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Motor Cortical Activity in a Context-Recall Task
Giuseppe Pellizzer, Patricia Sargent,*

Apostolos P. Georgopoulost
A monkey was trained to respond on the basis of the serial position of a test stimulus in
a sequence. First, three stimuli were presented successively on a circle. Then one of them
(except the last) changed color (test stimulus) and served as the go signal: The monkey
was required to produce a motor response in the direction of the stimulus that followed
the test stimulus. When the test stimulus was the second in the sequence, there was a

change in motor cortical activity from a pattern reflecting the direction of this stimulus to
the pattern associated with the direction of the motor response. This change was abrupt,
occurred 100 to 150 milliseconds after the go signal, and was evident both in the activity
of single cells and in the time-varying neuronal population vector. These findings identify
the neural correlates of a switching process that is different from a mental rotation
described previously.

tal rotation process as the orderly rotation
of the neuronal population vector (4) from
a stimulus to a movement direction,
through successive directions within a spec-
ified angle. This rotation exemplified the
spatial rule operating in the mental rotation
task, which required the production of a
movement at an angle from a stimulus di-
rection. In the present study, we sought
instead to determine the neural correlates
of a cognitive process, the rule of which was
based not on a spatial constraint but on the
serial position of stimuli in a sequence: Giv-
en an arbitrary sequence of stimuli on a
circle, one of which was identified as the
test stimulus, the motor response had to be

The elucidation of the neural mechanisms
underlying cognitive processing is a basic
goal of behavioral neuroscience (1). The
recording of the activity of single cells in

the brains of behaving animals has provided
a powerful tool by which these mechanisms
can be studied. In a previous study (2, 3),
we identified the neural correlates of a men-
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Fig. 1. Schematic diagram of two trials of the tasks used. In the
control task (top), the yellow stimulus S changed to blue after 400
ms, which gave the go signal. The correct motor response was in
the direction of this stimulus. In the context-recall task (bottom),
three yellow stimuli (S1, S2, and S3) were presented sequentially
at 400-ms intervals and stayed on the screen; these stimuli de-
fined the sequence for this trial. In this trial, S2 changed to blue,
which now dictated a motor response toward S3.

Control task

Context-recall task

S1

SCIENCE · VOL. 269 * 4 AUGUST 1995

..blg.ae%(%.l.s.8l.s.

702



4-n
toward the stimulus that followed the test
stimulus in the sequence. This task is a
visuomotor version (5, 6) of the context-
recall memory scanning task (7). Previous
psychophysical studies (6) have suggested
that the processing mechanisms differ be-
tween the mental rotation and context-
recall tasks. In order to determine the neu-
ral mechanisms in the latter task, we re-
corded the activity of single cells in the
motor cortex of a monkey trained to per-
form a context-recall and a control, in-
structed delay task (8). Moreover, we rean-

Control task

1~~~~~~~~~~~~~~ he1 As

a Mi

S~~~~~~~~~~~~~
a tell,1 1

S~~~~S G/ I ala}00ImI

troltas.Th r 500rmshwstr25msbfe

the appearance of the stimulus (S or Si) and end
when the cursor exceeded a threshold (9). The
times of occurrence of the stimuli (5), of the go
signal (Go) and the average time of the onset of
the motor response (R) are shown as long vertical
lines. (The standard deviation of the response
time is indicated by a horizontal bar over R.) The
Go-R time is the response time.

alyzed the neural data from the mental ro-
tation study (3) to compare them with
those obtained in the present study.

In the control task (Fig. 1, top panel), a
yellow stimulus was presented in one of
eight positions on a circle and stayed on for
400 ms, after which it turned blue. This
provided the go signal for the monkey to
exert a force pulse such that the force feed-
back cursor (8) exceeded a certain thresh-
old (9). In the context-recall task (Fig. 1,
bottom panel), three yellow stimuli (list
stimuli) were presented successively (every
400 ms) at different positions on the circle
and stayed on the screen. After an addition-
al 400 ms, one of these stimuli (except the
last) turned blue. This identified the test
stimulus, and provided the go signal: Now
the monkey had to move the cursor in the
direction of the stimulus that followed the
test stimulus in the sequence (10).

The activity of 544 single cells in the
motor cortex was recorded while the mon-
key performed these two tasks (11). The
impulse activity of a cell for the eight di-
rections in the control task is shown in Fig.
2. This cell was mostly activated with a
downward direction and therefore provided
a good marker for that direction. This mark-
er was in turn used as an indicator of the
directional information processed during
the response time (9) in the context-recall
task. Cell activity during two conditions of
this task are illustrated in the left and right
panels of Fig. 3. In both conditions, the
motor responses were in the same down-
ward direction and the test stimuli (blue)
were in the same location (up and to the
left). However, these stimuli differed in
their serial position in the sequence, which
provided the meaningful information for
correct performance of the task; namely, in
the left panel the test stimulus was the first
stimulus (S1) in the sequence, whereas in
the right panel the test stimulus was the
second stimulus (S2) in the sequence. This
difference in the serial position of the test
stimuli, and the associated motor responses,
was reflected in the different patterns of cell
activity during the response time. In the left

panel of Fig. 3, the cell was activated almost
at the onset of the go signal (12), and its
activation indicated the downward direc-
tion, toward S2. This suggests that the
monkey anticipated and prepared for such a
response, which was the appropriate one in
this case. In contrast, in the right panel, this
activation did not occur until later in the
response time, which indicates that the
monkey did not anticipate this direction
initially but switched to it 100 to 150 ms
after the go signal. Fig. 4 illustrates data
from another cell. These effects were rou-
tinely observed in other cells.

This switching process was visualized at
the ensemble level with the use of the
neuronal population vector, computed as a
time-varying signal (2, 3, 13). When the
response anticipated did not have to
change, the population vector pointed in
the appropriate direction throughout the
response time. In contrast, when the re-
sponse had to be changed, the population
vector changed direction abruptly, from the
direction of the test stimulus to the direc-
tion of the motor response (14).

The use in this study of the patterns of
single-cell activity as markers for behavior
is similar to the strategy followed by other
investigators (15). This approach, together
with the population vector, indicated that
task constraints were reflected in the neural
events and provided evidence for the kind
of process involved in the selection of the
appropriate motor response. For example, a
significant task constraint was that the sec-
ond stimulus, unlike the first or the third,
played a role in every trial by being either
the test stimulus or the response direction.
Therefore, it is not surprising that it was
routinely anticipated at the onset of the
response time (16). On the other hand,
these patterns of neural activity reflecting
the direction of the second stimulus
changed abruptly to those appropriate for
the motor response. This change was evi-
dent at both the single-cell and the neuro-
nal population levels (17).

The abrupt change in the direction of
the neuronal population vector observed in

Context-recall task
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Fig. 3. Rasters of impulse activity of the cell illustrated in Fig. 2 for two cases of the context-recall task.
Conventions and time scale are as in Fig. 2.
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the present study is quite different from the
slow rotation observed in a previous study
of mental rotation (2, 3, 18). Additional
evidence for the different nature of the two
neural processes was provided by the follow-
ing analysis. The idea is that in a rotation
process, the set of cells with preferred direc-
tions in the intermediate direction between
the stimulus and response directions should

Control task

*
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U
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change activity during the response time. In
contrast, a switching operation such as pos-
tulated for the context-recall task should
not involve the activation of cells in direc-
tions intermediate between the test stimu-
lus (S2) and motor response (S3). Indeed,
this was observed (Fig. 5). It seems then
that the time taken to derive the motor
direction in the mental rotation task re-

Context-recall task

,52S2

O O0S3 S1S3 Si
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0 400 0 400
Time (ms) Time (ms)

Fig. 4. Peristimulus histograms of activity of a motor cortical cell are shown for eight directions in the
control task (left) and for one case of the context-recall task (right). In the left panel, histograms of cell
activity are color coded for motor responses in different directions in the control task. In the right panel,
two of these histograms are reproduced as thinner lines together with the histogram (black) of cell activity
in the condition of the context-recall task illustrated at the top. After the go signal, cell activity (black)
initially increased in the same way as in the control case (thin red line) for the direction toward the test
stimulus (S2) and then changed abruptly and decreased to the level corresponding to the control activity
for the direction of the motor response (toward S3).

Fig. 5. Peristimulus time his- 40
tograms (bin width, 10 ms) Begin End
of the activity of cells with
preferred direction at the in- Bei
termediate direction (±10°) | *. .r- MLta rotation

between the stimulus and U
movement directions in the
mental rotation task (2, 3), 20
and between the test stimu- a
lus (S2) and motor response 8
(S3) in the context-recall |w iHr-i p Iu r L Context-recall

E~~~~~~~~~~~~~task

task (20). Histograms start $l
at the onset of the go signal
(time zero). In the mental ro- Begin End
tation task, the activity of o0-ii
such cells (thin line) in- 0 100 200 300
creased by more than three- Time (ms)
fold and was statistically significant (indicated by asterisks), whereas in the context-recall task cell activity
remained almost constant (thick line) and was not statistically significantly different, as compared with cell
activity during the first 80 ms (dotted line; baseline period) (21). The arrows indicate the average time
(±SD) at which the population vector began to change direction (begin) and when it attained the direction
of the motor response (end) (22).

fleets a transformation, whereas the time
taken in the context-recall task reflects a
selection process. Finally, it should be noted
that these studies provide an insight into
the neural mechanisms of these processes in
a particular brain area, namely the motor
cortex, but it is obvious that other brain
areas are likely to be involved. Additional
experiments are needed to delineate the
identification of such areas and elucidate
their relative contributions to the perfor-
mance of the task.
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