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Abstract

People are active information gatherers, constantly experimenting and seeking
information relevant to their goals. A reasonable approach to active
information gathering is to ask questions and conduct experiments that
maximize the expected information gain, given current beliefs (Lindley, 1956;
Good, 1966; MacKay, 1992). In this paper we compare the behavior of human
subjects with that of an optimal information-gathering agent (infomax) in a
concept induction task (Tenenbaum, 1999, 2000).  Results show high
consistency between subjects in their choices of numbers to sample. However
infomax generally fails to predict subjects’ sampling behavior.  It is unclear at
this time whether the failure of infomax to predict human behavior is due to
problems with Tenenbaum’s concept induction model, or due to the fact that
subjects use suboptimal heuristics (e.g., confirmatory sampling).

1  Introduction

In scientific inquiry and in everyday life, people seek out information relevant to perceptual
and cognitive tasks.  Scientists perform experiments to uncover causal relationships; people
saccade to informative areas of visual scenes, turn their head towards unexpected (i.e.,
informative) sounds, and ask questions to understand the meaning of concepts.

Consider a person learning a foreign language, who notices that a particular word, “tikos,”
is used for baby moose, baby penguins, and baby cheetahs.  Based on those examples, he or
she may attempt to discover what tikos really means.  Logically, there is an infinite number
of possibilities: tikos could mean baby animals, or simply animals, or even baby animals
and antique telephones.  In practice a few examples are enough for human learners to
reduce the space of possibilities and form strong intuitions about what meanings are most
likely.

Suppose you can point to a baby duck, an adult duck, or an antique telephone, to inquire
whether that object is “tikos”.  Your goal is to figure out what “tikos” means. Which
question would you ask? Why? When the goal is to learn as much as possible about a set of
concepts, a reasonable strategy is to chose those questions which maximize the expected
information gain about those concepts, given one’s current beliefs (Lindley 1956, Good
1966, MacKay 1992).  The goal of this paper is to evaluate whether humans use such a
strategy in a relatively unconstrained concept induction task.



1 .1  Pr ior  work:  The  ca rd  se l ec t ion  ta sk

Prior work to understand human sampling from an information-theoretic perspective has
focused on Wason’s (1966, 1968) card selection task.  The task was initially conceived as a
deductive logic problem.  Subjects are given a rule of the form if p then q, such as “if there
is a vowel on one side [p], then there is an even number on the other side [q].”  Then, the
subject is given a choice of four cards, one each with a visible face showing a statement
corresponding to p, not-p, q, and not-q.  For example, the letter k might be written on a not-
p card, the number 14 on a q card, etc.  Each card with a p or not-p statement on one side
has a q or not-q statement on the other side.  The subject is asked to select those cards, and
only those cards, that could falsify the rule “if p then q”.  According to deductive logic, the
only way to falsify the rule if p then q is to select the p card and the not-q card. The most
common subject responses, however, are selection of the p card and the q card (46 percent
of subjects chose this combination of cards), or selection of the p card only (33 percent of
subjects select only the p card).  Only a small proportion of subjects, as few as 4 percent,
choose the “correct” combination of cards, p and not-q (Johnson-Laird & Wason, 1970).

If subjects interpret the selection task to be a deductive task, then subjects’ behavior on this
task may demonstrate a systematic bias in human cognition.  However, not all researchers
have agreed that subjects interpret the selection task in a deductive manner.  If subjects
interpret the task in an inductive manner, norms of deductive logic do not apply.  Oaksford
and Chater (1994) proposed an inductive characterization of the task, under which subjects’
behavior on this task may be considered optimal. They proposed that subjects see this task
as one of choosing between two statistical hypotheses: (1) if p occurs, q invariably occurs;
and (2) p and q are statistically independent of each other.  Oaksford and Chater
demonstrated that if p and q were both rare, the ordering of selection frequencies observed
in studies with human subjects was monotonically related to the expected information gain
about the two hypotheses. McKenzie and Mikkelsen (2000) demonstrated that in fact people
do assume that both p and q are rare, when hearing statements of the form if p then q.
Related work has shown that human sampling behavior is sensitive to variation in base rates
of p and q, with subjects usually responding as predicted by information maximizing theory
(Green, Over, & Pyne, 1997; Kirby, 1994).

Taken together, these results suggest that research on the selection task has not
demonstrated a failure of humans to understand simple principles of deductive logic, but
rather a failure of experimenters to understand the inductive nature of Wason’s task.
Human sampling behavior on this task is consistent with the predictions of Oaksford and
Chater’s information-maximizing model.  May we then extrapolate that humans are
sensitive to maximizing information gain in a wide variety of contexts?  Work on the
selection task is promising, but the simplicity of the hypothesis space may limit its
generality.  In this paper we evaluate an information-maximizing approach to sampling
behavior in a more complex hypothesis space, based on a concept induction task.

1 .2  Tenen bau m’s  n u mb er  concept  space

Tenenbaum (1999, 2000) developed a Bayesian model of number concept induction. The
model describes intuitive beliefs about simple number concepts, and how those beliefs
change as new information is obtained.  Earlier work on pairwise similarity judgments for
the digits 0 through 9 (Shepard, Kilpatrick, & Cunningham 1975), suggested that intuitive
number concepts could be divided into mathematical and interval concepts.  Building on
this work, Tenenbaum included both mathematical and interval concepts in his number
concept space.  Interval concepts were sets of numbers between n and m, where 1 ��n �
100, and n ��m ���������	
����numbers between 5 and 8, and numbers between 10 and 35.
Mathematical concepts included odd numbers, even numbers, square numbers, cube
numbers, prime numbers, multiples of n (3 ����������powers of n (2 ���������������numbers
ending in n (1 ���������



Tenenbaum (2000) conducted a study, with 8 MIT students as subjects, to determine
whether his model could describe human beliefs. He found a correlation of .99 between
subjects’ beliefs about what numbers belonged to the true concept, given some examples of
that concept, and his model’s predictions. To evaluate whether Tenenbaum’s model might
also describe the beliefs of our subjects, we replicated his study, with 81 undergraduate
UCSD students participating.  We obtained a correlation of .87 between model predictions
and mean subject responses, with some systematic deviations between the model and the
subjects’ behaviors. In view of the high correlation between model predictions and mean
responses, however, we hypothesized that the model provided a reasonable approximation
to subjects’ intuitions about number concepts.  Therefore, we decided to use it as the
probability measure attributed to subjects in a study of human sampling behavior.

1 .3  Info ma x sa mp l ing

Consider the following problem. An agent is given examples of numbers that are consistent
with a particular concept, and is then allowed to pick a number between 1 and 100, to test
whether it follows the same concept as the examples given.  For example, the agent may be
given the numbers 2, 6 and 4 as examples of the underlying concept. The agent may then
choose to ask whether the number 8 is also a member of the concept.  The goal of the agent
is to guess the correct concept.

We formalize the problem using standard probabilistic notation: random vectors are
represented with capital letters and specific values taken by those vectors are represented
with small letters. Notation of the form “C=c” is shorthand for the event that the random
variable C takes the specific value c. We represent the examples given to the agent by the
random vector X. The agent considers these examples and updates its beliefs about the
probability of each possible concept, )|( xXcCP == .

In the equations below, each kY  is a random variable representing the outcome of testing a

number “k”. For example, 15 =Y  represents the event that 5 is in the set corresponding to

the true concept, and 05 =Y  the event that 5 is not in the true concept.  The agent calculates
the mutual information, or information gain, expected when asking each of the possible
questions, given the example vector xX = :
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The infomax agent would ask the question with the highest information gain. Note that
information gain is defined with respect to a subjective probability measure, which we
approximate with Tenenbaum’s model.

2  Human sampling in  the number concept game

Twenty-nine undergraduate students, recruited from Cognitive Science Department classes
at the University of California, San Diego, participated in the experiment.  Subjects gave



informed consent, and received either partial course credit for required study participation,
or extra course credit, for their participation.

The experiment began with a brief description of the kinds of concepts in the
hypothesis space:

Often it is possible to have a good idea about the state of the world, without completely
knowing it. People often learn from examples, and this study explores how people do so.

In this experiment, you will be given examples of a hidden number rule. These examples will be
randomly chosen from the numbers between 1 and 100 that follow the rule. The true rule will
remain hidden, however. Then you will be able to test an additional number, to see if it follows
that same hidden rule. Finally, you will be asked to give your best estimation of what the true
hidden rule is, and the chances that you are right.

For instance, if the true hidden rule were multiples of 11, you might see the examples 22 and 66.
If you thought the rule were multiples of 11, but also possibly even numbers, you could test a
number of your choice, between 1-100, to see if it also follows the rule. Finally, based on that
information, you could guess the true rule, and give your estimate of the chance it is the true
rule.

Figure 1.   Instructions for the study

In each question, one or more numbers were given as examples of a number concept, or
“hidden number rule.”  The task was to test the number that would provide the most
information about the true concept:

Figure 2.  Example of experimental stimuli

Subjects entered a single number, clicked “test,” and received feedback on whether the
number they tested was consistent with the true concept, as shown above.  Testing more
than one number was not permitted, and subjects received an error message if they
attempted to do so.  In the second part of each question, which is not pictured here, subjects
guessed what they believed the true concept to be, indicated their confidence in that choice,
and were given the true concept.

The experiment included 13 questions, which were chosen to represent both mathematical
and interval concepts, at various levels of overall uncertainty (see Table 1). The experiment
was implemented via the Internet.  Subjects logged on to the experiment at their
convenience, from the location of their choice.   Order of the questions was randomized,
such that different subjects received different random orderings.

We implemented Tenenbaum’s theoretical number concept space, and simulated the
behavior of infomax sampling agents in that space, on each of the questions in the
behavioral study.  We hypothesized that participants would sample numbers with high
information value, as calculated relative to Tenenbaum’s probability model.



3  Results

Two findings stand out.  First, the mean information value of subjects’ sampling seldom
neared that of infomax, when calculated relative to the formal probability measure in
Tenenbaum’s model.  Second, in many cases there was high consistency between subjects
in their choices of numbers to sample.  The average information gain associated with
subjects’ sampling strategies, and each of three other sampling strategies, are given in
Table 1, below.  The confirmation strategy was calculated by considering the information
value of the number that Tenenbaum’s model considered most likely, but with probability
less than 1.00, to be consistent with the true concept.  The random strategy was calculated
by averaging the information gain of each of the numbers between 1 and 100, weighting
each number equally.

The questions are grouped into four types, according to the model’s beliefs.  On the single
example, high uncertainty questions the model gives some probability to each of many
concepts.  On the multiple example, low uncertainty questions the model gives a single
concept probability between .94 and 1.00.  On the interval questions the model gives some
probability to each of several interval concepts, but no probability to any of the
mathematical concepts.  On the intermediate uncertainty questions, the model gives both
interval and mathematical concepts some probability, and no single concept dominates.

Question type Single example,
high uncertainty

Multiple example,
low uncertainty

Interval Intermediate
uncertainty

Example
numbers

16 60 37 16, 8,
2, 64

60, 80,
10, 30

81, 25,
4, 36

16, 23,
19, 20

60, 51,
57, 55

81, 98,
96, 93

21,
35, 41

6, 2 27,
7

14,
2, 6

Subjects .70 .72 .73 .00 .06 0.00 .47 .37 .31 .57 .55 .27 .39

Infomax .97 1.00 1.00 .01 .32 0.00 1.00 .99 1.00 1.00 1.00 .40 1.00

Confirmation .97 1.00 1.00 .00 .00 0.00 .86 .81 .73 .62 .40 .32 1.00

Random .35 .54 .52 .00 .04 0.00 .17 .20 .14 .49 .32 .22 .36

Table 1.  Information gain of several sampling strategies on each question in the study, in bits,
relative to Tenenbaum’s probability model.

3 .1  Sing le  exa mp le ,  h igh  uncer ta in ty  que s t ions .

The best agreement between infomax predictions and subjects’ sampling behavior was
observed on questions in which only a single example number was given.  Infomax rated
subjects’ sampling as highly informative on each of these questions.  In the case of the
question with the single example number 16, the modal response was optimal.  On this
question eight subjects tested the number 4.
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Figure 3.  Information gain from sampling each
number 1-100, in bits, given the example 16.

Results were similar on the questions with the example numbers 37 and 60.  On those
questions many subjects tested numbers with high information gain, but there was less
consistency in the specific numbers tested.



3 .2  M ult ip le  exa mple ,  l ow  uncer ta in ty  ques t ions .

On some questions, there was little or no information value in any sample.  One might
therefore conclude that sampling behavior on these problems is irrelevant to theory of
human sampling.  However, subjects’ sampling was very consistent on these problems,
appearing to follow a confirmatory strategy.  In the question with the examples 16, 8, 2, and
64, the model gave probability 1.00 to the concept powers of two, and the most commonly
tested numbers were 4 and 32 (each with eight subjects).  In the question with the examples
81, 25, 4, and 36, the model gave probability 1.00 to the concept square numbers, and the
most commonly tested numbers were 49 (eleven subjects) and 9 (four subjects).

On the question with the example numbers 60, 80, 10, and 30, the model gave probability
.94 to the concept multiples of 10, and probability .06 to the concept multiples of 5.  Here,
information gain from testing any multiple of 10 was zero bits, although testing an odd
multiple of 5 had information gain of 0.32 bits.  Most subjects (21/29) followed the simple
confirmatory strategy of testing numbers that were consistent with the most likely concept,
multiples of 10, although five subjects tested an odd multiple of 5, such as 15, which was
the information maximizing strategy on this question, returning 0.32 bits.

3 .3  Interv a l  ques t io ns

On these questions the model was certain that the true concept was of the interval form,
although it was not certain of the precise endpoints.  Numbers within the range of observed
examples were given probability 1.00 of being consistent with the true concept and testing
them was rated as uninformative.

Consider the case of the question with the example numbers 60, 51, 55, and 57 (see Figure
4).  Numbers between 51 and 60 have probability 1.00 of being consistent with the true
concept (right), and provide no information gain when sampled (left).  On each of these
questions, however, between 8 and 10 of the 29 subjects tested numbers within the observed
range, but which were not explicitly given as examples.  This behavior is uninformative,
when information gain is calculated with respect Tenenbaum’s formal probability model.  A
discrepancy between subjective probabilities and the formal probability model may be
responsible for the apparent uninformativeness of subjects’ behavior.  In our earlier study
of subjective probabilities, we found that subjects gave these numbers mean probability of
.72 of being consistent with the true concept.1  The information value of testing numbers
just outside the range of observed examples, that have probability near .72, is high.  In
Figure 4, below, the numbers 50 and 61 each have probability .75 of being consistent with
the true concept, and each provide .82 bits of information.
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Figure 4.  Information value of sampling each of the numbers between 1 and 100, in bits (left),
and probability that each of the numbers between 1 and 100 is consistent with the true concept
(right), given the example numbers 60, 51, 55, and 57.

3 .4  Inter media te  uncer ta in ty  que s t ions

On these questions subjects often sampled numbers consistent with the most likely
concepts, intermediate within the range of observed examples, to which the theoretical

                                                          
1 Subjects gave numbers explicitly given as examples probability 1.00, and seldom tested them.



probability model assigned probability of 1.00.  Information value of testing numbers with
probability 1.00, on these and all questions, was 0 bits.  The question with the examples 6
and 2, is the most dramatic example of this.  The modal response (ten subjects) was to test
the number 4, which infomax rated as uninformative. But if the subjective probability of the
number 4, given the examples 6 and 2, is less than 1.00, this behavior might in fact be
informative.  In the case of this question, and similar questions, it is not clear whether the
theoretical probability model is failing to approximate subjective probabilities, or whether
subjects are using an uninformative sampling strategy.

4  Discussion

Two findings stand out.  First, subjects’ sampling strategies seldom neared the information
value of infomax, when evaluated according to the formal probability measure in
Tenenbaum’s model.  Second, there was high consistency between subjects in their choices
of numbers to sample.  This supports the possibility of a descriptive theory of human
sampling in the number concept space, irrespective of the optimality of human behavior.

This research contributes to the rational approach to cognition (Anderson, 1990; Chater &
Oaksford, 2000), in which empirical findings of actual behavior are used to suggest
appropriate properties of normative models. We are collaborating with Tenenbaum to
improve the descriptive accuracy of the probability measure in his number concept space.
As the descriptive accuracy of the formal probability measure improves, the calculation of
the information value of sampling particular numbers will also become more reliable.  At
present, it is not clear whether our results show suboptimality in human sampling, or simply
the need to modify aspects of the theoretical probability measure in the number concept
space.

Future work in the number concept space will explore whether sampling strategies change
when people are allowed to sample multiple times, as found by Ginzburg and Sejnowski
(1996) on the selection task.  Future work will also consider whether efficient heuristics
may approximate the computationally intensive calculation of infomax sampling.

There is often a trade-off between studying domains that are simple enough to be formally
understood, and complex enough to be relevant to interesting real world situations. Previous
research in the rational study of human sampling behavior has considered a very simple
space, in which the goal is to decide between two possible hypotheses.  Therefore, a
definitive description of subjects’ beliefs, and sampling behavior, in the more complex
number concept space, would bring new real-world relevance to theory of active inference.
Active sampling in the number concept space does not itself approach the complexity of
sampling in the real world, but it may be more easily understood.  We hope that a good
description of human sampling behavior in the number concept space will also help to
illuminate behavior in more realistic situations, such as saccades in visual scenes.
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