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As we make saccades, the image on each retina is
displaced, yet our visual perception is uninterrupted. This is
commonly referred to as transsaccadic perceptual stability,
but such a description is inadequate. Some visual objects
are stable (e.g., rocks) and should be perceived as such
across saccades, but other objects may move at any time
(e.g., birds). Stability is probabilistic in natural scenes. Here
we extend the common notion of transsaccadic visual
stability to a more general, ecologically based hypothesis of
transsaccadic visual continuity in which postsaccadic
percepts of objects depend on expectations about their
probability of movement. Subjects made a saccade to a
target and reported whether it seemed displaced after the
saccade. Targets had varying probabilities of movement
(ranging from 0.1–0.9) that corresponded to their color
(spectrum from blue to red). Performance was compared
before and after subjects were told about the color-
probability pairings (‘‘uninformed’’ vs. ‘‘informed’’
conditions). Analyses focused on signal detection and
psychometric threshold measures. We found that in the
uninformed condition, performance was similar across
color-probability pairings, but in the informed condition,
response biases varied with probability of movement, and
movement-detection sensitivities were higher for rarely
moving targets. We conclude that subjects incorporate
priors about object movement into their judgments of
visual continuity across saccades.

Introduction

Every eye movement introduces sensory ambiguity for
the brain. Did objects in the world move, or did they just

appear to move as a result of the eye movement? The
visual system resolves this ambiguity with mechanisms
that are not fully understood but seem to involve internal
signals of eye movements called corollary discharge
(Sperry, 1950; Von Helmholtz, 1925; Von Holst &
Mittelstaedt, 1950). These signals influence visual pro-
cessing (Duhamel, Colby, & Goldberg, 1992; Sommer &
Wurtz, 2006) and are thought to aid in the disambiguation
of external from self-induced motion of visual stimuli (for
review, see Sommer & Wurtz, 2008). Visual responses of
single neurons in many brain areas can distinguish
whether a stimulus moves or remains still when saccades
are made (Crapse & Sommer, 2012; Robinson & Wurtz,
1976; Troncoso et al., 2015), and the brain as a network is
exquisitely adept at such transsaccadic judgments (for
review, see Melcher & Colby, 2008).

A classic paradigm for studying visual perception
across eye movements is the saccadic suppression of
displacement (SSD) task (Bridgeman, Hendry, & Stark,
1975). Subjects make a saccade to a peripheral target
that is displaced during the saccade and report the
direction of the target movement. Small target move-
ments often go unnoticed (Bridgeman et al., 1975;
Deubel, Schneider, & Bridgeman, 1996; Müsseler, Van
Der Heijden, Mahmud, Deubel, & Ertsey, 1999),
apparently because the brain attributes the retinal
discrepancy to oculomotor error rather than object
motion (Collins, Rolfs, Deubel, & Cavanagh, 2009).
That is, subjects in these experiments have a bias toward
expecting visual stimuli to remain unchanged across
saccades (Niemeier, Crawford, & Tweed, 2003; Read,
2002; Weiss, Simoncelli, & Adelson, 2002). When this
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expectation is violated through manipulation of the
stimulus, such as postsaccadic disappearance (Deubel et
al., 1996; Deubel, Schneider, & Bridgeman, 2002),
change in form (Demeyer, De Graef, Wagemans, &
Verfaillie, 2010), or movement (Gysen, De Graef, &
Verfaillie, 2002; Gysen, Verfaillie, & De Graef, 2002),
the percepts of the subjects change: SSD diminishes such
that smaller displacements are more readily detected.

Outside of the laboratory, it would be erroneous to
expect uniform visual stability, because much of the
world is animate. Some objects move rarely, such as
rocks, but others move frequently and rapidly, such as
birds. All kinds of objects fall in between. Through
experience, we develop priors, or expectations, about
classes of objects in natural visual scenes (Eckstein,
Drescher, & Shimozaki, 2006). When these expecta-
tions are violated, it is important to react. Sudden
movement at a location expected to be stable, for
example, could signal a camouflaged predator.

Motivated by these ecological considerations, the
overall goal of this study is to move past the idea of
studying visual stability across saccades and instead
study visual continuity: our facility at predicting the
postsaccadic state of each visual image as a function of
its movement statistics. Studying visual continuity
across saccades expands on traditional assessments of
visual stability and provides a more general framework
for understanding visual perception that could facilitate
the design of more naturalistic experiments.

Here we tested the fundamental hypothesis of this
framework, that perceiving object instability across
saccades depends not only on visuomotor factors (e.g.,
corollary discharge and the size of object movement)
but also on expectation, a cognitive factor. In our case,
expectation is a prior about the probability of
movement given the object’s features. We designed a
variant of the SSD task in which the movement
probability of a stimulus was signaled by its color.
Subjects were tested before and after learning the
relationship between color and jump probability. In
support of our hypothesis, we found that expectations
influenced the ability to detect whether a stimulus
moved across saccades. Response bias, sensitivity to
displacement, and psychometric thresholds were all
affected by expectations. The results suggest a tight
interplay between priors about objects and the percept
of visual continuity across saccades.

Methods

Subjects and overview

Twenty-four naive human subjects (16 women), with
normal or corrected-to normal vision, were recruited

from the Duke University community. All individuals
were older than 18 years and gave informed consent
through protocols approved by the Duke Institutional
Review Board. Subjects performed a novel SSD task in
two experiments. Twelve of the subjects participated in
Experiment 1, which tested our primary hypothesis
about the effect of priors on visual continuity. In a
follow-up study, 12 other subjects participated in
Experiment 2, to examine the potential influence of
implicit learning on performance.

Data collection

Subjects sat in a dark room with their heads supported
by a chin rest and a forehead strap. All subjects reported
their responses using their right hand on the number pad
on a standard keyboard. Stimulus delivery was accom-
plished using Presentation software (Version 0.70, www.
neurobs.com) and custom-written code available upon
request. Visual stimuli were displayed on an LEDmonitor
using a refresh rate of 60 Hz at 1,9203 1,080 resolution.
The monitor was positioned 60 cm in front of the subject
and centered relative to the head. All saccadic targets were
18 3 18 squares. Monocular eye position was recorded at
333 Hz with the eye-tracking system developed by
Matsuda et al. (Matsuda, Nagami, Kawano, & Yamane,
2000; Matsuda, Takemura, Miura, Ogawa, & Kawano,
2014). Using a position threshold of 28, we detected
saccades online at 3.158 6 1.238 (average 6 SD) from the
fixation point or, as evaluated offline, 19.1 6 14.7 ms after
saccade initiation. Saccade detection triggered a software
command to refresh the target at its new location. This
command took 1 to 16 ms to execute (confirmed trial-by-
trial in Presentation). We used a photodiode to measure
the delay between execution of the screen refresh
command and the actual time that the target appeared at
its new location on the screen (11.6 6 0.3 ms). Hence, the
total average lag from saccade initiation to target jump
was 19.1þ 16 (max)þ 11.6¼ 46.7 ms, compared with the
average saccade duration (determined offline) of 71 ms, or
about 66% of the way into the saccade, similar to previous
target presentation timings in our laboratory (68.9% in
Crapse & Sommer, 2012). No trials had to be excluded
because of target jumps occurring after saccade termina-
tion. Some trials were excluded for other reasons,
however, as described below in the Psychometric Curves
section. Offline, eye position traces were low-pass filtered
at 50 Hz before saccade onset and completion calculations
and related analyses.

Experiment 1

Subjects performed a novel variation of the SSD task
in which targets had different probabilities of moving

Journal of Vision (2016) 16(5):7, 1–18 Rao, Abzug, & Sommer 2

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935062/ on 08/09/2018

http://www.neurobs.com
http://www.neurobs.com


depending on their color. Expectations about target
movement were manipulated by withholding or pro-
viding information about these color-probability as-
signments. The visual display, the task, and the
underlying probabilities of movement assigned to each
color were the same for both conditions; only
expectations about target properties varied. The
purpose was to see if changes in expectation affected
reports of transsaccadic stimulus displacement.

At the start of every trial, a fixation point (crosshair)
appeared in the center of the screen (Figure 1A). Upon

acquisition of the fixation point, the crosshair disap-
peared but the subject had to continue to maintain
fixation. After 500 ms, a saccadic target appeared on
the horizontal plane at an average eccentricity of 88

(uniform distribution from 7.58 to 8.58, pseudor-
andomized in position and hemifield to avoid spatial
cues or biases). The trial-by-trial randomization of
position helped to ensure that subjects used internal
estimates of target position and eye position rather
than relying on external spatial cues and biases (Bansal,
Bray, Peterson, & Joiner, 2015; Joiner, Cavanaugh,

Figure 1. Methods and data analysis. (A) Schematic of a single trial. Eye position is represented by the black circle. After foveation of a

fixation spot (white crosshair), a saccadic target (red square) appeared in the periphery and the fixation spot disappeared. An

auditory cue provided the go signal for subjects to make a saccade to the target. On some trials, the target jumped rightward or

leftward during the saccade (as shown), but on other trials, the target remained stationary. Subjects reported their percept that the

target ‘‘jumped’’ or ‘‘remained stationary’’ with a key press to end the trial. (B) From trial to trial, the target color was uniformly

drawn from a gradient of colors that was associated with linearly varying likelihoods that the target would jump during the saccade.

(C) Example eye position traces (black traces) from one trial in which the target (red traces) remained stationary (top) and two trials

in which the targets jumped during the saccade (middle and bottom). Dashed lines are referenced to fixation spot location. (D)

Example psychometric curve. Each small circle represents the average binary decision of the subject (proportion of ‘‘jumped’’ reports)
for trials within an equal-number bin of jump sizes. This binning is just for illustration; the psychometric curves were fit using logistic

regression across all jump sizes (although fitting logistic curves to the binned jump sizes yields similar results). We computed

threshold as the difference in jump size (DX) that corresponded to a rise in the proportion of ‘‘jumped’’ reports from 0.5 to 0.75. (E)

Schematic of signal detection theory analysis of the two trial types (jump vs. no jump), the two response types (‘‘jumped’’ vs.
‘‘remained stationary’’), and the four classifications of trial (Hits, Misses, False Alarms, and Correct Rejections). d 0 represents the

separability of the two Gaussian curves and the criterion, c, represents the response bias of the subject.
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FitzGibbon, & Wurtz, 2013; Joiner, FitzGibbon, &
Wurtz, 2010). After target onset, the subject was
required to maintain fixation for an additional 450–650
ms until an auditory signal (single beep) cued the
subject to make a saccade to the target. This delay
period was enforced to allow for ample time to build a
spatiotopic representation of the target (Zimmermann,
Morrone, & Burr, 2013). During the saccade, the target
could either remain stationary or jump to the left or
right. On trials in which the target jumped, the
amplitude of the displacement was drawn from a
modified standard Gaussian distribution (minimum
amplitude was 0.058 to maximum amplitude 48).
Postsaccadically, subjects were required to fixate on the
stimulus for 500 ms before it disappeared. Subjects then
reported, using a keyboard press, whether the target
was perceived to have jumped or remained stationary.
There was no required distinction between a leftward
or rightward jump; both were reported as ‘‘jumped.’’ If
a subject broke fixation before the auditory cue to
saccade, the trial was immediately aborted and three
rapid beeps provided an error signal.

The task differed from standard SSD paradigms in
two ways. First, subjects assessed whether or not the
target jumped or remained stationary as compared with
the traditional ‘‘left/right’’ reports for targets that were
known to jump on every single trial. Second, targets
varied in color, and these colors symbolized the
probability that a target would jump. In each trial, the
color of the target was chosen from a gradient from
cold colors (bluer) to warm colors (redder; Figure 1B).
Fifty discrete colors along the gradient were mapped
linearly to the probability of jumping, from very low
(probability of 0.1) to high (probability of 0.9). For half
of the subjects, the probability assignments were from
blue (lowest) to red (highest) and for the other half,
from red (lowest) to blue (highest). We chose to use a
gradient with many steps (rather than a reduced set of
colors) to encourage participants to use a behavioral
rule rather than relying on simple stimulus-response
associations. Furthermore, using a warm-to-cool or
cool-to-warm gradient requires many intermediate
steps to convey the gradient properly; otherwise, it may
appear as a disparate collection of individual colors.
Determination of whether a target would jump on a
particular trial was calculated according to these
probabilities, selected with replacement. If a target was
to jump on a particular trial, the size of the jump was
drawn from the same modified Gaussian distribution
regardless of the color of the target. Thus, a target’s
color indicated the likelihood that it would jump on a
given trial but not the size (or direction) of the
displacement.

Each subject performed three blocks of trials. The
first was a Control block for which the targets were
always white with a 0.5 chance of jumping on each trial,

although that probability was unknown to the subject.
The second was an Uninformed block that used the
color-probability SSD task described above, but
subjects remained naı̈ve about the existence or identity
of any color-probability assignments. After that block,
we queried each subject to find out their subjective
opinion about how the colored targets differed, and
then we informed them of the true relationship between
colors and probabilities of movement. The subjects
then performed an Informed block that, except for their
new knowledge about the color-probability assign-
ments, was exactly the same as the Uninformed block.
The experiment was split into two sessions (one session
per day). The Control block lasted approximately 1 hr,
and the Uninformed block lasted approximately 2 hr,
and both were performed in the first session. The
Informed block also lasted approximately 2 hr and was
performed in the second session.

Between the Uninformed and Informed blocks (at
the start of the second day), the information given to
the subjects followed this script: ‘‘The color gradient
corresponds to a probability of jump where the coldest
color jumps 10% of the time and the warmest color
jumps 90% of the time. The cold-to-warm gradient
represents a linearly varying jump probability.’’ This
description was modified appropriately for subjects
tested on the opposite assignment (red-low probability,
blue-high probability). The investigator answered any
questions the subject had to ensure that the meaning of
the colors, and their corresponding jump probabilities,
was clear and understood.

In addition to the reasons discussed above, the large
number of colors (50 from blue to red) was chosen to
mitigate implicit learning of the color-probability
assignments in the Uninformed block. During that
block, we wanted the subjects to have no expectations
about whether a particular target would move in a trial.
The goal was for subjects’ expectations about the
targets to change in a stepwise manner, due to the
instructed information, to optimize identification of
any resulting changes in task performance. To test
whether implicit learning of color-probability assign-
ments occurred in the Uninformed block without
explicit instruction, we compared performance early
and late in the block as described in the Results section.
In addition, we ran a follow-up study, Experiment 2, as
described next.

Experiment 2

The purpose of this experiment was to amplify the
possibility of implicit learning in the Uninformed
block, to determine the extent to which subjects might,
within the 2-hr block of trials, develop expectations
about target movement based on inferred color-
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probability assignments. If subjects did develop expec-
tations, we could examine how the behavior differs as a
result of explicit instruction as opposed to implicit
learning. Experiment 2 was the same as Experiment 1
except that only three colors from the blue-red gradient
were used: the two extremes and the central color (light
green). With only three unique targets instead of 50,
subjects had about 17 times as much exposure to each
color. In Experiment 2, just as in Experiment 1, subjects
performed a Control block, an Uninformed block, and
then an Informed block. Twelve new subjects were
recruited. For half of them, the color-probability
assignment was blue-low to red-high, and for the other
two, this assignment was reversed.

Data analysis

The data sets included eye movement traces and
binary reports that the target jumped or remained
stationary during the saccade. Eye movement traces
were used for offline confirmation of steady fixation
and, thorough comparison with target jump times, to
ensure that target motion occurred during the saccade,
not before or after (Figure 1C). From the reports of the
subjects, we evaluated performance using psychometric
curves and signal detection theory. Statistical tests were
parametric (analyses of variance [ANOVAs], t tests,
and Pearson correlation tests) and evaluated at a
significance criterion of p , 0.05 with Bonferroni
correction for multiple comparisons as appropriate.

Psychometric curves

The data set from each subject consisted of binary
reports that the target jumped or remained stationary
during the saccade. The main measure was the
‘‘Proportion of ‘jumped’ reports’’ for each color (or bin
of colors) and jump size. As discussed at the end of this
section, ‘‘jumped’’ reports were further classified into
Hits and False Alarms, and ‘‘stationary’’ reports into
Correct Rejections and Misses, for signal detection
(response bias c and sensitivity d 0) analyses. 9.8% of all
the trials were aborted online when presaccadic fixation
was broken before the auditory cue was delivered. Of
the successfully completed trials, we excluded trials in
which the first saccade landed more than 58 from the
target’s presaccadic location (3.35%) and trials in which
saccadic reaction times were greater than 1 s (4.1%).
This time value was selected as a balance between using
comparably quick responses across trials and allowing
ample time for subjects to build an internal represen-
tation of the spatiotopic position of the targets
(Zimmermann et al., 2013). The average presaccadic
viewing duration of our subjects was 680 6 99 ms
(measured as time from target onset to saccade

initiation). All the data presented in this report were
also split by inward/outward as well as leftward/
rightward target jumps. All results and interpretations
were nearly identical across these subgroups. Thus, we
pooled the data across directions of target jumps as
well as direction of saccades.

Psychometric curves were fit to the proportions of
‘‘jumped’’ responses using logistic regression,

y ¼ 1

1þ e�zi
ð1Þ

z1 ¼ b0 þ b1j ð2Þ

z2 ¼ b0 þ b1cþ b2jþ b3cj ð3Þ
where j represents the vector of jump size and c
represents the corresponding vector of colors. The
logistic regression was either applied to individual bins
of adjacent colors as a function of jump size only
(vector of exponents zi in Equation 1 equaling z1 from
Equation 2) or incorporated both color and jump size
simultaneously and thereby using all trials in a given
block (vector of exponents zi in Equation 1 equaling z2
from Equation 3). For the former method, five equal
bins were formed by partitioning the full range of 50
colors into five bins of 10 adjacent colors. Figure 2
shows the qualitative difference between these two
methods. For the purposes of this article, all analyses
and statistics were performed by fitting the psycho-
metric curves across jump sizes only (Equation 1 and
Equation 2; Figure 2, top row), for each of the five
color bins, as this provided results closer to the raw
data. All conclusions were unchanged, however, using
the color and jump size double-fitted regressions
(Equation 1 and Equation 3; Figure 2, bottom row).
Psychometric thresholds were measured as the change
in jump size corresponding to a rise in the proportion
of ‘‘jumped’’ responses from 0.5 to 0.75 (Figure 1D). In
a few cases, the entire psychometric curve exceeded the
0.5 level (although never the 0.75 level). For such data,
we extrapolated the curve to negative jump sizes for
calculating the threshold.

Signal detection techniques

There were four main types of trial results. A trial
was a ‘‘Hit’’ when the target jumped and the subject
reported that it jumped, a ‘‘Correct Rejection’’ when
the target remained stationary and the subject reported
that correctly, a ‘‘Miss’’ when the target jumped but the
subjects did not report it, and a ‘‘False Alarm’’ when
the target remained stationary but the subject reported
movement. Psychometric curves provide a useful
overview of performance, but they poorly take into
account false alarms and correct rejections. We
performed a more thorough assessment of transsacca-
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dic change detectability using signal detection tech-
niques that took into account all four trial outcomes
(Figure 1E; Macmillan & Creelman, 2004). Specifically,
we calculated the sensitivity index, d 0, and a response
bias term called criterion, c,

d0 ¼ zðHÞ � zðFAÞ ð4Þ

c ¼ �0:5 3 zðHÞ þ zðFAÞ½ � ð5Þ
where H is Hit Rate¼Hits/(HitsþMisses), FA is False
Alarm Rate¼ False Alarms/(False Alarmsþ Correct
Rejections), and z(*) denotes the inverse Gaussian
cumulative distribution function. A d 0 value of zero
corresponds to performance at the level of chance. The
more positive the value of d 0, the better the sensitivity
of the subject to transsaccadic target displacement. The
response bias c reports the behavioral preference of a
subject. For an ideal observer, c would be zero. A
positive value of c (rightward shifts) indicates that a
subject was biased toward reporting that the target
remained stationary. Conversely, a negative value of c
(leftward shifts) would mean a bias towards reporting
‘‘jumped.’’

Just as the colors were binned into five equally sized
groups to construct the psychometric curves, the same
color bins were used for calculating d 0 and c. For both
metrics, data from representative subjects are shown as
well as population averages across subjects for the
Uninformed and Informed blocks. Differences in c and
d 0 as a function of color were assessed with linear
regression over the five groups of colors. Negative c
slopes would indicate a preference for reporting
‘‘Jumped’’ for the targets that jump frequently and
‘‘Remained Stationary’’ for those that rarely jump. For
d 0, the sign of the slope indicates whether transsaccadic
change detection was better for targets that jumped
with low probability (negative d 0 slopes) or high
probability (positive d 0 slopes).

Results

We used a modified SSD task, in which the color of a
saccade target signified its probability of jumping, to
test the hypothesis that expectations about object

Figure 2. Single-subject behavior. Data from the Uninformed block are shown in the left column, and data from the Informed block

are shown in the right column. Filled circled represent the binary responses on individual trials across the binned color spectrum,

vertically spaced for viewing clarity. Top row: Psychometric curves computed by fitting to jump sizes for each bin of colors individually.

Bottom row: Curves computed by fitting to all colors and all jump sizes simultaneously without any binning (for viewing comparison,

only five color values, i.e., every 10th color, are shown).
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movement influence the percept of visual stability
across saccades. Subjects performed the same task in
Uninformed, then Informed, conditions. Just before
starting the Informed condition, subjects were told the
color-probability relationships. A Control condition
established baseline performance with no colors. In
Experiment 1, we used a spectrum of color-probability
assignments during the Uninformed and Informed
conditions. In Experiment 2, we used a reduced set of
colors, mapped to the extremes and middle of the
probability range.

Experiment 1

The twelve subjects performed an average of 360 6
130 trials in the Control block, 705 6 95 trials in the
Uninformed block, and 652 6 114 in the Informed
block.

Single-subject example

Data from a representative subject, for qualitative
assessment, are shown in Figure 2. The subject’s
detection of the jump increased with jump size and
seemed to vary by color (probability of jumping). The
main point of our analysis was to quantify performance
as a function of color and how this relationship changes
from the Uninformed to the Informed condition.

We summarized performance with logistic functions
fit individually for bins of color as a function of jump
size (Figure 2, upper panels; shown are curves for the
50 colors binned into five equal groups) or fit
simultaneously as a function of both color and jump
size (Figure 2, lower panels; shown are the curves
evaluated at every 10th color). The simultaneously fit
logistic curves are shown for purpose of illustration,
because they depict the pattern of effects more clearly,
but for all quantitative analyses, we used the individual
color bin curves that were fit to jump size only, as they
involved less ‘‘smoothing.’’ The study’s results and
conclusions were the same using either method.

For the subject in Figure 2, the color-probability
assignments were blue-low to red-high. In other words,
blue targets rarely jumped, P(jump)¼ 0.1, whereas red
targets jumped frequently, P(jump)¼ 0.9. During the
Uninformed condition (Figure 2, left), psychometric
thresholds varied by color, but no clear pattern was
apparent in the color-binned, jump-size fit logistic curves
(Figure 2, upper left). When color and jump size were fit
simultaneously (Figure 2, lower left), a clearer pattern
was seen in which ‘‘jumped’’ was reported more often for
the redder colors compared with the bluer ones. Further,
fits for the redder colors had a smaller threshold. False
alarm rates, corresponding to the y-intercepts of the
psychometric curves, ranged from 0.2 to 0.4 depending

on the logistic fit method. We will take false alarms into
account quantitatively with c and d 0 measures.

In the Informed block (Figure 2, right), behavior
changed in two main ways. First, the thresholds
decreased for all colors, but this effect was especially
pronounced for the bluer colors (lower probability of
movement during the saccade). Second, the false alarm
rates diverged, dropping for the bluer colors for both
logistic fit methods (Figure 2, upper and lower right)
and increasing for the redder colors in the double-fit
logistic curves (Figure 2, lower right). Both measures
suggest that introducing an expectation that some
targets are more stable than others changed perfor-
mance. In particular, expectation that a target will be
relatively stable (here, the bluer targets) seemed to
increase both the accuracy of detecting when it was
actually stable (lower false alarm rates) and the ability
to notice when it moved (smaller thresholds).

To determine if these single-subject trends were
significant, we calculated signal detection theory
measures of behavioral response bias c and perceptual
sensitivity d 0 for each subject and analyzed the overall
changes in these measures across the group data.

Response bias

The response bias criterion c represents the influence of
subject behavior on performance, regardless of underlying
signal/noise distributions (see the Methods section). If a
subject exhibits no bias and uses a strategy based only on
signal/noise distribution separation, then c¼0. If a subject
favors ‘‘jumped’’ responses, relative to what is optimal
based on objective evidence, then c , 0. If a subject is
more conservative and favors ‘‘remained stationary’’
responses, then c . 0. The response biases as a function of
color bins for four typical subjects, including the subject in
Figure 2, are shown in Figure 3A for the Uninformed
trials and in Figure 3B for the Informed trials.

The pooled response bias data for all 12 subjects are
shown in Figure 3C and 3D for Uninformed and
Informed conditions, respectively (M 6 SD for each
color bin). In the Uninformed condition (Figure 3B),
response bias did not change significantly across color
bins (slope¼�0.05 6 0.06; one-sample t test, p¼ 0.17)
and remained, on average, around c¼ 0 for all. That is,
on average, the subjects responded in a relatively
unbiased way to all targets regardless of color and
underlying jump probability. In the Informed condi-
tion, however, subjects showed a striking and system-
atic change in behavior: The response bias decreased
significantly with jump probability (slope ¼�0.14 6
0.05; one-sample t test, p ¼ 0.0069). In addition, mean
response biases are .1 for rarely jumping targets and
,1 for commonly jumping targets. This means that
they alter their behavior to favor reports of ‘‘jumped’’
for targets that they expect to jump more frequently
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and reports of ‘‘not jumped’’ for targets that they
expect to remain stable.

Sensitivity

The change in response bias confirmed that subjects
took into account priors about stimulus movement, but
one could argue that this change in behavior was not
altogether surprising. More compelling would be a
change at the perceptual level, as quantified by the
sensitivity measure d 0. Recall that d 0 ¼ 0 indicates
random responses with no perceptual detection of
stimulus movement regardless of jump size. The larger
the d 0 value, the better the transsaccadic change detection
as determined by aggregate analysis of Hits, Misses,
False Alarms, and Correct Rejections. In Figure 4,
results of d 0 calculations as a function of jump
probability are shown for the same four subjects depicted
in Figure 3A and B. Each row corresponds to a single
subject. Consider first the data in the top row of Figure 4,
which are from the subject of Figure 2. In the
Uninformed block, this subject performed about the
same across the color/probability spectrum, with slightly
higher sensitivity for redder colors (higher probability of
jumping), as indicated by the positive slope of d 0 versus
jump probability (slope value shown in upper right of
each plot). In the Informed block, the d 0 values for bluer
colors (lower jump probabilities) increased while d 0 for
redder colors stayed about the same. The overall result

was a strongly negative slope of d 0 versus color after
instruction.

Examining the results of the other subjects in Figure
4, the slopes of d 0 versus jump probability varied in the
Uninformed condition (Figure 4, left column), with two
subjects exhibiting positive slopes and two subjects
negative slopes. Overall, six of the 12 subjects showed
positive slopes in the Uninformed condition. In the
Informed condition, however (Figure 4, right column),
the results were uniform: all 12 subjects showed
negative slopes of d 0 versus jump probability.

These slope data (d 0 vs. jump probability) are
compiled for all 12 subjects in Figure 5A. Individual
slopes are shown with black circles and average slopes
with open circles for the Uninformed and Informed
data sets. The average slope in the Uninformed
condition was not significantly different from zero (0.09
6 0.45; one-sample t test, p¼0.53) but, in the Informed
condition, the average slope was significantly below
zero (�0.68 6 0.47; one-sample t-test, p¼ 4.173 10�4).
Overall, there was a significant decrease in d 0 slopes
from the Uninformed to the Informed condition
(paired t test, p ¼ 0.0046).

The data in Figure 5A were calculated from binned
color data for each subject. A complementary way to
evaluate the data, shown in Figure 5B and C, is simply
to plot the average d 0 value across subjects for each of
the 50 probability levels. The conclusions were the
same: The slope of average d 0 versus jump probability
was not significantly different from zero in the

Figure 3. Response bias. The top row shows the criterion c for four typical subjects, and the bottom row shows the population

criterion values. Uninformed blocks are on the left, and Informed blocks are on the right. (A) In the Uninformed condition, the

criterion values remained relatively unchanged across the color spectrum (i.e., target jump probability). (B) In the Informed condition,

criterion values decreased systematically from positive values for low-probability jump targets to negative values for high-probability

jump targets. (C) As a population, c stayed near zero in the Uninformed condition across the spectrum of colors. (D) In the Informed

condition, c increased for targets with low jump probability and decreased for targets with high jump probability.
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Uninformed block (slope¼ 0.10 6 0.17; one-sample t

test, p¼ 0.54), but it was significantly less than zero in

the Informed block (slope¼�0.69 6 0.14; one-sample t

test, p ¼ 5.0 3 10�6). This pooled method provided

insight into the reason for the drop in slope. Primarily,

it seemed to be due to an elevation in d 0 values for

targets with low jump probabilities after instruction
(compare bluer targets in Figure 5B vs. Figure 5C). In
contrast, d 0 values for targets that jumped frequently
stayed about the same after instruction (compare
redder targets in Figure 5B vs. Figure 5C). Finally, note
that d 0 for targets that were expected to move about
half of the time (green colors in Figure 5B, C) aligned
well with the average d 0 from earlier Control blocks in
which only white targets were used that moved 50% of
the time (dashed lines), confirming that, on average,
SSD performance for ‘‘movement-neutral’’ targets was
the same throughout the experiment. This suggests that
temporal factors that could decrease average d 0 over
time, such as fatigue, had little impact on the results.

A spatial factor that can influence the perception of
displacement across saccades is the point of subjective
stationarity (PSS), or perceptual null location (Bansal
et al., 2015; Boi, Öğmen, Krummenacher, Otto, &
Herzog, 2009; Collins et al., 2009; Ogmen, Agaoglu, &
Herzog, 2015). Ideally, the PSS is at the presaccadic
target location. If it is offset, it causes directional
differences: The perception of displacement varies with
target jump direction. To assess whether a nonzero PSS
may have affected our data, we tested whether the
effects of expectation varied with target jump direction.
We split all trials into two groups, ‘‘Inward’’ and
‘‘Outward’’ target jumps, and computed d 0 as a
function of target jump probability in the Uninformed
and Informed blocks just as done before (as in Figure
5B and C). Because the calculation of d 0 requires trials
in which the target does not move, we randomly
distributed no-jump trials between the Inward and
Outward groups. We found that in the Uninformed
block, the d 0 slopes for both groups were not
significantly different from zero (Inward: slope¼0.19, p
¼ 0.29; Outward: slope¼�0.11, p¼ 0.61; one-sample t
tests), whereas in the Informed block, the d 0 slopes for
both groups were significantly negative (Inward: slope
¼�0.75, p¼ 1.93 10�4; Outward: slope¼�0.73, p¼ 3.3
3 10�4; one-sample t tests), nearly identical to each

Figure 4. Individual subject d 0 values. Data from the Uninformed

(left column) and Informed (right column) blocks are shown for

the same four subjects (rows) of Figure 3. Also, the top row is

from the subject of Figure 2. Dashed lines indicate d
0 in the

Control blocks (constant jump probability). Solid lines are linear

fits to the d
0 data, and numbers at the upper right of each plot

are the slopes of those fits. Symbol colors depict the direction

of the color gradients used for each subject (blue to red, or red

to blue).

Figure 5. Population d
0 results. (A) Slopes of d 0 data comparing the Uninformed block with the Informed block. Mean 6 standard

deviation (open circles) are plotted next to corresponding sets of individual data points (black circles). In a second analysis, average d
0

values from all 12 subjects for each of the 50 target colors were plotted against target jump probability for the (B) Uniformed and (C)

Informed blocks. Solid lines are linear fits to the d
0 data. The slope was not significant in the Uninformed condition but significantly

negative in the Informed condition (see text). Dashed lines represent the population d
0 from the Control blocks.
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other and close to the slope of the pooled data (�0.69;
cf. Figure 5C). Because the d 0 results did not vary with
target jump direction, an influence of PSS on our data
seems unlikely.

Psychometric thresholds

For each of the 50 jump probabilities, a psycho-
metric curve can be computed independently. This
curve is not as precise a measure of performance as d 0

or c, as it includes false alarms that influence the y-
intercept. Thresholds derived from the curve, measured
as the jump distance corresponding to a rise in the
proportion of ‘‘jumped’’ responses from 0.5 to 0.75,

nevertheless provide a straightforward and commonly
used assay of sensitivity (Bansal et al., 2015; Deubel,
Bridgeman, & Schneider, 1998; Joiner et al., 2013).
Smaller thresholds indicate better performance in that
smaller changes in jump sizes are detected. We analyzed
thresholds to determine if they yielded results consis-
tent with those found using signal detection theory.

In Figure 6, we plot normalized thresholds for all of
the 12 subjects. The normalization provided the ratio of
the threshold in the Informed block relative to that in
the Uninformed block. Taking the ratio yielded skewed
data with median ,1 but a long tail .1 (skewness ¼
4.63). We log-transformed the ratios to work with a
representation of the data that was much closer to a
normal distribution (skewness¼ 0.75). Each data point
indicates whether information about color-probability
assignments caused a subject’s threshold for detecting
target movement, for each jump probability, to
decrease (log-ratio ,0), increase (.0), or stay the same
(¼ 0). To determine if the log-ratios varied across the
color-probability spectrum, we computed a linear fit to
the data. The fit rose significantly from ,0 at lower
probabilities to ;0 at higher probabilities (slope of
linear fit¼ 0.80; R2¼ 0.183; one-sample t test, p , 1.40
3 10�4). Hence, psychometric threshold data were
consistent with the d 0 results, indicating that when
subjects received explicit information that certain
stimuli were relatively unlikely to move, they exhibited
a lower threshold (heightened ability) to perceive the
movement of those stimuli across saccades but experi-
enced little to no perceptual change for targets that
were likely to move.

Effects of saccade parameters

Differences in saccadic latency or accuracy from trial
to trial can affect perceptual judgments (e.g., Bansal et
al., 2015; Collins et al., 2009; Zimmerman et al., 2013),
so we analyzed those saccade parameters and their
possible effects on our data. Saccadic latencies are

Figure 6. Population psychometric threshold results. The

thresholds from psychometric functions for data collected in the

Informed block were expressed relative to thresholds calculated

for corresponding data in the Uninformed block. Each circle

represents these ‘‘normalized threshold’’ data from an

individual subject, based on psychometric curves fit for each

color independently. To correct for the skewed ratio data, we

log-transformed them. A linear fit to the pooled log-ratio data

(solid black line) was mostly below the zero line with a

significant positive slope. Therefore, the lower the probability of

target movement, the greater the reduction in threshold.

Figure 7. Comparison of saccadic (A) latency and (B) endpoint error between blocks. Curves show the cumulative distribution

functions of each saccade parameter for Uninformed and Informed blocks. Dots show the fraction of correct trials across the ranges

of saccade parameters, calculated in 60-ms bins for latency and 0.58 bins for endpoint error.
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plotted as cumulative distributions in Figure 7A for the
Uninformed (blue) and Informed (green) conditions. In
most trials, the latencies ranged from 100 to 300 ms,
and there was no significant difference in the distribu-
tion of latencies between the Uninformed and Informed
conditions (medians 199 ms and 180 ms, respectively;
Wilcoxon rank sum test, p¼ 0.421). Saccade accuracy
was determined by measuring trial-by-trial endpoint
error, the magnitude of the difference between the
saccadic landing point and the presaccadic position of
the target. Most endpoint errors were ,18 (Figure 7B),
and there was no significant difference in the distribu-
tion of endpoint errors between the Uninformed and
Informed conditions (medians�0.06 and 0.08, respec-
tively; Wilcoxon rank sum test, p¼ 0.869).

Although neither the saccadic latency nor accuracy
varied significantly between Uninformed and In-
formed blocks, it was possible that performance might
have been affected by the variations in saccade
parameters. To examine this, we plotted the average
performance (fraction of correct responses) in Unin-
formed (blue dots) and Informed (green dots) blocks
across latency (Figure 7A) and endpoint accuracy
(Figure 7B). We quantified whether performance
depended on latency, endpoint error, block, or their
interactions using a logistic regression that included
all three variables:

z3 ¼ b0 þ b1lþ b2eþ b3bþ b4leþ b5lbþ b6eb
þ b7leb

ð6Þ
Vector z3 was used by Equation 1 to calculate the

dependent variable y, the trial-by-trial performance
denoted as correct (y ¼ 1) or incorrect (y ¼ 0). The
independent variable vectors were l, latency; e,
absolute value of endpoint error; and b, block
(Uninformed: 0, Informed: 1). Results are listed in
Table 1. Aside from the intercept b0, the only
significant term was coefficient b3, representing an
effect of block. Its positive sign meant that perfor-
mance was better in the Informed than in the
Uninformed blocks, as expected from the subjects’
exploitation of color-probability information (see the
Response Bias and Sensitivity sections). With regard
to saccade parameters, performance did not depend

significantly on latency, endpoint, or any interactions
involving them (b1, b2, and b4–b7).

Implicit learning

We have assumed that subjects changed their
expectations in a stepwise manner, when they
received information about the underlying proba-
bilities of target movement at the start of the
Informed condition. After every Uninformed block,
subjects were questioned about whether they in-
ferred the roles of the colors and the links to the
jump probabilities. None of the subjects reported
that they noticed the relationship. It is possible,
however, that they may have detected color/proba-
bility associations during the Uninformed block and
acted on them unknowingly. To test the hypothesis
that subjects learned color-probability associations
implicitly during the Uninformed condition, we
examined the time course of effects during this
condition. We did this by splitting the data from this
condition into the first two-thirds and last one-third
of trials (finer time-course analyses yielded noisier
data because of the many trials needed to calculate
stable signal detection theory measures). As in our d 0

analysis, we calculated the slopes of d 0 versus jump
probability for each of these two time ranges
separately. Implicit learning should be evidenced as
a significant drop in the d 0 slope late in the
Uninformed condition (last one-third of trials)
relative to earlier (first two-thirds of trials). Further,
to test any systematic changes that could have
occurred in the Informed block, we performed the
same split analyses on data from the Informed
condition. As shown in Figure 8, the only effect was
at the juncture between conditions, when informa-
tion about color-probability assignments was pro-
vided explicitly. A one-way ANOVA with
Bonferroni-corrected post hoc tests showed no
significant differences between the first two-thirds
and last one-third of d 0 slopes within the Uninformed
block ( p ¼ 0.44) or within the Informed block ( p ¼
0.53). In contrast, there was a significant decrease in
d 0 slopes from the last one-third of the Uninformed
block to the first two-thirds of the Informed block ( p
¼ 9.0 3 10�5). In these data, then, there is no

b0
(Intercept)

b1
(Latency)

b2
(Endpt)

b3
(Block)

b4
(Latency 3 Endpt)

b5
(Latency 3 Block)

b6
(Endpt 3 Block)

b7
(Latency3 Endpt

3 Block)

Coefficients 0.70 �0.0005 0.119 0.211 �0.0002 �0.057 �0.001 0.0007

p values ,0.001 0.056 0.112 0.017 0.585 0.288 0.102 0.072

Table 1. Values and significance of each coefficient for the regression analysis of performance as a function of latency, endpoint error,
and block. Note: Significant results ( p , 0.05) are in bold.
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evidence for implicit learning; Effects on perfor-
mance were attributable only to the explicit in-
struction provided in between conditions.

Experiment 2

Within the Uninformed block in Experiment 1, we
found no evidence that subjects implicitly learned the
rule linking the colors of the targets with jump
probability. Experiment 1 may have discouraged
implicit learning, however, because of the many colors
involved. To test this, we modified the paradigm such
that the targets had only three possible colors: blue,
green, and red. All other facets of Experiment 1 were
maintained in Experiment 2. This simplification of this
experiment led to a better chance to answer two
questions. Is instruction necessary to set up the
expectations about target movement in subjects, or
could they derive their own expectations from repeated
exposure to a limited number of stochastically different
stimuli? If subjects could learn the task implicitly,
would the resulting signal detection and psychometric
effects be different from those introduced by explicit
instruction?

In 12 new subjects, we repeated the study of
Experiment 1 but with the more limited color set. Just
as was done in Experiment 1, subjects were questioned
after the Uninformed block to determine whether they
noticed the link between color and likelihood of jump.
Again, none of the subjects reported an understanding
of the underlying rules. To test whether there was a
more subconscious effect or pattern recognition, we
calculated d 0 for each jump probability, with a focus on
the Uninformed block in which we expected to find
implicit learning, if it occurred. For simplicity, we
compared d 0 for the extreme probability targets (10%
probability of jumping vs. 90% probability) within the
first half of the Uninformed condition, the second half,
and the entire Informed condition (Figure 9). We were
interested primarily in the difference in d 0 between the
high and low jump probability targets, so for viewing
clarity, we normalize the d 0 value for each high jump
probability target to that of its paired low jump
probability target d 0 value.

We found, first, in the Informed block (Figure 9,
rightmost data set), that all 12 subjects showed lower d 0

for high jump probability than for low jump proba-
bility targets, analogous to negative d 0 slopes. This
result replicates the basic d 0 findings from Experiment
1. Second, we found that early in the Uninformed
session (Figure 9, leftmost data set), the ratio of d 0

values seemed to be random, with d 0 larger for the high
probability target than the low probability target for six
of 12 subjects. This again was similar to the findings in

Figure 8. Lack of evidence for implicit learning of color-

probability pairings. Each block, for each of the 12 subjects, was

split into the first two-thirds and last one-third (black circles). d 0

values and slopes were computed individually for each of the

four segments. Across-subjects, mean 6 standard deviation are

plotted next to individual-subject data within each subset of

trials (white circles). There was no significant change between

the first and last segments within either the Uninformed or

Informed blocks. Explicit information about color-probability

associations, provided between the Uninformed and Informed

blocks, caused the only significant and systematic shift in all

subjects’ behaviors, and that change lasted through the entire

Informed block.

Figure 9. Experiment 2 results: Implicit learning compared with

explicit instruction for 12 subjects. The Uninformed block was

split into two halves (early and late) and d
0 computed

independently. Data were normalized to the d
0 of the low-

probability targets, to focus on whether d
0 for the corre-

sponding high-probability targets was relatively higher or lower.

The latter would correspond to a negative d
0 slope, the main

signature of expectation effects in Experiment 1.
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Experiment 1. The critical data set was late in the
Uninformed block (Figure 9, central data set). If
subjects implicitly learned the task through the course
of Uninformed block, we should expect to see the
patterns of d 0 in the second half of the Uninformed
block resembling those of the Informed block. How-
ever, this was not the case; seven of the 12 subjects had
larger d 0 for the high probability target late in the
Uninformed block. Therefore, even in this version of
the task in which we tried to optimize the chance of
implicit learning prior to instruction, we found no
evidence for it. We conclude that our modified SSD
task seems to be successful at introducing expectations
abruptly at the time when information about color-
probability associations is explicitly provided to the
subjects. Before that information is revealed, there
seems to be little if any contamination by implicit
learning.

Discussion

These results suggest that expectations about object
motion influence transsaccadic visual perception. We
found a general change in response bias toward more
frequent reporting of movement for presumed animate
objects than for presumed stable objects. At the same
time, there was an increase in perceptual sensitivity for
detecting the movement of presumed stable objects.
The differences between these effects may seem subtle,
and we will discuss them first.

Expectations about object stability lead to both
perceptual and behavioral changes

Techniques in signal detection theory allow us to
measure both the behavioral (c) and perceptual (d 0)
changes that occur due to the incorporation of priors
about object stability. The c and d 0 measures are
orthogonal to each other, such that evidence for
changes in one does not imply that there should be
evidence for changes in the other (Golomb, Kupitz, &
Thiemann, 2014; Macmillan & Creelman, 2004).
Humans are not ideal observers, so it is unsurprising
that manipulating priors leads to a behavioral bias
(Beck, Ma, Pitkow, Latham, & Pouget, 2012; Gold,
Bennett, & Sekuler, 1999; Green & Swets, 1966). The
bias varied with the priors in a logical way (Figure 3D):
Subjects favored ‘‘remained stationary’’ responses
(positive c) for targets they knew had low probability of
jumping and ‘‘jumped’’ responses (negative c) for
targets they knew had high probability of jumping,
with a smooth, significant transition in between. This is
evidence that subjects did in fact pay attention to the

information about color-probability relationships and
adjusted their behavior accordingly.

Perceptual changes as measured by consistent
changes in d 0 were found as well, in that subjects
became more sensitive to target motion when they
expected targets to remain stationary. In other words,
jumps are detected at a higher acuity when they are
rare and unexpected. This finding was bolstered by an
identical result from analysis of psychometric thresh-
olds. These effects complement research demonstrat-
ing that rare distractors are more salient (i.e., more
distracting) than common ones (Geyer, Müller, &
Krummenacher, 2008; Sayim, Grubert, Herzog, &
Krummenacher, 2010). At first glance, these findings
seem to contradict the standard Bayesian model,
which would predict that our perception is biased
toward our expectations, meaning that jump detection
should be better for expected jumps. However, recent
computational work has shown that under assump-
tions of efficient coding, rare events can be and are
detected disproportionally often even in a Bayesian
framework (Wei & Stocker, 2015). Such effects are not
explainable as a change in behavioral strategy. Rather,
they suggest covert alterations in visual processing.
We do not know how priors affected the visual system
to yield these results, but the underlying neural
mechanism could be studied with neuroimaging or
neurophysiology. The simplest hypothesis about
mechanism is a top-down influence in cognitive terms
(Li, Piëch, & Gilbert, 2004; Supèr, Spekreijse, &
Lamme, 2001) or a frontal to parietal-occipital
influence in circuit terms (Bressler Tang, Sylvester,
Shulman, & Corbetta, 2008; Desimone & Duncan,
1995; Miller & Cohen, 2001; Stocker & Simoncelli,
2006).

Because subjects are more sensitive to unexpected
jumps, it is only natural to ask if the converse is true:
Are subjects also more sensitive to unexpected non-
jumps? This complementary effect would lead to
elevated d 0 for high jump probability targets because
of improved detection of unexpected stability. How-
ever, we did not find any evidence for such an increase
in d 0 for targets that were expected to jump. This could
be attributed to the fact that improved detection of
nonmovement across saccades seems especially chal-
lenging because of the various sources of noise
inherent in the system, including visual acuity (poorer
spatial localization in the periphery), motor variability
(scatter of saccade endpoints), and unknown levels of
precision between movements and internal records—
corollary discharge—of the movements. In other
words, there are no obvious nonjumps in the same way
that there can be obvious (i.e., large amplitude) jumps.
From an ecological or evolutionary perspective, it may
be that violations of expected stability are especially
salient because they could represent the presence of a
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living entity in our environment of which we were not
initially aware, such as a predator hiding in tall grass.
As primates, most of our natural predators rely on
stealth while hunting: Being able to pick up on
surprising movement may be more important to
survival than detection of stability of known animate
objects.

d0 and c are agnostic to jump size

Prior belief (expectation) is combined with evidence
(extent of target jump) to yield a posterior (perception
of ‘‘jumped’’ or ‘‘remained stationary’’). However, the
interplay between priors and evidence in our task is
nontrivial. When evidence is strong (e.g., a 38 jump),
there is little chance that a subject will report anything
other than ‘‘jumped’’ regardless of what the prior
expectation is. When evidence is weak (e.g., a 0.258
jump), a subject is likely to base the decision primarily
on the prior, while downplaying the evidence. Given
the signal detection analysis presented in this article, we
are unable to tease apart the relationship between jump
size and the weight placed on a prior. Both d 0 and c are
computed on a collection of data involving instances
when the target jumps and when it remains stationary.
Further, the metrics are agnostic to the actual jump
sizes itself because all that is factored in is whether there
was a jump or not (Green & Swets, 1966; Macmillan &
Creelman, 2004). Additional studies are needed to
quantify how the weight placed on a prior changes on a
trial-by-trial basis.

Color gradient as a proxy for different types of
targets in the world

Real scenes consist of a great variety of objects with
varying probabilities of movement, but as a first
approximation to this natural arrangement of stimuli,
we used targets with features that were constant except
along two dimensions, color and probability of
movement. This is an extremely reduced preparation,
but it allowed for collection of large amounts of
systematically analyzable data. The concept of a
thermal scale of colors, from blue (cooler) to red
(warmer), is familiar to subjects, and the discrete set of
50 colors along that ‘‘heat’’ range provided a useful
means of assigning the distribution of probabilities
from 0.1 to 0.9. It may be that a more optimal number
of colors could be found, but this would need to be
experimentally determined and could vary by individ-
ual. Our basic goal was to introduce color-probability
assignments that subjects could follow at some
reasonable level of difficulty.

Importance of including a delay period in the
task

Most previous studies of SSD required subjects to
make a saccade reactively to a target that appears
suddenly. We diverged from that standard procedure
for two reasons. First, Zimmermann et al. (2013, their
figure 3) indicated that we might expect a nonlinear
relationship between viewing duration and accuracy of
reports. Their results suggested that for shorter viewing
durations (approximately 100–500 ms), the threshold
for transsaccadic change detection is higher, and for
viewing durations greater than 600–700 ms, it begins to
plateau. On every trial of our task, the stimulus was
present for about 500 ms before the auditory cue was
delivered, and this time window was followed by
additional saccade latencies of ;200 ms (Figure 7A).
Thus, our subjects were operating in the long viewing
duration regime in which performance was stable
(Table 1, nonsignificant b1). We wished to focus
specifically on the effect of prior information without
having viewing duration as a confounding variable.
Second, we wanted to allow ample duration for the
subjects to detect the color of the peripheral target and
incorporate the prior belief into the transsaccadic
expectation. Little is known about the time course of
these cognitive factors influencing transsaccadic per-
ception, and we did not want to limit the processing
times that could potentially be needed.

Implicit learning versus explicit instruction

Through experience, we build a representation of the
things around us, and with that representation comes
an expectation about how things behave. For example,
we know that rocks and sticks seldom move whereas
birds and insects may move quickly and frequently.
These priors are not instructed to us but, rather, they
are learned gradually over time. To see clear, steplike
changes in behavior, we chose to instruct the subjects
about what their priors should be. One limitation of
our study from an ecological perspective is that
expectations induced by explicit instructions might be
different from those arrived at during long periods of
implicit learning. We found no evidence for implicit
learning in either our main experiment or in a follow-up
experiment with a more reduced stimulus set meant to
encourage implicit learning of priors within a single
experimental run. Therefore, we cannot answer the
question of potential differences between implicitly
learned and explicitly provided expectations, and it
appears that much longer exposure to the natural
statistics of target movements will be needed to
examine such implicit factors.
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One motivation for testing whether our results
generalize from explicit instruction to implicit learning
is to set the stage for neurophysiological studies. The
use of nonhuman animals (e.g., rhesus monkeys) would
seem to preclude explicit instruction. It may be that the
only way to incorporate priors into such subjects is
through implicit learning. If the d0 and c effects we find
here carry over to the use of priors learned implicitly,
neurophysiological study of underlying mechanisms
would be plausible.

Neural mechanisms of remapping and the roles
of prediction

Neural evidence for the incorporation of saccadic
corollary discharge into visual analysis has been shown
in the form of presaccadic remapping (Duhamel et al.,
1992; Sommer & Wurtz, 2006; Umeno & Goldberg,
1997; Walker, Fitzgibbon, & Goldberg, 1995). The
direction of this remapping is a point of some
controversy, with some evidence for a bias toward the
saccade target (Tolias et al., 2001; Zirnsak, Steinmetz,
Noudoost, Xu, & Moore, 2014; but see DiTomasso,
Mayo, & Smith, 2013; Neupane, Guitton, & Pack,
2014; Neupane, Pack, & Guitton, 2013; figure S5 of
Sommer &Wurtz, 2006). Neurons that shift their visual
sensitivity parallel to the saccade may achieve a
presaccadic sample of the region of visual space that
will be occupied by the receptive field after the saccade.
The classical view is that this ‘‘snapshot’’ of the
presaccadic scene provides a prediction of the post-
saccadic scene (Higgins & Rayner, 2015; Melcher &
Colby, 2008; Wurtz, Joiner, & Berman, 2011). Our
present results and data from previous studies suggest,
however, that visual continuity operations access more
than just discrete snapshots of the world (Cheng,
Shettleworth, Huttenlocher, & Rieser, 2007; Griffiths &
Tenenbaum, 2006; Niemeier et al., 2003; Vaziri, Die-
drichsen, & Shadmehr, 2006). They must take into
account probabilistic information and learned context
to fully explain visual perception and behavior as we
move our eyes (Pouget, Beck, Ma, & Latham, 2013).
The frontal eye fields may contribute to such mecha-
nisms (Crapse & Sommer, 2008; Ostendorf, Kilias, &
Ploner, 2012; Ostendorf, Liebermann, & Ploner, 2010)
and are a candidate area (perhaps among many) for
representing priors, working with them and distributing
them to earlier visual areas.

Conclusions

In this study, subjects performed a modified SSD
task in which the color of the saccadic target cued the

subject as to the likelihood that the target would jump
during the saccade. We found that expectations about a
target’s stability influenced both behavior and percep-
tion. The response bias became coupled to the
probability of target movement in the Informed trials,
whereas it was independent of the probability of target
movement in the Uninformed trials. Subjects also
exhibited an increase in perceptual sensitivity to the
movement of targets that were presumed to remain
stable. Movement perception was unchanged, in
contrast, for targets that were expected to shift trans-
saccadically. The results indicate that our perception
depends not just on the visual information gathered
before and after the eye movement but also on the prior
belief about the behavior of the objects. Violations to
transsaccadic visual continuity occur when objects
behave in a way that is contrary to our expectations.

Keywords: eye movements, perceptual continuity,
active vision
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