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Functional connectivity analysis of fMRI data can reveal synchronised activity between anatomically distinct
brain regions. Here, we extract the characteristic connectivity signatures of different brain states to perform
classification, allowing us to decode the different states based on the functional connectivity patterns. Our
approach is based on polythetic decision trees, which combine powerful discriminative ability with
interpretability of results. We also propose to use ensemble of classifiers within specific frequency subbands,
and show that they bring systematic improvement in classification accuracy. Exploiting multi-band
classification of connectivity graphs is also proposed, and we explain theoretical reasons why the technique
could bring further improvement in classification performance. The choice of decision trees as classifier is
shown to provide a practical way to identify a subset of connections that distinguishes best between the
conditions, permitting the extraction of very compact representations for differences between brain states,
which we call discriminative graphs. Our experimental results based on strict train/test separation at all
stages of processing show that the method is applicable to inter-subject brain decoding with relatively low
error rates for the task considered.
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Introduction

Traditional fMRI analysis consists of univariate statistical hypoth-
esis testing to assess changes in the activity of each brain voxel
induced by the stimulation paradigm (Frackowiak et al., 1997). More
recently, approaches derived from supervised machine learning –

commonly termed “brain decoding” in the field of neuroimaging –

have shown that it is possible to exploit more subtle relationships in
voxels' intensity patterns (Haxby et al., 2001; Haynes and Rees, 2006;
Norman et al., 2006). These methods rely on a classifier to predict the
subject's brain state from the BOLD responses in a set of selected
voxels, such as visual (Cox and Savoy, 2003; Haynes and Rees, 2005;
Kamitani and Tong, 2005; Thirion et al., 2006; Kay et al., 2008;
Miyawaki et al., 2008) or auditory cortices (Ethofer et al., 2009).
Results from brain decoding are often remarkable since they clearly
reach beyond the possibilities of univariate techniques, but also
because they are able to uncover information from fine-grained
cortical activity despite the relatively low spatial resolution of fMRI.
Furthermore, instead of a fixed spatial window, one can also apply
classification to a so-called “searchlight” that slides over the whole-
brain data, such that the classification success for each position of the
spotlight can then be mapped to show brain regions that carry
discriminative information between different conditions (Krieges-
eskorte et al., 2006). Another interesting approach is to use
spatiotemporal observations as an input to the classifier (Mitchell et
al., 2004; Mourao-Miranda et al., 2007).

The study of functional connectivity is concerned with the temporal
coherence between neurophysiological events observed in spatially
remote brain regions. In early work, correlation with a seed voxel was
investigated and revealed bilateral coactivation between sensory cortices
(Biswal et al., 1995; Lowe et al., 1998). Further advances have been driven
by unsupervised methods such as source separation – mainly principal
components (Friston et al., 1993) and independent components analysis
(McKeown et al., 1998; Calhoun et al., 2002; Beckmann and Smith, 2004)
which allow to identify large-scale cortical networks – and by other
methods such as dynamic causal modelling, which tries to establish
effective connectivity and requires prior information about the neurolog-
ical network to investigate Friston et al. 2003. A recent method related to
our work proposed to use resting-state correlations between regions of
interest as features for an SVM classifier (Craddock et al., 2009). Another
attractive methodology to investigate functional networks is to rely on
mathematical graph theory; i.e., constructing the (undirected) graph from
temporal correlationmatrices and computing relatedmeasures; e.g., node
degree, hubbiness, and so on (Sporns et al., 2000; Salvador et al., 2005).
This methodology has brought new insights in functional connectivity at
resting state, such as the small-world organisation of cortical networks at
low temporal frequencies (Achard et al., 2006).

Here, we bring together brain decoding and graph representations
based on functional connectivity measures. These measures, such as
temporal correlation, are performed over a given period of time and
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Fig. 1. Flowchart of the preprocessing procedure. DWT stands for discrete wavelet transform.

617J. Richiardi et al. / NeuroImage 56 (2011) 616–626
reflect the timecourse resemblances between different regions.
Moreover, we estimate connectivity at different temporal scales
using the wavelet transform as a preprocessing step. Then, we build a
classifier trained on functional connectivity graphs of a group of
subjects to distinguish between different brain states of an unseen
subject. The aim of our approach is to identify the connections that are
most discriminative between brain states, and to obtain relevant
visual representation of the data for neuroscience studies.

Previous brain decoding techniques primarily rely on linear support
vectormachines (SVMs), which use a soft-margin hyperplane to separate
classes. In the presentwork,wepropose polythetic decision trees thatfit a
hyperplane using the most discriminative features (i.e., connections) at
each level, such that potentially complex and non-linear class boundaries
can be obtained bymultilevel trees. Efficient and effective learning of this
type of decision trees relies on recent advances in pattern recognition
(Friedman et al., 2000; Gama 2004; Landwehr et al., 2005) and provides
embedded feature selectionwhichyields a compact discriminant function
whose parameters are amenable to interpretation. Their variance
properties make them good candidates for ensembling, steering the
classification strategy towards slightly weaker but simpler (lower
capacity) classifiers, which is a desirable behaviour in high-dimensional
learning, a classical situation in fMRI where the number of dimensions is
much higher than the number of training examples.

Our paper is organised as follows. In theMethods section, we describe
our data processing pipeline together with the details of the proposed
methodology.Next,we illustrate the feasibility of our approachbyaproof-
of-concept; i.e., an fMRI experiment with block-based stimulation
paradigm (watching short movies) with long resting periods. We extract
the set of connections that is the most discriminative between rest and
stimulation at different temporal scales. The method is able to correctly
classify the conditions in a leave-one-subject-out cross-validation setting.
Interestingly, we find that the low-frequency correlations of the BOLD
signal (below 0.11 Hz) are the most informative. The discriminative
network also confirms a differential modulation of sensory areas, in
particular within the visual system, andmidline brain areas duringmovie
and rest conditions.
Methods

Preprocessing and data representation

The preprocessing steps are illustrated schematically in Fig. 1, and
explained in detail below.

After realignment of the functional volumes using SPM5,1 we use the
IBASPM toolbox (Tzourio-Mazoyer et al., 2002; Alemán-Gómez et al.,
2006) to build an individual brain atlas based on the structural MRI,
containing M=90 anatomical regions. While this is a relatively coarse
1 Available at http://www.fil.ion.ucl.ac.uk/spm/.
atlas, it is an essential step to allow for inter-subject variability and enable
inter-subject decodingwith good generalisation ability to unseen subjects
— using group-level normalisation and atlasing is not an option in this
setting. Furthermore, the structural atlas serves only as a basis for
computing a much lower resolution functional atlas. Using a more fine-
grained atlasmight result in some regions disappearing completely in the
functional atlas. Another benefit of using the AAL atlas is that it offers a
way of comparing results with several other studies (Zalesky et al., 2010).

We then obtain spatially-averaged timecourses from the voxels
corresponding to these regions in the functional space. For N repetitions
(which can be intra- or inter-subject, in our case N is the number of
subjects) and C conditions, we obtain the matrix

X : M × T × N × C;

that contains M ∙N ∙C timecourses of length T. We denote the
submatrix Xn,c:M×T for the M timecourses of subject n and condition
c.

The timecourses are then decomposed using the (redundant)
discrete wavelet transform (DWT) along the temporal dimension.
This results into JmatricesX(i), i=1,…, J that reflect the regional brain
activities at different temporal scales. We use cubic Battle–Lemarié
wavelets (Battle, 1987).

Functional connectivity graphs

We use pairwise Pearson correlation coefficients to form the
correlation matrix Rn,c

(i)=E[Xn,c
(i)Xn,c

(i)T]:M×M, where the temporal
detrending (up to third-degree polynomials) is provided by the
vanishing moments of the wavelet decomposition.

We now consider the brain regions as a set of vertices V and the
correlation coefficients as signedweights on the set of edges E, leading
to an undirected complete weighted graph G=(V, E). The graph
adjacency matrix An,c

(i) can be defined as An,c
(i)=Rn,c

(i)− I.

Graph matching

Comparing graphs is an active field of research in computer vision
and pattern recognition where numerous theoretical advances and
practical algorithms have emerged recently (Conte et al., 2004). Full
graph matching algorithms (e.g., Umeyama, 1988) are commonly used
to obtain distances between graphs, which is a basic operation of
pattern recognition. Such algorithms operate by trying to find the best
correspondence between the vertices of two graphs. They are
typically robust (error-tolerant) with respect to changes in graph
structure (such as a different number of vertices) (Bunke et al., 1998),
because in many fields graphs are computed from real-life data and
their topology can fluctuate from instance to instance.

In our case, the graphs obtained have a fixed number of vertices
(always the same number of atlas regions), as well as a fixed vertex
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ordering (regions are spatially defined), because of the atlasing
procedure. This type of connectivity graphs forms a particular
restricted class of graphs, for which several general graph matching
algorithms would not yield discriminative information (Richiardi et
al., 2010). For example full graph matching, by looking for the best
possible permutation of vertices, would bring high computational cost
and is unnecessary for our application where vertex correspondence
between graphs fixed and one to one. Indeed, the main use of our
graphs is in computing discriminative information to distinguish
between brain states, and this can be done by computing the distance
between graphs as a function of the distance between the weights of
the respective edges. For this reason, we opt for the strategy of
representing the graphs in vector spaces instead of graph domains.
This also allows us to use the large variety of existing pattern
recognition methods that operate on vector spaces.

Graph embedding and feature selection

We propose the following simple embedding procedure. The
adjacency matrix An,c′

(i) is fully characterised by the upper
triangular part above the main diagonal. Furthermore, the vertex
ordering is constant across graph because of the atlasing procedure,
as is the vertex set cardinality. For each graph, we thus generate a
feature vector F : M

2

� �
× 1 from the edge weights of all the edges in

the upper triangular part of An,c′
(i) by linearising this part of the

matrix. This generates a high-dimensional feature space, and an
adequate classifier is required to handle the ensuing high-
dimensionality learning problem.

The variability of fMRI connectivity measures is usually high.
Therefore, a statistical thresholding technique can be used to clean up
the subsequent adjacencymatrices. Achard et al. (2006) apply the false
discovery rate (FDR) procedure to the adjacency matrices of multiple
subjects; the significance of each connectionwithin each experimental
condition is assessed by building a t-value and then corrected for
multiple comparisons by FDR (Benjamini and Hochberg, 1995). Such
statistical edge pruning of the connectivity graph corresponds to
feature selection of the embedding vector where pruned edges are
mapped to zero. In the current context of comparing graphs for
different conditions using a classification approach, applying the FDR
procedure and considering the intersection is equivalent to a
univariate feature selection procedure based on the presence of a
connection. It also possible to make the feature selection discrimina-
tion-based; i.e., for two conditions the t-value can be constructed as in
a two-sample t-test (an approach demonstrated in Comparison with
post-hoc whole-group contrasts in a post-hoc setting). Note that in
this case this criterion (up to a constant) is equivalent to the Fisher
ratio (Duda et al., 2001) which maximises inter-class distance while
minimising intra-class scatter. It should be emphasised that the
feature selection procedure is based on graphs from the training set
only: in a leave-one-subject-out cross-validation paradigms, only data
from N−1 subjects is used to learn which connections are statistically
significant, and the computed “significance mask” is then applied to
the test data of the left-out subject. Therefore, within specific cross-
validation folds, all graphs have the same number of edges.

Finally, we mention that univariate feature selection is limited
because features might be individually irrelevant but provide
discrimination when used together (Guyon et al., 2007). Multivariate
feature selection could be preferred, and has been applied to the
context of brain decoding before (De Martino et al., 2008).

Themultiple comparisons approach only considers feature subsets
of cardinality 1, which corresponds to a simple ranking “search”
algorithm. It is generally agreed in filter-style feature selection2 that
2 Where the merit of a feature subset is evaluated via an objective criterion. This is
opposed to wrapper-style feature selection where features subset merit is evaluated
directly via classification — better subsets provide lower error.
subsets of different cardinalities need to be considered and an
optimum of the objective criterion is found via search (annealing,
genetic, or floating search is popular).

Classification

Decision trees are discriminative classifiers performing recursive
partitioning of a feature space to yield a potentially non-linear decision
boundary. At each decision node of the tree either a single feature f
(monothetic trees) or a function of several features f(⋅) (polythetic trees)
is considered so that the entropy of class labels in the partition is
minimised. More precisely, if an entropy-based splitting criterion is used,
the goal is to find cutpoints of f that minimise the conditional entropy on
class labels C={1, …, C} attached to points in the corresponding
subdomains of the discretised variable f′. Specifically, we can express
the entropy of the dataset partitioned by the feature f′ as

HðC j f ′Þ≜− ∑
2

j=1
Pj ∑

C

c=1
Pj;c log2 Pj;c; ð1Þ

where Pj is the relative frequency of points in the subset that have
value j for feature f′, and Pj,c is the relative frequency of points that
belong to class c and have value j for feature f′.

The goal of decision tree growing is then to minimise Eq. (1),
which is equivalent to maximising the mutual information between I
(C;f′), and involves recursively selecting features (or discriminant
functions) and computing the result of applying different cutpoints to
them. Edge weights that are put to zero by the feature selection are
never included as a feature or within a discriminant function since a
random variable K that has a constant value across all the dataset and
classes will not decrease conditional entropy.

Polythetic trees bring twomain advantages over monothetic ones;
first, decisionsurfaces arenot constrained tobe (piecewise)perpendicular
to the axis of the feature space, as they are inmonothetic trees due to the
fact that each node is a decision on a single feature. This is because
polythetic nodes can be linear combinations of several features. Second,
polythetic trees tend to be more shallow, because each node has more
degrees of freedom in partitioning its subspace. Here, we propose to use
functional trees (Gama, 2004) that canusemultiple regressionona subset
of features, both at decision nodes and at leaves. The learning procedure is
divided in twophases: growingandpruning. In thegrowingphase, at each
decision node, either a single feature in the original space, or a
discriminant function based on linear combination of features is used,
depending onwhich one optimises the splitting criterion. Thus, functional
trees are hybrids between monothetic and polythetic decision trees,
which results in decision boundaries that are piecewise hyperplanar
oblique surfaces. In the pruning phase, functional leaves consisting of
discriminant functions can be replaced by a simple function that predicts
the class value. We also use logistic regression where the regression
functions are learned iteratively by the LogitBoost algorithm (Friedman et
al., 2000), which is a refinement suggested by Landwehr et al. (2005) and
implemented in the Weka framework (Witten and Frank, 2005).

For illustration purposes, we show a functional tree with three nodes
and constant leave functions in Fig. 2, along with the corresponding
decision boundary in feature space. Thefirst split is a polythetic functional
discriminant function of two features x1 and x2, and the two splits in the
induced subspaces are performed on features in the original space.

Compared to SVMs with either linear or radial basis function kernels,
functional trees offer the convenience of adaptively adjusting the model
according to feature space complexity. This means that an ad-hoc switch
between linear and non-linear decision boundary is effected during
training, and that very few parameters need to be optimised beforehand.
The proper use of an SVM classifier requires the careful choice of several
parameters, including at aminimumkernel type and cost parameter. This
is typically performed using a multi-dimensional parameter sweep, for
example a grid search for linear polynomial kernels.
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Further on, the increased variance of decision trees compared to
SVMs (in the sense of Kohavi and Wolpert (1996) and Geman et al.
(1992)) can be turned to an advantage when ensembling several
classifiers (see next section). The decision trees' variance can also be
reduced by bagging (Breiman et al., 1996), which creates multiple
“bootstrapped” sets of data by repeatedly sampling with replacement
from the training set within each frequency subband, and then
averages the prediction of the diverse classifiers trained on the
bootstrap samples.

To obtain a valid classification approach, we derive the training
samples and grow the decision trees using a leave-one-subject-out cross-
validation procedure, by which the data of N−1 subjects are used for
training, and the data of 1 subject is used for testing. The training and
testing partition is then rotated N times. This well-motivated evaluation
procedure implies that inter-subject decoding takes place in our
experimental setting.
Fig. 2. Functional decision tree classifier and corresponding decision boundary principle
for a two-dimensional feature space. x1 and x2 correspond to 2 different adjacency
matrix edge weights, forming a 2-dimensional feature space. In 2(b), green circles
correspond to instances of edge weights in one class (condition), while red stars
correspond to instances the other class. Hyperplanes corresponding to individual node
decision boundaries are shown in dashed lines and identified with circled letters. The
overall tree decision boundary is the piecewise linear thick line. Data is a synthetic
scaled-down version of the classical banana machine learning dataset.
Ensembling subband graph classifiers

Because of the differences in the functional connectivity graphs in
different frequency subbands, it is likely that the subband-specific
classifiers will learn substantially different parameters. Consequently,
it is also likely that errors made by classifiers trained in different
frequency subbands will be uncorrelated to a certain extent: by
explicitly representing the fMRI signal at different scales, we create
diversity in classifiers.

By combining the decisions of the classifiers in each subband, and
assuming each such base classifier performs above chance, we can in
theory obtain higher accuracy than the best single subband classifier. This
interesting result rests on the Condorcet jury theorem (Boland, 1989),
which states that the ensemble accuracy PMV of L independent classifiers,
each performing with accuracy plN0.5 and combined through majority
voting, increases monotonically as a function of the number of classifiers,
and ultimately reaches perfect decoding for L→∞.

Given that the classifiers operate on subbands derived by an
orthogonal DWT, it can be expected that their output will be quasi
class-conditionally independent. In our particular case, we also note
that L is at most 4. Lower and upper achievable accuracy bounds can
be obtained on finite-sized ensembles (see Appendix A).

The overall classification scheme is shown in schematic form in Fig. 3.

Discriminative graph construction

Based on the set of N trained decision tree classifiers, we propose
to extract the subset of connections that is most discriminative for the
cross-validation folds and give an easy-to-interpret feedback to the
neuroscientists. For that purpose, we sum the regression weights of
each connection appearing in a decision tree (the same connection
can appear at various levels) and multiply them by the mean
classification accuracy of the fold. This yields a composite weight for
each connection indicating its discriminative power. Several varia-
tions on using trees to judge feature relevance could be considered as
well (Breiman et al., 1984).

This procedure allows us to build a discriminative graph that
represents functional connectivity that is markedly different between
the conditions of interest. The principle is also similar to the idea of
extracting discriminative volumes from classifier parameters using
voxels' intensity as features (Mourao-Miranda et al., 2005; Sato et al.,
2009).

Materials

Subjects and data acquisition

The N=15 subjects (4males, 11 females) were aged between 18 and
36 years old, without history of neurological disorders. They had given
written informed consent to participate in the study, which was
performed inaccordancewith the localEthicsCommitteeof theUniversity
of Geneva. Scanningwas performed on a Siemens 3 T TimTrio. Functional
imaging data were acquired in two sessions using gradient-echo echo-
planar imaging (TR/TE/FA=1.1 s/27 ms/90°, matrix=64×64, voxel
size=3.75×3.75×4.2 mm3, 21 contiguous transverse slices, 1.05 mm
gap, 2598 volumes). Structural imaging data was acquired using a three-
dimensional MPRAGE sequence (192 slices, TR/TE/FA=1.9s/2.32 ms/9°,
matrix=256×256, voxel size=0.90×0.90×0.90 mm3).

Experimental design

Theexperimental designwasablockeddesignwithalternating epochs
of movie excerpts (50 s) and resting periods (90 s). All movies were
excerpts taken fromcommercial series.During rest, subjectsare instructed
to close their eyes, relax, let their mind wander and avoid thinking of
something in particular, as usually done in resting-state studies. The
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Fig. 3. Flowchart of the classification and ensembling procedure, following the preprocessing procedure of Fig. 1.

Table 1
Leave-one-subject-out overall accuracy with various significance thresholds α for
feature selection. α=100% corresponds to no feature selection. L is the number of
classifiers forming the in-band ensembles. The ensemble line refers to multi-band
ensembling.

Threshold α=100% α=5% α=2% α=1%

L 1 21

Subband 1 (0.23–0.45 Hz) 47% 53% 47% 63% 53%
2 (0.11–0.23 Hz) 53% 80% 80% 80% 87%
3 (0.06–0.11 Hz) 87% 93% 90% 90% 90%
4 (0.03–0.06 Hz) 80% 83% 83% 80% 83%

Ensemble (bands 2–4) 90% 97% 90% 90% 93%
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movies were projected on a screen through a mirror and the auditory
stimulation was provided through MRI-compatible headphones. An
empty grey display was projected before and after each movie. At the
end of the rest period, a short beep sound was played to instruct subjects
to open their eyes, followed by a display asking them to respond to a four-
choice question about the content of their thoughts during the rest period.
Thedata collection consists of 2 sessionswith9movie-restingblocks each,
for a total session duration of 23 min. The movie order was pseudo-
randomised across the subjects.

One reason to use a movie task is that for reliable connectivity
analysis, about 10 min of data is required. Since we acquire data in 9
task-resting blocks, using a motor task such as finger tapping would
require (9×50 s=) 7.5 min of tapping. This is likely to induce
boredom and habituation in subjects, as would an n-back type task,
and may lead to non-cooperation and frustration. Furthermore, in
choosing an audio-visual task, we are also evoking a distributed
pattern of activations in subjects (at a minimum involving the visual
cortex in the occipital lobe and auditory areas in the temporal lobes),
which is likely to be more difficult to distinguish from distributed
resting-state activity than more localised tasks. This seems like a
better proof-of-concept for the feasibility of using whole-brain
functional connectivity as a basis for classification.

We build up the matrix X from the blocked experimental design;
i.e., for each subject, 90 timecourses are constituted from blocks of the
same condition that are concatenated after linear detrending. For the
resting condition, this approach is known to only differ from
continuous resting-state analysis in a few regions, where it tends to
underestimate correlations (Fair et al., 2007).

Results

Classification

Classifier training and testing are performed using the leave-one-
subject-out procedure outlined in Classification section of Methods.
Stratified classification results are given in Table 1 (column L=1,
α=100%): in each of the 15 cross-validation folds, 2 tests are
performed, one for the resting and one for the movies condition of a
single subject. Thus, the granularity of results is about 3%. One striking
result is that lower-frequency subbands (3 and 4) have much more
discriminative power than higher-frequency subbands (1 and 2),
which are at chance level. This can be attributed to the fact that low-
frequency activity correlations are substantially different between
conditions, while the difference in higher-frequency correlations is
much more difficult to pick up.

To provide insight into the experimental conditions, we also
performed classification experiments in subband 3 by computing average
regional activations per condition (thus generating a 90 dimensional
vector space), after centering each timecourse with respect to that
subject's and condition's regional temporal average vector. This yields
about 76% leave-one-subject-out accuracy for the best classifier used. If
the timecourses are centred using subject-specific, but inter-condition
average vectors (a way to encode the difference with baseline rest
activations), 100% accuracy is obtained, as would be expected from the
conditions chosen and the GLM results in Fig. 7; in this case results cannot
be directly compared with the connectivity-based classification results
because these use only data from one subject and one condition
individually for preprocessing. These results indicate that the tasks have
very distinct activation patterns, but that differences in functional
connectivity are slightly more subtle.

Note that when feature selection is applied, the significance masks
(see Functional connectivity graphs) are computed in-fold using only
the training data. They are applied to both the training and testing
adjacency matrices. When performing feature selection, the number
of connections passing the significance threshold was observed to be
significantly higher for low-frequency subbands.
Ensemble classification

In-band
Within each subband, we created ensembles of 21 functional trees on

bootstrap replicas of the trainingdata. The results are shown in Table 1. All
frequency subbands benefit somewhat from the ensembling, with
subband 2 showing the most improvement, and showing substantial
accuracy. This indicates that the connectivity patterns in subband 2 are
quite complex, and the decision boundary learned by the ensemble is
certainly non-linear. Subband 1 sees very little improvement in accuracy,
indicating that connectivity in this frequency subband is probably not
discriminative between rest and movie conditions.

Multi-band
Given the close-to-chance accuracy of the classifier in subband 1

for most threshold settings, we excluded it from the majority voting
ensemble to satisfy the Condorcet jury theorem (Ensembling subband

image of Fig.�3
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graph classifiers). Classification accuracy for multi-band ensembling,
shown in Table 1, improves or at least is the same as the accuracy in
the best individual subband ensemble. The results are consistent with
theoretical lower bounds (see Appendix A), which for the results in
Table 1 are 0.67 in the worst case (L=1, α=100%), and 0.8 in the best
case (L=1, α=1%), while the theoretical upper bound is 1 in all cases.
An analysis of the classifier outputs suggests that the main cause for
the improvement in the single-classifier case (L=1) despite the very
low accuracy of subband 2 is the negative correlation between the
decisions of the classifier in subband 2 and that of the classifier in
subband 4 (phi coefficient=−0.14).
Discriminative graphs

A discriminative graphℋ can be extracted for each subband from
the distribution of classifier parameters as explained in Discriminative
graph construction. To ease visualisation and interpretation, we split
the associated ℋ in two discriminative subgraphs; i.e., from the sign
of the contrast “moviesNrest”, obtained from the N adjacency
matrices, we derive the subgraphs ℋ+ and ℋ− for positive and
negative values, respectively. It should be noted that both subgraphs
carry discriminative power to distinguish conditions. However, ℋ+

reflects those connections that are stronger in movies than rest
condition, and vice versa. We thus have ℋ=ℋ+∪ℋ−. The
discriminative graphs are shown in Fig. 4. Spheres represent the
“functional connectedness” of a region with the rest of the brain —

larger spheres mean the region is more correlated with other regions.
For all frequency subbands, we observe that connections that are

stronger in rest (ℋ−) present more discriminative ability than those
that are stronger in movies. The cuneus is a majorly connected region,
present in all subbands, with particularly strong connections to
occipital areas.

We also extract histograms depicting the importance (in terms of
discriminative power) of each connection over the 15 cross-validation
folds, shown in Fig. 5. The histograms are also colour-coded to reflect
connections that are stronger in the resting condition (in blue) and
those that are stronger in the movies condition (in red).

It appears clearly that the most discriminative connections are
always those that are part of ℋ− (stronger in resting). It is also
noteworthy that the connections belonging to ℋ+ (stronger in
movies) steadily gain discriminative power with rising frequency —

the proportion of ℋ+ connections rising into the top 50 most
discriminative connections move from 28% in subband 4 to 64% in
subband 2. This is a clear indication that the “movies” network
becomes more distinctive in higher-frequency bands.

Another interesting aspect is that the number of unique connec-
tions picked up by the ensemble of functional trees classifier increases
roughly in proportion classification accuracy: over all cross-validation
folds and all trees, 399 unique connections were selected by the
classifier in subband 4, 306 in subband 3, and 568 in subband 2. This
suggests that the discriminative networks have a larger spatial extent
with increasing frequency, and that discriminative power is more
distributed between connections at high frequencies.

Comparison with post-hoc whole-group contrasts

We now compare discriminative graphs obtained with a simple
post-hoc group-level method in subband 3. In this method, no train/
test separation is performed. All 15 correlation matrices for the two
conditions were used to perform multiple t-tests for the difference in
means of each correlation coefficient. FDR correction was applied.
Subsequently, a significance threshold of α=5% was applied to prune
the matrix. Only 23 coefficients passed the threshold.

Fig. 6 illustrates the mean condition-specific correlation matrices,
the map of p-values, and the retained connections. Coherent with the
classifier-based analysis (see histogram of discriminative connections
in Fig. 4), the cuneus has the most connectivity to other regions, and
most significant connections originate/terminate in the occipital lobe.
A few connections concern the superior temporal lobe. The connec-
tions passing the significance threshold form a subset of the most
discriminative connections found by the classifier-based methods.

This provides a reassuring confirmation that the discriminative
graphs extracted using the classifier-based method proposed make
sense in light of a classical hypothesis testing analysis.

General linear model analysis

For comparison purposes, we also perform a standard confirma-
tory analysis based on the general linear model (GLM). The realigned
data is analysed using conventional SPM methodology. Specifically,
the design matrix is constructed for each subject to model movies
versus rest, and the content question that is asked after each resting
period is added as a covariate of no interest. The stimulation functions
are then convolved with the canonical haemodynamic response
function. We also add the realignment parameters and low-frequency
components (cut-off frequency at 1/256 Hz). The GLM model is fitted
for each subject and the estimated contrast of interest is fed into a
second level analysis after normalisation and regional averaging.

The positive (moviesNrest) and negative (restNmovies) contrasts are
shown in Fig. 7. During the movies condition, an increase in activity is
observed in visual, auditory, and multisensory regions (mostly occipital
and large extents of the temporal cortex). During rest, brain regions
associated with the default-mode network (Raichle et al., 2001; Greicius
et al., 2003) were significantly active, including posterior and anterior
cingulate, bilateral insula, and bilateral inferior parietal lobules.

Discussion

Classification

The relatively high number of connections that are retained by
statistical feature selection (Graph embedding and feature selection)
in the low-frequency subbands, with respect to the number retained
in higher-frequency subbands, hints at the presence of resting-state
networks that are consistent across subjects (Damoiseaux et al., 2006;
Mantini et al., 2007), which in turn yields relatively low inter-subject
standard deviation on the weights of graph edges that these networks
comprise. Not only are low-frequency connections more consistent
across subjects, but those that are stronger in resting than in movies
(edges of ℋ−) are also much more discriminative. This strongly
suggests that much of the inter-subject discriminative ability between
the two cognitive states is due to the inter-subject topographical
consistency of functional connectivity in resting state. Applying the
methodology to other tasks, which may elicit responses that are
generally coherent between normal subjects (such as face viewing),
would probably yield different results, and it may be that discrimi-
native characteristics would be more distributed between conditions.

In general, feature selection in low subbands seems to have no effect,
while it might improve classification accuracy in higher subbands. The
first explanation is that, in low subbands, even at α=1%, most of the
connections are retained, potentially due to the effect explained above.
Thus, in low subbands, much lower significance values would be needed
to have a noticeable effect. In high subbands, it is possible to find a setting
of α that yields better accuracy, but it is by no means obvious to predict
which threshold will produce the best result. This difficulty can be
attributed to two factors. First, the search strategy, or lack thereof. In
reproducing the common practice of FDR thresholding, we have shown
that performingmultiple-comparison correction for edge pruning is at its
core a univariate ranking-based feature selection method. This means
that feature that is irrelevantly taken individually, but jointly predictive,
will be missed. Second, our choice of classifier performs embedded



Fig. 4.Axial (top rows) andsagittal (bottomrows) viewsof discriminative graphsℋ subdivided insubgraphsℋ+(left columns,warmhues, connections stronger inmovies than in resting)
andℋ− (right columns, cold hues, connections stronger in resting than in movies) for all subbands. Connections with darker colour and thicker lines correspond to more discriminative
ability. Larger spheres correspond to more correlated regions. The same colourmap scale is used for each subband. Mildly non-linear scaling is applied for visualisation purposes.
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feature selection, that is, classifier training includes a specific objective
function to select a subset of features that minimises prediction error.
Preemptively throwing out features in this context, according to another
objective criterion (t-test) can undermine good performance or happen
to improve it.

However, it is likely that more weakly regularised classifiers or
those that do not perform embedded feature selection might
benefit from this approach to feature selection (Guyon et al., 2005).
This emphasises the fact that feature selection and classifier
training should not be performed in isolation; i.e., optimising one
objective criterion, such as the Fisher ratio, is not guaranteed to
tighten the error bounds on the classifier.

In terms of comparing our classification results to other state-of-
the-art machines, we note that our bagged subband classifiers
perform the same as a linear polynomial SVM (parameters
optimised via in-fold cross-validation) two subbands (subband 1
and 3) and slightly worse in two subbands (subbands 2 and 4). Even
so, the small amount of test data causes these differences to be
insignificant (McNemar test, p=0.05). The number of parameters
used by decision trees to achieve our results is much smaller
(typically at most 20 attributes are used in each tree, with
significant overlap between trees trained over different bags),
leading to more interpretable models.

Discriminative graphs

We start by examining the connection histograms in Fig. 5. For each
subband, only a small fraction of the 4005 edges of the complete

image of Fig.�4


Fig. 5. Histograms of connection discriminative ability for rest/movies classification across 15 cross-validation folds. Only 50 most discriminative connections are shown.
Discriminative ability is computed as the sum of the regression weights of a connection across folds, multiplied by the accuracy of the classifier in each fold. Red bars correspond to
connections which are stronger in movies than in resting, while blue bars correspond to the opposite situation. Note different scales between graphs.
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connectivity graph is retainedby the classifiers (399 for subband4, 306 for
subband 3, 568 for subband 2). Moreover, less than about 10% of these
connections are most discriminative, which is more than two orders of
magnitude lower than the total number of edges. Further on,weobserve a
transition from resting to movies condition for the most discriminative
connections as we go from low to high frequency subbands. The strong
connections in subband 4 (0.03–0.06 Hz) belong mainly to the resting
condition; i.e., low-frequency coherent BOLD fluctuations are reminiscent
of resting-state networks. Discriminative connections in the intermediate
subband 3 (0.06–0.11 Hz) are intermingled between resting and movies.
For subband 2 (0.11–0.23 Hz), the proportion of connections stronger in
the movies condition sees an important increase. Finally, the discrimina-
Fig. 6.Whole-groupmean correlationmatrices for resting (6(a)) andmovies (6(a)) condition
(d)). Region labels are as per AAL atlas and Fig. 5(a).
tive importance of connections in subband 1 (0.23–0.45 Hz) is very
limited; this subbandmainly containsnoisedue to the slowsignal changes
associated with the haemodynamic response. In general, the different
connectivity patterns across subbands demonstrate the advantage of
using the wavelet transform. The fact that low-frequency subbands are
mainly dominated by connections stronger in resting condition is in line
with the fMRI resting-state literature.

Discriminative graphs in anatomical space for subbands 1–4 are
shown in Fig. 4. During rest (ℋ−), the cuneus appears as a hub in a
number of highly discriminative connections toward occipito-temporal
regions (subbands2–4). The significant increaseof functional connectivity
within visual areas during rest or, equivalently, de-coherence during
s in subband 3, contrast t-test p-values (6(c)), and position of significant connections (6

image of Fig.�5
image of Fig.�6


Fig. 7. Axial, coronal, and sagittal slices (MNI normalised and region-averaged) showing
the contrast movies versus rest at the group level. Colour corresponds to t-values. The
red-to-yellow colourmap corresponds to movies, while the purple-to-blue colourmap
corresponds to resting.
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movie watching, has been reported before (Nir et al., 2006). It is also
known from visual mapping studies that spatial de-coherence breaks
down into patterns with different functional specialisation (Grill-Spector
and Malach, 2004). The fact that these connections are discriminative
forma compelling argument that theunderlyingBOLDfluctuationshave a
neuronal basis and cannot be attributed to non-neurophysiological
sources such as cardiac and respiratory oscillations only. Furthermore,
the connectivity patterns also nicely generalise over subjects (since we
classify an unseen subject), in accordance with Hasson et al. (2004) who
found correlating activities between different subjects watching the same
movie.

The intermediate subbands 2 and 3 are particularly interesting since
connections of both conditions contribute to successful classification.
Intriguingly, BOLD activity relatively increases in dorsal areas during rest
versus in ventral areas during movies (see Fig. 7). One possible
explanation might be the distinction between intrinsic versus extrinsic
activity in parietal versus sensory regions as described by Golland et al.
(2007).

Finally, these results confirm that functional connectivity analysis can
benefit from filtering timecourses in separate frequency bands as clear
differences were observed between the subbands, allowing extraction of
different brain networks and probably reflecting different functions (e.g.,
stimulation versus rest). This view is consistent with a recent work in
combined EEG-fMRI studies, where distinct functional networks are
observed atdifferent EEG frequencybands (Mantini et al., 2007), although
at much higher frequencies for EEG than fMRI.

Activity versus connectivity

The results of the GLM analysis (see Fig. 7) reveal that, as expected,
activity is increased during movies in visual, auditory, and multisen-
sory regions, while typical default-mode regions are deactivated
(posterior and anterior cingulate cortices, bilateral anterior insula,
and bilateral inferior parietal lobules). It is striking that functional
connectivity between areas that successfully contributed to the
classification task, was often stronger for regions during the condition
for which they showed less activation.

For example, cuneus, occipital and temporal regions are clearly
activated during movies, however, connectivity between cuneus and
occipital and temporal regions increases significantly during rest andeven
constitutes a discriminative feature between both conditions at low
frequencies (subbands 2–4). From the opposite side, midline brain areas
are deactivated during movies while showing increased connectivity at
high frequencies (subband 2).

It is possible that brain regions differentially engaged by active “task”
processing appear not functionally connected according to pairwise linear
correlations, but that (conditional) non-linear relationships such as
provided by (conditional) mutual information measures would draw a
different picture. In any event, these findings demonstrate that
connectivity measures contribute to reveal functional organisation
differently than sole activation. More generally, these data point to the
fact that frequency information may provide very important information
when investigating large-scale brain connectivity.

Potential for applications

One important feature of the proposed methodology is that the
classification is based on the connectivity pattern of a single
condition; i.e., we do not use connectivity differences between two
conditions to create a relative baseline. This makes the method
particularly interesting to be applied to the clinical setting; i.e., to
distinguish between control and patients. In particular, there is an
increasing amount of evidence favouring the presence of a specific
anatomical connectivity subtending functional connectivity (Tei-
eipel et al., 2010) that points to the important role that functional
connectivity analysis could play in early diagnosis and differential
diagnosis; e.g., neurodegenerative and inflammatory diseases.

It is well known that the default-mode network is affected by
dementia and other diseases (Buckner et al., 2008;Wang et al., 2007), and
functional connectivity changes are known to be present in a variety of
cognitive deficits, even when structural damage is not apparent. For
example, differences in inter-hemispheric intra-parietal sulcus correla-
tions can indicate post-stroke spatial neglect even when no structural
damage ispresent (Heetal., 2007).Otherdiseasesor traumacharacterised
by diffuse white matter lesions, such as multiple sclerosis or axonal
damage sustained from head injuries, are likely candidates for causing
significant alterations in functional connectivity. The use of the technique
in psychiatric diseaseswhere a dysfunctionof distributednetworks exists,
such as schizophrenia (Bluhm et al., 2007; Garrity et al., 2007), autism
(Kennedy and Courchesne, 2008) or obsessive–compulsive disorder
(Harrison et al., 2009), could also be particularly valuable where
traditional univariate or single ROI methods are likely to be difficult to
apply. Our method is data-driven and therefore does not rely on strong
hypotheses about existing resting-state networks. Specifically, it is well
possible that connections belonging to a subnetwork turn out to be most
discriminative.

Conclusion

In summary, we have proposed a classification approach to infer brain
states from functional connectivity graphs, instead of the commonly used
brain voxel activation values. We have shown that the approach is
applicable to inter-subject brain decoding with good results, and that
interpretable output can be generated. We have demonstrated the
feasibility using a cognitive task and compared the discriminative
connectivity graph with SPM-style activation patterns. The potential of
theproposedmethodology lies in situationswhere connectivitymeasures
are the most readily available, such as for comparing resting-state fMRI

image of Fig.�7
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between patients and control groups, but also provides complementary
information to task-based acquisition paradigms. The method fits well
with current trends in clinical neuroscience where multivariate pattern
recognition techniques are increasingly used to find increasingly subtle
effects in data, inaccessible tomass-univariatemethods (Bray et al., 2009).

The current atlasing procedure uses rather coarse-grained brain
regions. While this might reduce inter-subject variability, future
improvements could be obtained by using more sophisticated
segmentation and atlasing methods; e.g., surface-based segmentation
(Dale et al., 1999; Fischl et al., 1999) and function-based inter-subject
mapping (Sabuncu et al., 2010) or “alignment-free” methods
(Anderson et al., 2010).
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Appendix A. Accuracy bounds for majority voting combination

Matan (1996) has shown that for an ensemble of L classifiers, the
upper and lower bounds on achievable majority voting accuracy are
given by:

Pmax = minð1; f ðτÞ; f ðτ−1Þ;…; f ð1ÞÞ; ðA:1Þ

Pmin = maxð0; gðτÞ; gðτ−1Þ;…; gð1ÞÞ; ðA:2Þ

where the functions f(τ) and g(τ) are defined in terms of a specific
majority decision threshold τ′ (an integer) and base classifier
accuracies pl:

f ðτ′Þ = 1
τ′

∑
L−τ + τ′

l=1
pl: ðA:3Þ

gðτ′Þ = 1
τ′

∑
L

τ−τ′ + 1
pl−

L−τ
τ′

: ðA:4Þ

Thus, it can be seen that majority voting ensemble accuracy is a linear
functionof component classifier accuracies. Notehowever that this bound
does not take into account classifier diversity, a very important and
somewhat ill-defined parameter of ensembling. The diversity-accuracy
tradeoff is explored in more detail in Meynet and Thiran (2007).

As an illustration, depending on the diversity of the ensemble,
majority voting with 3 classifiers barely above chance (51% accuracy
on a two-class problem) can yield accuracies between 27% and 77%,
while a stronger ensemble (say, three classifiers at 70% accuracy) can
yield accuracies between 55% and 100%.
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