mode had been established through bifurcation)
when the frequency of oscillation was decreased.

Each subject in a pair was instructed to oscillate his or her lower
leg at the frequency of the metronome while coordinating the leg's
position in relation to the other person's leg. As in Experiment 1, the
subjects were instructed to maintain the initial phase mode as the
oscillation frequency increased. Again, we suggested that maintaining
the initial phase-locked state might become difficult and that switch-
ing to another phase mode might occur. If this alternate phase mode
was more stable, subjects were instructed to remain in it. The data
were collected in two separate sessions on 2 separate days. The 10-s
frequency plateau trials were collected in the first session, and the 5-
s frequency plateau trials and the hysteresis trials were collected in
the second session. Each session was about 1 hr in length. The trials
of a condition were always blocked together.

Data reduction. The digitized data records were smoothed using
a Bartlett (triangular) moving average procedure with a window size
of 35 ms. One trial of SP 1 in the 10-s alternate mode condition was
lost because of experimenter error. The cycle frequency was calculated
the same way as in Experiment 1. The relative phase was estimated
not for each cycle as in Experiments 1 and 2 but for each sample,
that is, every 5 ms. The algorithm for this continuous phase analysis
(CPA) uses normalized values of position and velocity to determine
the phase of each oscillator at each sample, and from these calculates
the relative phase between the two oscillators to produce a relative
phase time series (see Kelso et al., 1986, for more details). The CPA
analysis, however, does not calculate the continuous relative phase
estimates for the first 2 s of the data record, that is, 2 s from the 0.6
Hz plateau. For the most part this elimination of data was not a
problem because there were still enough observations (600 for 5-s
plateaus) left to estimate relative phase for that plateau. As in Exper-
iments 1 and 2, the phase values were normalized to index the
deviation from the steady phase relations at 0° and 180° for the
symmetric and alternate modes, respectively. Again, the relative phase
values ($) referred to in this section will be the normalized values.

The beginning and end times of each frequency plateau were
determined through interactive graphic displays of the metronome
pulse time series. The beginning of a transition was defined as the
end of the last ascent to 180° of relative phase time series in the
alternate mode steady state region of the relative phase space. In the
alternate mode trials, a plateau was categorized as either pretransi-
tional, transitional, or posttransitional. Software analysis routines
then calculated the mean of cycle frequency and the mean and
standard deviation of the normalized (see Experiment 1) relative
phase for all the observations of a plateau. All of these measures were
calculated after the first second to ensure that transients from the
frequency change had diminished. The total power of continuous
phase was calculated for each frequency plateau again (after the first
second) by summing over the squared amplitude of the Fast Fourier
Transform (FTT; Press, Flannery, Teukolsky, & Vetterling, 1988) of
the continuous phase time series. Because of the large range of total
power magnitudes, harmonic means were used to find the central
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tendency and loge transforms were taken. Total power estimates were
not found for 0.6-Hz frequency plateaus of the 5-s plateau length
condition because of an insufficient number of observations to per-
form the FFT routine. Transition transients were eliminated from all
pre- and posttransitional plateaus.

Results

As in Experiment 2, the increase of oscillation frequency
led to a breakdown of visual phase locking in all the alternate
mode trials of the three subject pairs and a transition to the
symmetric mode of phasing. No such breakdown of coordi-
nation was seen in the symmetric mode trials2. Samples of
the continuous relative phase time series for the symmetric
and alternate modes are shown in Figure 9. Notice the in-
creased resolution of the relative phase compared with the
cycle or point phase measures in Figure 7. This increased
resolution shows that relative phase is not static in time and
often picks up a cyclic component in the plateau before the
transition.

The mean transition frequency was 1.529 Hz with a stand-
ard deviation of 0.225 Hz; the modal transition frequency
was 1.6 Hz (n = 20 of 60). A one-way ANOVA demonstrated
that the mean transition frequencies of the two frequency
plateau conditions (5 s: 1.633 Hz; 10 s: 1.227 Hz) were not
statistically different. The times taken for the transition to
occur were also measured. These were measured from the end
of the last ascent to 180° to the point at which the relative
phase equals 0° or some steady state relative phase value
around 0° (within 45°). The mean transition time overall was
3.34 s with a standard deviation of 1.59 s. The mean transition
times for the 5 s and 10 s (2.61 s and 4.09 s, respectively)
were statistically different, F( 1, 2) = 51.166, MS, = .064, p <
.02.

Divergence. One of the characteristic properties of a phys-
ical bifurcation is a divergent response of the dependent
variable to the increasing control parameter. At some point
in the continuum of control parameter values, for one unit of
control parameter change, many units change of dependent
measure should be observed. To test for divergence in the
alternate mode trials, we identified two subsets of the total
number of trials and analyzed the mean deviation from the
intended relative phase (| 180 - $| for the alternate mode and
$ for the symmetric mode) for each subset, separately. The
first subset contained the means of the alternate mode trials
with a 1.4-Hz transition frequency. The second subset con-
tained the means of the alternate mode trials with a 1.6-Hz
transition frequency. Together these two subsets constituted
63% of all the trials. These subsets were analyzed separately
so that transient states and steady states would not be com-
bined in averaging. Hence, the resultant means are more
representative of the deviation from the intended phase seen
in the individual trials.

The two subsets were submitted to three-way ANOVAS with
within-subject variables of phase mode, frequency plateau
length, and metronome frequency. SP 1 did not have any
trials that contained a 1.6-Hz transition frequency for the 10-
s plateau condition; therefore, the means of the 2 other
subjects' data at each frequency of the alternate mode 10-s
plateau trials were used to fil l in these empty cells. All the

means of the symmetric mode trial data were used in both
analyses. The means across the two frequency plateau condi-
tions are displayed in Figure 10 for 1.4- and 1.6-Hz transition
frequency data. In both sets of data, the two relative phase
modes start out at the same small deviation from the intended
phase. At the transition frequency, the deviation from the
intended phase diverges for the alternate mode condition to
values between 100° and 110°. With another increase in
frequency, the alternate mode trials diverge even further to
deviation values («150°) that indicate that the phasing of the
limbs is now in the symmetric mode. In contrast, the sym-
metric condition's deviation from the intended phase remains
small (< 30°) across all frequency changes.

The two ANOVAS revealed significant interactions of phase
mode and metronome frequency (1.4-Hz transition trials:
F[6,12]= 122.422, A/& = 88.594, p<. 001; 1.6-Hz transition
trials: F[6, 12] = 499.886, MS, = 17.388, p < .001). Simple
effects analyses demonstrated that these effects were the result
of the differences of the alternate mode condition from the
symmetric mode condition that began at the transition fre-
quency (phase mode at 1.4 Hz: F[l,  2]  = 520.645, MS, =
36.686, p < .01; phase mode at 1.6 Hz: F [ l , 2] = 520.645,
MS, = 16.667, p < .01) and continued thereafter. Paired
comparisons using Fisher's protected t tests of the deviation
from the intended phase at the transition frequency with the
deviation from the intended phase at the pretransition fre-
quency found the divergence at the transition statistically
significant (1.4-Hz transition trials: p < .01; 1.6 Hz-transition
trials: p < .05). A significant three-way interaction between
phase mode, frequency plateau length, and metronome fre-
quency was found in the 1.6-Hz data, F(3, 12) = 3.202, MS,
= 26.309, p < .05, that can be attributed to the difference in
the alternate mode deviation from the intended phase at the
transition for the 5-s and 10-s plateaus.

Critical fluctuations measured by standard deviation. All
the standard deviations of the relative phase for a given
frequency were averaged, keeping pre- and posttransitional
plateaus separate, and eliminating transitional plateaus. Be-
cause the pretransition frequency range differed between sub-
jects, and differed within a subject for the different frequency
plateau lengths, the means were calculated according to where
in the range of frequencies they fell. Four frequency categories
were chosen: three pretransition and one posttransition. The
first pretransition frequency category, Pretransition 1, con-
sisted of 0.6- and 0.8-Hz frequency plateaus. Pretransition 2
consisted of 1.0- and 1.2-Hz frequency plateaus; Pretransition
3 contained the plateaus just before those that contained the
two modal transition frequencies. The posttransition category
contained the average of the first two plateaus after the

2 One may ask whether vision was indeed necessary for the phasing
of limbs when the subjects' frequency of oscillation is paced by a
metronome. By merely having the subjects start in an initial phase
mode and entrain to the metronome pulse, if they performed the task
perfectly, they should remain in the original phase mode. Following
the same line of reasoning, one may ask whether the transition from
one phase mode to another would occur without vision. Nonvisual
control trials were performed for each subject pair. These showed a
gradual shift in relative phase within a frequency of oscillation and
no transitions of the kind noted for the alternate mode trials.
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Figure 9. Examples of continuous relative phase time series for the symmetric (upper panel) and
asymmetric (lower panel) conditions for Experiment 3. (The vertical axis is phase relation in degrees.
The horizontal axis is time in seconds.)

transition. Because the frequency categories represent the
ordinal position within a trial with respect to the transition,
the variable representing these frequency categories will be
called distance from transition. The mean standard deviations
for each subject pair at each frequency plateau are provided
in Table 1, along with comparable means calculated for the
symmetric mode.

A three-way ANOVA with within-subject variables of phase
mode (symmetric and alternate mode), frequency plateau
length (5 s and 10 s), and distance from transition (Pretran-
sition 1-3 and posttransition) was performed on the standard
deviation of relative phase. Figure 11 displays the means over
the 3 subject pairs for the two frequency plateau conditions
(5s and 10 s) combined. It is apparent that Pretransition 3
possesses a large increase in the standard deviation of relative
phase for the alternate mode trials compared with the other
alternate mode or symmetric mode means. The ANOVA re-
vealed a significant Phase Mode x Distance From Transition
interaction, F(3, 6) = 10.127, MS, = 14.902, p < .01. Simple
effects analyses found significant differences between phase
modes at Pretransition 3, F(\, 2) = 65.692, MS, = 1.477, p <
.02, and the posttransition category, P(l, 2) = 12.368, MS, =
.866, p < .05, indicating that the phase fluctuations observed
in the alternate mode were greater near the transition. Fur-
thermore, a significant Fisher's protected t test that compared
the distances of Pretransition 2 and Pretransition 3 (p < .01)
demonstrates that the jump in standard deviation that is

observed with the approach to the transition is statistically
reliable. Another post hoc t test also found the drop from
Pretransition 3 to posttransition category to be significant (p
<  .05).

The fact that no three-way interaction of phase mode,
distance from transition, and frequency plateau length was
found is evidence that the observed increase in phase fluctua-
tions occurs in both the 5-s and 10-s plateau conditions. To
verify the latter, separate analyses of these two conditions
were undertaken. Both of the 2 two-way ANOVAS with within
variables of phase mode and distance from transition had
significant two-way interactions (5-s plateaus: F[3,6] = 6.850,
MS, = 11.376, p < .05; 10-s plateaus: [̂3, 6] = 5.108, MSC

=  5.381, p < .05). In each of these analyses, post hoc Fisher's
protected t tests revealed that the increase in standard devia-
tion from the distance of Pretransition 2 to Pretransition 3
was significant (p < .01, for both).

Critical fluctuations measured by power. The values of
total power were averaged according to their distance from
the transition, keeping separate pretransitional and posttran-
sitional plateaus, and eliminating transitional plateaus. The
means for each frequency plateau are provided in Table 2. A
three-way ANOVA with within-subject variables of phase mode,
frequency plateau length, and distance from transition was
performed. A significant Phase Mode x Distance From Tran-
sition x Frequency Plateau Length interaction was found,
F(3, 6) = 12.673, MS, = .049, p < .01, and is illustrated in
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Figure JO. Mean deviations from intended relative phase as a func-
tion of frequency for the alternate mode trials in which the transitions
occurred at the metronome frequency of 1.4 Hz (upper panel) and
1.6 Hz (lower panel). (Open squares are symmetric mode; closed
circles are alternate mode.)

Figure 12. A simple effects analysis at each frequency plateau
length revealed significant Phase Mode x Distance From
Transition interactions, suggesting that the sudden increase
in power at the last pretransition distance before the transition
for the alternate mode trials occurs for both frequency plateau
lengths: 5-s plateaus, F(3,6) = 23.866, MSC = .073, p < .001;
and 10-s plateaus, F(3, 6) = 4.821, MSC = .054, p < .05. The
significant three-way interaction seems to have its origins in
the behavior of the symmetric mode data at the two different
frequency plateau lengths. Simple effects analyses indicate a
significant rise in total power for the 5-s frequency plateau
symmetric data across the distance categories, F(3,6) = 4.616,
MSe = -148, p < .05, but no change for the 10-s plateau
symmetric mode data, F(3, 6) = 0.341, MS, = .241, p > .05.
In contrast, the same analyses performed on the alternate
mode data demonstrate a change in total power across the
distance categories for both frequency plateau lengths. The

change was significant for the 5-s plateaus, F(3, 6) = 6.935,
MSe = .231, p < .05, but only marginally significant for the
10-s plateaus, F(3, 6) = 3.961, MSC = .168, p = .07.

Post hoc Fisher's protected / tests found that the jump in
total power from Pretransition 2 to Pretransition 3 was sig-
nificant for both the 5- and 10-s plateau lengths (p< .01 for
both) and the drop in power from Pretransition 3 to the
posttransition distances was also significant for the 5- and 10-
s plateaus (p < .01, for both). Also interesting is the degree of
separation between the total power of the two phase modes
at all distances from the transition, indicating that the alter-
nate mode was in general more variable than the symmetric
mode (Turvey et al., 1986). Simple effects analyses demon-
strated that these differences were statistically significant at
both 5- and 10-s frequency plateau lengths (Table 3).

Hysteresis demonstration. Another characteristic feature
of a physical bifurcation is that whether or not a bifurcation
occurs and where in the range of control parameter values it
occurs depends on the immediate history of the trajectory.
The four hysteresis trials of SP 1 all had transitions from the
alternate phase mode to the symmetric phase mode at the
1.6-Hz frequency plateau. The relative phase values of each
frequency plateau were averaged across the trials and are
displayed in Figure 13. As can be seen, decreasing the fre-
quency after the transition did not lead to a switch back to
the alternate mode of coordination. This was true for all four
of the trials. The bifurcation was truly hysteretic.

Discussion

Experiment 3 has affirmed the preliminary results of Ex-
periments 1 and 2 on visually coordinated rhythmic move-
ments between two people: A breakdown in phase locking is
seen in the initial alternate mode trials that leads to a transi-
tion from the relative phase values that are characteristic of
the alternate phase mode to those characteristic of the sym-
metric phase mode as the frequency of oscillation increased.
No such breakdown of phase locking is seen in the initial
symmetric mode trials. These between-persons' results repli-
cate the breakdown of phase locking found in within-person
coordination (Baldissera, Cavallari, & Civaschi, 1982; Cohen,
1971; Kelso, 1984; MacKenzie & Patla, 1983). Following the
reasoning that coordinated acts are produced by dynamically
based functional synergies (Kugler, Kelso, & Turvey, 1980,
1982), it has been suggested that such breakdowns correspond
to an abrupt rearrangement of the topology of the dynamics
underlying the coordination, that is, a physical bifurcation
(Kelso & Scholz, 1985).

Experiment 3 was undertaken to determine whether the
between-persons transition from an alternate to a symmetric
mode of coordination had the characteristic properties of a
physical bifurcation. These properties are bimodality, inac-
cessibility, suddenness of jump, divergence, hysteresis, critical
slowing down, and critical fluctuations. All of those that can
be assessed with the phase transition methodology were found
in the between-persons breakdown of phase locking. The lone
exception, critical slowing down, requires a perturbation tech-
nique. It is uncertain how such a technique can be used given
oscillating limb segments as massive as the lower legs.
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Table 1
Average Standard Deviation of Relative Phase for 5-s and 10-s Frequency Plateaus

Frequency of oscillation

Condition 0.6 0.8 1.0 1.2 1.4 1.6 1.8

10-s plateaus

Note. Values are measured in degrees.

2.0

5-s plateaus

Subject Pair 1
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 2
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 3
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

8.81

—10.55

10.27

—8.16

14.33

—12.87

10.68

—10.51

12.43

—9.60

12.90

—11.65

9.47

—10.09

13.13

—9.29

12.94

—14.66

8.75

—10.47

13.55

—8.70

14.72

—12.23

13.42

—11.77

16.13

—8.63

19.19

—12.87

20.86

—9.68

17.25
8.09
9.72

19.79

—13.25

—14.27
11.56

—11.06
7.34

21.83
12.79
14.95

—18.03
12.67

—
——

—
15.24
13.72

Subject Pair 1
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 2
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 3
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

12.44

—11.65

12.93

—12.73

13.71

—11.09

14.76

—10.79

10.67

—12.36

14.23

—10.49

19.44
13.42
11.33

11.01

—11.90

13.35

—12.75

15.37
14.59
9.96

13.77

—12.05

14.92

—15.11

_
13.17
11.76

12.69
15.34
12.31

22.51
16.00
15.07

_
16.75
14.41

—16.11
13.55

21.03
19.99
15.83

_
20.56
15.29

—
14.06
13.58

—17.20
13.58

_

——

—
—
—

—
——

As is the case for within-person coordination, there seem
to be two stable modes of phasing limbs, either in phase
(symmetric mode) or out of phase (alternate mode). The
relative phase values in between these two modes (e.g., a
relative phase of 90°) seem to be inaccessible in that they are
exhibited only as transient states. Also, as with the within-
person case, this set of properties implicates the potential
landscape of Haken et al. (1985) presented in Figure 14 that

4 Transition

\

10
pre 1 pre 2 pre 3

Distanc e fro m Transitio n
Figure 11. Standard deviation of relative phase as a function of
phase mode and distance from transition. (Data are the 5-s and 10-s
plateaus combined. Open squares are symmetric mode; closed circles
are alternate mode.)

has two minima with a sharp gradient between them; it is
provided by the function F($) = — acos($) — bcos(2$), where
d<t>/df = dV/d$. One minimum of the landscape represents
the steady state symmetric phasing at 0° relative phase (*),
the other represents the steady state alternate phasing at 180°,
and the gradient represents the inaccessible, transient regions
of relative phase. More formally, the minima are where the
rate of change of the potential and, hence, of relative phase,
is zero (dV/dt = 0). The steep slope is where the rate of change
of the potential and of relative phase is much greater than
zero(3V/dt»0).

Past research has demonstrated that the two phase modes
are differentially stable: The symmetric mode is in general
more stable than the alternate mode (Kelso & Scholz, 1985;
Scholz, 1986; Turvey et al., 1986). Our studies suggest that
the same is true for movements coordinated between two
people. Not only does the alternate mode phase locking break
down at higher frequencies but the variability of relative phase
in the alternate mode trials in Experiment 3 is greater overall
than in the symmetric mode trials (Figures 11 and 12),
although significance was found only in the total power
measure (Table 3).

A sudden jump from the alternate mode to the symmetric
mode was seen for all initial alternate mode trials as the
frequency of oscillation was scaled in Experiments 2 and 3.
This jump is a divergent response of relative phase to the
scaling of the control parameter, namely, frequency of oscil-
lation: A small change in the frequency of oscillation that
previously led to a small change in relative phase leads to a
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Table 2
Average Total Power of Relative Phase for 5-s and 10-s Frequency Plateaus

Condition

Frequency of oscillation

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

5-s plateaus
Subject Pair 1

Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 2
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 3
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

— 5.04

— —— 2.79

— 5.81

— —— 2.93

— 5.12
— —
— 2.96

5.11

—2.63

5.40

—2.00

4.97

—3.82

5.02

—2.84

5.26

—3.05

5.66
—

3.60

5.66

—3.00

6.07

—2.63

5.98
—

4.05

6.72
4.97
3.37

6.96
2.49
2.20

6.48
—

3.46

—4.81
3.69

—4.42
3.64

7.24
3.99
4.84

—

—4.69

—
5.68
3.61

10-s plateaus
Subject Pair 1

Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 2
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

Subject Pair 3
Alternate mode (pre)
Alternate mode (post)
Symmetric mode

3.92

—2.73

5.91

—2.82

4.43

—2.69

4.03

—2.72

4.53
—

3.01

5.13

—2.58

4.74
4.46
2.27

4.78
—

2.95

4.82

—2.96

5.40
3.69
3.05

4.98
—

2.84

4.91

—3.95

_
3.28
3.05

5.73
3.06
2.87

5.90
5.19
3.75

4.01
3.81

—3.56
3.83

6.50
6.04
4.26

5.07
3.89

—3.28
3.04

—5.21
3.68

—

—

——

—

—
——

Note. Values are measured in loge (deg2).

very large change in relative phase at the point of divergence.
In a dynamical system, a sudden jump is brought about by
virtue of the control parameter's changing of the potential
landscape, making previously stable states unstable. Figure 14
shows how a critical ratio of the parameters a and b produces
the final annihilation of the steady state potential minimum
at 180° and dV/dt» 0. The gradual evolution of the original
landscape's topology then produces a sudden and divergent
change in the phasing of the limbs. Some variability in the
frequency at which the transition occurred was found. This
variability is also found in within-person bifurcation. Scholz
(1986) documents both inter- and intrasubject variability of
the transition frequency. These findings do not necessarily
undermine the lawfulness of the system producing the bifur-
cation. Indeed, a stochastic element is an integral part of the
modeling of all bifurcation phenomena (Schoner et al., 1986).
The variability of transition frequency, however, does pose
methodological problems in that certain trials must be ana-
lyzed separately from others or trials must be grouped accord-
ing to some unifying factor, as was done in our experiments.

Generally, reversing the control parameter scaling after a
bifurcation produces a jump back to the original mode of
functioning. If this return jump occurs at a different control
parameter value or if it does not occur at all, the bifurcation
is hysteretic. After the transition to the symmetric mode
occurred in the initial alternate mode trials, decreasing the
frequency of oscillation did not lead to a transition back to
the alternate mode of coordination. This form of hysteresis
was also found with the within-person bifurcation (Kelso &

Kay, 1987) and follows explicitly from the Haken et al. (1985)
model and computer simulations.

An increase in fluctuations before the transition is another
property of physical bifurcations. For both measures of vari-
ability—standard deviation and total power of phase—Exper-
iment 3 found a significant increase in relative phase fluctua-
tion at the frequency plateaus near the transition. Further-
more, critical fluctuations were found for both 5- and 10-s
plateaus. How does a physical account of the transition predict
these fluctuations? As the transition to another mode of
functioning is approached, the attractor underlying the pres-
ent mode becomes less and less stable. Returning to Figure
14, as the transition is approached the potential well at 180°
becomes flatter and flatter. Assuming that the system is sub-
jected to stochastic perturbations, as is reasonable for complex
systems (Haken, 1978), a perturbation of a given magnitude
wil l cause a greater deviation in the flatter potential well near
the transition than in the steeper sided potential well away
from the transition. Hence, one could expect to see an increase
in fluctuations as the transition is approached if the jump has
a dynamical basis.

Investigation of within-person bimanual finger oscillations
found critical fluctuations for 5-s but not 10-s frequency
plateaus (Kelso & Scholz, 1985; Scholz, 1986). This apparent
lack of prediction has a ready explanation (Scholz et al., 1987)
in the difference in the conventions (see introduction to
Experiment 3) that are operating in the situations of the two
studies. From the relations among time scales (Schoner et al.,
1986), it is evident that what dictates whether one convention
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Figure 12. Total power of relative phase as a function of phase
mode and distance from the transition frequency. (Open squares are
symmetric mode; closed circles are alternate mode.)

or another will hold is the magnitude of the first passage time
relative to the control parameter change time (in this study,
it is the frequency plateau time of 5 or 10 s). The first passage
time is the time it takes to move the system probabilistically
from one stable state to another (i.e., without criticality). If
the first passage time is greater than the control parameter
change time, then the delay convention will hold and critical
fluctuations will be observed. If the first passage time is less
than the control parameter change time, then the Maxwell
convention will hold, the transition will occur before the first
mode has become unstable, and critical fluctuations will not
be observed. Scholz et al. (1987) estimated that the first
passage time for their 10-s frequency plateau experiment was
less than the 10-s control parameter change time, but the first

passage time for the 4-s plateau experiment was much more
than the 4-s control parameter change time. In short, the two
experiments discussed by Scholz et al. straddle the two bifur-
cation conventions. In Experiment 3, the control parameter
change time (the frequency plateau duration) was manipu-
lated in order to potentially accommodate the two conven-
tions. Because critical fluctuations were observed at both the
5-s and 10-s frequency plateaus lengths, however, the delay
convention appears to have been operating in each.

The between-persons and within-person transition results
differ with respect to the observed fluctuations. This is perhaps
not as dichotomous as it may appear. Although critical fluc-
tuations were found in both frequency plateau length condi-
tions, there is some indication that the degree of criticality
(namely, degree of instability) exhibited was different in the
two conditions and that less criticality was observed in the
10-s frequency plateau trials. Scholz et al. (1987) provided a
metric for indexing criticality,

icality index = SAjternate/SAymmetric

= * '''relaxatio n alternate/ T relaxation symmetric,

where SD is the standard deviation, Treiaxation alternate is the
relaxation time of the plateau just prior to the transition for
alternate mode, and Treia*ation symmetric is the relaxation time of
all plateaus for the symmetric mode. In one experiment in
which critical fluctuations (and, hence, a great amount of
criticality) were observed (Kelso & Scholz, 1985), the ratio of
the standard deviations equaled 2.13; in another experiment
in which critical fluctuations were not observed, the ratio of
relaxation times was approximately 1.5 (Scholz, 1986). In the
between-persons coordination observed in Experiment 3, the
ratios of standard deviations exhibited by SP 1, SP 2, and SP
3 were, respectively, 1.908, 1.925, and 1.625 for the 5-s
plateaus and 1.597, 1.089, and 1.678 for the 10-s plateaus
(using the plateau with the greatest critical fluctuations). The
10-s plateau ratios were lower than the 5-s plateau overall,
indicating that the average criticality achieved in the longer
plateaus was less than in the shorter plateaus (although only
one of these values is less than 1.5). Additional evidence for
this fact is that the time taken for the transition to occur is
longer for the 10-s plateau trials than for the 5-s plateau trials.

Table 3
"Phase Mode at Distance From Transition" Simple Effects
Tests for Total Power

Results

Effect df MS,

5-s plateaus
Pretransition 1
Pretransition 2
Pretransition 3
Posttransition

10-s plateaus
Pretransition 1
Pretransition 2
Pretransition 3
Posttransition

1,2
1,2
1,2
1,2

1,2
1,2
1,2
1,2

0.078
0.133
0.373
0.003

0.134
0.057
0.123
0.187

113.29**
55.80*
42.54*

204.81**

38.36*
69.08*
81.16*
28.62*

*/?<.05. **/><.01.
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Figure 13. Relative phase of each frequency plateau for hysteresis
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Of some concern is the fairly small increase in the standard
deviation of the relative phase in the between-persons bifur-
cation compared with the increase found in the within-person
bifurcation. The fluctuation increase between the second to
last and the last pretransition frequency plateau was approx-
imately 15° for the Kelso and Scholz (1985) 4-s plateau data.
For Experiment 3, the increase was approximately 4°. This
difference can be attributed somewhat to the difference in
baseline variability of the alternate phase mode in the be-
tween-persons and within-person experiments. The baseline
variability was approximately 11° for Experiment 3 and ap-
proximately 7° for Kelso and Scholz. But the difference is
mostly a result of the depression of values in Pretransition 3
because, in Experiment 3, these values are means across
subjects and means of the two plateaus preceding the modal
transition frequency plateaus. The fluctuations in the first of
these two pretransition plateaus are not always critical, be-
cause the transition was not to occur in the next plateau but
rather the one after that. As such, the distance from transition
categorization of the frequency plateaus as an independent
variable results in a more conservative test of critical fluctua-
tions.

Also of some concern is the role that intention played in
the transitional behavior between the two phase modes. The
question can be asked whether the subjects purposefully
switched their mode of phasing from the alternate mode to
the symmetric mode. For example, they could have been
biased by the instructions and previous knowledge that some
transition would occur and, as a consequence, induce a tran-
sition. Two points should be mentioned in this regard. First,
it does not seem that intention can totally supersede the
dynamical constraints that produce the transition between
the phase modes. A recent study of within-person limb phas-
ing (Kelso, Scholz, &Schoner, 1988; Schoner& Kelso, 1988b)
investigated the intentional switching between the two phase
modes and found that the time taken for the intentional
transition to occur was greater for the transition from sym-
metric mode to alternate mode than for the transition from
alternate mode to symmetric mode. Kelso et al. (1988) inter-
preted this result as the intentional transition having to op-

erate within the constraints of the intrinsic dynamics under-
lying the phasing of limbs.

Second, intentional switching from the alternate mode to
symmetric phase mode occurs much faster (0.41 s; Kelso et
al., 1988) than does the nonintentional within-person switch-
ing (4.28 s; Scholz, 1986) or the between-persons switching
(3.34 s; Experiment 3). Assuming that the ability to intention-
ally control the phasing of limbs is about equal within a
person and between two people, the switching times observed
indicate that our study's subject pairs were not intentionally
producing a transition from the alternate to the symmetric
mode of phasing.

Furthermore, a cognitive theorist may choose to explain
the apparent differential stability of the two phase modes in
terms of processing load: Maintaining the alternate mode
requires more cognitive control or attention than maintaining
the symmetric mode. Following this line of argument, how-
ever, Experiment 3 would have produced a greater processing
load than Experiment 2, because the subjects not only were
coordinating the phasing of their limbs but also were tracking
the metronome. One would expect that this increase in proc-
essing load would have caused a breakdown of the alternate
mode at a lower frequency of oscillation in the experiment
with the greater processing load. But the opposite result
occurred: The mean transition frequency was 1.301 Hz for
Experiment 2 and 1.529 for Experiment 3.

Conclusions

This study has attempted to assess whether the phasing of
limbs between two people can be characterized by the same
properties found in the phasing of limbs within a person. It
can be concluded that the same principles underlie both
situations. The properties of interest from the within-person
coordination include the following. Two distinct modes of
phasing limbs are observed, namely, the alternate and sym-
metric modes. The alternate mode is less stable than the
symmetric mode, as indicated by a breakdown of phasing to
the symmetric mode at high frequencies of oscillation. At
some critical frequency, the alternate mode phasing can no
longer be maintained and only the symmetric mode phasing
can be stably coordinated.

A similar set of properties was found for the between-
persons phasing of limbs. In Experiment 1, when subjects
were instructed to remain in the initial mode of phasing, we
found that the alternate mode in the between-persons phasing
of limbs was less stable than the symmetric mode as the
frequency of oscillation increased. Furthermore, the instabil-
ity observed at the highest frequencies represented a break-
down of the alternate phase mode. There was evidence from
the number of nonsteady state cycles that the alternate mode
was exhibiting a breakdown in phasing that was indicative of
a transitionlike behavior; that is, subject pairs often "visited"
the symmetric mode during the breakdown. In Experiment
2, when the subject pair was instructed to remain in the
symmetric mode after a breakdown in the alternate mode
phasing, a transition from the alternate mode to the symmet-
ric mode of phasing occurred regularly as it does in within-
person bimanual coordination. Experiment 3 then tested this
between-persons phase transition to see if it had the charac-
teristic properties of a physical bifurcation. The criterial prop-
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b/a = 0.625

b/a = 0.500
b/a = 0.375

b/a = 0.250 b/a-0.125

Figure 14. Proposed potential function underlying the spontaneous transition from alternate phase
mode to symmetric phase mode. (Adapted from Haken, Kelso, & Bunz, 1985.)

erties of bimodality, inaccessibility, suddenness of jump, di-
vergence, hysteresis, and critical fluctuations were all ob-
served. Hence, it can be concluded that the same principles
underlie within-person and between-persons phase transi-
tions.

The first point to be made from this investigation is that
the breakdown in phase locking observed for the alternate

mode phasing of limbs between two people succumbs to a
dynamical characterization. A dynamically based functional
synergy is formed across the two individuals. Coordination
between two individuals arises through the mutual harnessing
of the attractor dynamics underlying the relative phasing of
the limbs. Furthermore, the evolution of this control structure
is a consequence of the topology of the potential underlying
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it. Hence, a principled basis for the spontaneous change in
the coordination of two people is provided.

Although this article comprises laboratory studies of a novel
coordination of limbs, the possible ramifications it has for
human interaction in general are quite profound. They follow
from considering the experimental results from the perspec-
tive of the ecological theory of perception and action (Gibson,
1979; Turvey & Carello, 1986; Turvey & Kugler, 1984;
Turvey, Shaw, Reed, & Mace, 1981), which attempts to
provide a law-based account of animal-environment inter-
actions. One ramification is that the interaction of an animal
with its environment or, equally, the interaction of one indi-
vidual with another, is not created solely from the cognitive
and/or neural structures of the individual but arises in a
context of constraints. Constraints here mean simply the way
that things can fit together physically, the patterns of nature
(Stevens, 1974). Human interactions involving the mutual
timings and phasings of behaviors must follow these con-
straints (Beek, 1989). Consequently, cooperative states that
arise in interpersonal settings ought to be conceptualized as
complex physical systems conforming to the same modes of
organization as nature generally. This conceptualization does
not rule out new phenomena at the social scale of interaction.
Rather, it is an assertion that the structuring of these phenom-
ena is in all likelihood due to very general principles that
function across scales.

The second major point of this study is that dynamical
control structures can be formed over informational struc-
tures. When optical information about the other person's leg
is eliminated, neither phase locking nor, relatedly, the bifur-
cation from the alternate to symmetric mode can be observed.
The establishment, maintenance, and dissolution of a be-
tween-persons coordinative state rests on information about
the coordinative state, its kinematics, and its dynamics. In-
deed, the attractor layout depicted in Figure 14 is essentially
dependent on information for its formation and evolution.
More specifically, coordinative interactions between two in-
dividuals occur in terms of observables that are best described
as informational observables (Kugler & Turvey, 1987; Turvey,
in press). These observables are expressed as kinematic pat-
ternings of a low-energy field, namely, the optic array, specific
to properties of the moving limbs (Kugler & Turvey, 1987;
Kugler, Turvey, Carello, & Shaw, 1985).

Because informational interactions are the foundation of
perceiving-acting cycles defined over an animal-environment
system, a complete theory of informational interactions
(Schoner & Kelso, 1988a; Shaw & Kinsella-Shaw, 1988) is
perhaps the greatest theoretical challenge to the dynamically
based account of behavior envisioned by the ecological ap-
proach to perception and action (Turvey, 1988). The present
study provides evidence for the operation of dynamical sys-
tems in at least one situation in which a material (i.e., kinetic)
linkage of components is absent and an informational linkage
is the only explanation of the resultant order.
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