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It is still not known how the primate visual system is able to measure the velocity of moving stimuli such as edges and dots.
Neurons have been found in the Medial Superior Temporal (MST) area of the primate brain that respond at a rate
proportional to the speed of the stimulus but it is not clear how this property is derived from the speed-tuned Middle
Temporal (MT) neurons that precede area MST along the visual motion pathway. I show that a population code based on
the outputs from a number of MT neurons is susceptible to errors if the MT neurons are tuned to a broad range of spatial
frequencies and have receptive fields that span a wide range of sizes. I present a solution that uses the activity of just three
MT units within a velocity channel to estimate the velocity using a weighted vector average (centroid) technique. I use a
range of velocity channels (1, 2, 4, and 88/s) with inhibition between them so that only a single channel passes the velocity
estimate onto the next stage of processing (MST). I also include a contrast-dependent redundancy-removal stage which
provides tighter spatial resolution for the velocity estimates under conditions of high contrast but which trades off spatial
compactness for greater sensitivity at low contrast. The new model produces an output signal proportional to the stimulus
input velocity (consistent with MST neurons) and its input stages have properties closely tied to those of neurons in areas
V1 and MT.
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Introduction

Our ability to move our eyes and bodies means that
we are constantly exposed to visual motion. Whether we
are the predator or the prey, the correct measurement
and interpretation of that motion is crucial for our
survival. Yet despite many years of effort, we still do not
have a complete understanding of how the primate
visual system is able measure the velocity of even the
most basic visual motion stimulus (e.g., a moving edge).

We do know that in the Fourier (frequency) domain,
moving edges are represented by a spectrum that is
oriented relative to the spatial and temporal frequency
(tf) axes (Watson & Ahumada, 1983) (Figure 1). The
slope of the spectral line is proportional to the speed of
the edge. The estimation of the edge’s velocity is
equivalent to determining the orientation of the edge’s
spatiotemporal energy spectrum in frequency space. We
know that humans and many other biological species are
able to correctly register the orientation of the edge
spectrum (determine the velocity of the edge) under a
wide range of conditions (Burr & Thompson, 2011;
Clifford & Ibbotson, 2002; Hildreth, 1990; Nakayama,
1985; Smith & Snowden, 1994). What is not known is
the exact mechanism for the velocity estimation process
and how it is achieved, given our current understanding

of the properties of primate cortical motion sensitive
neurons.

Figure 1 shows a Fourier frequency space represen-
tation of edges moving right to left at 1, 2, and 48/s. The
locus of spectral energy generated by each of the
moving edges is shown by the red shaded radial lines in
the plot. In order to estimate the velocity of the 28/s
edge, we must be able to detect the correct orientation
of its edge spectrum and distinguish it from the energy
spectra generated by edges moving at 1 and 48/s as well
as other directions. In an extensive review of biological
image motion processing, Nakayama (1985, p. 643)
postulated the existence of ‘‘spatio-temporal filters
which share a common velocity’’ and which are located
along the radial velocity lines shown in Figure 1. He
then suggested that: ‘‘Velocity could be read out by
comparing activity in these different higher order radial
‘velocity’ channels. This could be determined by
detecting the mode or the peak of the population
profile response possibly with the aid of lateral
inhibition’’ (p. 643).

Despite the passage of more than 30 years,
Nakayama’s tantalizing proposal has never been
successfully implemented and the exact mechanism
(mode, peak detection, or something else?) has never
been discovered. Theoretical treatments which attempt-
ed to register the slope of the edge spectra using
spatiotemporal filters (Heeger, 1987; Simoncelli &
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Heeger, 1998; Yuille & Grzywacz, 1988) fall short
because of the lack of concordance between the model
filters and the known properties of primate motion
sensitive neurons (Perrone, 2004). These early models
tried to implement the ‘‘radial velocity channels’’
postulated by Nakayama using spatiotemporal energy
filters (Adelson & Bergen, 1985; Watson & Ahumada,
1985) directly in their raw form. The proposed energy
filters were originally modeled on the properties of a
class of neurons in the primary visual cortex (V1) which
turned out to be broadly tuned for temporal frequency
(Foster, Gaska, Nagler, & Pollen, 1985; Hawken,
Shapley, & Grosof, 1996) (see contour lines in Figure
1). These neurons lack the specifications of a filter
designed to optimally detect the orientation of the edge
spectral lines (Perrone, 2004; Perrone & Thiele, 2002).

A better candidate for the radial velocity channels
suggested by Nakayama (1985) are primate Middle
Temporal (MT/V5) neurons (Albright, 1984; Maunsell
& Van Essen, 1983; Movshon, Adelson, Gizzi, &
Newsome, 1983; Zeki, 1980). Rather than velocity being
estimated directly from the V1 neurons, it is possible to
introduce an intermediate stage in which speed tuned
pattern motion detectors (MT neurons) are first
constructed from V1 neurons (e.g., Adelson & Mov-
shon, 1982; Albright, 1984; Movshon et al., 1983;
Perrone, 2004; Perrone & Krauzlis, 2008a) and then
these detectors are used to isolate the edge spectral lines.

Figure 2a shows the spectral receptive field for a
macaque MT neuron measured by Perrone and Thiele

(2001; see also Priebe, Cassanello, & Lisberger, 2003).
The spectral receptive field is oriented and narrow in
the tf dimension, which are desirable properties for a
filter that needs to selectively respond to a particular
radial edge spectral energy line (velocity). In a recent
review of primate velocity computation, Bradley and
Goyal (2008) recognized the need for tighter tf tuning
in the spatiotemporal V1 stage filters and suggested
that velocity estimation at the MT neuron level could
be carried out by a ‘‘flattened inner tube’’ configuration
with filters that are more compressed in the tf
dimension compared to those used in previous models
(Simoncelli & Heeger, 1998). Nishimoto and Gallant
(2011) have also suggested a spatiotemporal receptive
field model that uses more flattened filters. However
neither Bradley and Goyal nor Nishimoto and Gallant
provided any mechanism for how this ‘‘filter flattening’’
could come about. Our recent work provides a possible
solution to this problem. We have proposed a method
(Weighted Intersection Mechanism, or WIM) by which
broad tf tuned V1 neurons can be converted into
‘‘speed tuned’’ filters that are narrowly tuned in the tf
dimension (Perrone, 2004, 2005; Perrone & Thiele,
2002) and which match the properties of neurons in V1
(Priebe, Lisberger, & Movshon, 2006) and MT
(Perrone & Thiele, 2001). Figure 2b shows the spectral
receptive fields of two of our model MT units. They
have been constructed from just two V1 neuron inputs
(see Figure 1a) using biologically plausible mechanisms
(Perrone, 2004; Perrone & Krauzlis, 2008a; Perrone &
Thiele, 2002).

Each of our MT pattern model units are made up
from a set of subunits based on V1 directionally
selective complex neurons (Figure 2c). The subunits are
speed tuned (via the weighted intersection mechanism
proposed by Perrone & Thiele) and are analogues of
the V1 complex neurons discovered by Priebe et al.
(2006). In frequency space they form a set of flying
saucers (or a flattened inner tube a la Bradley & Goyal,
2008) and are narrow in the temporal frequency
dimension. The MT units inherit their speed tuning
from the WIM subunits and so their spectral receptive
fields are also narrow in tf (Figure 2b). In the space
domain, an MT pattern model unit can be represented
as a cluster of WIM subunits (see the flowerettes in
Figure 2d) where each arrow represents the speed
tuning of the WIM subunits (Perrone, 2004; Perrone &
Krauzlis, 2008a).

Despite their apparent suitability as filters for
registering the slope of the energy spectra created by
moving edges, MT neurons are not an automatic choice
for Nakayama’s radial velocity channels. There has
been some controversy as to the existence and extent of
spatiotemporal frequency orientation tuning in primate
neurons (Perrone, 2006; Priebe et al., 2003). Initial
experiments (Perrone & Thiele, 2001) found clear

Figure 1. Spatiotemporal frequency (Fourier domain) plot showing

the spectra generated by edges moving at a range of speeds. The

dashed contour represents the amplitude spectrum of a typical

sustained type nondirectional V1 neuron with low-pass temporal

frequency tuning. The solid contour is for a transient type

directional V1 neuron with band-pass tf tuning.
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evidence for spatiotemporal frequency inseparability in
MT neurons (e.g., see Figure 2a) but later studies
reported it to be a weak effect (Priebe et al., 2003;
Priebe et al., 2006). New research showing the effect of
contrast on the speed tuning of V1 and MT neurons
(Krekelberg, van Wezel, & Albright, 2006; Pack,
Hunter, & Born, 2005; Perrone, 2006; Priebe et al.,
2006) suggests that the measurement of spatiotemporal
frequency orientation properties in V1 and MT neurons
is fraught with difficulty (Perrone, 2006) and the actual
proportion of such sf-tf-oriented filters in the primate
visual system is currently unknown.

I will sidestep this prevalence debate and work on the
assumption that some MT neurons with oriented

spectral receptive fields do exist in the primate visual

system. Further, given their velocity sensitive properties

(Figure 2a through c), I will adopt these MT neurons as

the main building blocks in my new velocity estimation

model and use them to construct the radial velocity

channels suggested by Nakayama (1985) for the

detection of image velocity. We have previously

developed a detailed model of the MT neurons

(Perrone, 2004; Perrone & Krauzlis, 2008a) and this

forms the starting point for my velocity estimation

stage. However the MT model treated each MT neuron

as an independent unit with no interaction with other

neurons. In this paper I show that inhibitory connec-

Figure 2. MT pattern neurons (actual and model) in the spatiotemporal frequency domain and the spatial domain. (a) Spatiotemporal

frequency response map (spectral receptive field) for an MT neuron from Perrone & Thiele (2001). (b) Spectral receptive fields from two

model MT units. (c) Frequency space representation showing the spectrum for a moving stimulus (pink plane) and the speed tuned filters

(WIM sensors) used as subunits in the model MT pattern neurons. (d) Space domain plot of a model MT pattern unit receptive field. The

arrows represent the speed tuning of the WIM subunits. Dashed arrows represent inhibitory (opponent) inputs (Perrone & Krauzlis, 2008a).
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tions with other MT neurons are an essential feature of
an effective velocity estimation system.

Signals from MT neurons end up in the Medial
Superior Temporal (MST) area (Duffy & Wurtz, 1991;
Komatsu & Wurtz, 1988; Perrone & Stone, 1998; Saito
et al., 1986; Tanaka et al., 1986; Ungerleider &
Desimone, 1986) and there is evidence that some
MST neurons respond at a rate proportional to the
speed of the input motion and their output is linearly
related to the input over a wide range of speeds (Inaba,
Shinomoto, Yamane, Takemura, & Kawano, 2007). In
contrast, the neurons in antecedent motion areas (V1,
MT) tend to be speed tuned (Maunsell & Van Essen,
1983; Perrone & Thiele, 2001; Priebe et al., 2006;
Rodman & Albright, 1987). It is the stage after MT
that I am attempting to replicate in this paper, the point
where the primate visual system transitions from speed
and direction tuning to velocity signaling. I aim to
emulate the velocity coding response properties of MST
neurons (Inaba et al., 2007).

The decision to incorporate speed tuned (sf-tf
oriented) filters into the velocity estimation process is
only a small step towards the development of a
successful neural velocity estimation model. What
remains unanswered is how the outputs from these
MT filters are combined to produce an output
proportional to the velocity of the moving stimulus.
Nakayama (1985) speculated as to a number of possible
approaches (detection of the mode or peak response
possibly with the aid of lateral inhibition) but never put
forward a specific mechanism. A large number of
proposals have since been suggested for how image
velocity can be measured (see Sperling, Neil, & Paul,
2001 and Discussion) but these models either do not
include the V1-MT stage of neural processing and
assume that the MT output has already been derived or
they use a V1 stage that includes elements incompatible
with the known properties of motion sensitive neurons
in V1 (Perrone, 2004).

I have rectified these deficiencies and have now
developed a neural-based model for estimating the
velocity of moving image features in two-dimensional
image sequences. I will refer to the system for estimating
velocity as a ‘‘velocity code model’’ to retain consistency
with the common usage of the term ‘‘population code’’
to characterize the estimation of a stimulus property
from a population of neurons. I show how a relatively
small number of feed-forward stages based mainly on
multiscale filtering and inhibitory interactions can
generate an output linearly related to the input image
speed (thus emulating MST neuron behavior). A guiding
principle in the design of the new velocity code is to
reduce the amount of redundant velocity signals that are
passed onto the MST stage and I introduce a contrast-
dependent redundancy removal mechanism for achiev-
ing this. I show that the new model is able to accurately

estimate the velocity of moving features while maintain-
ing concordance between the model’s component filters
and the known properties of motion sensitive neurons. A
model that includes multiple neural stages and mecha-
nisms necessarily acquires a high level of complexity and
so in order to simplify the description I have divided the
overall velocity code model into a number of stages:

(1) Speed estimation. I show how the speed of motion
of a moving image feature such as an edge can be
derived from the outputs of a small number of MT
neurons with inhibitory connections between them.

(2) Direction estimation. Because it is based on the
outputs of a number of MT pattern neurons the
basic speed estimation model is subject to errors
when multiple image directions are considered. I
introduce a mechanism that uses inhibition from
MT units tuned to nearby directions that over-
comes this class of error and which enables the
direction of a moving edge to be correctly
registered.

(3) Contrast-dependent redundancy removal. The ba-
sic velocity code model generates multiple velocity
signals across space and these signals are often
redundant in that the same signal is created at
many adjacent locations. I introduce a mechanism
that removes this redundancy and improves the
spatial resolution of the velocity estimates at high
stimulus contrast levels but not at low contrast.

(4) Small dot stimuli. Single moving dots create very
little motion energy in the early spatiotemporal
energy stage of the velocity code model. This has an
impact on the effectiveness of some of the other
mechanisms used in the model. I present a
technique for automatically increasing the gain of
the early-stage spatiotemporal filters when the
stimulus is small relative to the size of the filters.

An overall summary of these stages will be provided
in the Discussion section and each stage will be linked
to the particular primate motion sensitive neurons that
they are designed to emulate.

Speed estimation

Figure 3 (blue line) shows replotted MT data from a
single neuron tested by Maunsell and Van Essen (1983).
The data set displays a typical tuning curve found in
many MT neurons (Perrone & Thiele, 2001; Rodman &
Albright, 1987); the response peaks at some optimal
stimulus speed (48/s in this case) and drops for speeds
slower and faster than this value. The black curve
shows re-plotted data from a single MST neuron
collected by Inaba et al. (2007). In contrast to the MT
neuron data, this MST neuron produces an output that
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continues to increase as the stimulus speed increases.
On a log-linear plot, the relationship between the
stimulus input speed and the cell response is surpris-
ingly linear. It is this transformation from the speed-
tuned response of MT neurons to the linear response of
MST neurons that I am attempting to replicate in the
new velocity code model.

One reason for attempting to match the MST log-
linear function in Figure 3 is that I would like to
maintain concordance with the MST data. In addition
we have previously presented an argument for a
logarithmic sampling of speed based on the distribution
of speeds that occur during self-motion through the
environment (Perrone & Stone, 1994). I now outline
how this MST property can be generated from small
sets of MT neurons.

MT model units

The details of the stages leading up to the MT model
units have been presented previously (Perrone, 2004,
2005; Perrone & Thiele, 2002). The spatiotemporal
filters at the initial filtering stage of the model are based
on the temporal (Foster et al., 1985; Hawken et al.,
1996) and spatial (Hawken & Parker, 1987) frequency
tuning of V1 neurons. One class of spatiotemporal
filters are referred to as sustained (S) because of their
low-pass temporal frequency tuning and the other we
refer to as transient (T) because they have band-pass
temporal frequency tuning.

The combined spatiotemporal amplitude response
functions for the S and T filters are shown in Figure 1a
in outline (contour) form. The S and T sf and tf
functions are specially designed so that the locus of
intersection of the two S and T amplitude response
functions falls on an oriented line (with a zero intercept)
in a sf-tf plot such as that shown in Figure 1a. In brief,
the weighted intersection mechanism (WIM) model
proposed by Perrone and Thiele (2002) was designed
to produce the maximum output from a combination of
the two S and T filter inputs whenever their output was
both high and equal. This occurs along the oriented
locus of intersection and thus speed tuned motion
sensors are created with oriented spectral receptive fields
similar to the plots shown in Figure 2a and b.

Here I use a slightly modified version of the original
WIM model equation:

WIM ¼ ðS0 þ T0Þ=ðjS0 � T0j þ dÞ; ð1Þ
where d is the delta term used in the original equation
and which controls the bandwidth of the speed tuning
of the WIM sensor. It was set to a value of 8.0 in all of
the simulations reported in this paper.

We have dropped the logarithm terms used in the
original Perrone and Thiele equation because we have
now introduced a contrast gain control stage at the
point that the spatiotemporal energy is calculated. The
spatiotemporal energy (Adelson & Bergen, 1985;
Watson & Ahumada, 1985) found from the spatiotem-
poral filters (S and T) is modified by the following
operations:

S0 ¼ aS=ðpSþ scÞ ð2Þ

T0 ¼ aT=ðpTþ tcÞ ð3Þ
where a¼ 6.8, p¼ .06, sc¼ .15 and tc¼ 0.14 (for S and
T values in the range 0–60).

This is a form of divisive negative feedback and the
resulting transformation produces similar saturating
contrast sensitivity functions to that introduced by the
use of logarithms in the original WIM equation and
which match the contrast response functions of MT
neurons (Sclar, Maunsell, & Lennie, 1990).

Figure 3. MT and MST neuron responses to a range of stimulus

speeds. The Maunsell and Van Essen (1983) data is from their

Figure 6a (48/s unit). The Inaba et al. (2007) data is adapted from

their Figure 2e (blue triangles, motion in preferred direction during

fixation). It has been normalized relative to the peak response of

the cell (approximately 60 spikes/s). In contrast to the MT cell, the

MST neuron responds at a rate proportional to the test speed.

Note that this is a log-linear plot with the x-axis based on log2(V).

MT data set from ‘‘Functional properties of neurons in middle

temporal visual area of the macaque monkey. I. Selectivity for

stimulus direction, speed, and orientation’’ by J.H. Maunsell &

D.C.J. Van Essen, 1983, J. Neurophysiol. 49, 1127–1147.

Copyright 1983, The American Physiological Society. Adapted

with permission. MST data set from ‘‘MST Neurons Code for

Visual Motion in Space Independent of Pursuit Eye Movements’’

by N. Inaba, S. Shinomoto, S. Yamane, A. Takemura, & K.

Kawano, 2007, 97, 3473-3483. Copyright 2007, The American

Physiological Society. Adapted with permission.
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The WIM model provides an account of how the
primate visual system transforms early stage V1
neurons with one quadrant separable spectral receptive
fields (see contour lines in Figure 1a) into neurons with
inseparable or oriented spectral receptive fields (Figure
2a). These model WIM sensors act as subunits (Figure
2c and d) in our model of MT pattern neurons
(Perrone, 2004; Perrone & Krauzlis, 2008a) which form
an integral part of my new velocity code model. I also
use model MT component units (MTc) based on MT
component neurons (Albright, 1984; Movshon et al.,
1983).

Basic pattern motion detector (PMD) and
component unit design

Each cluster within a PMD is made up from seven
positive WIM subunits and five inhibitory (opponent)
subunits (Figure 2d). Their direction tuning ranges
from 0–3308 in 308 steps. The speed tuning is a cosine
function of the difference between the direction tuning
value and the optimum overall direction tuning (h) for
the PMD. Therefore, if the overall velocity tuning of
the PMD is V̄p¼ (Vp, hp), then the speed tuning of the
cluster subunits making up the detector in the model is
given by si ¼ Vpcos(h � bi) where bi ranges from 08 to
3308 in 308 steps. The set of bi values was designed to
sample the range of possible edge orientations that
could be present in the receptive field of the PMD and
it sets up the speed tuning of each cluster subunit to
match the expected speed of the different possible edge
configurations. The clusters are spatially separated in a
circular array (Figure 2d). The radial separation
distance between clusters depends on the spatial
frequency tuning (u0) of the WIM subunits and was
set at 12/u0 pixels.

The different (si, bi) tuned WIM subunits are
weighted prior to their output being summed across
all of the clusters. For b values 6308 on either side of
hP, wi¼ 0.87; for values 6608, wi¼ 0.5 and for 6908, wi

¼ 0. Subunits that are tuned to directions within the
range hP – 1808 6 608 (dashed lines in Figure 2d)
contribute in an opponent fashion (w¼�1.0) and their
output is subtracted from the total activity generated in
the direction clusters; the output from the opponent
units in a cluster is subtracted from the positive activity
in the same cluster. The net local output (cluster
positive activity – cluster negative activity) from all of
the nine clusters in the receptive field is half-wave
rectified, then summed (Perrone & Krauzlis, 2008a).
This total activity (at frame four of an eight frame
sequence) represents the output of the MT model
pattern detector and is considered to be the equivalent
of the average firing rate (spikes/second) generated by
primate MT pattern neurons.

The model component units operate in a similar
fashion to the PMDs but do not have the off-axis WIM
units tuned to h 6 308 and h 6 608. Their total output is
based solely on the net activity from the h and hþ 1808
WIM units across the nine patch locations.

MT sampling array in spatio-temporal
frequency space

Figure 4a is a spatiotemporal frequency space
representation with log-log axes. In this type of log
plot, the spectra for different edge velocities all fall on
parallel lines (shown by the blue lines). The plot only
shows the MT unit array for the primary direction (08
in this case). The spectral receptive field (small inset in
Figure 4a) indicates the spatiotemporal frequency
tuning of a representative MT model sensor.

When an edge moves at 28/s to the right, it has a
spectrum that falls on the 28/s line in this type of plot
(see pink solid line in Figure 4a). The task of estimating
the speed of the edge amounts to locating the spectrum
along the spatial frequency axis in this log-log plot. To
this end, I use a set of five MT pattern units with spatial
frequency tunings that span this space. I use units with
peak spatial frequency tuning corresponding to 4, 2, 1,
and .5 c/8. Four of the units have a peak temporal
frequency of 4 Hz (Perrone, 2005), and one has a peak
tf frequency of 8 Hz. This set corresponds to speed
tunings of 1, 2, 4, 8, and 168/s.

Because I am using digital image sequences for my
simulations I actually test the code using pixels/frame
as a speed measure but, for convenience and to retain
consistency with the empirical data I simulate, I will
report all speeds as degrees per second and assume that
the temporal sampling of the input movies is 30 Hz and
that a 256 pixel wide image subtends 8.58 such that 1 p/f
¼ 18/s. The constraints of digital image sampling and
the time required to process large images dictate the
range of speeds I have chosen to incorporate into the
model. With larger input images, the tuning speeds
could easily be scaled up by a factor of four to bring
them more in line with typical MT optimum speed
tuning values (Maunsell & Van Essen, 1983; A. T.
Smith & Snowden, 1994).

Consider first a speed estimation system that simply
uses the outputs from the full set of MT pattern units
shown in Figure 4a. Figure 4b (black solid curve) shows
the distribution of activity across the set of five MT
units when stimulated with an image sequence (128 ·
128 · 8 frames) of a high contrast (100%) edge moving
at 28/s to the right (08). The set of MT units was
centered on the middle of the image (x ¼ 64, y ¼ 64).
The distribution peaks at 28/s and the form of the curve
reflects the underlying speed tuning curves of the MT
units.
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A number of strategies have been suggested for how
to obtain the speed from an MT population distribu-
tion such as the one shown in Figure 4b. One possible
technique is to locate the peak of the distribution using
some form of winner-takes-all technique (e.g., Perrone,
1992; Perrone & Stone, 1994). Another approach is to
use the weighted vector average technique which is a
form of centroid estimation (Bracewell, 1978). This
technique has been used extensively as the basis for

coding a number of stimulus dimensions in a range of
biological systems (Dayan & Abbott, 2001; Georgo-
poulos, Schwartz, & Kettner, 1986) and it has also been
used in previous attempts to code image velocity using
MT neurons (Churchland & Lisberger, 2001; Krekel-
berg et al., 2006; Lisberger & Movshon, 1999; Priebe &
Lisberger, 2004).

For a distribution such as that shown in Figure 4b
the centroid is given by:

Figure 4. Basic velocity code and spatial scale problem. (a) Spatiotemporal frequency plot on log-log axes. Blue lines represent the

locations for the spectra (e.g., red line) generated by moving edges of different speeds (given by labels at top). The ovals represent the

spectral receptive fields of model MT pattern neurons (see inset) tuned to a range of spatial and temporal frequencies. (b) Distribution of

outputs from set of five MT units located at center of image (solid line) and 24 pixels to the right of center (dashed line). (c) Possible spatial

sampling scheme for MT units in basic velocity code array. (d) Output of a basic weighted vector average (centroid) speed estimation

scheme. The actual edge speed was 28/s (dashed line). Large errors occur for edge locations away from the center of the MT unit array.
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VR ¼

X5

i¼1

wiMTi

X5

i¼1

MTi

ð4Þ

where VR indicates a velocity estimate based on the raw
MT output values (MTi) and w is the speed tuning (1,
28/s etc.) of the MT units. For the 28/s distribution
(black solid line in Figure 4b), the value of V comes out
at 4.028/s which is an overestimate. On a linear x-axis
the distribution shown in Figure 4b is highly skewed
with a long tail at high speeds and this distorts the
speed estimate. The centroid estimate can be improved
by using log2(Vi) for the wi values. When this is done
the estimate is 2.928/s which is still inaccurate. This lack
of accuracy is not the only reason I decided not to
adopt the weighted vector average technique in this
basic form or to use a winner-takes-all (peak detection)
approach in my velocity code model. Both of these
basic methods have a serious limitation: they only work
if all of the MT neurons in the set MTi are centered on
the same image location (x, y). These basic techniques
do not take into account the problem of spatial scale
and how the MT neuron receptive fields sample and tile
the visual image.

Problems with spatial scale

The use of multiple spatial channels is obviously
beneficial when it comes to locating the edge spectrum
along the spatial frequency axis (Figure 4a). However
trying to compare the outputs of different sized sensors
(spatial scales) introduces a problem. The receptive
fields of the different units shown in Figure 4a span a
wide range of sizes; the units tuned to 88/s are
considerably larger than those tuned to 18/s. In order
to sample the visual field with these different sized units
and to minimize overlap, the sampling must necessarily
be sparser for the larger units than the smaller units. An
example of a possible sampling strategy is shown in
Figure 4c with the smallest units (18/s) shown in blue at
the center and the largest units (8 and 168/s) shown in
green. Only two of the smaller blue and black units
have been depicted in the outer regions of the green
circle for clarity but it should be obvious that there are
regions that are represented by the center of the small
(blue and black) units but not by the center of the
larger units (green).

The level of output of an MT unit is determined to a
large degree by the proximity of the stimulus to the
center of its receptive field (e.g., see Xiao, Raiguel,
Marcar, & Orban, 1997) and so the opportunity arises
for a confounding of stimulus location and speed. The
distribution of MT outputs shown in Figure 4b (solid

black curve) is derived from a test in which the moving
edge in frame four (of an eight frame sequence) is
located exactly over the center of the MT spatial array
(line A in Figure 4c). Only in this case does the
distribution reflect the influence of the speed of the
stimulus independent of the location because all of the
MT units are being maximally stimulated at the center
of their receptive fields. For other edge locations the
relative responses depend on both the speed of the edge
and its location relative to the center of the receptive
fields.

The dashed line in Figure 4b is the MT activity
distribution for the array centered on location A but
the edge (still moving at 28/s) is positioned 24 pixels to
the right of the center of the array (see line B). The
distribution is now skewed to the right and the estimate
for the velocity using Equation 4 is greatly overesti-
mated as being 6.58/s. Even though the edge speed is
not optimal for the larger MT units, they still end up
responding more than the smaller units, simply because
of their larger footprint. An edge at location B still
activates the large (green) units but barely triggers any
response in the small (blue and black) units at the
center of the array. The resulting skewed distribution
leads to a large overestimation of the edge speed.
Figure 4d shows the velocity estimates using the log
scaled version of the centroid equation (Equation 4) for
a collection of five MT model units located at the center
of the image for different edge locations. The speed
estimation error increases rapidly for locations away
from the central location of the MT unit receptive field
array. A peak detection or winner-takes-all scheme also
suffers from this type of error.

New improved velocity code model

The above speed estimation problems stem from the
fact that the speed estimation process is dependent on
using the outputs from a broad range of MT neuron
sizes (spatial scales). The rationale and motivation for
many of the design elements in the new velocity code
model arise from the constraint that a broad range of
MT neuron sizes cannot be used to determine image
speed because the cell output is a function of both the
stimulus’s speed and its location in the receptive field. A
wide range of MT receptive field sizes exacerbates this
potential confound (Figure 4c) and also leads to biases
from truncation effects (Krekelberg et al., 2006).

The use of a threshold to limit the signals from the
erroneous larger MT units (Chey, Grossberg, &
Mingolla, 1998) makes it difficult to detect low-contrast
moving stimuli. Therefore my solution is to minimize
the range of MT optimum speeds (sizes) that go into
the speed computation. I introduce the concept of a
velocity channel whereby only two MT spatial fre-
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quency scales are used in the centroid estimation stage
and I use inhibition between channels to overcome the
spatial scale problem described above (Figure 4b and d).

In addition to the basic set of five pattern units, I add
a row of component units (MTc) that are tuned to half
the temporal frequency of the pattern units (Figure 5a).
The component units are based on MT component
neurons (Albright, 1984; Movshon et al., 1983) and
have the same basic speed tuning mechanism as the
pattern units but lack the off-axis WIM subunits that
make up the model MT pattern units (Perrone, 2004;
Perrone & Krauzlis, 2008a). They respond predomi-
nantly to the motion component orthogonal to the
orientation of the edge. Because their peak temporal
frequency tuning is at 2 Hz, they respond optimally to
the same speed of edge motion as the pattern unit
(tuned to 4 Hz) located along the same iso-velocity line
(blue parallel lines in Figure 5a).

In the new model there is also another row of MT
component units (red ovals in Figure 5b) that are tuned
to 4 Hz temporal frequency. However these four units
are derived from a basic set of 2 Hz component units
similar to those in Figure 5a but they have had their tf
tuning pushed out to 4 Hz by a reweighting of the
sustained and transient inputs to the WIM subunits
making up the MT component units (see Perrone,
2005). I will refer to this set as overclocked component
units because they are tuned to twice their natural
temporal frequency. The black ovals in Figure 5b are
not part of the velocity encoding set but simply
represent the original tuning of the overclocked units.
The full ensemble of MT units consists of five MT
pattern units and eight component units (made up of
four standard units and four overclocked units). The
overclocked component units are used as part of a

contrast sensitive redundancy control mechanism and
do not figure directly in the velocity code model. They
will be discussed in more detail below when I introduce
spatial interactions between MT units.

Instead of using the output from all of the 13 MT
units in the centroid calculation I use only a triad of
MT units consisting of two pattern units and one
component unit: MTv, MT2v, and MTcV. Since MTcV
is tuned to .5 V the set is equivalent to MT2V, MTV,
and MT.5V. I will refer to these three units as a velocity
channel. The main tuning of the channel is determined
by the MTV pattern unit (e.g., 28/s). The channel also
includes a pattern unit tuned to twice the speed as the
primary unit and a component unit with the same
spatial frequency as the primary unit but tuned to half
the speed. The fact that each channel is constrained to
just two spatial scales alleviates the spatial scale
problem encountered above when all four spatial scales
were used to determine the centroid of the MT
distribution.

A typical triad making up a 28/s velocity channel is
shown in frequency space in Figure 5a (see solid line
ovals connected by gray lines). The spectrum for a
moving edge can be conceptualized as a ridge aligned
with one of the blue lines in Figure 5a. The three MT
units making up a velocity channel straddle this ridge in
a symmetrical fashion. Similar velocity channels exist in
my model (but not shown) tuned to 1, 4, and 88/s. The
88/s channel requires a slightly different arrangement
and uses the MT units located along the vertical
column to the left of the figure. Note that there is a
degree of overlap in the channel structure; an MT unit
can act as both the primary unit for a channel as well as
one of the secondary units making up the triad in an
adjacent channel.

Figure 5. New velocity code MT unit array in log-log frequency space. (a) The basic array is augmented with four MT component units

tuned to half the temporal frequency of the pattern units. The solid ovals connected by shaded lines represent the triad of units making up

a velocity channel, in this case one tuned to 28/s. (b) Red ovals represent overclocked component units also included in the new velocity

code model array. The black ovals depict the original tuning of the red units and are not part of the new model array.
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Figure 6a shows the output of the three MT triad
units making up each of the four channels in response
to an edge moving at 28/s and located such that, at
frame four of the eight frame sequence, it is positioned
directly above (x, y) as in Figure 4c (line A). The central
lines represent the output from the primary pattern unit
(MTV) and the outer two lines are from the MTc units
and the MT2V units. The color code continues the
convention adopted in Figure 4 with blue representing
the highest spatial frequency channel (smallest circles in
Figure 4c) and black, red, and green the other sizes.

The most active primary unit is the one in the 28/s
channel. An estimate of the centroid of the triad of
responses in the 28/s channel would produce a good
estimate of the edge speed (note the symmetry of the
responses). However the other channels would produce
erroneous estimates of the centroid (and hence the
speed). Therefore the new velocity code model uses a
centroid calculation on the triad of MT responses
within a channel but it also includes a mechanism for
constraining the velocity estimates to the channel
containing the peak response in the primary unit.

New velocity code model mechanism (Part 1. 2nd

derivative stage)

The first stage of the new velocity code model is to
introduce a new mechanism (P) that sums the input

from the primary MT unit in the channel triad but
which is inhibited by the MT2V and MTcV units. The
reason for this inhibition is two-fold: (a) It limits the
output to the channel that is responding the most and
(b) It overcomes the spatial scale problem discussed
above. Specifically we calculate for each channel Vi:

Pvi ¼ fþðMTvi � :5MT2vi � :5MTcviÞ ð5Þ
Where

fþ ¼ max
�
fðxÞ; 0

�
¼ fðxÞ if fðxÞ. 0

0 otherwise

�

Given that the optimum speed tuning of an MTc
unit is half that of an MT unit of the same spatial scale
(¼ MT.5V) it should now be obvious that this new
mechanism is the equivalent of finding the second
derivative of the MT output distribution. For typical
MT speed tuning curves (Figure 3) and distributions
(Figure 4b) this stage only produces an output at the
peak of the distribution (i.e., when MTVi is the most
active unit). Figure 6b shows the normalized output
(see below) of the P mechanism stage for each of the
different channels in response to the 28/s edge stimulus.
All channels except the 28/s one produced values of
zero in response to the input stimulus. I use the output
of the P stage to control which velocity channel is going
to produce a signal using a form of multiplicative gain

Figure 6. New velocity code model in operation in response to a 28/s edge. (a) Output of triads making up each of the four velocity

channels. Color coding relates to the sizes of the units in the spatial receptive field array shown in Figure 4c. The peak response occurs in

the channel two primary (central) unit and the distribution of responses across the three units in the channel determines the speed

(Equation 7). (b) Output of second derivative stage of new code that limits the velocity output signal to the channel containing the peak

central response. For the 28/s test case, only channel two produces a positive multiplicative gain signal and so only this channel generates

a velocity signal.

Journal of Vision (2012) 12(8):1, 1–31 Perrone 10

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933493/ on 06/19/2018



control. In order to constrain the range of responses of
the P mechanism to a narrow band of mainly ‘‘on’’ or
‘‘off’’ responses we use the same form of divisive gain
control adopted in Equations 3 and 4 and transform
the PVi values using:

GP ¼ aP=ðpPþ gcÞ ð6Þ
where a ¼ 5, p¼ 0.2 and gc ¼ 0.1.

This transformation produces a log-type function
that rises quickly as the PVi value increases but which
saturates and produces very similar output (; ¼ 5.0)
across a wide range of PVi values. For regions of the
MT distribution (Figure 4b) away from the peak, GP
has a value of 0.0 when half-wave rectified. Velocity
channels that do not contain the peak response in their
primary unit (MTV) will therefore have zero gain
(Figure 6b) and will not generate a velocity estimate
through the mechanism to be outlined in the second
stage of the model (see below).

The second benefit of introducing the P stage
mechanism is that it helps overcome the spatial
problem (see section titled Problems with spatial scale)
that occurs when a wide range of MT spatial sizes are
used to determine the image speed. For example, a 48/s
MT pattern unit may respond because of its large size
to an edge moving at 28/s that is not located centrally
above the MT array (see Figure 4c) but it will be
inhibited by the large response from the MTc4 unit
which covers the same area but is tuned to 28/s. For the
48/s unit, the output of Equation 5 [P4 ¼ fþ (MT4

�.5MT8 � .5MTc4)] will therefore be zero.
The above stage of the new velocity code model

simply controls which channel will respond but does
not actually produce a velocity estimate. The GP
mechanism does not produce an output proportional to
the speed of the input. It could be used in a system that
finds the peak in the MT distribution but the resolution
of the velocity estimates would be limited to the
number of channels (1, 2, 4, or 88/s). The addition of
more channels would improve the resolution but this is
not as economical as the system I have developed which
is able to interpolate the speed values between the main
tunings of the velocity channels.

New velocity code model mechanism (Part 2. Centroid
stage)

For each velocity channel we estimate the velocity
using the same centroid calculation given in Equation 4
but only the outputs from the three units making up the
channel are incorporated into the centroid calculation:

Ci ¼
w1MTVi þ w2MT2Vi þ w3MTcVi

MTVi þMT2Vi þMTcVi
ð7Þ

The log2 sampling used for the MT channels (Figure 5)
helps make the distribution of activity across the triad

of MT units more symmetrical (see Channel 2 in Figure
6a) and it improves the velocity estimates. The weights
in Equation 7 are set to generate values of Ci that
follow a linear function similar to the MST data
(Figure 3). The shape of the speed tuning curves of the
individual MT units determines the symmetry of the
output distribution across the three units making up
the triad. In order to calibrate the system, the weights
can be customized to accommodate the different
distributions and to optimize the performance of the
velocity code model. The weights were set to produce a
linear output function such that Ci ¼ 20 þ 20log2(Vi)
for a range of input values (Vi ¼ .5 – 88/s).

The final step in the new velocity code model is to
multiply the output of the centroid estimator (Equation
7) for each channel (Ci) by the GPi gain term for that
channel (Stage 1, Equation 6). Therefore the output of
the model for the four velocity channels (i¼ 1, 2, 4, and
88/s) is given by:

Vi ¼ aGPiCi ð8Þ
where a is an arbitrary scaling value which controls the
size of the velocity output. It was set to 0.2 in the model
simulations to produce values for V which peak at 80.0
for our highest velocity channel.

One neural mechanism (Equation 7) results in an
output proportional to the centroid location of the
triad of MT neurons and another (Equation 6)
responds only if the channel contains the peak MT
output. The latter mechanism controls the gain of the
former and only the centroid estimate from the peak
channel is output to the next stage of motion
processing.

For the Figure 6 example, only the 28/s channel had
a nonzero GP value (4.93) and the centroid estimate
(Ci) for this channel was 40.53. When the Vi output
(39.97) is converted to 8/s (see Equation 10) it
corresponds to a speed estimate of 1.998/s which is
very accurate.

For an edge speed that falls between the boundaries
of the channels (e.g., 1.58/s) it is possible for two
channels to have positive values of GP and for each
channel to generate a velocity signal. These estimates
are usually very similar, if not identical. When
calculating the final velocity for assessing the accuracy
of the code in this paper I will report the average of the
two responses. However the Vi values are seen as the
first part of a global motion processing stage which
combines many such estimates across the visual field
and I will therefore assume that if two channels are
active, both of the estimates are passed onto the next
stage of neural processing (MST) and any averaging
occurs there.

Therefore the final velocity estimate from a mecha-
nism I will label VMST is given by:
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VMST ¼ V1 þ V2 þ V4 þ V8 ð9Þ
The VMST value represents a signal proportional to
the stimulus velocity at a particular image location (x,
y) and many such signals would be summed across the
visual field by a unit designed to detect global patterns
of image motion such as an MST neuron. Therefore the
VMST stage is considered to be the local input at a
particular image location feeding into an MST neuron
that has many such inputs distributed over large
regions of the image. When tested with a uniform field
of image motion, the MST neuron’s response would be
a scaled version of the output from the local VMST
mechanism. Therefore the VMST output in response to
a range of speeds should emulate the behavior of MST
neurons such as that shown in Figure 3. In order to test
the accuracy of the model and to relate the output to
the input, we can derive the actual velocity from the
VMST firing rate using:

VT ¼ 2
VMST�20

20ð Þ ð10Þ
This is not intended to represent a particular neural
stage or computation and is only used to provide a
comparison of the model estimates to the input values.

Methods

The new velocity code model was tested using edges
moving left to right at a range of speeds (.5, .75, 1, 1.25,
1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 5, 6, 7, and 88/s).
The edge contrast was 100% and the image size was 128
· 128 pixels and eight frames in length. The output of
the model at location (64, 64) was recorded at frame
four of the sequence. Note that the range of speeds
tested is a function of the image size used for the tests
and the assumed field of view of the image. The range
of speeds can be arbitrarily scaled upwards by
increasing the image size.

Results

Figure 7 shows the non-transformed VMST output
(Equation 9) of the new velocity code model for the
tested edge speeds. The output is very linear on a log-
linear plot and emulates the behavior of the Inaba et al.
(2007) MST neurons (Figure 3). This linearity occurs
for input speed values that do not necessarily coincide
with the tuning of the velocity channels used in the
model. It is clear that the new velocity code model is
able to interpolate and produce an output in propor-
tion to the edge velocity even for cases in which the
input speed falls between the four channel values. The
crosses in the plot are for the cases in which the test
speed matches one of the velocity channels. The circles

are for test speeds that do not match the primary tuning
of the channel yet the new code continues to output
values log-linearly related to the input speed.

I have achieved the goal of been able to generate an
output from sets of MT neurons that is log-linear in
form, similar to some MST neurons (Inaba et al.,
2007). What is not apparent in the test example shown
in Figure 7 is how well the new code deals with the
spatial scale issue that caused problems for a basic
centroid (weighted vector average) method or peak
detection method when a broad range of MT spatial
scales are used to derive the speed estimates (Figure
4d). The Figure 7 tests were generated at a single image
location from velocity channels centered on the edge
location in the middle of the movie sequence (frame 4).
To examine what is happening at other channel
locations and directions I need to introduce an
extended spatial sampling scheme for the MT unit
locations that tiles a larger part of the image. The
scheme I have adopted is shown in Figure 8.

The spatial sampling is based on a rotated rectan-
gular array of image locations (xi, yi). The distances
between the elements in the original (nonrotated) array

Figure 7. Test of the new velocity code model. The graph shows

the output of the VMST stage (Equation 9) in response to an edge

moving left to right at a range of speeds. The crosses are for test

speeds that match the tuning of one of the velocity channels, the

filled circles are for tests speeds not aligned with the channel

tuning. The x-axis is log2(V) but the y-axis is linear. The dashed

line is generated from Y ¼ 20 þ 20log2V and represents perfect

linearity on a log-linear plot. On a linear-linear plot the data fall on

a log-type function which asymptotes at high speeds similar to the

behavior of some MST neurons (Inaba et al., 2007).
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(Figure 8a) is proportional to the speed tuning of the
velocity channel: (7, 14, 28, and 56 pixels) for channel 1,
2, 4, and 88/s, respectively. If Figure 8 represents a 28/s
velocity channel, then the spacing of the 28/s units (blue
circles) is 14 pixels and the spacing of the 48/s units (red
circles) is 28 pixels.

Rather than using the array in its original rectangu-
lar layout, I have found a 458 rotated version to work
better and it provides a better explanation for the
patterns of antagonistic spatial inhibition found in MT
neurons (Xiao et al., 1997). When rotated, a single
velocity channel tuned to rightwards motion is now
represented by the central diamond lattice configura-
tion in Figure 8b. All of the eight surrounding MT
units (and one located centrally) are all tuned to V and
represent the primary unit of a velocity channel triad.
These blue locations are also occupied by the MTcV
units making up the triads. The central location in the
diamond (marked with a filled red circle) is occupied by
the larger unit of a velocity channel triad (MT2V) and
its receptive field covers each of the MTV and MTcV
locations.

The application of the velocity code equations
(Equations 5 and 7) is straightforward for the central
location of the diamond lattice array (red circle in
Figure 8b) and follows the procedure outlined above:
the MTV unit at the central location is inhibited only by
the MT2V and MTcV units at the same location.
However for the outside positions in the diamond
lattice array, the MTV units are inhibited not only by
the MT2V unit at the center of the array but also by the
MT2V units at the center of adjacent diamond arrays.
For example, for the unit 3 in Figure 8b, Equation 5
becomes:

PV3 ¼ fþ MTV3 � :5ð:MT2V1 þMT2V10Þ � :5MTcV3½ �

where the numbers after the V symbol indicate the
location specified in Figure 8b. For a PV unit at
location 2, the inhibition comes from the MT2V units at
all four red locations surrounding it.

Although it complicates the triad calculations
(Equations 5 and 7), this sharing of the outside MTV

units by the central MT2V units enables adjacent
diamond arrays to be closely packed together without
overlap and it provides an economical sampling of the
2D image. In order to explore how well the new
velocity code deals with the spatial problem outlined
above, the model was run at a range of image locations
specified by the diamond array (Figure 8b) covering a
128 · 128 pixel image area and using a range of
different directions for the velocity sensors (0–3308 in
308 steps). To better visualize the output of the model,
the firing rate of the VMST stage has been converted to
8/s values using Equation 10 and has been plotted in the
form of vectors.

Figure 9a is a vector plot showing the transformed
outputs of the different velocity detectors across space
and across a range of angles in response to an edge
moving at 28/s to the right. The edge extended the full
128 pixel height of the image and was located at x¼ 64
in frame 4 of the eight frame movie sequence.

Compared to the basic velocity code model test
shown in Figure 4d, the velocity estimates are
constrained to locations close to the edge location
and there is no evidence of the high velocity overesti-
mation errors at distant locations that were evident in
the Figure 4d test. Although the spatial scale problem
has been overcome, another problem has manifested
itself in this test: The VMST velocity estimators tuned
to other directions besides 08 are responding to the edge
and signaling a higher speed in that direction. My
solution to this direction problem is to make use of the

Figure 8. Spatial sampling scheme for MT pattern and component units. (a) Original rectangular array with blue circles corresponding to

MTV unit locations and the red circles the MT2V unit locations. The spacing (d) is scaled depending on the speed tuning of the units. (b).

Final diamond lattice array rotated by 458. An individual velocity channel (tuned to rightwards motion) is represented by the darker red and

blue units. Note that adjacent channels share common MT units along their borders (e.g., unit 3 shared by units 1 & 10).
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signals from the overclocked component units also
present in the model array (Figure 5b). These units are
tuned to the same speeds as the pattern units that form
the primary elements in the velocity estimation
channels but they respond primarily to motion 908 to
the edge orientation. They enable us to constrain the
velocity estimates to directions orthogonal to the edge
and to remove the spurious outputs visible in the
Figure 9a vector plot.

Direction estimation

The broad directional tuning of MT pattern neurons
means that an edge moving in the 08 direction will
activate an MT model pattern unit tuned to 08 but it
will also stimulate MT pattern units tuned to directions
on either side of 08 (Perrone, 2004; Perrone & Krauzlis,
2008a). An MT unit tuned to 48/s and 608 direction will
be well stimulated by an edge moving at 28/s in a 08
direction because the 608 MT pattern unit contains a
WIM subunit tuned to 4 cos(608) ¼ 28/s in the 08
direction. Therefore for velocity channels tuned to
directions 6608 and 6308 relative to the edge direction
the channel triad MT distributions will be skewed to
higher speeds and the VMST units will estimate higher
values for the speed in these directions as can be seen in
the Figure 9a vector plot. These additional estimates of
the velocity of the moving edge add noise to the next
stage of motion processing (MST) that is concerned
with finding the overall direction and speed of the edge.
We would like to constrain the estimates to mainly lie
in the direction normal to the edge (08 in this case).

In the new model, a moving edge is characterized not
only by the responses of the model MT pattern neurons
but by the fact that the overclocked component units
(MToc) tuned to the direction orthogonal to the edge

orientation also respond at a high rate. However it is
not simply the case that if an MT pattern unit is
responding in a particular direction (h) without a
corresponding response from the MToc unit tuned to h,
then one could conclude that the MT pattern response
is spurious and should be eliminated. There are bona
fide cases in which the pattern unit tuned to direction h
is responding strongly but there is no response from the
MToc unit tuned to h. Moving plaid patterns (the sum
of two gratings with different orientations) create such
a state of affairs for example; the MToc component
units tuned to the plaid components do not align with
the plaid direction or the MT pattern unit that
responds maximally to the plaid. A characteristic of
this situation however is that the directions of the active
component units are symmetrically oriented around the
pattern unit direction. I therefore introduce a mecha-
nism that produces no inhibition when the MToc
responses are symmetrically distributed (in terms of
their directions) but which generates strong inhibition
when an asymmetry occurs in the direction response
profile.

For each angular direction hj, (where j ¼ 0–3308 in
308 steps) I define an inhibitory direction component
DI such that:

DIv;hj ¼ jMTocðV; hj þ 308Þ �MTocðV; hj � 308Þj
þ jMTocðV; hj þ 608Þ �MTocðV; hj � 608Þj

ð11Þ
Where MToc(V, hj) is the output from an MT
overclocked component unit tuned to speed V and
direction hj. I use the absolute value of the differences
for mathematical convenience and compactness but
this operation could be implemented biologically by
half-wave rectification and summing of the signals from
MToc(V,hj þ 308)� MToc(V,hj � 308) and MToc(V,hj �
308) � MToc(V,hj þ 308) and their 6608 equivalents.

Figure 9. Results of test of new velocity code model produced using an edge moving at 28/s to the right (image size¼ 128 · 128 pixels).

Vector plot showing output of velocity stage transformed to 8/s (Equation 10). Vectors have been scaled up (·4) to make them easier to

see. The gray area indicates the position of the edge in the middle of the movie sequence. (a) Output without direction inhibition

mechanism. (b) Application of direction inhibition mechanism.
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At the stage where the second derivative operation is
applied (post MT) I subtract off the direction
inhibition, DIV;hj . Therefore Equation 5 can be
modified to this form:

PðVi; hjÞ ¼ fþ
�
MTðVi; hjÞ � :5MTð2Vi; hjÞ

� :5MTcðVi; hjÞ �DIV;hj

�
ð12Þ

It should be apparent that if the direction inhibition is
high, the value of P will be low and hence GP will be
low (Equation 6) and this will turn off the velocity
channel for direction hj and prevent the velocity signal
from being output.

The operation of the direction inhibition stage is
demonstrated in Figure 9b. All velocity outputs except
those orthogonal to the edge direction have been
removed. Although it has been presented first, the
direction inhibition stage is actually implemented at a
late stage of the velocity estimation process. The local
inhibitory mechanisms between MT units described
below occur prior to the direction inhibition stage.
However it is easier to depict the local spatial inhibition
effects without the presence of the erroneous direction
vectors.

Contrast-dependent redundancy
removal

The vector flow field plot (Figure 9b) reveals another
problem with the basic velocity code model. Even
though the outputs at the position of the edge are
relatively accurate and in the correct direction, they are
spatially redundant in the sense that the same signal is
being generated by all the velocity sensors located
along the edge. There are also signals being generated
on either side of the actual edge location. If these
signals were being used by a higher level system
designed to extract global motion patterns by integrat-
ing the local estimates over wide regions of the visual
field, (e.g., MST neurons designed to detect heading;
Perrone, 1992; Perrone and Stone, 1994, 1998), the
additional edge outputs simply add to the noise and
make it more difficult to recover the correct rotation or
heading signal. As was the case for the direction
estimates, we would like to minimize the number of
these redundant signals.

On the other hand, this redundancy problem is
something that one would only want to correct at high
contrast levels; when the stimulus contrast is low, all
the velocity signals along the edge would be useful to
the next stage of processing and should not be
eliminated. This will require a mechanism that is
sensitive to and can adjust itself according to the

contrast level of the stimulus. At low contrast, any
motion signals are useful to the later stages and should
be retained. I therefore developed a spatial inhibitory
mechanism that only works at high contrast levels. It
also makes use of the overclocked component MT units
(Figure 5b).

Contrast-dependent speed retuning

The overclocked MT component units respond
differently to contrast compared to the standard
pattern and component units. The reason for this can
be seen in the response to contrast of the sustained and
transient V1 inputs to the WIM subunits that make up
the MT sensors. In the WIM subunits that make up the
overclocked MT units the T spatiotemporal energy is
weighted by 0.5 relative to that of the S units in order to
increase the peak temporal frequency tuning of the
WIM unit (see Perrone, 2005). This means that the
contrast gain control mechanism (Equations 3 & 4)
produces a different output (T 0) for the T units
compared to the S units. This is illustrated in Figure
10. In the standard units, the S0 and T0 responses as
contrast changes are almost identical (Figure 10a).
However in the WIM units feeding into the overclocked
MT units, as contrast drops the S0 and T0 spatiotem-
poral energy outputs are no longer equal; some parts of
the T0 contrast response curve are higher than the S0

curve (Figure 10c). The consequences of this can be
seen in the temporal frequency tuning curves of the
respective units (Figure 10b & d). These were generated
by examining the S0 and T0 levels in response to a
moving edge at a range of speeds. For a particular
spatial frequency channel (2 c/8 in this case) the speeds
can be converted into temporal frequency using tf¼2V.
For the standard units (Figure 10b), as contrast drops
the relative contribution of the S0 and T0 remains the
same and the point at which the S and T curves cross
remains at 4 Hz (arrows in Figure 10b). However for
the overclocked MT units, as contrast drops the
relationship between the S0 and T0 inputs to the WIM
stage does not remain the same. At low contrast the S0

values fall by a greater amount compared to the T0

values (see vertical dashed line in Figure 10c) and so the
crossover point shifts to a lower temporal frequency
(Figure 10d).

This has an important impact on the speed tuning of
the WIM units and consequently the speed tuning of
the MT units. As the contrast of the input stimulus
drops, the preferred speed of an overclocked MT
component unit is reduced to a slower speed. This
speed retuning mechanism is a critical part of the
spatial inhibition stage of the new velocity code model
and so I now present evidence of a similar mechanism
in MT neurons.
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Figure 11a shows replotted data from Krekelberg et
al. (2006) for a single primate MT neuron in response
to a range of random dot speeds at a range of contrast
values (see also Pack et al., 2005). At high contrast, this
cell preferred a speed of approximately 168/s. As the
contrast dropped, the peak tuning dropped to lower
values and once the contrast dropped to 5%, the cell
ended up tuned to approximately half the speed
preferred at the 70% contrast level. Figure 11b is the
response of one of our model overclocked MT
component units tuned to an image speed of 48/s.
When tested with similar dot patterns to those used by
Krekelberg et al., the MToc unit shows the same shift
in peak tuning as the MT neuron when the contrast of
the dots dropped. This shift can be directly attributed

to the contrast responses of the overclocked WIM units
making up the MToc unit (Figure 10c and d) and the
contrast mechanism outlined above. The Krekelberg et
al. data show that there exist cells in the primate brain
with a speed retuning feature that I will incorporate
into the new velocity code model. Similar contrast
related changes to spatiotemporal frequency tuning are
also apparent in V1 data (Priebe et al., 2006) and have
been modeled using our WIM model (Perrone, 2006).

Contrast-dependent spatial inhibition

Consider now a contrast-dependent mechanism that
uses the outputs from sets of the MToc units. Figure

Figure 10. Contrast response curves (left) and temporal frequency tuning curves (right) for V1-stage model neurons when tested with a

moving edge (28/s) at two different contrast levels (100% and 10%). (a) Contrast response function for sustained (black line ¼ S0) and

transient (gray line¼ T0) standard model V1 spatiotemporal energy units feeding into the standard MT pattern and component units. (b)

Temporal frequency tuning curves for standard units obtained from channel two (2 c/8). The cross-over point of the two temporal

frequency tuning curves remains at the same temporal frequency (4 Hz) when the contrast of the edge drops. (c) Contrast response

curves for V1 units feeding into overclocked MT component units in model. (d) Temporal frequency tuning curves for overclocked units.

The crossover point shifts to lower temporal frequencies at low contrast. Therefore the peak speed tuning of the WIM units and

overclocked MT units drops to lower values at low contrast.
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12a (top curve) shows the output from a single MToc
unit tuned to 28/s in response to a vertical edge of 100%
contrast moving at 28/s located at a range of x image
locations relative to the center (x ¼ 64) of the frame.
This MToc2 unit is located at the central location of the
diamond array spatial patches shown in Figure 8b (red
central circle). The red curve is the output from an
MToc4 unit at the same location as the MToc2 unit.
The red curve has been inverted to reflect its subtractive
role in the new spatial inhibitory mechanism. Figure
12b is for the same set of units and speed but the edge
contrast was only 20%.

I postulate a spatial inhibitory (SI) mechanism that
outputs the half-rectified difference between the MToc2
unit and the MToc4 unit or more generally:

SIv ¼ f þðMTocV � :5MToc2VÞ ð13Þ
The values of SI for 28/s and at the location of the
MToc unit shown in Figure 12a are plotted in Figure
12c. This is the output I will use for my spatial
inhibitory mechanism. The point of interest is that for
the low contrast case (Figure 12d), the value of SI is
zero.

The reason why the SI values are positive at high
contrast but zero at low contrast can be directly
attributed the speed retuning behavior of the over-
clocked MToc units (Figure 11b). At high contrast, the
MToc2 units are tuned to 28/s and so respond well to
the moving 28/s edge at all locations. The larger MToc4
unit is tuned to 48/s and so responds (approximately
50%) less to the 28/s edge. This results in a positive
value for the difference between the MToc2 and (.5

weighted) MToc4 unit (SI2 . 0). At low contrast
however, the MToc2 unit now prefers a speed of 18/s
and the MToc4 unit prefers a speed of 28/s (see Figure
11b for this case). Now the smaller MToc2 unit is
responding less than the MToc4 unit and so no output
results from the SI units (Equation 13 & Figure 12d).

I capitalize on the spatial inhibitory behavior offered
by the mechanism of Equation 13 to control the
responses of the MT pattern units across space and
hence limit the amount of redundant velocity signals
being generated. Specific primary pattern units (MTV)
are inhibited within the diamond lattice spatial
receptive field array making up a channel (see Figure
8b) using the output from the SI units located at the
center of the array.

The activity of particular MT pattern neurons is
reduced prior to the second derivative and centroid
stages listed above. I use different patterns of spatial
inhibition to achieve a number of different outcomes.
The first type is shown in Figure 13 and it is intended to
remove redundant velocity output along edges. In
Figure 9b the velocity units along the edge are all
outputting the velocity 908 to the edge orientation.
Given that the center unit of each MT receptive field
array is relaying this velocity value, it is redundant for
the nearby units in the array above or below that
location to also output the same velocity, particularly
at high contrast.

Redundancy reduction 1: Edge thinning

Therefore my first class of spatial inhibition will be
referred to as edge thinning and it is applied to the MT

Figure 11. Changes in peak speed tuning with contrast. (a) Replotted data from Krekelberg, van Wezel, and Albright (2006) (their Figure

3a) showing changes in the peak speed tuning of an individual MT neuron as the contrast of the stimulus drops from 70% to 5%. (b)

Output from a model overclocked MT component unit.
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neurons feeding into the velocity channels, i.e., this
inhibition is between MT neurons and is expected to
manifest itself at the level of the MT units. The different
possible cases are shown in Figure 13. To accommodate
edges moving at 08, the MT pattern unit tuned to 08 at
the bottom of the diamond array (Figure 13a) is
inhibited by an SI unit (made up of MToc units as per
Figure 12) located at the center of the array (red dot).
The positive MToc unit (black curve in Figure 12a)
making up the SI unit is tuned to 08 and to the same
speed as the MT pattern unit. The red arrow indicates
the direction of the inhibition. The inhibition is
intentionally designed to be asymmetric, because the
diamond array is surrounded by other similar arrays and

the top unit in the diamond array would be inhibited by
the SI unit at the center of the array above it.

In a similar fashion, the MT unit tuned to 1808 at the
bottom of the diamond is inhibited by the SI unit tuned
to 1808. Other possible directions of motion are catered
for by the inhibition patterns shown in Figure 13b
through d. Because of the contrast sensitive nature of
the SI inhibitory units (Figure 12) this edge thinning
operation will not be operational at low contrast.

Redundancy reduction 2: Spatial sharpening

In the test output shown in Figure 9b the velocity
units on either side of the moving edge produce a

Figure 12. Contrast-dependent inhibitory mechanism. (a) Output from the model MT overclocked units (MToc) in response to a high

contrast (100%) edge moving at 28/s and located at different positions relative to the diamond MT spatial array (see Figure 8b). The black

curve is for an MToc unit located at the center of the array. The red curve is the output from an MToc unit at the same location but tuned to

twice the speed (48/s) (b) MToc2 and MToc4 outputs at low contrast. (c) Rectified difference between MToc2 and .5 (MToc4) units. (d)

Difference at low contrast. No inhibitory signals are generated.
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similar output to the central unit. The spatial resolution
of the velocity vectors is unnecessarily broad in the
direction of motion of the edge (08 in this case). The
units to the left and right of center are generating
redundant signals given that the central units are
responding to the edge. This redundancy could be
reduced at high contrast by inhibiting the MT pattern
neurons in the outside regions of the diamond array
(units 3, 5, 7, and 9 in Figure 8b) with activity from SI
units located at the center of the array (see Figure 14a).
The units to the far left and right (two and six in Figure
8b) do not need to be inhibited because their output is
very low when the edge is located over the central unit
(this is one of the advantages of using a diamond rather
than a square lattice). For other edge locations, the two
and six units are inhibited by the edge thinning
operation (outlined in the section Redundancy reduc-
tion 1: Edge thinning) from the red units above them.

Once again, at low contrast the SI units at the center
of the array (red circles) will have zero output
(Equation 13) and the patterns of inhibition shown in
Figure 14 will be turned off.

Tests of the redundancy reduction inhibitory
mechanisms

Methods

In order to demonstrate the above mechanisms, tests
were carried out using a larger image size (256 · 256
pixels) and the diamond lattice sampling array de-
scribed above (Figure 8). An edge moving at 28/s
moved left to right and two edge contrasts were used
(100% and 20%).

Results

Figure 15a shows the output of the model in
response to the 100% contrast edge without the spatial
inhibition mechanism. Only the direction inhibition
(Equation 11) has been applied at this stage and just the
signals orthogonal to the edge remain. Figure 14b
shows the output when the spatial redundancy mech-
anisms (sections Redundancy reduction 1: Edge thin-
ning and Redundancy reduction 2: Spatial sharpening)
were applied. The velocity is mainly being reported in
the central location of each of the MT diamond shaped

Figure 14. Patterns of inhibition used for improving the spatial resolution of the velocity signals. (a) Case for MT units tuned to 0 and 1808.

(b) Inhibition for 90 and 2708 (c) Inhibition for 120, 150, 300, 3308 MT units. (d) Inhibition for 30, 60, 210, and 2408 MT units

Figure 13. Patterns of spatial inhibition used to remove redundant velocity signals at high contrast. The diamond array of dots represents

the spatial layout of the primary MT units within a velocity channel (see Figure 8b). This class of inhibition is designed to thin the velocity

signals along edges. The red arrow indicates the MT pattern unit inhibited by the SI component units (red circles). The black line indicates

the edge location that triggers the most inhibition. (a) Inhibition for MT units tuned to 0 and 1808 (b) Inhibition for 90 and 2708 MT units. (c)

Inhibition for MT units tuned to 120, 150, 300, and 3308 (d) Inhibition for MT units tuned to 30, 60, 210, and 2408
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receptive field arrays (Figure 8c) and the edge location
is very tightly localized. Figure 14c shows the results for
the case in which the edge was at 20% contrast. At low
contrast the spatial inhibition mechanisms are turned
off and many more units in the receptive field lattice
respond along the edge. The drop in contrast also

produces a loss of the direction inhibition (Equation 11)
feeding into the other velocity units tuned to different
directions and so more directions now respond
compared to the high contrast case (Figure 15c).

At low contrast the output from the MT units is low
for locations away from the moving edge and so the

Figure 15. Contrast-dependent spatial inhibition test results.(a) Output of velocity code model with direction inhibition mechanisms but

without the spatial inhibitory mechanisms. Vectors represent transformed output (Equation 11) scaled by a factor of five to make them

easier to see. The same velocity signal is being output at many locations along the edge and on either side of the edge resulting in high

levels of redundancy and poor spatial resolution. (b) Output of the model when both direction and spatial mechanisms are applied. The top

vector is not removed because of edge effects and because there was no inhibitory unit above it. (c) Output when the contrast of the edge

was low (20%) and the inhibitory signals were inactive.

Figure 16. Tests of the velocity code model with multiple orientations and speeds a) Moving cross made up of two 16 pixel wide bars

oriented at 60 and 1208. Each bar moved at 48/s. (b) Output of velocity code model for input movie shown in (a). (c) Moving cross in which

the 608 bar moves at 28/s instead of 48/s. (d) Vector output of model in the non-rigid case.
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number of MT units responding on either side of the
edge is greatly reduced. There is no need for the spatial
inhibitory mechanisms in this case because the redun-
dancy problem does not really exist. In fact the number
of velocity signals being generated can be so low as to
prevent later motion processing stages from registering
any motion at all. The removal of the direction and
spatial inhibitory mechanisms at low contrast alleviates
this to some extent with the trade off being a loss of
directional precision. The contrast-dependent spatial
mechanism enables this trade off to occur depending on
the contrast level present in the stimulus.

Tests with multiple orientations and speeds

Methods

The previous tests of the model have all used a single
moving edge in order to simplify the discussion.
However these simple edge tests do not indicate how
well the new model is able to register the motion of
multiple edges at different orientations and different
speeds. In order to demonstrate the direction inhibition

and redundancy mechanisms in a more challenging
context, tests were carried out using two moving bars
oriented at 608 and 1208. In one case the bars both
moved at 48/s and in the other, one of the bars (608)
moved at 28/s. Perceptually these scenarios tend to lead
to two different percepts; in one case (Figure 16a) the
bars appear as a rigid cross moving to the right and in
the other (Figure 16c) the bars seem to slide past each
other and the figure appears nonrigid (Adelson &
Movshon, 1982).

Results

Figure 16b and d shows the output of the velocity
code model in response to these two inputs. The vectors
have been scaled (·4) for clarity. For the case when the
bars moved at the same speed the model has
determined the overall velocity to be to the right at a
speed of 5.28/s which is a good match to the rigid cross
direction and speed (08, 4.68/s). For the non-equal
speed condition, the velocity code model produced
outputs from both the 28/s channel (red vectors) and
the 48/s channel (black vectors), whereas for the Figure

Figure 17. Results of tests of velocity code model (surface moving in depth). (a) Movie sequence used for tests. (b) Model estimates in the

form of a vector flow field (x 5 for clarity). The spatial inhibition mechanism was turned off. (c) Model estimates after spatial inhibition is

applied. Many redundant velocity signals are now absent. (d) Output of array of heading templates (Perrone, 1992; Perrone & Stone,

1994, 1998) tuned to a range of horizontal heading directions (�608 to 608 in 58 steps). The actual heading was at 08 but the velocity flow

field without the redundant vectors removed caused the heading to be biased to the left (�158). (e) When the spatial inhibition was in

place, the heading estimate was correct and the total activity was reduced.
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16a condition the outputs were all generated in the
same velocity channel (48/s). In Figure 16d, the vectors
tend to point in the direction normal to the edge
orientation (3308 for the 28/s bar and 308 for the 48/s
bar). This is consistent with the percept that the figure
is nonrigid and that the two bars are moving
independently of each other.

Tests with expansion patterns

Methods

In order to demonstrate the importance of the
redundancy reduction mechanisms in my new velocity
code model I have included a test using a more complex
3D motion stimulus. This is shown in the movie of
Figure 17a. The (256 · 255 · 8 frames) movie
simulates motion towards a black rectangle (1.7 m
wide, 6 m high) offset 1.5 m to the right of the heading
direction (08, 08). The velocity units were tiled across
the image as per the diamond lattice array used in
previous tests (Figure 8b).

Results

Figure 17b is the output of the new velocity code
model in response to this movie sequence without the
application of the spatial inhibition mechanisms.
Figure 17c is the output when the spatial mechanisms
are in place. Below each figure is the output of a set of
heading templates (Perrone, 1992; Perrone & Stone,
1994, 1998) tuned to a range of possible heading
directions spanning 6608 azimuth in 58 steps (elevation
was fixed at 08). Each of these templates represents the
output of a set of neurons (MST) that integrate the
velocity information generated at image locations
across a wide part of the visual field (Britten & Van
Wezel, 2002; Duffy & Wurtz, 1991; Saito et al., 1986;
Tanaka et al., 1986).

For the Figure 17b case, the heading direction was
incorrectly signaled as being 158 to the left of the
correct location (08, 08). When the spatial inhibition is
applied, the velocity flow field (Figure 17c) is sparser
and the heading direction is correctly indicated by the
heading template array (Figure 17e). In addition to the
incorrect heading estimate in the Figure 17b case the
total output in Figure 17d is higher than in Figure 17e
(see different y-axis scale). The redundant information
along the edge of the rectangle is not only biasing the
heading estimate but it also adds a significant level of
additional noise against which the heading signal must
be extracted. The peak sits on a larger pedestal of
activity compared to the Figure 17e case. The
performance of the heading detection stage (MST) is
enhanced by the presence of the redundancy removal
mechanisms.

Small dot stimuli

Tests of the model using small moving dots revealed
a problem with the basic velocity code model. The
shape and location of the S and T contrast response
functions (Figure 9a and c) are determined by the
parameters in the contrast gain stage (Equations 2 and
3). However the shape of the functions is also
determined by the total amount of S and T energy
generated by the (V1) spatiotemporal energy stage.
When the energy from a particular V1 stage filter is
very low because of the presence of a very small
stimulus (e.g., a single moving dot) the contrast gain
control stage is insufficiently powerful to produce the
type of saturating functions that the WIM stage relies
on to produce good speed tuning. It is difficult to set up
values for the parameters that control the speed tuning
(Equation 1) so that they are suitable for moving edges
as well as for dots. One type of stimulus (edges or dots)
ends up with poor speed tuning and so the behavior of
the later MT stages is compromised. Since dot stimuli
are commonly used in electrophysiological and psy-
chophysical visual motion studies I have developed a
solution to this problem to increase the generality and
usefulness of the model.

A signature of small moving dot stimuli is that there
is spatiotemporal energy at other orientations besides
the one parallel to the direction of motion; this is
particularly so for the orientation 908 to the motion
path. A dot moving in the 08 direction produces a
significant amount of energy in the sustained (static)
filters that are oriented at 08 (parallel to its motion
path). Edges on the other hand, have little or no energy
in the sustained filters tuned to an orientation parallel
to its motion direction because of the inhibitory flanks
surrounding the filter. I use this property to modify the
gain term (sc and tc) in the contrast-gain normalization
mechanisms (Equations 2 and 3) applied to our early
stage S and T filters.

I make the size of the sc and tc values in Equations 2
and 3 (which controls the size of S0 and T0) be based on
the relative sizes of the outputs from the Sh and Shþ90
filters. Specifically at each S filter location we calculate
a ratio value:

R ¼ Shþ90

ðSh þ dÞ ð14Þ

Where Sh is the spatiotemporal energy from the
sustained V1 model units (used in the WIM stage)
tuned to direction h. Shþ90 is the energy from the V1
unit at the same location but with an orientation
parallel to the direction of motion. The d value prevents
division by 0 and is set to .0005. For edges, the value of
Shþ90 is close to zero and so R is close to 0. For small
punctate points such as a moving dot, Shþ90 tends to be
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closer to, or even larger than Sh and so R is greater than
1.0.

We therefore set the values of the gain terms (sc and
tc) in Equations 2 and 3 using:

sc ¼ 0:15=expðwRÞ ð15Þ
and tc¼ 0.93 sc, where w is a weight dependent on the
spatial frequency channel of the S unit: for the 1, 2, 4,
and 88/s channels, w was set at 1, 1.1, 2, and 3,
respectively.

The values of w are chosen to produce contrast
sensitivity functions that match those shown in Figure
9 and typical V1, MT data (Sclar et al., 1990). The
values are also set to produce the best speed tuning at
the WIM stage.

Note that this variation to the basic code works
automatically and is not customized for just dots or just

edges. The R output (Equation 14) dictates the gain level
and this is determined by the particular stimulus moving
over the filters. When used in conjunction with the
mechanism specified in Equation 14, Equation 15
produces values of sc and tc that are relatively large
(0.15) when an edge is moving across the S filters and
small when a dot moves. A smaller value of sc and tc in
the normalization stage (Equations 2 and 3) increases the
gain and the moving dots end up with comparable S0 and
T0 spatiotemporal values to those obtained with edges.
Figure 18a shows the S0 and T0 spatiotemporal energy
when a single 6· 6 pixel dot moving at 28/s was tested at
a range of contrast values. The dashed lines show the
energy output without the small dot gain mechanism
(Equations 14 and 15). The solid lines are the outputs
when the mechanism is in place. The contrast response
curves now demonstrate saturation at high contrast

Figure 18. Small dot stimuli mechanism. (a) Contrast response curves for the S and T early stage V1 model units with (solid curves) and

without (dashed lines) the small stimulus gain mechanism (Equations 14 and 15). The dot was 4 · 4 pixels and moved at 28/s to the right.

(b) Movie used to test the velocity code model with the dot-gain mechanism in place. (c) Vectors (·4 for clarity) representing transformed

output (Equation 10) of the model in response to the movie sequence.

Figure 19. Natural image test (Forest scene). (a) Movie sequence. 18/s planar motion to the right. (b) Velocity code model output in vector

flow field form (scaled by factor of 8). No channel one motion sensors were located in the outside regions of the movie (within 14 pixels of

the frame) to prevent wraparound effects. (c) Output of MST-like planar motion detectors. When transformed (Equation 10), the peak

corresponds to 1.088/s motion to the right and slightly downwards (�28).
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levels and are similar to the curves generated by edge
stimuli (see Figure 10a). The later stages of the velocity
code model (MT and the centroid stages) therefore work
as designed and the code is able to extract the velocity
signals from the moving dots (see below).

Tests with moving dots

Methods

In order to demonstrate this feature of the model I
tested it with the movie sequence shown in Figure 18b.
This is the simulated image motion that results from an
observer moving parallel to a plane containing the dots
that is slanted at 758 to the line of sight of the observer.
The image dot speeds are .74, 1.4, 2, 2.6, and 3.38/s
when considering the dots from top to bottom.

Results

Figure 18c shows the velocity estimates (in vector
form) derived from the new velocity code model for this
movie sequence. The average estimated speeds for each
dot from top to bottom were .82, 1.1, 1.7, 2.6, and 2.88/s
which is reasonably accurate. Without the additional
small point gain mechanism (Equations 14 and 15) the
velocity estimates were 0.0, 0.9, 1.5, 1.8, and 2.08/s.
With the addition of this feature the scope of the new
model has been broadened and it can now be tested
with the types of small dot stimuli commonly used in a
wide range of electrophysiological and psychophysical
studies of motion processing.

Natural scene image tests

The previous tests of the model used synthetic
(computer generated) stimuli which lacked the varia-
tions in texture and contrast present in natural scenes.
Therefore in order to test all aspects of the new velocity
code model (multiple textures, low contrast, multiple
directions and small features) two tests were run using
actual video sequences.

Forest scene

A test was carried out using a movie sequence
generated from an outdoors scene (forest). The movie
sequence shown in Figure 19a simulated an eye
rotation (or a camera pan) across the scene by
extracting a 256 · 256 region from a larger image
and shifting the location of the subregion 1 pixel to the
left every frame. The resulting image motion is
globally 18/s to the right (08). Figure 19b shows the
model outputs in vector form (scaled by a factor of
eight). Figure 19c is the output of a set of planar
motion detectors previously proposed as a method for
estimating global patterns of uniform motion (Per-
rone, 1992) and which are designed to mimic the
behavior of MST planar cells (Duffy & Wurtz, 1991).
Each MST-like detector is tuned to a direction a
(ranging from 0–3608 in 18 steps) and samples the
velocity code model estimates across the whole image.
For each image location corresponding to the position
of the velocity channels, the detector sums the output
generated from the velocity code model (Equation 9)
for a particular direction h and weighted by cos(a� h).

Figure 20. Natural image test: Hand-waving (after Watson & Ahumada, 1985). (a) Movie sequence used for test (b) Velocity code model

output in vector flow field form (scaled by factor of four) superimposed over the middle frame of the sequence. Yellow is for downward

pointing vectors and light green is for upward pointing vectors.
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The total activity across the image is normalized by
the number of active velocity channels. This was
found from the sum of the GP values across the image
that only have positive values when a velocity signal is
created (Equation 6).

Figure 19c shows the distribution of activity across
the set of MST-like detectors in response to the forest
movie. The detector unit tuned to an overall rightward
motion (3588) responded the most and the peak activity
level in this unit was 22.1. When converted to 8/s using
Equation 10, this value is equal to 1.088/s. The model
has performed well with this naturalistic test case and
has established the global motion accurately despite the
complexity of the features in the movie.

Moving hands

As an example of a natural scene with multiple
moving directions, the movie shown in Figure 20a was
tested using the velocity code model. This video clip
contains two objects (hands) moving in opposite
directions.

The velocity estimation model has successfully
determined the correct overall direction of each hand.
The resolution of the output could be increased by
increasing the size of the input movie and it is currently
limited by the spacing of the MT unit lattice array.

Discussion

I have presented a new velocity code theory
explaining how the primate visual system can transform
the outputs of sets of speed tuned MT neurons to a
signal proportional to the speed of the stimulus such as
is observed at the level of MST (Inaba et al., 2007).
Because we have an existing model of MT neurons able
to be tested with image sequences (Perrone, 2004;
Perrone & Krauzlis, 2008a) the new velocity code
model includes all of the stages from V1 spatiotemporal
energy processing through to the MST stage via a series
of MT neuron interactions. I have presented a number
of problems that arise when attempting to use a
population-based code for extracting a velocity signal
from sets of MT neurons. The majority of these
problems arise from the fact that MT neurons have
different sized receptive fields and are tuned to a range
of spatial frequencies. Combining outputs from these
different sized MT units is not trivial because the
location of the moving feature can influence the
distribution of responses across the population of MT
neurons. A significant part of the new velocity code
model therefore involves mechanisms for overcoming
these spatial problems.

Another core design principle underlying my new
model is the need to reduce redundancy at the next
stage of processing where the velocity signals are
generated (between MT and MST). This requires
inhibitory interactions between MT neurons prior to
the estimation of velocity. However such inhibition is
counterproductive at low contrast levels because it
limits the signal available to the next levels of motion
processing. Therefore I developed a contrast-dependent
spatial inhibition mechanism that is automatically
switched off at low contrast levels.

The resulting velocity code model is able to
accurately estimate the velocity of complex moving
objects under a range of contrast conditions while
maximizing the spatial resolution of the velocity
outputs. Unfortunately the additional power of the
new code has come at the cost of added complexity.
Therefore I will now summarize the functional units
making up the velocity code model and relate them to
neurons in the motion processing pathway of the
primate visual system.

Summary of stages

The first stage of the velocity code model uses the
spatiotemporal energy from two types of filters
(sustained and transient). Prior to the next stage, the
S and T spatiotemporal energy outputs are transformed
by a contrast gain control mechanism that uses a
divisive feedback mechanism (Equations 3 and 4). I
have also included a mechanism that increases the gain
of the S and T filter responses when small punctate
stimuli such as moving dots are present (Equations 14
and 15). The transformed S and T energy outputs are
combined using Equation 1 to produce the WIM-stage
speed-tuned responses. All of these S and T units are
considered to be analogues of primate V1 neurons. The
S and T units have spatial and temporal frequency
tuning that are modeled directly on the properties of
complex V1 neurons (Foster et al., 1985; Hawken &
Parker, 1987; Hawken et al., 1996). The speed tuned
WIM units correspond to the speed tuned complex V1
neurons discovered by Priebe et al., 2006, and have
comparable speed tuning properties (Perrone, 2006).

The next stage of the velocity code model involves a
specific set of connections between groups of the WIM
units to form MT pattern neuron model units and MT
component units. These could be connections within
V1 or between V1 and MT. The pattern units have been
well described previously (Perrone, 2004; Perrone &
Krauzlis, 2008a). The component units are simpler in
terms of their WIM inputs (only a single speed and
direction is represented) but here I have introduced the
new concept of units tuned to a lower temporal
frequency (2 Hz) as well as overclocked units tuned
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to 4 Hz. The concept of extending the temporal
frequency tuning of the WIM units has been presented
previously (Perrone, 2005) but it has never been applied
to MT component units before.

Prior to the estimation of velocity I include
inhibitory interactions between MT units whereby the
MT pattern units are inhibited by the outputs from
particular component units located nearby. This local
inhibition solves the redundancy problems outlined
above and it is contrast dependent. This inhibition is
assumed to take place within area MT and would
manifest itself in the form of asymmetric antagonistic
surrounds as demonstrated in actual MT neurons by
Xiao et al. (1997). It is also consistent with the contrast-
dependent inhibitory surround property noted in many
MT neurons (Pack et al., 2005).

The subsequent stage of the velocity code model uses
the outputs from a triad of MT units (two pattern types
and one component type) to generate a velocity
estimate using a centroid (weighted vector average)
mechanism (Equation 7). The triad of MT units form a
velocity channel and I use four such channels in my
model (tuned to 1, 2, 4, and 88/s). Each channel is
controlled by a gain signal derived from another
intermediate process which incorporates a second
derivative mechanism whereby the output from the
central unit of each channel (MTv) is summed and the
(.5 weighted) output from the units tuned to 2 V and .5
V is subtracted (see Equation 5). The inhibition from
the units tuned to slower and higher speeds than the
primary unit (MTv) is important for overcoming the
spatial scale problem (discussed in the section Problems
with spatial scale). Spurious velocity signals from
locations well away from the moving edge are
suppressed by this second derivative mechanism.
Included in the inhibition from the 2 V and .5 V units
is also inhibition from other MT units tuned to speed V
but tuned to different directions (Equation 11). This is
designed to overcome the direction problem whereby
other directions besides the correct one are signaling
incorrect velocity estimates (see section Direction
estimation). This direction inhibition is assumed to
occur between MT and MST and so would not
manifest itself at the level of individual MT neurons.

The final velocity estimation stage (Equation 9) is
assumed to take place somewhere between MT and
MST. Some individual MST neurons output a signal
that is proportional to the speed of the input stimulus
over a wide range of speeds (Inaba et al., 2007).
Therefore the Equation 9 estimates would need to feed
into a single MST neuron. It is known that MT neurons
project directly to MST (Ungerleider & Desimone,
1986) and so the second derivative and centroid
mechanisms (Equations 5–7) have to be based in the
connections between MT and MST. Therefore the
VMST stage (Equation 9) is considered to be the local

MST input at a particular image location with each
MST neuron having many such inputs distributed
across wide regions of the image.

Depending on its heading or planar motion tuning,
an MST neuron would also include cosine weighting of
the VMST input at a particular location to establish the
dot product between the VMST stage preferred
direction tuning and the direction dictated by the
heading or planar tuning (Perrone, 1992; Perrone &
Stone, 1994). Therefore despite the inclusion of the
direction inhibition stage in the model (Equation 11)
the direction tuning of the MST planar units is still
broad (see Figure 19c). The direction inhibition
mechanism does not create MST units with direction
tuning properties that are inconsistent with actual MST
properties (Kawano, Shidara, Watanabe, & Yamane,
1994).

Similarly our MT model units do not end up with
unrealistically sharp direction tuning curves because
the direction inhibition signal is applied between MT
and MST (Equation 12) and would not be apparent in
the activity of the actual MT units themselves. Without
this constraint, our MT pattern unit direction tuning
curves would be much tighter than has been observed
in actual MT neurons (Albright, 1984; Movshon et al.,
1983; Pack & Born, 2001; Snowden, Treue, Erickson, &
Andersen, 1991).

We have already demonstrated the power of units
that integrate motion signals over wide areas of the
visual field and which act as templates for specific full-
field motion patterns (Perrone, 1992; Perrone & Stone,
1994, 1998) as well as providing the ability to remove
the effects of extraretinal signals (Perrone & Krauzlis,
2008b). Our previous models of MST processing have
used the output of MT neurons directly to determine
self-motion parameters such as heading. They relied
heavily on the direction of motion to discriminate
different global motion patterns and used a form of
winner-takes-all to take into account the speed of
motion. These models will now need to be modified to
make use of the velocity signals generated by the new
velocity code model.

It is possible to use the output from the MST units
(e.g., the planar motion detectors in Figure 19c) to
modify the velocity signal output (the vector flow field)
such that anomalous directions and speeds are elimi-
nated. However I have not incorporated this top-down
feature into the velocity code model at this stage and
am currently only concerned with the feed-forward
process.

The component units in the new model form a key
part of the second derivative stage (Equation 5) and the
centroid stage (Equation 7) as well as playing an
important role in the inhibitory (direction and spatial)
mechanisms. The new velocity code model therefore
ascribes a role to MT component neurons that has
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previously been unspecified. Despite their prevalence in
the primate brain there has never been a good
explanation provided as to their function. The ratio
of component to pattern MT neurons is reported to be
around 1.6 (Smith, Majaj, & Movshon, 2005). This fact
was not the basis of my decision to include a particular
number of pattern and component units into the
velocity code model but the reported ratio maps nicely
onto that produced by the eight component units and
five pattern units (ratio ¼ 1.6) in the model MT unit
array (Figure 5).

In the development of the velocity code model I have
been particularly mindful of ensuring that the properties
of each stage of the model line up with the properties of
the primate neurons they are supposed to be emulating.
The V1 spatiotemporal energy stage units have temporal
and spatial frequency tuning based directly on V1
neurons. The MT neurons have speed and direction
tuning that matches those of actual MT neurons and the
velocity estimation stage matches the linear velocity
output of some MST neurons (Figures 3 & 7). This
alignment with the neuron properties along the primate
visual motion pathway is not trivial to achieve.

Many other velocity encoding schemes derive a
velocity estimate immediately after the spatiotemporal
energy (V1) stage (Adelson & Bergen, 1985; Johnston,
McOwan, & Buxton, 1992; Thompson, 1984; Watson
& Ahumada, 1985), effectively bypassing the speed
tuning properties of MT neurons. They are left with the
difficult question as to why the visual system, after
having derived a velocity output proportional to the
input at the V1 level, then resorts back to speed tuning
at the following MT stage. Similarly, a popular model
of primate velocity encoding (Rust, Mante, Simoncelli,
& Movshon, 2006; Simoncelli & Heeger, 1998) is able
to simulate some later higher-level aspects of motion
processing without an MT stage that possesses the
correct speed tuning properties (Maunsell & Van Essen,
1983; Perrone & Thiele, 2001). The primate visual
system has a complex chain of neuron properties prior
to displaying any evidence of a linear velocity code in
MST (Inaba et al., 2007). Not only do these properties
need to be matched in an effective velocity code model,
but their order of occurrence is very important as well.

Many computer-vision algorithms have been sug-
gested for image velocity estimation (e.g., Barranco,
Diaz, Ros, & del Pino, 2009) but these do not
incorporate the constraints imposed by the electro-
physiological data from motion sensitive neurons. My
code is primarily designed to be neurally-based in the
strictest sense of the term. The properties of the input
filters are based directly on known electrophysiological
data from V1 and MT neurons and are not just inspired
by the biology.

A number of alternative velocity population codes
based on the outputs from sets of MT neurons have

been postulated (e.g., Chey et al., 1998; Lisberger &
Movshon, 1999; Priebe & Lisberger, 2004) but these
models do not include a detailed V1-MT stage of neural
processing and assume that the MT output has already
been derived. Others have incorporated a V1-MT stage
(Chey et al., 1998) but they use a V1 stage that includes
elements that are incompatible with the known
properties of motion sensitive neurons in V1 (Perrone,
2004). The bulk of these models have also ignored the
problem of spatial scale and contrast that become
apparent in real images containing objects of different
sizes and intensity levels.

The spatial scale problem was recognized in a
previous attempt to extract speed using a multiscale
filter approach (Chey et al., 1998) and the solution was
to use a ‘‘scale-proportionate threshold’’ to avoid the
errors introduced by the skewed MT distributions
(Figure 4b). A cutoff threshold set just above the
dashed curve in Figure 4b would prevent the erroneous
centroid estimate from being generated but it would
also limit the ability of the system to respond to low
contrast stimuli. The same threshold would block
centroid estimates from legitimate MT distributions
at low contrast. This is why I opted to use the second
derivative mechanism instead.

Many of the concepts used in the model are not new
and have been used in other contexts. For example
contrast adaptive systems and redundancy removal is
common throughout descriptions of many sensory
systems and inhibitory surrounds are integral to many
filtering schemes (Gallant & Prenger, 2008). My
redundancy reduction mechanism is specific to motion
processing and is motivated particularly by the need to
prevent extra velocity signals being passed onto the
MST stage of motion processing. Of note is that the
new model’s particular spatial mechanisms lead to (and
can explain) the inhomogeneous patterns of antagonis-
tic zones found outside the classical receptive field of
MT neurons (Xiao et al., 1997).

Xiao et al. (1997) looked at the spatial distribution of
the antagonistic surround of MT neurons. In one of
their series of tests they stimulated and recorded from
an MT neuron with small patches of moving dots while
simultaneously presenting another small patch of
moving dots to locations around the MT receptive
field location. They found antagonistic (inhibitory)
zones that were non-homogenous in space. The
expectation based on earlier work (Allman, Miezin, &
McGuinness, 1985) was that the surround inhibition
would be symmetric and completely surround the
central excitatory region. Instead the majority of the
Xiao et al. neurons exhibited asymmetric antagonistic
surrounds similar to the inhibition patterns I have
included in the velocity code model (Figures 13 and 14).
I believe that the Xiao et al. (1997) MT data supports
the spatial inhibition mechanisms I have proposed as a
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core part of the new code and we will present a direct
comparison of the model and Xiao et al. data in a
future paper.

An unexpected result while testing the model with a
range of different stimuli was that small moving dots
can be problematical to a system that relies on
spatiotemporal filtering (energy calculation) using a
wide range of filter sizes. The small dot stimuli provide
only minimal stimulation for large filters and this has
an impact on later normalization (divisive contrast
gain) stages. Edge stimuli tend to fall along the whole
length of the spatiotemporal energy filters and activate
them strongly while the dot stimuli only activate the
central regions. However the dot stimuli also activate
sustained (static) filters that are oriented parallel to the
dot motion path whereas edge stimuli do not. I was
able to capitalize on this difference to develop a
mechanism which increases the gain on the energy
filters when the sustained V1 filter oriented 908 to it is
also active.

While no direct evidence for such a mechanism in V1
neurons is available there have been previous sugges-
tions for an interaction between the outputs from
neurons tuned to a particular direction (h) and from
neurons oriented parallel to the direction of motion (h
þ 908). Geisler (1999) has presented a model suggesting
that such an interaction can help with motion direction
estimation. I am suggesting that cooperative mecha-
nisms between the h8 and h þ 908 neurons could also
help overcome the low output problem caused by small
localized stimuli such as moving dots that do not cover
a significant part of the receptive fields of the V1
neurons.

The development of a system that is able to extract
velocity information from actual image sequences
opens up the possibility of a huge number of possible
tests concerning motion phenomena from a multitude
of studies stretching back many years. I have limited
the neural tests of the model in this paper to those that
demonstrate some of the neuron properties I consider
to be essential to the working of the model. A number
of features in the model were included in order to
‘‘make it work’’ and there is currently no electrophys-
iological data on which to base decisions regarding the
inclusion (or removal) of these particular features. The
model generates a number of testable hypotheses
regarding the properties of MT and MST neurons
(e.g., MT component neurons should change their
speed tuning with contrast but not pattern neurons)
and we have begun a program designed to test these.

The main motivation for generating an image-based
velocity code is to enable us to begin simulating the
self-motion and depth extraction processes that begin
to occur at the MST stage of the visual motion
pathway. The velocity signals feeding into these MST
neurons provide a strong basis from which to recover

the three-dimensional layout of the world in front of
the moving observer (Perrone & Stone, 1994) and our
next endeavor is to model this 3D reconstruction stage.

More than 30 years ago, Nakayama (1985) suggested
the concept of velocity channels and that velocity could
be read out by comparing the activity in these different
channels. He also mentioned using a population profile
response as well as lateral inhibition. The new velocity
code model has made some of these suggestions explicit
and states that a velocity channel needs to be made up
of a small set of MT neurons (just three in my model);
too many MT neurons produce a population profile
that can be distorted by spatial sampling and lead to
erroneous velocity estimates. I have also demonstrated
that Nakayama’s suggestion of lateral inhibition is
critical in an effective velocity code and that inhibition
between MT neurons and between velocity channels is
essential for overcoming a number of problems
associated with extracting a velocity signal from MT
neuron outputs (e.g., spatial and direction errors).
Many of these problems only manifest themselves when
the challenge of image velocity measurement is
considered in the domain of real image sequences
containing stimuli of various sizes and contrasts.

The biggest development since Nakayama conducted
a review of biological motion processing in 1985 is the
greater preponderance of information available con-
cerning the properties of MT neurons (e.g., Krekelberg
et al., 2006; Pack et al., 2005; Perrone & Thiele, 2001;
Priebe et al., 2003). The many electrophysiological
studies carried out on MT since 1985 have enabled
detailed models of these neurons to be developed (e.g.,
Perrone, 2004; Perrone & Krauzlis, 2008a; Perrone &
Thiele, 2002). The remaining challenge was to explain
how these velocity-tuned neurons are able to convert
their outputs into the linear velocity outputs seen in
neurons at the following motion processing stage
(MST). This paper presents one possible neural
solution to this problem.
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