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Motor Cortical Encoding of Serial
Order in a Context-Recall Task

Adam F. Carpenter,1,2,3 Apostolos P. Georgopoulos,1,2,4,5*
Giuseppe Pellizzer1,4

The neural encoding of serial order was studied in the motor cortex of monkeys
performing a context-recall memory scanning task. Up to five visual stimuli
were presented successively on a circle (list presentation phase), and then one
of them (test stimulus) changed color; the monkeys had to make a single motor
response toward the stimulus that immediately followed the test stimulus in
the list. Correct performance in this task depends on memorization of the serial
order of the stimuli during their presentation. It was found that changes in
neural activity during the list presentation phase reflected the serial order of
the stimuli; the effect on cell activity of the serial order of stimuli during their
presentation was at least as strong as the effect of motor direction on cell
activity during the execution of the motor response. This establishes the serial
order of stimuli in a motor task as an important determinant of motor cortical
activity during stimulus presentation and in the absence of changes in periph-
eral motor events, in contrast to the commonly held view of the motor cortex
as just an “upper motor neuron.”

Ever since Lashley’s famous paper in 1951 (1),
the imagination of psychologists and neurosci-
entists alike has been captured by the problem of
serial order in behavior. Accurate representation
of temporal order is crucial for both perceptual

and motor functions (for example, comprehend-
ing a sentence, playing a musical instrument).
Moreover, serial order information must often
be transiently kept in working memory before
being translated to motor output, as, for exam-
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ple, when looking up a telephone number and
dialing the individual digits in the proper order.
Neurophysiological studies have commonly
used sequential reaching movement tasks in
which a series of targets is presented to the
subject, who must then execute a series of move-
ments to the targets in the same order, under
visual guidance or from memory (2). By con-
trast, in the context-recall task (3, 4), the subject
makes a single motor response dictated by the
serial order of a test stimulus in a memorized list
of stimuli. This task provides the requisite con-
ditions for investigating the neural mechanisms
of processing the serial order of stimuli uncon-
taminated by a confounding translation of this
order into a series of motor responses, that is, in
the absence of signals related to the planning and
execution of sequential movements.

1Brain Sciences Center, Veterans Affairs Medical Cen-
ter, Minneapolis MN 55417, USA. 2Center for Cogni-
tive Sciences; 3Graduate Program in Neuroscience;
4Departments of Neuroscience and Physiology; 5De-
partments of Neurology and Psychiatry, University of
Minnesota, Minneapolis, MN 55455, USA.

*To whom correspondence should be addressed.

Fig. 1. (A) Schematic diagram of the context-
recall task, illustrating a trial with a sequence
of five stimuli. Time course of stimulus pre-
sentation and motor response (represented
by EMG activity of anterior deltoid). After a
1000-ms control period where the monkey
held the cursor in a center window, the stim-
uli appeared sequentially on the screen (S1 to
S5). Therefore, each stimulus is defined joint-
ly by its location and its serial position within
the sequence. The periods between stimulus
onsets (5) are referred to as epochs. Each
epoch corresponds to a serial position. For
example, epoch 1 represents the period from
the onset of S1 in the downward position to
the onset of S2 in the rightward position. At
the end of the list presentation, the test
stimulus consisted of a change in the color of
one of the stimuli from yellow to blue. In this
case, the third stimulus (S3) served as the
test stimulus. The test stimulus serves as the
go signal: The rule of the context-recall task
is to move toward the stimulus that imme-
diately followed the test stimulus in the se-
quence; therefore, in this example the correct
response is a movement to the fourth stim-
ulus in the sequence (S4). This report deals
with the list presentation phase of the task,
namely, from S1 onset until test stimulus
onset. The locations of the list stimuli in this
example are illustrated below the EMG trace
by small dots on a circle. RT, reaction time.
(B) Schematic diagram of the trial depicted in
(A), as it actually appears on the screen dur-
ing the recall phase. The third stimulus (S3)
has changed from yellow to blue, instructing
the monkey to move the red cursor from the center window toward the fourth stimulus (S4). (C) Venn diagram of the proportions of cells
showing (i) a statistically significant effect of Motor Direction (8) only during the motor response period (green MD section), (ii) a statistically
significant effect of stimulus Serial Position, Location, or their interaction only during the list presentation phase (hot pink LP section), and (iii)
statistically significant effects during both the motor response period and the list presentation phase (light pink MD1LP section). The areas of
sections are proportional to the actual percentages (see text). (D) Bar graph illustrating the proportions of cells in which statistically significant
effects were obtained for the main effect of Serial Position, Location, and Serial Position 3 Location interaction. (E) Cumulative frequency
distributions of the level of statistical significance obtained for Motor Direction during the motor response time (green) and Serial Position (main
effect only) during the list presentation phase (pink).

Fig. 2. Small ensembles of motor cortical neurons can classify stimulus items in a sequence.
(A) Average correct classification rates of current serial position during sequences of
five stimuli (data from monkey 2). A discriminant classification analysis was performed for
each set of simultaneously recorded cells (10). The chance level of serial position classifi-
cation for sequences of five stimuli is 20% (dotted line). The average level of correct classifi-
cation obtained with sets of simultaneously recorded neurons was above 60%. Error bars are SDs
across sets of cells recorded simultaneously (N 5 36). (B) Average correct classification versus the
number of cells recorded simultaneously. The level of correct classification increased with the number
of cells in a set. A power function was fitted to the data and is shown as a continuous line in the plot
(12).
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In a recent version of this task (4), several
stimuli are presented successively on a screen,
and then one of them changes color (the test
stimulus); the subject is required to make a
single motor response toward the stimulus that
followed immediately the test stimulus in the
list. In the present experiments, two monkeys
were trained to perform the context-recall task
shown in Fig. 1, A and B (5). They operated a
semi-isometric joystick to control a force feed-
back cursor on a video screen. A trial began by
turning on a white circle in the center of the
screen, which the monkey captured with the
force feedback cursor. After 1 s (the control
period), three to five yellow stimuli were shown
successively on a circle and stayed on (the list
presentation phase); during both of these peri-
ods, the monkey had to keep the force feedback
cursor within the white circle at the center of the
screen (6). Then one of the stimuli (except the
last) changed color from yellow to blue (the test
stimulus), and this instructed the monkey to
exert force to move the cursor from the center
of the screen toward the stimulus that immedi-
ately followed the test stimulus during the list
presentation phase. The reaction time was de-
fined as the time from the onset of the test
stimulus until the initiation of the motor re-
sponse; the motor response period was defined
as the time from the onset of the motor response
until the threshold force was exceeded (5). In
this task, each series of list stimuli was defined
uniquely by the location of the stimuli on the
screen and by their serial order in the series. We
recorded the activity of 925 cells in the motor
cortex during task performance (7).

As expected from the known role of the
motor cortex in the initiation and control of
movement, the activity of many cells during the
motor response period was related to the direc-
tion of the response (8) (“motor direction” cells,
624/925 5 67.5%; green and light pink sections
in Fig. 1C); a smaller proportion of cells (177/
925 5 19.1%) showed relations only to motor
direction (green section in Fig. 1C). Interesting-
ly, a large proportion (447/624 5 71.6%) of
these cells also changed activity during the list
presentation phase in relation to stimulus param-
eters (serial position, location, or both), even
though there was no overt motor response dur-
ing that period (“motor direction 1 list presen-
tation” cells, 447/925 5 48.3%; light pink sec-
tion in Fig. 1C). In addition, 190/925 5 20.5%
of cells showed such modulation of activity
during the list presentation phase in the absence
of a motor directional effect (“list presentation”
cells, hot pink section in Fig. 1C); this brings the
total number of cells engaged during the list
presentation phase to 637/925 5 68.9% (hot
pink and light pink sections in Fig. 1C). Finally,
111/925 (12%) of the cells did not show any
significant effect.

Analyses of covariance (ANCOVA) tested
the effects of the following factors that were
varied during the list presentation phase: Serial

Position (of a stimulus in the list) and Location
(of the stimulus on the screen). The main effect
of Serial Position was significant in 52.8 6
10.67% of cells [mean 6 SEM, N 5 5 combi-
nations of monkey and sequence size (5)] (Fig.
1D); the main effect of Location was significant
in 7.8 6 1.64% of cells, and the effect of the
Serial Position 3 Location interaction was sig-
nificant in 22.4 6 4.61% of cells (9). To com-
pare the Serial Position effect during the list
presentation phase with a commonly assessed
motor effect, such as the effect of Motor Direc-

tion on cell activity during the motor response
period, we compared the level of statistical sig-
nificance obtained for these two effects within
the same sets of trials (8). The statistical signif-
icance of the Serial Position effect above was
higher than that of the effect of Motor Direction
during the motor response period [Fig. 1E; P ,
0.0001, Kolmogorov-Smirnov test; N 5 1012
and 978 cases for Motor Direction and Serial
Position effects, respectively, out of a total of
1812 cases analyzed from the same trials (8)].

These results underscore the major impact

Fig. 3. (A to C) Peri-
stimulus time histo-
grams of cell activity
during the list presen-
tation phase of the
context-recall task (bin
5 50 ms; data from
monkey 2). Histograms
represent the average
cell discharge during all
correct trials of the de-
picted sequence. The
sequence is illustrated
below each histogram
by small dots on a cir-
cle. Vertical lines repre-
sent the boundaries be-
tween epochs (at inter-
vals of 650 ms). Each
histogram ends at test
stimulus presentation
(the end of the list pre-
sentation phase), hence
no motor response oc-
curs during the periods
illustrated. An example
of a neuron that chang-
es activity according to
the current serial posi-
tion within the se-
quence, irrespective of
the location of the
stimuli, is shown in (A).
Two different sequenc-
es of five stimuli are
depicted (upper and
lower panels). For both
sequences, activity in-
creases when the first
stimulus is presented
(epoch 1), returns to
the baseline (control
period) rate during ep-
och 2, and then falls below baseline during epochs 3, 4,
and 5. This pattern was consistent regardless of the
actual sequence of stimuli presented. For example, in the upper sequence, S1 is presented to the
right, whereas in the lower sequence S1 is presented in the lower left position. However, the cell
response was similar during the presentation of the two sequences. An example of another neuron
whose activity reflects the serial position of the current stimulus, regardless of its location, is shown
in (B). As in (A), two different sequences of five stimuli are shown. This neuron maintained its
baseline activity while the first four stimuli were presented, but responded with a burst of activity
during epoch 5, irrespective of the sequence of stimuli. An example of another motor cortical
neuron that was influenced by the interaction of the serial position and the location of the stimuli
is shown in (C). Cell activity was modulated mostly during the second and third epochs of list
presentation, but this depended on the particular sequence of stimuli presented. For example, clear
increases in activity were present during some sequences (upper two panels) but not for others
(lower panel). (D) Photograph of the peri-Rolandic cortex of the left hemisphere of monkey 2
showing the entry points of the microelectrode penetrations during which the neurons in (A) to (C)
were recorded in the primary motor cortex. CS, central sulcus; AS, arcuate sulcus; PCD, precentral
dimple.
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of serial order of the stimuli on cell activity
during the list presentation phase, and of the
interaction of the serial order with stimulus
location, which defines the direction of a po-
tential motor response. These two findings, tak-
en together, indicate that the changes in neuro-
nal activity observed during the list presentation
phase truly reflect aspects of the sequence itself.
We tested this hypothesis by analyzing ensem-
bles of simultaneously recorded neurons to
evaluate how well the combined patterns of
activity could classify items in the sequence
(10), namely stimuli defined jointly by their
serial position in the sequence and their location
on the screen. Indeed, high rates of correct
classification were obtained (11) (Fig. 2). The
mean correct classification rate for each serial
position in sequences of five stimuli was greater
than 60% (Fig. 2A). The correct classification
rate increased as a function of the number of
cells in the ensemble (Fig. 2B), which suggests,
in turn, that individual cells provide largely
independent information about the items in the
sequence. Together, these results demonstrate
that during different epochs of presentation of
the stimuli, the patterns of distributed activity in
even small ensembles of motor cortical cells
(12) are sufficiently distinct and robust to pro-
vide a basis for encoding the sequence.

Representative examples of single-cell activ-
ity during the list presentation phase are illus-
trated in Fig. 3. The histograms in Fig. 3, A and
B, illustrate consistent changes in the activity of
two cells in association with certain serial posi-

tions. The visual stimuli displayed during a spe-
cific serial position epoch differed for different
sequences (Fig. 3, A and B). Other neurons were
influenced by both the serial position of the
stimuli in the sequence and their location on the
screen (Fig. 3C). Changes in neural activity were
not related to eye position (Fig. 4 and Fig. 5, left
side) nor to the associated retinal location of the
most recently presented stimulus (Fig. 5, right
side). Concerning the latter point, it is conceiv-
able that the serial position of this stimulus could
be associated with a particular retinal location
when it appeared on the screen, which then
could account for the serial position–related ac-
tivity. For example, it could be that the monkey
fixated its eyes such that when the fifth stimulus
appeared, it would always fall in the same reti-
notopic position. However, this was not the case.
As shown in Fig. 5 (top right), the retinal loca-
tion of the fifth stimulus for the cell illustrated in
Fig. 3B was indeed distributed throughout the
retinotopic space; that is, it was not confined to
any unique location. Similarly, stimuli during
the other four epochs were also distributed
throughout the retinotopic space (Fig. 5, middle
right). The broad distributions of stimuli on the
retina shown in Fig. 5 (top right and middle
right) allow the comparison of neural activity
during the presentation of stimuli with different
serial position but with the same, or closely
similar, retinal locations. These stimuli are
shown as the overlapping points in Fig. 5 (bot-
tom right) and the corresponding neural activity
levels shown in the bar graph in Fig. 5 (bottom

right): The activity was much higher for the
stimuli at serial position 5 than for those at
serial positions 1 to 4, even though they were
matched for retinal location. The same con-
siderations apply for eye position (Fig. 5, left
side). We conclude that the serial position of
the stimuli is the important determinant for
cell activity, and not their retinal location or
eye position (13). This is not surprising be-
cause these recordings were from the arm area
of the motor cortex (Fig. 3D).

Together, these results document a strong
effect of serial order on cell activity: In 34.4%
of the cells, Serial Position was the only signif-
icant factor (9), whereas in 52.8% of the cells it
was a significant factor alone or together with
other factors (Fig. 1D). In addition, the level of
significance of this effect was even higher than
that of Motor Direction (Fig. 1E). These find-
ings establish serial order as an important factor
for motor cortical cell activity. In contrast, stim-
ulus Location, denoting the direction of a po-
tential motor response, had a slight effect alone
(9) but interacted frequently with Serial Posi-
tion (Fig. 1D). This suggests that serial order
had a strong, pure effect on cell activity, where-
as stimulus location was engaged within the
context of serial order.

These results can be interpreted with respect
to three key aspects of the task performed: (i)
Unlike other tasks (2), in the present task just a
single, one-directional motor response was
made in a trial, that is, no sequence of motor
responses to each stimulus was performed; this

Fig. 4. Rasters of neural impulse
activity and records of eye posi-
tion in two single trials (A and B)
of the context-recall task. The
trials are from the cell illustrated
in Fig. 3B. Panels in (A) and (B),
from top to bottom, show the
sequence of stimuli, a raster plot
of the cell activity, the X- and
Y-coordinates of eye position in
time, and scatterplots of the eye
XY position during epoch 5.
From the histogram in Fig. 3B, it
is apparent that this cell increased activity during epoch 5 of the list
presentation phase; this can also be seen in the single-trial impulse activity
here: The cell is relatively quiet during epochs 1 to 4, and increases its
discharge rate during epoch 5. Even though the eye position varied widely

during the list presentation phase, both with regard to fixation and saccadic
eye movements, the increase in neuronal activity was restricted to epoch 5.
This example shows that cell activity was not related to eye movement or
eye position, but rather to the serial position epoch.
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could explain why stimulus Location alone was
not a frequent effect. (ii) The required single,
correct response could be arrived at only by
taking into account the serial order of the stim-
uli, which means that information about serial
order was indispensable; this could explain why
Serial Position was such a frequent and strong
(relative to Motor Direction) effect. (iii) A cru-
cial step in the task was the identification of the
location of the stimulus that appeared immedi-
ately after the test stimulus during the list pre-
sentation, which means that stimulus Location
was tied to Serial Position; this could explain
why the Serial Position 3 Location interaction

was a frequent effect. It is remarkable that
all of these effects were documented in the
motor cortex, an area traditionally regarded
as composed exclusively of “upper motor
neurons.” Our results add to a substantial
body of evidence documenting the involve-
ment of the motor cortex in other complex
functions (14 ).

The neuronal responses described here were
commonly phasic; that is, a change in neuronal
activity, once evoked, was typically not main-
tained throughout the remainder of the list pre-
sentation phase (Fig. 3) (15). This suggests that
the information about the sequence is processed

in the motor cortex, which most likely partici-
pates as a component in a distributed network
(2, 16) that collectively encodes, stores, and
recalls the sequence. A prominent node in that
network is the dorsolateral prefrontal cortex,
which has been shown to play a key role in the
capacity to act on the basis of serial order (17).
Our results show that the motor cortex also
participates in the processing of serial order
information within the context of a motor task,
that is, the serial order of stimuli on which the
selection of a motor response must be based in
the task used (18). This serial order informa-
tion, once encoded and held in memory, is used
after the presentation of the test stimulus to
search the sequence, identify the serial position
of the test stimulus in the sequence, and retrieve
the stimulus associated with the next serial po-
sition, which specifies the required motor re-
sponse. The unitary principle of this search
was identified as an abrupt shift in the
discharge of motor cortical neurons from
that associated with the direction of a spe-
cific stimulus to that appropriate for the
next one (4 ). The repeated application of
this rapid-shift process from item to item
would constitute memory scanning. Be-
cause the encoded sequence information
can be accurately recovered from small
ensembles of motor cortical neurons, this
search could be monitored in time from the
patterns of activity of these ensembles dur-
ing the response time.
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