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simultaneously. Second, sensory signals —
for example, the sound of a word and the
image of a person’s moving lips — must be
recoded into a common format before they
can be combined, because sensory modalities
do not use the same representations. We call
this the recoding problem. Finally, combin-
ing multimodal cues involves statistical infer-
ences, because sensory modalities are not
equally reliable and their reliabilities can vary
depending on the context. For example,
vision is usually more reliable than audition
for localizing objects in daylight, but not at
night. For best performance, the statistical
inference must assign greater weights to the
most reliable cues, and adjust these weights
according to the context2,3.

This article focuses on the recoding and
statistical aspects of multisensory represen-
tations, because they can be considered
within a common theoretical framework.
We also restrict ourselves to multisensory
integration in the context of spatial repre-
sentations — specifically, to the issue of
localizing an object using the visual, audi-
tory and somatosensory modalities. We
chose this problem because there is a sub-
stantial body of neurophysiological data
available, allowing detailed comparisons to
be made of predictions from the models
against the responses of actual neurons.

We start by reviewing the standard theory
of multisensory integration. We then sum-
marize the main features of our model4 and
discuss its implications for our understanding

of the neural basis of multisensory integra-
tion and the notion of frame of reference,
particularly in the context of reaching.

The standard theory
A natural way to encode the position of an
object is to specify its location with respect to
a frame of reference — that is, an origin and a
set of axes. For example, the position of the
image of an object can be specified with
respect to the centre of the retina and its ver-
tical and horizontal axes (a retinal, or eye-
centred, frame of reference). Typically, the
frame of reference used by a modality is
imposed by the geometry of the sensory
organs, but it can also result from neural
computation. Vision uses an eye-centred
frame of reference because of the topographic
organization of the retina, but the auditory
system uses a head-centred frame of reference
that arises from the computations performed
early in the auditory system5.

What frame of reference is used to integrate
these sensory signals? The current perspective
(FIG. 1) is that multisensory integration involves
multiple neural structures and multiple
frames of reference. At the bottom of the fig-
ure, each modality encodes stimulus posi-
tions in its natural frame of reference. At the
top, several multimodal modules encode
object positions in a frame of reference that is
specific to the motor or cognitive function of
each module. In between, a single structure
— possibly the posterior parietal lobe (for
example, see REF. 6) — is suggested to be
responsible for mapping from the sensory to
the motor modules. In a variation of this
view, the parietal lobe is subdivided into sev-
eral modules, each of which is also associated
with particular motor streams and their
corresponding frames of reference7–9.

This approach to multisensory integration
conforms roughly to what we know of brain
anatomy and physiology, but leaves crucial
questions unanswered. First, it sheds no light
on the neural mechanisms or computational
principles that underlie the mappings.
Second, in each output module, all neurons

We argue that current theories of
multisensory representations are
inconsistent with the existence of a large
proportion of multimodal neurons with gain
fields and partially shifting receptive fields.
Moreover, these theories do not fully resolve
the recoding and statistical issues involved
in multisensory integration. An alternative
theory, which we have recently developed
and review here, has important implications
for the idea of ‘frame of reference’ in neural
spatial representations. This theory is based
on a neural architecture that combines basis
functions and attractor dynamics. Basis
function units are used to solve the recoding
problem, whereas attractor dynamics are
used for optimal statistical inferences. This
architecture accounts for gain fields and
partially shifting receptive fields, which
emerge naturally as a result of the network
connectivity and dynamics.

In multisensory integration, signals that
come from distinct sensory systems, but
which might be related to the same physical
object, are combined1. For example, you
might try to locate an object on the basis of
both the image and the sound it generates, or
to recognize a word on the basis of its sound
and the speaker’s lip movements. There are
three main aspects to such a process. The first
is the assignment problem — determining
which sensory stimuli pertain to the same
object, which is a difficult task, given that the
senses often respond to multiple objects
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basis function networks, which provide a
biologically plausible solution for perform-
ing spatial transformations (for example, see
REFS 20–22), and line attractor networks, which
have optimal statistical properties4,23,24. When
these two ideas are combined, they lead to a
neural architecture with intermediate stages
that contain neurons with partially shifting
receptive fields.

The basis function framework
Coordinate transformation. Because an
important function of multisensory spatial
integration is to enable us to manipulate
objects, it is helpful to consider this process
from the perspective of sensorimotor trans-
formations. Sensorimotor transformations
can often be thought of in terms of coordinate
transformations. For example, when reaching
for a visual object, it is necessary to find the
set of joint angles of the arm that brings 
the hand to the location of the target — that
is, to convert eye-centred target coordinates
into joint-centred coordinates.

Coordinate transformation is also at the
heart of other aspects of multisensory inte-
gration. For instance, predicting the auditory
location of an object from its visual location
requires a transformation from eye-centred to
head-centred coordinates. Likewise, if an
object is heard and seen at the same time, it is
useful to perform both predictions — from
vision to audition, and vice versa — and to
compare the predictions with the actual
inputs. The result of these comparisons can
be used to determine whether the two sensory
signals are likely to belong to the same object
(the assignment problem). A coordinate
transformation is also required when trying
to predict the sensory consequences of a
motor action — for example, to predict the
visual, auditory and proprioceptive location
of the hand on the basis of a motor command
executed by the arm. In control theory, this is
known as a forward model25–27. In essence, it is
the inverse of a sensorimotor transformation
— it requires transformation from motor to 
sensory coordinates.

Note that these coordinate transforma-
tions are generally nonlinear, which means
that the output coordinates cannot be
obtained through a simple weighted sum of
the input coordinates20,28. This fact imposes
an important constraint on the types of
neural architecture that can implement these
transformations — the network must contain
three, or more, layers of units. In other words,
at least one more layer is needed beyond the
input and the output layers. What kind of
unit should be used in this intermediate layer?
One approach uses basis function units — a

uses one specific frame of reference. These
neurons might represent an intermediate
stage in the overall process, but it is discon-
certing to find so many of them in neural
structures that are otherwise believed to spec-
ify motor commands (such as the superior
colliculus for saccadic eye movements).

A third unresolved point is that multi-
sensory integration involves important and
difficult statistical issues, because sensory
modalities are not equally reliable and their
reliability can change with context. To address
these issues, it is natural to adopt a probabilistic
approach — sometimes known as a Bayesian
approach because it makes use of Bayes’ theo-
rem. Localizing an object that can be seen and
heard consists of computing, for each location
in space, the probability that the object is 
at that location, given its image and sound.
This method weights each cue in proportion
to its reliability, and adjusts these weights
dynamically when the context modifies cue
reliability2. Behavioural results are consistent
with the idea that the brain performs Bayesian
inferences3,16,17, and there is preliminary evi-
dence that collicular neurons might compute
probability distributions18,19. Nevertheless,
none of these studies provides a theory of
Bayesian inferences in neural circuits that can
also solve the recoding problem.

In the following section, we review a
neural theory of multisensory integration
that attempts to address all three issues simul-
taneously. This theory, which we first pro-
posed in REF. 4, is based on the combination of

are supposed to show multimodal response
fields that are perfectly remapped in the frame
of reference used by the modules.

Surprisingly, the evidence for such com-
plete remapping is scant. For instance, it is
often claimed that neurons in the superior col-
liculus use eye-centred coordinates to specify
the locations of visual and auditory stimuli. In
this view, bimodal collicular neurons have spa-
tially aligned visual and auditory receptive
fields, the positions of which are invariant in
eye-centred coordinates. For a receptive field
to be eye-centred, it must be anchored to the
eyes — every time the eyes move, the receptive
field must move by the same amount. How-
ever, auditory receptive fields in the superior
colliculus show an average displacement of just
52% of the amplitude of the eye displacement10

— a far cry from the predicted 100%. In other
words, the auditory receptive fields are not fully
remapped in eye-centred coordinates — they
shift, but only partially. The visual receptive
fields of the same cells are eye-centred, so the
visual and auditory receptive fields cannot be
spatially aligned for all eye positions. Similar
partially shifting receptive fields have been
reported in other areas — such as the ventral
inferior parietal area (VIP)11, the lateral infe-
rior parietal area (LIP)12, the parietal reach
region13 and dorsal area 5 (REF. 14) — and 
are likely to occur in area V6a (C. Galletti,
personal communication) and in the ventral
premotor cortex15.

It seems difficult to reconcile this behav-
iour with the idea that each motor module

Frontal eye field
Eye movements

Principal sulcus
Mnemonic space

Superior colliculus
Saccades

Dorsal premotor cortex
Reaching

Hippocampus
Navigation

Posterior parietal lobe
(LIP, VIP, 7a…)

Vision Audition Touch

Figure 1 | A schematic representation of the standard theory for multisensory spatial integration
and sensorimotor transformations. Sensory modalities encode the locations of objects in frames of
reference that are specific to each modality. Multisensory integration occurs in multiple modules within the
parietal cortex (LIP, lateral inferior parietal; VIP, ventral inferior parietal), which project to a set of motor
modules. The multisensory motor modules encode the locations of objects in frames of reference specific
to the task controlled by each system.
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The basis function units are connected to
the output layer to generate the appropriate
response function. Our goal is to obtain
output units with bell-shaped tuning curves
to the head-centred location of the target.
We denote x

a
k as the preferred head-centred

location of unit k (where k varies from 1 to N,
N being the total number of output units). To
ensure that unit k will show bell-shaped tun-
ing with preferred head-centred location x

a
k, it

simply needs to receive connections from all
the basis function units with preferred eye-
centred and eye-position values, x

r
i and x

e
j,

such that x
a
k = x

r
i + x

e
j. Once these connec-

tions are properly set for all output units, the
network computes the desired mapping —
that is, it generates an output hill of activity at
position x

a
in response to two input hills 

at positions x
r
and x

e
, where x

a
= x

r
+ x

e
(FIG. 2).

Several variations of this architecture
exist29–33, all relying on similar principles.

The network described so far can perform
one coordinate transformation, from eye-
centred to head-centred coordinates. As dis-
cussed earlier, however, it is often important
to be able to perform coordinate transforma-
tions in both directions. Fortunately, we can

solution that is computationally sound and
neurally plausible20–22. The name ‘basis func-
tion’ is derived from the concept of basis vec-
tors in linear algebra. A set of vectors forms a
basis if any other vector can be approximated
as a linear combination of these vectors.
Likewise, a set of basis functions allows a very
large class of functions — notably nonlinear
functions — to be approximated as linear
combinations of these basis functions.

To understand how this approach can be
applied to coordinate transformations, it is
helpful to consider a specific example. The
network in FIG. 2 computes a population code
(the activity of a population of units with bell-
shaped tuning curves) for the head-centred
location of an object, x

a
, from population

codes for the eye-centred location of the
object, x

r
, and the current position of the eyes,

x
e
. As a first approximation, the head-centred

location of an object is equal to the sum of its
eye-centred location and the current eye posi-
tion. The network, however, does not compute
x

a
= x

r
+ x

e
directly; instead, it computes a

population code for x
a
given population codes

for x
r
and x

e
. In other words, each head-centred

unit computes a bell-shaped tuning curve for

x
a

that is a Gaussian function of x
r

+ x
e
. As

Gaussians are nonlinear functions, the com-
putation performed by the output units is
nonlinear, and therefore not simply x

a
= x

r
+ x

e
.

The network has two input layers. The first
contains units with bell-shaped receptive
fields in eye-centred coordinates (an eye-
centred population code). The second con-
tains similar units for the current position of
the eyes. The output layer uses a similar
scheme to represent the head-centred loca-
tion of the target. The intermediate layer —
the basis function layer — contains one unit
for each pair of input units. Each of these
units combines the activity of one eye-centred
unit and one eye-position unit. FIG. 2 shows
the response function of a typical basis func-
tion unit as a function of eye-centred location
and eye position. Because the input units
have bell-shaped tuning curves, the response
function of the basis function units is a two-
dimensional bell-shaped function. This func-
tion reaches its maximal value for a particular
pair of eye-centred and eye-position coordi-
nates, which are known as the preferred eye-
centred and eye-position values for this unit,
and are denoted as x

r
i and x

e
j for unit ij.
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Figure 2 | A neural network for coordinate transformations using basis functions. The network contains two input layers. One input layer consists of a
retinotopic map of 32 units (bottom left; only nine units shown) that encode the eye-centred locations of objects. The graph shows the activity of the units as a
function of their preferred eye-centred location for a visual object at location xr. The other input layer uses the same type of code but for the position of the eyes (xe).
These two sources of information are combined in the intermediate basis function layer. Each basis function unit computes the product of a pair of eye-centred and
eye-position units, from which it inherits a preferred eye-centred location and a preferred eye position. The basis function map is organized in a two-dimensional
map in which the preferred positions vary systematically from one unit to the next. The plot on the right shows the response of a typical basis function unit as a
function of the eye-centred location of an object and the position of the eyes. The response of the output units is computed by a linear combination of the activities
of the basis function units. More specifically, a head-centred unit with preferred head-centred location xa

k receives connections with a weight of 1 from all the basis
function units, the preferred eye-centred location (xr

i ) and eye position (xe
j ) of which are such that xa

k = xr
i + xe

j. This pattern of connectivity ensures that the output
layer computes a population code for the head-centred location of the stimulus.
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can only estimate the location of an object
from the evoked sensory activity. The challenge
is to come up with the best possible estimate,
given the available data.

When multiple sources of information are
available, the redundancy between them can
be used to refine the estimate. In particular, the
most likely location of an object can be com-
puted, given all the available observations. This
is known as a maximum-likelihood estimate
and is optimal for the problem we are consid-
ering4, in the sense that it leads to an unbiased
and efficient estimate. Unbiased means that,
over many trials, the average of the maximum-
likelihood estimates of an object’s location
converges on the true location. Efficient indi-
cates that the variance of the estimate is as
small as possible, given the noise in the sensory
inputs; an efficient estimate is as reliable, or as
accurate, as possible.

It is possible to tune the weights of an
interconnected basis function network to

were chosen to ensure that such bell-shaped
profiles of activity were stable states for the
recurrent network (for details, see REF. 24).
This choice guarantees that, when the net-
work is initialized with two hills in any pair of
input layers, it eventually stabilizes onto three
hills that peak at locations x

a
, x

r
and x

e
, linked

through the relation x
a
= x

r
+ x

e
(FIG. 3). In the

jargon of dynamical systems, the stable net-
work states — that is, the smooth hills — are
called attractors4. We therefore refer to our
network as an interconnected basis func-
tion network or, alternatively, a basis function
network with attractor dynamics.

Statistical issues. Now we can focus on the
statistical issues involved in multisensory inte-
gration. The statistical issue arises because the
sensory signals are typically corrupted by
noise, either because of the stimulus itself, or
because of neural noise within the central
nervous system. Given this uncertainty, one

re-use the basis function units to map in the
other direction. We simply add connections
in the opposite direction to the ones we have
already established. Hence, if a basis function
unit sends a connection to a head-centred
unit, we add a connection from the head-
centred unit to the basis function unit, and so
on throughout the rest of the network. The
result is a recurrent network that can perform
bidirectional coordinate transforms.

As activity can flow in any direction, it
makes little sense to refer to the eye-centred
and eye-position layers as the input layers, and
the head-centred layer as the output layer. For
simplicity, we will refer to these three layers as
‘input layers’.

Because the individual neurons in the
input layers have bell-shaped tuning curves,
patterns of population activity across any of
the input layers should also have a bell-shaped
profile. The activation function of the basis
function units and the weights between layers
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Figure 3 | A recurrent basis function layer with attractor dynamics. The network is similar to the one shown in FIG. 2, but all connections are bidirectional.
The connections are set to ensure that smooth hills of activity are stable states for the network. Consequently, when the network is initialized with noisy hills of
activity (left), it settles onto three smooth hills of activity (right), the positions of which are related through the function x^a

RN
= x^r

RN
+ x^e

RN
(RN indicates that these

estimates are derived from the recurrent network). When only two hills of activity are provided as inputs, the network must compute the third hill. This could
correspond to a sensorimotor transformation in which the sensory input is in eye-centred coordinates and the motor command is in head-centred coordinates.
When three noisy hills are presented, the positions of the three smooth hills are the result of integrating the information provided by all three noisy hills. This is what
happens in multisensory integration. In all cases, the positions of the smooth hills of activity are very close to the positions predicted by a maximum-likelihood
estimator, showing that this architecture is statistically optimal — in particular, for multisensory integration.
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Therefore, the key for the partial shifts is the
convergence of two inputs in distinct frames
of reference. For the same reason, partially
shifting receptive fields have been found in
feedforward neural networks (with no recur-
rent connections, either lateral or feedback),
with inputs that contain visual and auditory
inputs, and they are trained on spatial trans-
formations with the backpropagation algo-
rithm37. Nevertheless, recurrent connections
and attractor dynamics are crucial for effi-
cient multisensory integration — they allow
our network to perform multidirectional
computations in a statistically optimal way.

In the network in FIG. 3, the partial shift is
equal to half the change in eye position for all
basis function units. This number can be
modulated between 0 and 1 by changing 
the strength of the input connections onto the
basis function units. For instance, if a unit
receives a stronger weight from the visual units
than from the auditory units, the amplitude of
the shift of the visual and auditory receptive
fields in eye-centred coordinates will tend to
be close to 1. By modulating the strength of
the network connection, we can generate a
range of shifts, which appears to be consistent
with experimental data. For example,
Duhamel et al.11 reported an even distribution
of shift amplitudes for neurons in area VIP.

The existence of partially shifting receptive
fields throughout the brain supports our archi-
tecture, but our model makes other experi-
mental predictions. In particular, the presence
of hills of activity (the attractor) entails spe-
cific patterns of correlations between pairs of
cells, which are determined by the product 
of the derivative of their tuning curves23. As
multi-electrode recordings become more
readily available, we look forward to seeing
this prediction put to the test.

Frames of reference
In the recurrent basis function network 
(FIG. 3), the ‘visual’ layer is, in fact, a multi-
modal area, as it also receives connections
from the auditory units through the basis
function layer. This layer uses eye-centred
coordinates to encode both visual and audi-
tory signals. Likewise, the input auditory
layer is multimodal and uses a head-centred
frame of reference to encode the locations of
multimodal targets. These layers resemble
the convergence areas predicted by the 
standard theory (FIG. 1).

However, most units are in the basis
function layer. This layer has partially shift-
ing receptive fields and, as such, cannot 
be assigned a single frame of reference. It 
uses both eye-centred and head-centred refer-
ence frames, allowing it to project to both

implement a close approximation of a maxi-
mum-likelihood estimator. This tuning
involves adjusting only one parameter — the
span of the weights sent by each unit, which,
in turn, determines the width of the stable
smooth hills (for details, see REF. 4). For equiv-
alence with maximum likelihood, the esti-
mates obtained from a basis function network
must have the same mean and variance as
those predicted by maximum likelihood. The
network estimates are obtained by initializing
the network with noisy hills of activity and
iterating the network until it stabilizes to three
smooth hills. The positions of the smooth
hills can then be used as estimates of x

r
, x

e
and

x
a
. By repeating this process for many noisy

hills, the mean and variance of the network
estimates can be computed.

We have performed this test while system-
atically varying the span of the weights, and
have found that, for a particular value of this
parameter, the network estimate is unbiased
and the variance is only 3.5% larger than pre-
dicted by maximum likelihood4. We have also
been able to confirm these results mathemati-
cally, rather than by empirical simulation.
Moreover, the network estimate remains close
to the maximum-likelihood estimate even
when the reliability of the modalities varies
between trials. This result was obtained with-
out any further adjustment of the network
weights4. Recent experimental data suggest that
humans can also perform optimal cue inte-
gration in conditions in which the reliability of
the cue varies between trials3.

So, we have managed to kill two birds with
one stone. The same network architecture can
deal not only with the recoding problem,
reduced here to a change of coordinates, but
also with the statistical inference issue. This is
because the recoding is a statistical inference in
disguise. If the input neurons in FIG. 3 were
noiseless, the statistical inference would reduce
to a simple recoding problem; we can think of
recoding as estimating the head-centred loca-
tion of a stimulus from noiseless hills of activ-
ity that encode the eye-centred location and
the current eye position.

Partially shifting receptive fields. We now con-
sider whether this neural architecture can
account for the partially shifting receptive
fields that have been found in multisensory
areas. FIGURE 4 shows the visual receptive field
of a typical basis function unit (from the inter-
mediate layer of the network shown in FIG. 2)
for three eye positions, plotted against eye-
centred coordinates. The unit has a partially
shifting receptive field — the eye-centred loca-
tion of the receptive field changes when the
eyes are moved, but the shift is equal to only

half of the change in eye position. Similar
results would be obtained by mapping the
auditory receptive field of the same unit. Note
that the height of the receptive field is also
modulated by eye position — a phenomenon
that is sometimes referred to as a gain field.
Gain fields are common throughout the cor-
tex and are often reported in combination
with partially shifting receptive fields11,34–36.

From a computational point of view, there
is no fundamental difference between gain
fields and partially shifting receptive fields;
both provide basis functions. Which of these
is used by a network depends on its architec-
ture. In artificial neural networks, each unit
computes a nonlinear function of the sum of
its inputs. To a first approximation, this oper-
ation amounts to a multiplication. Therefore,
in FIG. 2, each basis function unit computes a
multiplication of the eye-centred and eye-
position inputs, resulting in an eye-centred
receptive field with a gain modulated by eye
position (a gain field). In FIG. 3, the situation is
more complex because the basis function
units multiply three inputs. The contribution
from eye position accounts for the gain field.
The multiplication between the eye-centred
and head-centred inputs leads to the partial
shift; the receptive field is a compromise
between the two frames of reference (this can
be shown analytically, but is beyond the scope
of the present paper).
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Figure 4 | A partially shifting receptive field.
The figure shows the visual receptive field of a
typical basis function unit in the recurrent network
shown in FIG. 3 as a function of eye position (ex).
The three curves correspond to three positions of
the eyes. The receptive field is not purely eye-
centred, as its position in eye-centred coordinates
shifts with the position of the eyes. The shift is only
half of that predicted for a head-centred receptive
field (vertical lines). The amplitude of the shift can
be modulated by changing the connections
between the input layers and the basis function
layer. The case shown here was obtained in a
network with equal visual and auditory weights.
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auditory targets in eye-centred and head-
centred coordinates. This stage would not be
required for reaching towards auditory targets,
but it is essential for the network to implement
forward models and sensory predictions
between modalities.

What frame of reference is used by this net-
work to specify reaching motor commands? It
is clear that the body-centred frame of refer-
ence is involved because it is used in the reach-
ing module (FIG. 5). However, this is not the
only one. Owing to the recurrent connections,
all layers are eventually activated, regardless of
the modality used to specify the target loca-
tion. As a result, the motor command is
encoded in all the frames of reference available
in the network (eye-, head- and body-centred
in this case, although the list would be longer
in a more complete network).

Therefore, the fact that reaching motor
commands for auditory targets are specified
in eye-centred coordinates is not so surpris-
ing when considering a multipurpose archi-
tecture like that shown in FIG. 5. It would be
just as valid to claim that the first basis func-
tion map specifies reaching motor commands
in head-centred coordinates for both visual
and auditory targets, as the eye- and head-
centred coordinates coexist in this map. The
question now arises of whether the notion of
Euclidean frame of reference, which has been
central to how we think about spatial repre-
sentations, is the best way to characterize
these neural representations. We are advocat-
ing instead a computational approach, the
goal of which is to specify what single cells
compute (for example, basis functions, prob-
ability distributions, maximum-likelihood
estimates) and how those single cells con-
tribute to the overall computation performed
by the cortical streams.

associated with the visual system is involved
in motor planning is surprising, particularly
for auditory targets. In principle, the joint-
centred coordinates of an auditory (or pro-
prioceptive) stimulus could be computed
from its head-centred location without hav-
ing to remap it in eye-centred coordinates.
Why would the nervous system use eye-
centred coordinates for all modalities, even
when they are not necessarily required?

Perhaps this simply reflects the dominant
role of vision in human behaviour.We believe,
however, that the reason for this shared repre-
sentation is computational; it is a direct con-
sequence of designing a network that can 
perform multiple tasks at once. FIGURE 5 shows
a basis function network that is designed to 
do three tasks — reaching towards objects
regardless of the sensory modality, predicting
the position of a target in a modality on the
basis of its position in another modality, and
predicting the consequences of a reaching
movement in all sensory modalities (the for-
ward model). The left side is identical to the
network shown in FIG. 3. In fact, the left basis
function is the same as in FIG. 3, so it encodes

input layers in eye-centred and head-centred 
coordinates. In other words, multimodal inte-
gration in the basis function layer does not take
place in one frame of reference, but involves a
mixture of frames of reference.

Recordings from a cortical area that con-
tained the entire network shown in FIG. 3

would reveal a heterogeneous mixture of
multimodal neurons. Some neurons would
show invariant multimodal response fields in
eye-centred or head-centred coordinates, but
most would be in between. This has been
reported in area VIP11 and in dorsal area 5
(REF. 14), and there is evidence for a similar sit-
uation in the superior colliculus10 and the
ventral premotor cortex15.

The typical interpretation of this type of
result is that each area uses a single frame 
of reference, but the responses of the cells
appear less precise than expected, because the
nervous system uses distributed representa-
tions38 and experimental measurements are
noisy. Our theory offers a different perspec-
tive. We argue that the partially shifting
receptive fields are not the result of crude and
noisy experimental measurements, nor of
distributed representations in the brain (a
statement that, in any case, would need to be
clarified to be useful). Instead, they might
reflect the use within each neural area of a
well-defined class of networks known as
recurrent basis function networks, the com-
putational properties of which are well suited
to the recoding and statistical problems that
arise in multisensory integration.

Partially shifting receptive fields are also
sometimes interpreted to be the neural 
correlates of partial remappings at the
behavioural level. For example, when spatial
attention is primed with tactile stimulation,
the location of the attentional spotlight is
only partially remapped in visual coordi-
nates39. Although it would be tempting to
draw a parallel between this behavioural
observation and the partially shifting recep-
tive fields, network models like the one
shown in FIG. 3 show that the latter does not
imply the former. The network fully remaps
head-centred coordinates into eye-centred
coordinates (and vice versa), while having
partially shifting receptive fields.

Our approach also suggests a new per-
spective on the related issue of multimodal
spatial representations for reaching. Recent
studies have suggested that reaching motor
commands are specified in eye-centred coor-
dinates, regardless of the modalities in which
the reaching target is defined13,40–43. Other
frames of reference, such as hand-centred
and joint-centred, are likely to be involved,
but the fact that a frame of reference typically

Vision
(eye-centred)

Reaching
(body-

centred)

Head position

Tactile
(body-centred)

Basis function map
(head-centred,
body-centred)

Eye position

Audition
(head-centred)

Basis function map
(eye-centred,
head-centred)

Figure 5 | A schematic representation of a basis function network for reaching towards visual,
auditory and tactile targets. The network has connections in all directions, allowing it to perform
sensorimotor transformations, predictions from one sensory modality to another and predictions of the
sensory consequences of a motor action. As a result, the first basis function map encodes auditory and
tactile targets in visual coordinates. This could explain why human observers encode auditory targets for
reaching in eye-centred coordinates, even though reaching towards an auditory target by itself does not
require an eye-centred stage.

The question now arises 
of whether the notion of
Euclidean frame of
reference, which has been
central to how we think
about spatial
representations, is the best
way to characterize these
neural representations.
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Conclusions
The standard theory of multisensory inte-
gration (FIG. 1) predicts the existence of con-
vergence zones in which all modalities are
remapped into a common frame of refer-
ence. The predictions are that cells in these
areas should have receptive fields with posi-
tions that are invariant in the frame of ref-
erence used by the area, and that, for a given
cell, the receptive fields for all modalities
should be spatially congruent. Most cells in
areas such as the superior colliculus, the
premotor cortex and area VIP do not meet
these requirements, and they have partially
shifting receptive fields. Moreover, the stan-
dard theory does not provide a complete
account of the recoding and statistical
problems.

We have argued that developing a neu-
rally plausible and computationally sound
solution to the recoding and statistical
problems is a key step towards understand-
ing multisensory integration. The solution
we have proposed relies on basis function
units for the recoding problem and on
attractor dynamics for optimal statistical
inferences. Basis function units in a recur-
rent network have partially shifting recep-
tive fields similar to those that have been
reported in multisensory cortical areas.
These partially shifting receptive fields are a
direct consequence of building a network
that can perform multidirectional compu-
tations, such as from one set of sensory
coordinates to another (inter-sensory pre-
dictions), from any sensory to any motor
coordinates (sensorimotor transforma-
tions), and from any motor to any sensory
coordinates (forward models).

However, our model has limitations that
should be addressed in future studies. In
particular, our network assumes that all sen-
sory signals come from the same object. In
the presence of several objects, the final esti-
mate of the network would correspond to a
single ‘phantom’ position (a compromise
between the positions of the different
objects), which would clearly be wrong.
This issue is closely related to the assign-
ment problem (how does the nervous sys-
tem determine which signals, among all
those sensed at any given time, pertain to
the same object?). One approach to this
question consists of computing the likelihood
that a set of signals from distinct modalities
come from the same object, which is closely
related to the ability of these signals to pre-
dict each other’s values over time and space.
It might, therefore, be possible to use a ver-
sion of the basis function architecture
designed for the spatial predictions to solve

the assignment problem. It remains to be
explored whether our architecture could
also perform this prediction over time —
that is, whether it could take advantage of
temporal coincidences, which are also a
potent cue for sensory fusion44. Further
work will be required to tackle these com-
plex problems, and to uncover their neural
and computational basis.
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