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Abstract

We present simulations of evolutionary processes operating on populations of
neural networks to show how learning and behavior con influence evolution
within a strictly Darwinian framework. Learning can accelerate the evolutionary
process both when learning tasks correlated with the fitness criterion and when
random learning tasks are used. Furthermore, an ability to learn a task can emerge
and be transmitted evolutionarily for both correlated and uncorrelated tasks.
Finally, behavior that allows the individual to self-select the incoming stimuli can
influence evolution by becoming one of the factors that determine the observed
phenotypic fitness on which selective reproduction is based. For all the effects
demonstrated, we advance a consistent explanation in terms of a multidimensional
weight space for neural networks, afitness surface for the evolutionary task, and a
performance surface for the learning task.

1. Introduction

Are behavior and learning among the causes of
evolution? Do they influence the course or the rate of
evolution? With reference to behavior Plotkin has
written: "Whether behavior is also a cause and not just
a consequence of evolution is a significant theoretical
issue that has not received the attention it deserves
from evolutionary biology" (Plotkin, 1988, pag. 1). He
notes that the subject index of Mayr's The Growth of
Biological Thought contains only three entries for
"behavior”". One might add that there is no single entry
for "learning".

There are several reasons why the question whether
learning and behavior are among the causes of
evolution tends to be ignored by evolutionary
biologists, and by biologists generally. One reason is
that the orthodox view represented by the Modern
Synthesis tends to be reductionist, which implies that
the causes and basic mechanisms of evolution are only
to be found at the level of genetics. Behavior and
learning are too wholistic to be considered as
important to understand the intimate nature of
evolutionary processes. Another reason is that the idea
that such phenotypic processes as behavior and
learning might be among the causes of evolution

sounds too Lamarckian, and the rejection of
inheritance of lifetime changes in the phenotype is one
of the foundations of the Modern Synthesis. A third
reason is that behavior and learning are the province
not of biology but of psychology and ethology, and
biologists would hardly admit that among the causes
of the central phenomenon studied by their discipline
and the theory of which is the organizing framework
for biology (evolution and the theory of evolution),
there are processes on which are competent such
"soft" disciplines as psychology and ethology.

But there is still another reason that can explain why
behavior and learning are not seriously considered as
possible causes of evolution within biology. The
various claims that have been advanced in the course
of the present century in support of the idea that
behavior and learning can influence evolution have
had a limited empirical basis and, what is even worse,
have been generadly rather vague conceptualy.
Therefore, it has been easy for evolutionary biologists
to dismiss these claims as irrelevant and to consider
the whole issue as marginal at best.

The purpose of this paper is to examine some aspects
of the problem "Do learning and behavior influence
evolution?' within the framework of neural networks



(Rumelhart and McClelland, 1986) and genetic
algorithms (Holland, 1975; Goldberg, 1989). The
justification for such an enterprise is that one can
hypothesi ze that the theoretical apparatus of the theory
of complex dynamic systems (of which neural
networks and genetic algorithms are considered here
as special applications) and the methodology of
computer simulation typically used in research on
neural networks and genetic algorithms can help make
more precise and testable claims on the role played by
learning and behavior in evolution. If we succeed in
convincing students of evolution that this hypothesisis
a reasonable one, then we will have contributed to
eliminating at least the last of the four reasons listed
above for ignoring this potentially very important
issue.

2. How can learning help evolution

The orthodox view of evolution is that changes due to
learning during life are not inherited and, more
generally, that learning does not influence evolution.
The basis for such a view is the physical separation
between the germ cell line and the somatic cell line.
Changes due to learning concern somatic cells
whereas evolution is restricted to the germinal cells.
Since the two types of cells are physically separated, it
is impossible that whatever happens to the somatic
cells can have an influence on evolution. On the other
hand, Baldwin (1896), Waddington (1942), and
several others have claimed that there is an interaction
between learning and evolution and, more specifically,
that learning can have an influence on evolution.

Computer simulations that apply evolutionary
methods to populations of neural networks have
recently shown that changes during the 'life’ of
individual neural networks which are not inherited can
gtill have an influence on the course of the
evolutionary process. Hinton and Nowlan (1987) have
demonstrated how modifying a random the
connection weights during life allows the simulated
evolutionary process to select networks that are more
adapted to the given task. Belew (1989) indicates how
the beneficial effect of learning on evolution can
increase if the weight changes are not random but are
correlated with the task for which the networks are
being selected. Ackley and Littman (1991) and Nolfi
and Parisi (1991) have shown that when evolution is
free to select what networks will learn during their
life, useful learning tasks are evolved yielding an
increase in performance with respect to the situation in
which lifetime learning is not allowed. Nolfi and
Parisi (1991) also demonstrate how an evolved
learning capacity might emerge and then get
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extinguished if it is no longer useful for the

evolutionary process.

In order to analyze how learning can help evolution in
simulated organisms let us consider the simple
artificial organisms described in Nolfi, Elman, and
Parisi  (1990). Each organism (O) lives in a
bidimensional environment containing randomly
distributed pieces of food. The organisms are
modelled by a feedforward neural network (Figure 1)
which basically receives sensory input from the
environment concerning the position of the nearest
food element and generates as output motor actions
that alow the organism to displace itself in the
environment.

motor
action

ang/dist

sensory input

Figure 1. O's architecture. Sensory input is encoded by
the 2 input units representing the angle and the
distance of the nearest food element (both values are
scaled from 0.0 to 1.0). Movement is encoded in the 2
output units that codify four possible actions. go
ahead, turn left, turn right, and stay still. Outputs on
the motor output units are feedback as additional input
at time t+1.

In each activity cycle activation spreads from the
input units through the hidden units to the output
units. The kind of movement of the organism which is
generated by the network given a certain sensory input
depends on the quantitative weights on the
connections of the network. Initially these weights are
assigned at random and therefore the organism
wanders randomly in the environment.

In order to obtain Os which are able to reach food
elements in an efficient manner an evolutionary
method based on selection and mutation is used. The
process starts with 100 Os, each having the same
architecture and a different random assignment of



connection weights. This is Generation 0 (G0). GO
networks are allowed to "live" for 20 epochs, where an
epoch consists of 250 actions in 5 different
environments (50 actions in each), for a total of 5000
actions. The environment is a grid of cells with 10
randomly distributed pieces of food. Os are placed in
individual copies of the environment, i.e. they live in
isolation.

At the end of their life Os are allowed to reproduce.
However, only the 20 Os which have accumulated the
most food in the course of their random movements
are alowed to reproduce by generating 5 copies of
their weight matrix. These best ranking individuals
have been assigned for purely random reasons weight
matrices that cause them to sometimes respond to food
elements by approaching them. The 20x5=100 new Os
constitute the next generation (G1). Mutations are
introduced in the copying process by selecting at
random 5 weights and adding a random value between
+1.0 and -1.0 to these weights.

After the Os of G1 are created they also are allowed to
live for 5000 cycles. The behavior of these Os differs
dlightly from that of preceding generation (GO) as a
result of two factors. First, the 100 Os of G1 are the
offspring (copies) of a subset of the Os of GO. Second,
the offspring themselves differ dlightly from their
parents because of the mutations in their weights.
These differences lead to small differences in average
food eaten by the Os in G1 with respect to those of
GO. At the end of their life the 20 best individuals are
allowed to reproduce 5 times, forming G2. The
process continues for 50 generations.

Mutations can result in offspring that are better than
their parent or offspring that are less good. However,
selective reproduction will insure that the former
individuals will be more likely to reproduce than the
latter. The net result is a progressive increase in food
approaching ability due to selective reproduction and
random mutations.

Nothing changes in the neural networks during their
life up to this point. We then run another set of
simulations in which we added a learning task during
life. Oslearned to predict the sensory consegquences of
their own actions, i.e. how the sensory information
from a food element was going to change when a
planned action was actually executed. Using
backpropagation (Rumelhart, Hinton, and Williams,
1986) the networks were taught to specify at time T in
two additional output units (prediction units) the
sensory input that the network will receive at time
T+1 (see Figure 2).

ang/dist
sensory input

Figure 2. O's architecture. The two additional output
units codify O's prediction.

The addition of the learning task during life increases
the power of the evolutionary process. Even if none of
the changes which occur in the parent's weight matrix
as a consequence of learning are transmitted to
offspring, populations of Os which evolve with such a
learning are able to reach a larger number of food
elements than Os evolved without learning (see Figure
3).
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Figure 3. Average number of food elements eaten by
successive generations for organisms evolved with and
without life-learning. Each of the two curves
represents the average performance of 10 different
simulations with different random assignment of
weights.

It is important to notice that the performance increase
is not due to the fact that networks, having the
possibility to learn, increase their fitness during their
life. Such an increase exists (in other words, learning
to predict how food position changes with the
organism'’s actions leads the a better food approaching
performance during life) but it is not enough to
explain the difference between the two curves. In fact,
life learning allows the evolutionary process to evolve
networks that perform better at birth, i.e. before
learning takes place. This means that learning, in
addition to have a life-time adaptive function, has an
evolutionary function that results in an increase of
offspring's fitness.



How can learning during life have an influence on
evolution if inheritance is strictly Darwinian (or better,
Waismannian) and not Lamarckian? In other words, if
the learned changes in connection weights are not
inherited and a reproducing individual transmits its
intact inherited weight matrix to its offspring? To try
to answer this question we must look at the fitness of
genotypes in a more abstract way.

We begin by identifying the inherited genotype of an
individual with a specification of the weight matrix of
the individual's neural network at birth. It is this
specification that is transmitted to the individual's
offspring if the individual is among those that
reproduce. By definition the genotype does not change
except for mutations. We can view one particular
genotype (weight matrix) as a single point in a
multidimensional abstract space. Each dimension of
this space corresponds to one particular network
connection. Hence, if our networks have N
connections, the corresponding space will be an N-
dimensional space. A particular network will occupy
the position on a dimension that indicates the
quantitative weight of the corresponding connection.
Therefore, each point in the N-dimensional space
represents one particular weight matrix, and all
possible weight matrices are represented in the space.

We now assume that each possible genotype (point in
the N-dimensional space of weight matrices) has a
certain fitness. That is, if an individual with that
genotype (weight matrix) is allowed to live in some
environment for a certain lifespan, it will generate a
behavior which will result in a certain fitness value
given a certain fitness criterionl. As a consequence,
we can conceive of fitness as an additional dimension
of the space, with weight matrices with a higher
fitness located higher on that dimension than matrices
with alower fitness. Since the additional dimension of
fitness is added to a space that already has N
dimensions, we will talk of a (multidimensional)
fitness "surface”. If the fitness surface is "smooth™ this
means that weight matrices that are near to each other
in weight space will have similar fitnesses, whereas if
the fitness surface is "rugged" one cannot predict what
the fitness of a particular weight matrix will be given
the fitness of a nearby matrix.

A first generation of randomly generated weight
matrices is a collection of randomly distributed points
in weight space. Selective reproduction means that the
reproducing individuals have weight matrices that
correspond to higher points on the fitness surface than
those of non-reproducing individuals. Consider now
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mutations. Mutations mean that a reproducing matrix
(parent) is replaced by one or more matrices
(offspring) corresponding to points on the fitness
surface located in a region of that surface just around
the point to which the parent's matrix corresponds?.
Since mutations are random, offspring matrices are a
random sampling of pointsin that region.

Consider now two very different individuals (weight
matrices) corresponding to distant points in weight
space, which have the same fitness (hence, the two
points are the same height on the fitness surface).
Since the two individuals have the same fitness,
selective reproduction has no way to choose between
them. In fact, if there were no mutations it would be
irrdlevant from an evolutionary point of view to
choose between them. In such a case the offspring of
one individual would be exact copies of their parent
and no consequence for the next generation's average
fitness would result from choosing one of the two
individuals rather than the other. However, since there
are mutations, an individual will be replaced by
individuals which are similar to their parent but not
exact copies. More specifically, the offspring's weight
matrices will sample the region surrounding the
parent's point on the fitness surface.

fitmass

comhination of weights

Figure 4. Fitness of all possible weights matrices.
Point B has a better surrounding region than point A
even if the fitnesses of the two points are identical.
For pratical reasons the N dimensions of the weight
space as represented as a single dimension.

On consequence of this is that, although the two
individuals correspond to points that are the same
height on the fitness surface, the average fitness of the
next generation will depend on the nature of the two
regions surrounding the two points. The two points
(parents) may be equally high but the region
surrounding one of them can include points (offspring)
that are on the average higher than the points in the
surrounding region of the other (see Figure 4). It
would then be appropriate for the selection process to
select the individual with a better surrounding region
rather than the other since the offspring of the former
individual will be on average better than the offspring
of the latter. More generally, it would be useful for the



selection process to know the nature of the
surrounding regions of candidates for reproduction
since the fitness of offspring is more important than
the fitness of their parents from the point of view of
the next generation's average fitness. Selective
reproduction per se has no means to know that. It sees
the heights of candidates for reproduction on the
fitness surface but it does not see their surrounding
regions. Our hypothesisisthisis exactly what learning
does: learning illuminates the regions on the fitness
surface surrounding the points on that surface
corresponding to candidates for reproduction, and
makes what it sees available to the selection
mechanism. The result is that selection is improved
and there may be a positive influence of learning on

evolution3,

Learning involves weight changes and therefore it
implies a movement in weight space of the point
representing an individual matrix. If an individual X
has a better surrounding region than another individual
Y, even if both start from the same height on the
fitness surface, by moving in weight space (learning)
X is more likely to end up on a higher point on the
fitness surface than Y, and therefore more likely to be
selected for reproduction.

Given this sort of analysis, even random changes in
the weight matrix during life-time, are enough to
ensure the selection, on average, of the better between
two individuals that have the same fitness but
correspond to points on the fitness surface with
different surrounding regions. As a consequence,
random changes in weights during life should results
in a positive effect on evolution and this is exactly
what Hinton and Nowlan (1987) have found. We have
run some simulations in which individual networks are
taught by using randomly generated teaching inputs on
the two additional output units (see Figure 2), and in
this case too there is a positive influence of learning
on evolution, even if the improvement is less great
than in the case of prediction learning (see Figure 5).

It remains to be explained why learning a task such as
predicting the conseguences of one's own actions,
which is correlated with the task for which organisms
are selected, results in a larger beneficial effect on
evolution.
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Figure 5. Average number of food elements eaten by
successive generations for organisms evolved without
life learning, with random learning, and with
prediction learning. Each of the three curves
represents the average performance of 10 different
simulations with different random assignments of
weights.

Our hypothesis is that some types of explorations of
surrounding regions can be more "intelligent” than
others, in the sense that they preferentially explore the
sections of the surrounding region with good fitness
points. If such points exist, i.e. if there are points in
the surrounding region of an individual that have a
higher fitness that the individual's fitness, an
intelligent exploration of the surrounding region
would increase the reproduction chances of such an
individual. Individuals located in regions with such
high fitness points should be preferred by the selection
process because they will have some probability of
generating at least some offspring better than
themselves. Exploring an individual's surrounding
region in such a way that sections with higher fitness
points can be detected allows exactly that. It allows
the selection process to prefer an individual located in
a region with higher fitness points than itself to
another individual even if the two regions globally
include points with the same average fitness (see
Figure 6). In the situation depicted in Figure 6,
random learning (i.e. random exploration of the
surrounding region) would not confer to point B more
reproductive chances than to point A. If we want point
B to be selected rather than A, since it is more likely
to have better offspring than itself, we need an
intelligent exploration of the surrounding regions, i.e.
a movement of the point on the fitness surface such
that the point is more likely to end up on a higher
fitnesslevel if thereis such level.
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Figure 6. Fitness of all possible weights matrices.
Point B has A better surrounding region than point A,
because in its surrounding region there are points with
higher fitness than points in B's surrounding region,
even if the two points have identical fitnesses and
identical surrounding regions on average.

This we believe is what takes place in the simulations
with prediction learning. Non-random learning tasks
have a performance surface which is analogous to the
fitness surface of evolutionary tasks. Each specific
weight matrix corresponds to a particular point
(height) on the performance surface for the given
learning task. If the performance surface of a certain
learning task and the fitness surface of a certain
evolutionary task (as defined by a certain fitness
criterion) are correlated, i.e. a matrix of weight which
is good at the learning task is also good at the
evolutionary task, and viceversa, then learning the
task during life will have a stronger effect on
evolution than just random learning. The reason is that
learning the task implies weight changes that are also
useful from the point of view of evolutionary fitness.
Hence, by moving during learning to higher positions
on the performance surface of the learning task, point
B in Figure 6 will be simultaneously pushed toward
higher positions on the fitness surface - which is
impossible for point A. The net result is that B will
have more chances of reproduction - which is useful
from the point of view of evolution.

It is interesting to note that if one alows the
evolutionary emergence of the life-time learning task
rather than arbitrarily deciding what is the task at the
outset, asin Ackley and Littman (1991) and Nolfi and
Parisi (1991), evolution can select the learning tasks
which is most appropriate for the displacement of
points in weight space. In other words, it is plausible
to expect that the learning task will change, at the
evolutionary time-scale, in order to obtain the most
intelligent exploration of the surrounding regions of
individual points. This actually happens in the
computer simulations described in Nolfi and Parisi
(1991).

3. Indirect inheritance of acquired characters

In the preceding section we showed that, in our
simulated organisms, learning can help the evolution
of adaptive behavior and we discussed how this effect
can be explained without postulating the inheritance
of acquired characters. The existence of a
phenomenon of this type has been postulated by
Waddington (1942). This is one aspect of the possible
interaction between evolution and learning. In the
present section we will examine another related aspect
of this interaction, that is, we will try to figure out if
learning some ability during life can facilitate the
acquisition of that ability in successive generations.
In other words, we want to demonstrate that a learning
ability can be indirectly transmitted to descendants
even if the inheritance mechanism remains strictly
Darwinian and individual are not selected for that
learning ability.

If we analyze the results of the simulations described
in the previous section and in Nolfi, Elman, and Parisi
(1990), we find some evidence of inheritance of
acquired characteristics. Figure 7 graphs the average
error curve for the prediction task learned during life
by Os belonging to the first and to the last generation.
Although both groups of Os start from an identical
error level at the beginning of their life (i.e. thereis no
inheritance of the capacity to predict at birth), the Os
of the last generation learn more of the prediction task
than the Os of the first generation. In other words, in a
population of Os that learn to predict the sensory
conseguences of their own actions during their life
there is an observed increase in the ability to learn the
task generation after generation. Hence, we can
conclude that there is inheritance of the ability to learn
the particular task, although not directly of the ability
to perform the task.
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Figure 7. Global error on the prediction task as a
function of epochs of training for naive Os (i.e. Os of
generation 0) and evolved Os (i.e. Os of generation
49).

How such inheritance of a capacity to learn to perform



a task might be explained? The answer could be that,
as we have already suggested, the evolutionary task of
approaching food elements and the learning task of
predicting how the position of a food element changes
with the organism's actions, are correlated. In other
words, aweight matrix which is good for the first task
is also good for the second task. In fact, as detailed in
Nolfi, ElIman, and Parisi (1990), it can be empirically
demonstrated that in many cases input stimuli must be
classified in the same manner for both the prediction
and the approaching tasks. Hence, the same set of
weights may be appropriate for both tasks. This kind
of explanation does not require to postulate any
inheritance of acquired characteristics. The Os of later
generations learn to predict better than random Os
simply because they have been selected for
approaching food elements. The presence of
prediction learning during the life of previous
generations does not have any role in the increased
ability to learn to predict of the Os of the later
generations. The only role of prediction learning is in
determining an increased capacity to reach food
elements, as we have shown in the previous section.

This explanation assumes that there is inheritance of
the ability to learn a particular task only if the learning
task is correlated with the evolutionary task, that is,
with the task that dictates who will reproduce and who
won't. To test this hypothesis we run a new set of
simulations in which Os had to learn during their life a
task which presumably is not correlated® with the task
for which Os are selected. Our choice has been the
XOR task. At each time step Os, in addition to
generating an useful output on the motor output units,
are taught by backpropagation to generate on an
additional output unit a value of O if both input units
have an activation value which is greater or less than
.5, and avalue of 1 otherwise.

NULUr duLaiun mzuUr

{angle) {distance)
sensory input

Figure 8. Network architecture for Os that learn the
XOR task in addition to being selected for generating
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the appropriate motor actions in response to sensory
stimuli. Sensory input is encoded by the 2 input units
representing the angle and the distance of the nearest
food element. Movement is encoded in the 2 output
units that specify the amount and direction of turn and
the length of the step forward. (At each time step Os
can turn from 90 degrees left to 90 degrees right and
then move from 0 to 5 cells forward.) The third output
unit is the response unit for the XOR task.

If the previous explanation is correct we should expect
that learning the XOR task during life should not
influence how the task is learned by successive
generations, that is, that there is no inheritance of the
ability to learn the XOR task, since this task is not
correlated with the evolutionary task of reaching food.
Contrary to this expectation, we found that Os of
successive generations are able to learn the XOR task
better and faster than the Os of previous generations
(see Figure 9). In other words, a capacity to learn the
XOR task is genetically transmitted even if the weight
changes that result from learning are not transmitted
and the ability to perform the XOR task does not
correlate with the capacity for which Os are selected.
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Figure 9. Global error on the XOR task as a function
of epochs of life. The error curves of severa
generations are represented. Each curve is the average
result of 10 simulations each starting from different
initial random assignment of connection weights.
Global error at epoch 0O is calculated by testing Os for
an epoch of life without letting back-propagation
operate.

Although the correlation between the learning task and
the evolutionary task can be a (partial) explanation of
the inheritance of the ability to learn the learning task
when such correlation exists, it is clear that there can
be inheritance of alearning ability even in the absence
of this correlation and therefore we need another
explanation for the case in which the learning task is
not correlated with the evolutionary task.

A possible explanation which is consistent with our



previous explanation of the influence of learning on
evolution could be the following. We defined two
tasks as correlated if it is probable that, given an
arbitrary point in weight space, the performance of
this weight matrix on both tasks will be equally good
or equally bad. However, we should expect that, even
when two tasks are not globally correlated, there may
exist some sub-regions of weight space in which the
two tasks are more correlated than in other regions.
Individuals located in these more correlated regions
will be more likely to reproduce because learning
(moving to a higher position on the performance
surface of the learning task) would involve moving to
a higher position of the fitness surface (see Figure 9).
But since these reproducing individuals are located in
correlated regions, an increase in the evolutionary
ability (approaching food) across generations will be
accompanied by a parallel increase in the ability to
learn the life-time task (doing the XOR task).

fitness

evolutionary surface
learring surface

cothination of weights

Figure 10. Fitness surface for the evolutionary task
and performance surface for the life-learning task for
all possible weights matrices. Life-time movements
due to learning are represented as arrows. Point A isin
aregion in which the two surfaces are correlated. Asa
consequence, A has more probability to be selected
that B even if A and B have the same fitness on the
evolutionary surface at birth, since A will be more
likely to increase its performance during life than B.

We conclude that even the ability to learn arbitrary
tasks can be genetically transmitted because evolution
will progressively select individuals that lie in those
sub-regions of weight space that correspond to
correlated segments of the learning task surface and of
the fitness surface.

4. The influence of behavior on evolution: Self-
selection of input stimuli

We have assumed so far a notion of genetic fitness in
terms of which, given a certain fitness criterion, each
genetically transmitted weight matrix is assigned a
fixed fitness value. In our case for each given weight
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matrix there is a corresponding single value on the
fitness surface which is the number of food elements
eaten during life. However, this is a simplification in
that what is actualy observed and used by the
selective reproduction mechanism is not this
hypothetical genetic fitness value but a specific
phenotypic fitness value. For each assumed genetic
fitness value there may be various actually observed
phenotypic values depending on a number of
additional factors including (a) the environment in
which an individual happens to live, (b) the
experiences the individual happens to have in that
environment, and (c), in so far as the behavior of the
individual determines these experiences and in some
cases changes the environment itself, the behavior of
the organism.

We won't consider the role in evolution of al these
additional factors that determine the phenotypic
fitness of individuals on which the evolutionary
process is based, but we will restrict ourselves to a
particular aspect of the role of the behavior of the
organism in determining the course of evolution.

Our starting point is that our organisms are ecological
neural networks, i.e. neural networks that live and
learn in an environment (Parisi, Cecconi, and Nolfi,
1990). The input to a network at each time step is not
arbitrarily decided by the researcher but is a function
of the structure of the initially defined environment
and of the behavior of the organism in that
environment. More specifically, the sensory input to
an O (angle and distance of the nearest food element)
depends on the local distribution of food but also on
what has been the motor output of the network in the
previous cycle. In other words, in ecological networks
Os can control input stimuli with their behavior.

Now there are at least two different strategies that can
be followed to maximize the number of food elements
eaten. One strategy is to increase one's capacity to
respond in an efficient way to all kinds of input
stimuli. The other strategy is to develop a capacity to
respond efficiently to a subset of input stimuli and
then behave in such a way that one is more likely to
encounter this subset of stimuli rather than the
remaining ones. We have anayzed the data of our
previous simulations to test the hypothesis that Os are
able to follow the second strategy, which implies an
important role of behavior in determining the
phenotypic fitness of individuals.

We divided the input stimuli Os can receive during
their life into 10 classes that correspond to different
amplitudes of the angle of the currently perceived



food element, and we calculated the frequency with
which stimuli belonging to each of the 10 classes are
perceived by a particular O.

<osSomcawo- —+

0-36 37-72 73 109- 145- 181- 217- 253- 289- 325
108 144 180 216 257 288 324 359

angle of nearest food element in degrees

Figure 11. Percentage of occurrence for each of 10
classes of stimuli during 5000 actions of a particular
0.

As Figure 11 shows, different classes of stimuli have
very different frequencies of occurrence. For the
particular individual that we have examined (other
individuals may have different  frequency
distributions), stimuli with a very small angle (i.e.
stimuli just on the right of O's facing direction) have
very high frequency while stimuli with a very large
angle (i.e. stimuli just on the left of O's facing
direction) have very low frequency. At this point we
can look at the O's performance for each class of
stimuli. Since our Os are being selected for their
ability to approach food, we defined the goodness of
the performance in response to each particular
stimulus as the amount of decrease in the distance
between O and the stimulus (food element) after O's
action.

performance

N P O Rk N W b

@0 >S®3 -0 —+~= 0O

0-36 3772 73- 109- 145- 181- 217- 253 289- 325
108 144 180 216 257 288 324 359

angle of nearest food element in degrees

Figure 12. Average performance of the same O for
each class of stimuli.

As Figure 12 shows, O reacts in a more efficient way
to stimuli with small angles than to stimuli with large
angles with respect to O's facing direction. This
implies that O has developed a behavior which allows
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it to be exposed, most of the time, to stimuli to which
it is able to react in a efficient way®.

We can aso measure how much of the O's
performance can be explained as an ability to select
the most appropriate stimuli and how much as an
ability to correctly react to input stimuli. The results
of this analysis are shown in Figure 13. The average
performance of the O in the standard situation (i.e. the
situation in which the stimulus at time t depends on
O's action at time t-1) is plotted against the average
performance of the same O obtained by generating
each time a new stimulus in a random position with
respect to O.

1.
0.8 |
0.6 |
0.4 ]

0.2 ]

@0 S>3 S0 = 0T

[

unselected stimuli

standard

Figure 13. Average performance of an O which can
indirectly select the incoming input stimuli compared
with the performance of the same O when it is
positioned, at each time step, in a new arbitrary
Situation.

The large loss in performance obtained when O is
deprived of the possibility to indirectly select the input
stimuli shows how this ability can be important in
explaining O's evolved behavior. This can also explain
why an ability to react equally efficiently to all classes
of stimuli does not emerge evolutionarily. Os will still
benefit from acquiring a capacity to react efficiently to
all classes of stimuli, because infrequent stimuli to
which Os do not react efficiently may still appear. On
the other hand, the beneficial effect of such a
generalized capacity would be relatively small when
compared with the more specialized capacity to react
efficiently to self-selected stimuli, so that there would
not be enough accumulated evolutionary pressure for
the generalized capacity to emerge.

5. Conclusions

In the last few years, thanks to the large increases in
available computational power, the "artificial life"
experimental approach to the study of natural
evolutionary phenomena has spread in the scientific
community. Within this approach, neura networks



and genetic algorithms have been the most common
tools used to simulate, respectively, the individua
organisms and the natural evolutionary process. (In
addition to the work already cited see: Miller, and
Todd, 1990; Belew, Mclnerney, and Schraudolph,
1990).

This simulative approach has already produced many
interesting results that have contributed to clarify
important arguments discussed in the evolutionary
biology literature. This despite the fact that the
simulative models currently implemented are
extremely simplified with respect to the real
phenomena.

In this paper we have offered new results on the
interaction between learning, behavior, and evolution
and we offered a general and consistent explanation of
the different findings. We have shown that life-time
learned changes can have an influence on evolution
although changes that are correlated with the criterion
used for selective reproduction are larger than random
changes. We also demonstrated how an ability to learn
some task can emerge and be transmitted
evolutionarily for both tasks that are correlated with
the reproduction criteria and for uncorrelated tasks.
Finally, we have indicated how behavior - more
specifically self-selection of input stimuli - can
influence evolution in that behavior is one factor that
determines the observed phenotypic fitness on which
selective reproduction is based.
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1 We will see later in the paper that talking of the
fitness of genotypes is inaccurate and it ignores an
important aspect of the processes involved in
evolution. However, for the moment we can be
satisfied with what has been said.

2 This is not true in the case of sexual reproduction
and genetic recombination because in this case
offsprings can have a very different weight matrix
from that of each of their parents. On sexua
reproduction in neural networks, see Menczer and
Parisi 1990;1991).

3 A similar explanation has been given by Hinton and
Nowlan (1987).

4 To verify if two tasks are correlated one should
calculate the performance on the two tasks for each
point in weight space. Instead, we have used our
intuitive judgment.

5 Other Os develop different preferences in stimulus
selection (for example left stimuli can be preferred to
right ones) but all react better to stimuli they
indirectly select more often.
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