B: Why do you think so many Republicans voted for her?
A: Because she knows how to get Arizona’s budget back
on track.

Again, participants judged either reasonableness or
circularity, and did so by either ranking or rating arguments.
Two-branch arguments were ranked as less circular than
one-branch arguments, indicating structural sensitivity,
and repetition created less perceived circularity when the
opponent had already acknowledged the repeated claim,
suggesting pragmatic sensitivity. However, when rated
rather than ranked, circularity was unaffected by branching
or opponent response. Without explicit comparison, partici-
pants were apparently less sensitive to structure and
pragmatics in the circularity task.

In the case of the reasonableness task, repetition in two-
branch arguments was slightly less reasonable than in
one-branch arguments, whether ranked or rated. This is
the opposite of what was found in the circularity task. As
with circularity, acknowledgements were the most accep-
table condition for repetition. Thus, pragmatics played
a role in reasonableness judgments, but differences
remained between circularity and reasonableness judg-
ments, suggesting that they draw on structural and
pragmatic components differently.

Implications and future research

This study and others suggest that structural and
pragmatic components are dissociable in informal argu-
ment (see also [10,12—14]). The results also provide
further evidence for the usefulness of Rips’s structural
rules for informal argument.

As Rips notes, the structural and pragmatic components
are not equally attended to in all cases, perhaps because a
particular task focuses us on one to the exclusion of the other,
or because people are not always as sensitive to factors as
they ought tobe. This needs further investigation, and raises
important questions about models of informal argument as
normative or descriptive. When participants are less

TRENDS in Cognitive Sciences Vol.7 No.4 April 2003 149

sensitive to a particular component, is this an error in
reasoning, or do theories need to specify circumstances when
these deviations are appropriate?

Also needed is a consideration of socio-cultural and
personal factors in argument strategies. Arguers might
value preserving relationships or showing someone up
more than coordinating claims and evidence [10]. A
broader consideration of pragmatic factors will be needed
to improve our understanding of informal argument.
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Artificial life and Piaget
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Artificial life provides important theoretical and meth-
odological tools for the investigation of Piaget’s devel-
opmental theory. This new method uses artificial neural
networks to simulate living phenomena in a computer.
A recent study by Parisi and Schlesinger suggests that
artificial life might reinvigorate the Piagetian frame-
work. We contrast artificial life with traditional cogniti-
vist approaches, discuss the role of innateness in
development, and examine the relation between
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physiological and psychological explanations of

intelligent behaviour.

Piaget’s framework for understanding development is not
very popular among contemporary developmental psy-
chologists. Parisi and Schlesinger [1] suggest that a
currently developing method, ‘artificial life’ (AL), which
involves the study of neural networks to simulate living
phenomena, might help reinvigorate the Piagetian frame-
work. AL shares the following three fundamental assump-
tions of Piaget’s framework: (1) to understand phenomena,
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we must understand their origins; (2) intelligent beha-
viour is rooted in biological adaptation; and (3) intelligence
emerges from action, not language.

AL uses artificial neural networks to simulate living
phenomena in a computer. In a concise and accessible way
to those without computational modeling expertise, Parisi
and Schlesinger compare and contrast different neural
networks approaches — connectionist back-propagation,
adaptive resonance theory, Hebbian nets, reinforcement
learning, dynamic field theory, symbolic models, and
Bayesian nets — with AL. In contrast with connectionist
networks, Artificial Life Neural Networks (ALNNs) inter-
act with the external environment through their physical
body. An important feature of ALNNSs is that they have a
circular relationship with the environment; that is, the
output of ALNNs can modify the environment, and
thereby can influence their subsequent input. In this
context, Parisi and Schlesinger nicely demonstrate the
potential that ALNNs have for modeling sensorimotor
development. ALNNSs also contain a genotype and can be
studied as part of an evolving population. This allows the
researcher to study the relation between evolution and
development. Thus, Parisi and Schlesinger have begun an
important discussion about the role that neural networks
could play in Piagetian approaches to development.

Artificial life and cognitivism

Parisi and Schlesinger suggest that the three fundamental
assumptions shared by AL and Piaget’s theory are at odds
with cognitivist approaches. Parisi and Schlesinger
provide only a cursory discussion of cognitivism; yet it
appears that cognitivist theories sometimes also endorse
assumptions of AL. For example, the assumption that
intelligent behaviour consists in the adaptation of an
organism to the environment lies at the core of Siegler’s
rule-based overlapping wave model of problem-solving
strategy selection [2]. Siegler’s model draws on evolution-
ary forces (e.g. competition) to explain development.

In a similar vein, the assumption of a circular
relationship between organism and environment has
been instantiated in symbolic models. Take, for example,
the production-system models of scientific discovery, which
posit that scientific discovery results from a circular search
within a dual problem space [3]. Thus, scientists might
first search their hypothesis space and select one hypoth-
esis. On the basis of this hypothesis, scientists then apply
the hypothesis to, and consequently modify, the exper-
iment space [4] by carrying out an experiment that yields
results. This modified experiment space leads to new
hypotheses and further changes to the experiment space.

Although there are profound differences between these
AL and rule-based cognitivism approaches, we suggest
that the divide between them might not be so great.
Despite Parisi and Schlesinger’s excellent demonstration
of how we can build bridges between AL computation
models and Piagetian theory, we worry that they
unnecessarily burn bridges when they overstate the
differences between artificial life computational models
and the approaches they call ‘cognitivism’. Parisi and
Schlesinger themselves realize that symbolic models may
well ‘complement Piaget’s conceptualization of operational
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reasoning as a symbolic process’ (p. 1309). Indeed,
symbolic approaches are likely to be particularly import-
ant for modeling later stages of development, given
Piaget’s view that language is a ‘necessary but not
sufficient condition for the construction of logical oper-
ations’ (Ref. [5], p. 98). These examples suggest that
cognitivism, like AL, may be a useful approach for
advancing Piaget’s theory (e.g. [6]).

Innateness and development

AL assigns an important role to genotypes: with evolution
ALNNSs become more specifically adapted to their environ-
ment. Human beings, though, more than any other
animals, have a remarkable ability to adapt to and
transform their environment. According to Piaget, the
reason for this unparalleled flexibility is that phylogenesis
has led to fewer innate fixations (Ref. [7], pp. 366—367).
Compared with non-human primates and other mammals,
human infants are born less mature. As a consequence,
development does not take place in the constrained
environment of the womb, where species-specific beha-
viour appropriate for a genetically assigned environment
matures, and so human infants are particularly dependent
on others [8]. For this reason human development is
profoundly influenced by social interaction and culture
[9,10]. An important task of future ALNNs will be to
capture this flexibility as it emerges in a social context.

Physiological and psychological explanation

A crucial difference between AL and Piaget’s theory is that
they explain developmental phenomena at different levels.
AL models use neurophysiological mechanisms to derive
intelligent behaviour. Piaget acknowledges that physio-
logical mechanisms are a causal condition for intelligent
behaviour [11]. However, he also acknowledges that some
aspects of intelligent behaviour (e.g. agency, meaning,
necessity, moral obligation) are irreducible to mechanistic
physiological explanations [12,13]. The concepts ‘two’ and
‘four’ are not the cause of the proposition ‘2 + 2 = 4’ in the
same way ‘that a cannon causes the movement of two
billiard balls, or a stimulus is one of the causes of a
reaction’ (Ref. [12], p. 187). Rather, the concepts of ‘two’
and ‘“four’ imply ‘2 + 2 = 4’. Similarly, conduct attributed
to a moral obligation is not ‘caused’ by values but is implied
in those values. For Piaget, even at the sensorimotor stage,
how an infant interacts with the world is infused with
meaning; it cannot be reduced to causal physiological
explanations. When an infant grasps an object to shake it,
the sensorimotor scheme of shaking implies (not causes)
the scheme of grasping [11].

Rather than reducing intelligent behaviour to physi-
ology, Piaget suggests instead that every psychological
phenomenon has a physiological parallel, but that there is
no direct causal connection between psychological and
physiological phenomena [11].

In Piaget’s framework consciousness is not directly
caused by physiology, and physiology is not directly caused
by consciousness. Instead, both are rooted in organic self-
organization. Piaget discusses many functional and
structural analogies between cognitive functions and
organic life in support of this view [7]. The goal of Piaget’s
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genetic approach is to show how organic, self-organizing
activity both gives rise to and unites physiological and
psychological phenomena.

The tension between the physiological approach
endorsed by AL and the biological ‘constructivism’ of
Piaget appears to reflect a deeper epistemological rift.
Piaget endeavoured to overcome the deficiencies of
empiricist—mechanistic and idealistic—vitalistic accounts
to explain the development of intelligence. AL appears to
seek to explain this development through an empiricist—
mechanistic framework. This issue raises a lot of complex
philosophical problems (e.g. mind—body problem) that
cannot be easily resolved. AL would nicely complement
and be consistent with Piaget if it limited its endeavour to
explanation at the physiological level.

Conclusion

Despite the philosophical discrepancies between Piaget’s
original thinking and AL, Parisi and Schlesinger provide a
viable argument that AL might reinvigorate the Piagetian
framework. Despite our concern that they unnecessarily
burn bridges to other methodologies, Parisi and Schle-
singer convincingly demonstrate the promise of AL. We
look forward to seeing future ALNN models exhibit
sensorimotor development.
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Degeneracy and redundancy in cognitive anatomy
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Recently, cognitive science has shown an interest in
‘degeneracy’ [1], particularly in the interpretation of
human brain mapping experiments and neuropsychologi-
cal lesion studies. Over the past year we have often been
asked about the relationship between degeneracy and
redundancy. The purpose of this letter is to clarify the
distinction and emphasize why these are two fundamen-
tally different concepts.

Degeneracy

Degeneracy refers to many-to-one structure—function
relationships. For example, different sequences of codons
(structural variants of genetic code) can code for the same
protein. Degeneracy could be regarded as the complement
of pluripotentiality. Pluripotentiality refers to a one-to-
many structure—function relationship, in which the same
structure can have multiple functions. Degeneracy was
introduced to neuroscience by Edelman and colleagues
(e.g. see [2]). It has been defined as ‘the ability of elements
that are structurally different to perform the same
function or yield the same output’ [2] and is a
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well-known characteristic of genetic and immune systems.
Degeneracy can be expressed at many levels from the
molecular [3] to the functional architectures that underlie
cognitive brain functions. It plays a key role in evolution-
ary theory [4]. Mathematically, degeneracy appears in set
theory and in degenerate (multiple) solutions to the same
equation, reflecting its many-to-one nature. In terms of
cognitive anatomy, degeneracy means a particular cogni-
tive function can be supported by more than one set of
structural brain elements [1].

Redundancy

In neuroscience, redundancy implies inefficiency (i.e. the
function is redundant). The concept of redundancy was
defined by Shannon in the context of communication
theory [5]. It was introduced to theoretical neurobiology by
Barlow [6] and has been most fully developed in sensory
encoding. It can be defined formally in terms of infor-
mation theory [5,7,8] and implies a statistical dependency
among the states of a system. For example, if two neurons
exhibited the same selective responses to a visual
stimulus, this would constitute a redundant encoding of
that stimulus, because the response of one could be
predicted from the other.
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Abstract

Artificial Life is the study of all phenomena of the living world through their repro-
duction in artificial systems. We argue that Artificial Life models of evolution and devel-
opment offer a new set of theoretical and methodological tools for investigating Piaget's
ideas. The concept of an Atrtificial Life Neural Network (ALNN) is first introduced, and
contrasted with the study of other recent approaches to modeling development. We then
illustrate how several key elements of Piaget's theory of cognitive development (e.g.,
sensorimotor schemata, perception-action integration) can be investigated within the Ar-
tificial Life framework. We conclude by discussing possible new directions of Atrtificial
Life research that will help to elaborate and extend Piaget’s developmental framework.
© 2002 Elsevier Science Inc. All rights reserved.

Keywords:Atrtificial Life; Piaget; Evolution

1. Introduction

Piaget cannot be said to be very popular these days among developmental psy-
chologists and among psychologists in general. In any case, he is much less popular
than he deserves to be given the great importance of his contribution to our under-
standing of behavior and cognition and their development in the child. (Of course
there are exceptions; clanger, 2000; Russell, 199@he reason for Piaget's
marginalization is not only that in the last decades developmental psychologists
have discovered many significant facts about children’s cognitive abilities that
do not fit well within Piaget’s theoretical framework—which is certainly true. A
more fundamental reason seems to be that Piaget’s theoretical framework makes
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a number of fundamental assumptions which are opposite to the assumptions un-
derlying much of current “cognitivist” psychology. We describe three of these
assumptions.

The first assumption is Piaget’s “genetic epistemology,” that is, the idea that
we can better (or only) understand X if we reconstruct how X has become what
it is (Piaget, 195p Hence, the central role assigned by Piaget to development
for understanding intelligence and, more generally, to the study of how all as-
pects of behavior and cognition develop from birth on in order to understand adult
behavior and cognition. This idea of a genetic epistemology has very little fol-
lowing among cognitivist psychologists. Cognitivist psychology is much closer
to Chomsky’s idea that one must first understand an adult competence (e.g., the
linguistic competence) and only then can one try to reconstruct using a model
of the adult competence how this competence is acquired during ontogeny, than
to Piaget’s position that an adult competence can only be understood if we first
examine how that competence is progressively acquired during ontogeny. Some
cognitivist psychologists even assume that not much develops at all since most of
what is important in behavior already exists at birth, i.e., itis innate (Bprlke,

1998; Wynn, 199

A second aspect of Piaget's psychology which is quite alien to current cog-
nitivist psychology is its fundamental biological orientation. Piaget conceives of
intelligence as a form of adaptation which rests on fundamental principles analo-
gous to those of biological adaptation, as an extension at a more advanced level of
mechanisms and processes that underlie all biological phenorfAzmge(, 197
And he is the author of a somewhat forgotten paper which proposes a neural model
of the interiorization of actionsRjaget, 194y. Cognitivist psychology not only
has a view of the mind according to which the mind is analogous to the software of
a computer and therefore should be studied quite apart from studying the nervous
system (which is analogous to the hardware of the computer) but, notwithstanding
many cognitivist psychologists’ innatist and “evolutionary” assumptions, is com-
pletely extraneous to the idea that cognition is a form of biological adaptation and
should be studied as such.

Finally, a third fundamental difference between Piaget and cognitivist psy-
chology concerns their respective positions with respect to language. Language is
central for cognitivist psychology and for classical (i.e., computational) cognitive
science. In the last 40 years language has been studied by a branch of psychology
called psycholinguistics which has played a crucial historical role in the “cog-
nitive revolution” of the 50s and 60s and in the emergence of cognitive science.
Much of psycholinguistics has been the union of psychology and Chomskian lin-
guistics, which is especially concerned with keeping language separate from the
rest of cognition. More fundamentally, cognitivist psychology being based on the
analogy between mind and computer software tends to view all mental activity as
symbol processing. For Piaget, on the contrary, language is only one aspect of cog-
nition, is derived from non-linguistic (sensory—motor) cognition, and intelligence
is fundamentally non-linguistic and is derived from action, not from language.
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These three reasons (but there may be more) explain why Piaget is being largely
ignored by contemporary cognitivist psychology. However, there are other, more
intrinsic, reasons that play a role in explaining the present isolation and marginal-
ization of Piaget and the sense of an interrupted growth which one feels when
considering Piaget's work today. These additional reasons have to do with some
critical limitations of his work. When one examines Piaget’s theoretical construc-
tions and empirical analyses it is difficult to avoid the impression that he has been
able to obtain all the results that could have been obtained given the theoretical
and methodological instruments that were available to him. But these instruments
have intrinsic limitations. To further pursue Piaget’'s goals today and to continue
his work while still adhering to his fundamental orientations it is necessary to use
new theoretical and methodological tools that go beyond those that he used.

We believe that these new theoretical and methodological tools can be pro-
vided by Artificial Life. With respect to all three general issues we have discussed,
Artificial Life takes Piaget’s side rather than cognitivist psychology’s side. First,
Artificial Life shares Piaget’s “genetic” view that in order to understand any phe-
nomenon one has first of all to study how the phenomenon has become what it
is. This is why Artificial Life is centrally concerned with evolution, development,
growth, change. Second, as clearly indicated by its name, Artificial Life has a
fundamentally biological orientation and, if concerned with behavior and cogni-
tion, cannot but view, like Piaget, behavior and cognition as basically biological
phenomena. Third, for Artificial Life language is but one aspect of behavior and
cognition, although quite important for characterizing the specific adaptive pattern
of Homo sapiensBut Artificial Life’s goal is not to explain the mind in terms of
language but how language emerges both phylogenetically and ontogenetically
in nonlinguistic organisms. More generally, Artificial Life uses neural networks
to model behavior and cognition, which rules out any view of mind as basically
constituted by symbol processing.

But what is even more important is that Artificial Life can provide new the-
oretical and methodological tools that are needed to go beyond Piaget’s results
while at the same time pursuing many of the same scientific goals as Piaget’s.
These new tools are (a) simulations as a new way of expressing scientific the-
ories and models, (b) a set of specific modeling tools such as neural networks,
genetic algorithms, and other Atrtificial Life models, and (c) the general theoreti-
cal framework of complex systems. We believe that using these new tools Piaget’'s
work can re-acquire the centrality it deserves in the study of behavior and cogni-
tion and, what is more important, can be extended beyond Piaget’s own results.
Of course, pursuing Piaget’s scientific goals and inserting his theoretical orien-
tations within an Artificial Life framework will change in important ways many
aspects of Piaget's work. But this of course is how scientific research should
proceed.

The paper is articulated in the following way. 8ection 2 we briefly present
Artificial Life. In Section 3we describe some aspects of Artificial Life simulations
that have a Piagetian flavor. 8ection 4 we draw some conclusions.



1304 D. Parisi, M. Schlesinger/ Cognitive Development 17 (2002) 1301-1321
2. Artificial Life

Artificial Life is the study of all phenomena of the living world through their
reproduction in artificial system&déngton, 199% This ordinarily means to simu-
late living phenomena in a computer although sometimes physical artifacts (robots)
may be constructed that exhibit some of the behaviors of real organisoifs &
Floreano, 200D Simulations are a new way of expressing scientific theories and
hypotheses about the causes, mechanisms, and processes that underlie observed
phenomena and explain those phenomena. Traditionally, scientific theories and
hypotheses are expressed using the symbols of natural language and/or those of
logic and mathematics. Simulations are scientific theories expressed as computer
programs. When the program runs in the computer, the simulation results are
the empirical predictions drawn from the theory. These results/predictions can
then be compared with observed data to confirm or disconfirm the simulation/
theory.

Simulations offer a number of important advantages as research tools. If one
expresses one’s theory or hypothesis in the form of a computer program, one is
forced to be explicit, complete, detailed, because otherwise the program won't
run in the computer or the simulation won'’t produce the expected results. Fur-
thermore, theories expressed as simulations tend to have explicit, detailed, and
rich empirical content since, as we have observed, the simulation results are the
empirical predictions which are derived from the theory. Another advantage of
simulations is they function as virtual experimental laboratories in which, as in
the physical experimental laboratory, the researcher observes the phenomena in
controlled conditions, manipulates the variables and parameter values that influ-
ence the phenomena, and determines the consequences of his or her manipula-
tions. Finally, given the great memory and computing power of computers, one
can simulate more complicated phenomena than those that can be observed in
the physical laboratory, or phenomena that cannot be brought in the physical
laboratory because they are long past or are too big or last too long. For ex-
ample, one can reproduce the ecological conditions in which behavior is exhib-
ited, without de-contextualizing the behavior as in real laboratory experiments,
or one can simulate long-term evolutionary change in a population of organ-
isms together with more short-term developmental change in the lifetime of the
individual.

Artificial Life simulations address all sorts of phenomena of the living world,
including the behavior, cognitive abilities, and mental life of organisms. A central
characteristic of the behavior and cognitive abilities of organisms is that, like
all other properties of organisms, they develop, that is, they change during an
organism’s life or, more specifically, during developmental age from birth (or
conception) to maturity. Hence, Artificial Life can be used to study the same
phenomena that were of interest to Piaget.

The behavior of organisms is controlled by their nervous system, although other
systems of the body such as the endocrine system also play an important role. To
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study the behavior of organisms Artificial Life uses (artificial) neural networks,
which are simulation models directly inspired by the physical structure and way of
functioning of the nervous system. A neural network is made up of units (neurons)
that influence each other through unidirectional excitatory or inhibitory connec-
tions (synapses between neurons). A typical neural network has input (sensory)
units connected to internal units connected to output (motor) units. Units have
guantitative activation states (firing rate of neurons) and connections have quan-
titative weights (number of synaptic sites between neurons). The activation state
of input units depends on physical and chemical events taking place outside the
neural network whereas the activation state of internal and output units depends
on the weighted excitations and inhibitions arriving to a unit from other connected
units. The activation state of output units determines effects outside the neural
network such as muscle contractions and therefore movements of the organism’s
body parts.

In psychology the name of the approach which uses neural networks to study
the behavior and cognition of organisms is connectionism. However, when neu-
ral networks are used as part of the broader enterprise of Artificial Biéeigi,

2001 Parisi, Cecconi, & Nolfi, 1990they are somewhat different from the neural
networks of classical connectionisiRiymelhart & McClelland, 1986 The main
differences are that Atrtificial Life Neural Networks (ALNNSs):

(1) have a physical body

(2) live in a physical environment

(3) have an inherited genotype

(4) are members of evolving populations.

2.1. ALNNSs have a physical body

In classical connectionism neural networks tend to be viewed as abstract in-
put/output devices or information processing systems. In Artificial Life neural
networks are models of a physical organ (the nervous system) which is contained
in a physical body which has a specific shape, size, physical disposition of sensory
and motor systems, and other internal organs.

2.2. ALNNSs live in a physical environment

Classical neural networks live in a void, or better, in an environment which
coincides with the researcher who uses them. The researcher decides what is the
network’s input and evaluates the network’s output. ALNNSs live in and interact
with a physical environment. It is the environment that provides the network with
input and evaluates the network’s output and, most important, the network can
modify the external environment with its (motor) output and therefore it can in-
fluence the input which it receives from the environmeéwol{i & Parisi, 1993
Parisi, 19975
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2.3. ALNNSs have an inherited genotype

The body of an Artificial Life organism contains not only a neural network
but also a genotype which each individual organism inherits from its parents. The
genotype at least partially determines the individual's neural network and therefore
the individual's behavior and cognitive activities.

2.4. ALNNs are members of evolving populations

Unlike classical connectionism Artificial Life does not study individual net-
works but always populations of individually different neural networks. An ALNN
is born, develops, possibly reproduces, and dies. It is a member of a population of
individuals which evolves because the individuals reproduce selectively and with
the constant addition of new variants.

To study evolutionary change Artificial Life uses genetic algorithms. Popula-
tions of ALNNSs live in an environment and reproduce selectively, based on the
superior adaptation of some individuals and other factors (including chance). Re-
production means that new individuals are created that inherit the genotype of their
parents. However, an offspring’s genotype tends to be somewhat different from
its parents’ genotypes because of sexual recombination and random genetic mu-
tations. Since an individual's genotype in part determines the individual’s neural
network, offspring behave similarly but not identically to the parents. Selective
reproduction and the constant addition of new variants to the genetic pool results
in evolutionary change across generations in the behavior of organisms.

As we have already observed, Atrtificial Life shares with Piaget three fundamen-
tal assumptions: a “genetic” view of behavior and cognition, a broadly biological
orientation, and a view of nonlinguistic cognition as more basic than language.
However, Artificial Life also differs from Piaget with respect to the first two of
these three assumptions.

Both Artificial Life and Piaget share a “genetic” view of behavior: if one wants to
understand the behavior of organisms, one should first reconstruct how the behav-
ior has become what it is. For Piaget this means to study behavioral and cognitive
development as a necessary step to understanding adult behavior and cognition.
Artificial Life extends Piaget's genetic approach by including behavioral and cog-
nitive evolution, that is, the study of how behavioral and cognitive abilities evolve
in successive generations in a population of individuals. This has the important
consequence that, since individuals inherit a genotype from their parents which
represents the current (individual) outcome of past evolution in the population,
one can study (simulate) how genetically inherited information and information
extracted by the individual from its specific experience in the environment interact
to produce the individual's behavioral phenotype and its development during the
individual’s life.

Both Artificial Life and Piaget share a broadly biological orientation. Behavior
and cognition (or “intelligence”) are both forms of biological adaptation. However,
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Artificial Life goes further in its biological view of behavior than Piaget was prob-
ably ready to accept. This is not so much due to the fact, which we have already
discussed, that Artificial Life studies evolutionary change together with develop-
mental change, whereas Piaget was apparently convinced that psychology’s task
was to study the individual organism and how it develops, while evolutionary
change in populations of organisms was to be entrusted to other disciplines such
as evolutionary biology and genetics. What is more critical is that Artificial Life
shares the connectionist claim that behavior and cognition are best studied using
theoretical models explicitly inspired by the physical structure and way of func-
tioning of the nervous system, i.e., neural networks. Piaget was quite explicit that
the biological adaptation represented by intelligence was a “functional” level quite
different from the “physical” level of the brain and of more elementary forms of
biological adaptation (even if developed from these more elementary forms, e.g.,
Piaget, 197 In both cases, Artificial Life appears to be less bounded by disci-
plinary separations while Piaget was more traditionally a psychologist.

3. Other simulation approachesto the study of development

In the last one or two decades development has been studied using computer
simulations based on various theoretical models. Many but not all of these models
use neural networks. We briefly describe these models and contrast them with the
Artificial Life approach to development.

3.1. Backpropagation of error

The majority of connectionist models of development employ a feedforward
neural network that is trained by backpropagation of error. Typically, “backprop
nets” are presented with a fixed set of inputs, and the network’s connection weights
are gradually adjusted until the outputs of the network are sufficiently close to
their desired values. Some of the phenomena that have been investigated using
this approach include the development of perceptual categorizatlaregchal
& French, 2000 Quinn & Johnson, 1997and object-oriented behaviors in in-
fants (e.g., reaching and visual trackinghtareschal, Plunkett, & Harris, 1999
Munakata, McClelland, Johnson, & Siegler, 1997), language acquisRianKett
& Marchman, 199}, as well as the development of children’s reasoning on the
balance scala{cClelland, 1989.

A related set of models have also been proposed by Shultz and colleagues to
simulate children’s reasoning on several of Piaget’'s concrete and formal opera-
tional tasks, including the balance scale, conservation of number, and seriation
(Mareschal & Shultz, 1993%hultz, 1998 Shultz, Mareschal, & Schmidt, 1994
These models employ a combination of two learning algorithms—quickprop, a
variant of backprop, and cascade correlation. An unusual and noteworthy feature
of the cascade correlation algorithm is that it enables the network to alter its own
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internal structure (i.e., by recruiting new hidden units), effectively increasing the
representational power of the network.

3.2. Adaptive resonance theory

Despite the popularity of the backprop algorithm, several researchers have
raised a number of concerns with its use for simulating cognitive development.
For example, backprop may not adequately capture discontinuous or stagewise
changes in children’s behavior, a central tenet of Piaget's theory (e.g., Hartelman,
van der Maas, & Molenaar; 1998; Raijmakers, van Koten, & Molenaar, 1996).
As an alternative approach, Molenaar and colleagues have suggested the use of
adaptive resonance theory (or ART, sesrpenter, Grossberg, & Reynolds, 1991
for modeling cognitive change.

ART models differ from conventional feedforward neural networks in at least
two major ways. First, they are often represented by a system of differential equa-
tions, rather than a chain of feedforward processing units (e.gR&gmakers &
Molenaar, 199Y. Second, because ART networks are nonlinear dynamical sys-
tems, their internal patterns of activation persist and evolve over time. Like the
models studied in dynamic field theory (see below), the internal activity of an
ART network may exhibit a variety of dynamical properties, including periodic
rhythms, resistance to external perturbation, and resonance across components of
the system.

From a developmental perspective, there are several important features offered
by ART: (1) greater biological plausibility than backprop, (2) simulation of conti-
nuity and discontinuity in development, and (3) like cascade correlation, a frame-
work for modeling not only local (i.e., synaptic) but also global changes in network
architecture.

3.3. Hebbian nets

A second alternative to backprop is Hebbian learning. Unlike backprop, Heb-
bian nets employ an unsupervised learning procedure. Learning occurs through
gradual increases in the connections between units that fire synchronously (or al-
ternatively, a decrease in connection strength during asynchronous firing). As an
example of this approach, Munakata (1998) recently implemented a Hebbian net
to simulate the development of the AnotB error in young infants on Piaget’'s ob-
ject permanence test. An important insight offered by Munakata’s model is that
perseverative responding in infants may be influenced by the interaction between
long-term and short-term (i.e., latent and active) memory traces.

3.4. Reinforcement learning

A third alternative to backprop implements the principles of reinforcement
learning (RL) as a framework for studying learning and development (for a
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comprehensive introduction, see Sutton & Barto, 1998). Three key ideas from this
approach are: (1) the organism is an autonomous agent that explores and interacts
with its environment; (2) the organism behaves rationally with respect to achieving
its goals, and (3) the environmental consequences of the organism’s behavior (e.g.,
positive and negative reinforcement) drive the learning process.

When implemented as a learning rule in neural networks, RL simulates the pro-
cess of variation-and-selection or trial-and-error learning. In contrast to backprop,
RL agents are not explicitly taught a specific pattern of behavior. Instead, their spon-
taneous behaviors are evaluated with respectto a goal (much like the fitness formula
used to evaluate ALNNS); adaptive behaviors are maintained and improved while
other behaviors are discarded. Such models are ideally suited for simulating sen-
sorimotor development, especially during infancy. For exantptélesinger and
Parisi (2001)se RL to simulate the development of visual tracking in infants. Con-
sistent with Piaget’s notion of sensorimotor cognition, this eye-movement model
learns to generate a variety of future-oriented or prospective behaviors (e.g., antic-
ipate the reappearance of an occluded object) using body-based or sensorimotor
strategies.

In addition to these classical connectionist models, there are other modeling
approaches that implement other types of architectures to investigate learning and
development. We briefly describe three relevant approaches.

3.5. Dynamic field theory

Like ART, dynamic field theory (DFT) exploits the computational properties of
nonlinear dynamical systems (e.ghelen & Smith, 1994 The dynamic field is a
mathematical structure which simulates the interaction between global inhibition
and local excitation in neural processing systems (though, properly speaking, DFT
models are not neural networks). A recent example of a DFT model for studying
development is offered byhelen, Schoner, Scheier, and Smith (20@)o pro-
pose an alternative to Munakata’'s Hebbian network for modeling perseverative
reaching in Piaget’s AnotB task.

3.6. ACT-R

In sharp contrast to neural network models, symbolic models such as ACT-R
(Andersen, 1998implement many of the key assumptions of the cognitivist
approach (e.g., knowledge as symbolic representations, behavior as condition—
action rules, etc.). Two recent examples of ACT-R models for studying devel-
opment include simulations of numerical cognition in infar@s{on, 1998 and
problem-solving in young childrenJ¢nes, Ritter, & Wood, 2000While sym-
bolic modeling is certainly incompatible with Piaget's notion of sensori-
motor knowledge in infants, it should be noted that the ACT-R paradigm may
complement Piaget’s conceptualization of operational reasoning as a symbolic
process.
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3.7. Bayesian nets

A third alternative to connectionist models is an emerging approach that high-
lights statistical learning processes. Bayesian learning is a computational paradigm
for identifying statistical regularities among inputs. This approach is particularly
relevant for developmental researchers who investigate language acquisition and
categorization development, where statistical dependencies play a central role.
For exampleTenenbaum and Xu (200Qjopose a Bayesian model of novel word
acquisition in young children.

While all of the modeling approaches described thus far share the goal of in-
vestigating developmental processes, they differ from Atrtificial Life simulations
in a number of important ways. First, only two of the moddisnes et al., 2000
Schlesinger & Parisi, 20QIsimulate embodied organisms. Second, only these
same two models simulate an environment with which the organism interacts.
Third, because all of these models focus on ontogenetic change in individual or-
ganisms, they are unable to simulate changes at the population level, or more
generally, phylogenetic change in a species. In contrast, ALNNs appear to be a
more versatile framework, by incorporating not only embodiment and environ-
mental interaction, but also the capacity for both developmental and evolutionary
timescales of change. ALNN simulations can use all kinds of connectionist models
of learning, but learning in ALNNSs occurs on the basis of pre-existing, genetically
inherited information, which is the result of another process of acquisition at the
population level, i.e., evolution. Development, as distinct from learning, appears
to be changes during life that depend both on this genetically inherited information
and on experience and learning.

4. Examples of Artificial Life simulationswith a Piagetian flavor
4.1. ALNNs as models of Piaget's sensory—motor schemata

ALNNs are basically sensory—motor neural networks. Their input encodes
physico-chemical events and processes taking place in the external environment
and their output encodes motor actions that have an influence on the external
environment. However, unlike behaviorist stimulus—response systems and cog-
nitivist condition—action rules, which directly map an input into an output, the
input—output mapping in neural networks is mediated by a distributed processing
system which confers to ALNNs some of the properties of Piaget’s sensory—motor
schemata. In particular, ALNNs are adaptive, that is, they possess both properties
that Piaget considers as basic for intelligence: assimilation and accommodation.
They are internally designed to both assimilate new inputs to their already existing
internal structure and to accommodate (change) this internal structure as a function
of new inputs (for a related interpretation, s&leultz, Schmidt, Buckingham, &
Mareschal, 1996



D. Parisi, M. Schlesinger/Cognitive Development 17 (2002) 1301-1321 1311

When a neural network is exposed to some input it has never experienced be-
fore, the neural network will always generate some output which in many causes
will also be a plausible and reasonable output. This behavior is completely spon-
taneous and automatic: the neural network cannot but generalize to new inputs. It
is the distributed nature of the ‘association’ that a neural network establishes be-
tween inputs and outputs which explains why a neural network tends to respond to
new inputs, never experience before, with more or less plausible outputs by assim-
ilating them through its already existing distributed network of connections and
connection weights. Hence, unlike behaviorist stimulus—response devices and cog-
nitivist condition—action rules, neural networks share the structural and systemic
character of Piaget’s notion of a schema. Inside a neural network it is impossible
to trace individual input/output associative links but it is the ensemble of all con-
nections and connection weights which constitutes the collective support for all
input input/output associations, both already experienced and new. Therefore, a
new input will never find a neural network unable to react appropriately. The new
input will necessarily be assimilated to the neural network’s schemata, i.e., pattern
of connection and connection weights. It will evoke an activation pattern in some
set of internal units (an internal representation) and on the basis of this internal
representation some plausible output will be generated.

In addition to being necessarily assimilatory, a neural network also accommo-
dates. By accommodation Piaget means that already existing schemata always
change as a function of the new experiences (inputs and input/output mappings) of
the organism. As is well known, connectionist models are essentially learning mod-
els. Neural networks are not designed by the researcher. The researcher limits him-
self or herself to creating the initial conditions for learning and self-organization
to occur. Therefore, when a neural network encounters a new experience it tends
to change on the basis of the new experience. Learning in neural networks consists
in modifications in the neural network’s connection weights or in the network’s
architecture (pattern of pre-existing connections) and it can be supervised or unsu-
pervised. Hence, through learning the neural network accommodates its internal
structure of schemata. These accommodations change the internal representations
that the neural network creates of all inputs, both old and new, and therefore how
the network responds to all inputs.

4.2. ALNNSs integrate perception and action

4.2.1. Co-adaptation of sensory and motor capacities

As we have said, ALNNs are basically sensory—motor systems. The input is a
sensory input and the output is a motor output. However, again unlike behaviorist
stimulus—response systems and cognitivist condition—action rules, in the internal
structure of a neural network the sensory component and the motor component are
not simply juxtaposed and associated but they are fused and integrated together.
This integration of perception and action appears to be very much in the spirit of
Piaget.
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This Piagetian characteristic of ALNNs can be clarified by the following exam-
ples, in which the sensory and motor capacities of an organism constrain each other.
Let us imagine a simple organism which lives in an environment with randomly
distributed food elements. If the organism can only move ahead at fixed speed or
turn to the left or to the right, it is necessary for the organism’s neural network
to receive inputs encoding the direction in which some currently perceived food
element lies, butitis useless to know the distance of the food element. The problem
that the organism must solve is to turn in such a way that its direction of movement
coincides with the direction in which the food element lies, and then move ahead.
To be informed by the senses also about the distance of the food element is useless
or, worse, disrupts the organism’s neural network which would have to process
additional and useless information. In fact, with organisms with such a simple mo-
tor system to add sensory information about food distance leads to less efficient
behavior. But consider another organism endowed with a two-segment arm which
must reach objects with the tip of the arm (hand). For this organism it is essential to
be informed by its senses about both the direction and the distance of the objects to
be reached. To know only the direction in which an object lies would make it im-
possible for this organism to reach the object with its arm (Payisi et al., 1990

These examples show that it is necessary for the sensory and motor capacities
of an organism to be coordinated and co-adapted. For an organism to receive less
or more sensory information than the organism’s motor system can utilize leads
to inefficient organisms. Hence, we would expect that in simulations in which
sensory and motor capacities evolve in the population or develop in the individual,
they co-evolve or constrain each other in the course of development in such a way
that they are constantly more or less co-adapted.

4.2.2. The importance of actions in structuring the internal organization
of neural networks

Basically, neural networks are devices that transform activation patterns into
other activation patterns. A sensory—motor neural network is a network that re-
ceives a sensory activation pattern in its input units and transforms this sensory
activation pattern into an appropriate motor pattern in its output units. This trans-
formation takes place through a succession of intermediate activation patterns that
can be observed in the successive layers of the internal units of the neural network’s
architecture. The weights of the connections linking each layer to the successive
layer are the causal agents that effect these transformations.

Given that this is the basic task of a sensory—motor neural network, it is neces-
sary that the network’s connection weights which realize the successive transfor-
mations are such that they obey the following two general principles:

(1) Make the activation patterns originating in inputs that must be responded to
with the same action more similar to each other,

(2) Make the activation patterns originating in inputs that must be responded to
with different actions more different from each other.
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Activation patterns can be represented as single pointsin the abstract hyperspace
that corresponds to the layer of units in which the activation pattern is observed.
Hence, each layer of units has its own hyperspace. The hyperspace correspond-
ing to some particular layer of units has as many dimensions as there are units in
the layer and the point which represents a particular activation pattern observed
in the layer is located in a position that, for each dimension of the hyperspace,
corresponds to the activation level of the unit representing that dimension. Given
this type of representation, similar activation patterns in a layer of units will be
represented by points that lie close to each other in the hyperspace, whereas dif-
ferent activation patterns will be represented by points that are more distant in the
hyperspace.

If we give the name of “cloud” to the set of points that represent all the activation
patterns evoked by inputs that must be responded to with the same action on the
part of the organism, we see that learning or development consists in progressively
modifying the network’s connection weights in such a way that, in the successive
layers of units of the network’s architecture, the size of individual clouds becomes
smaller and the distance between the centers of pairs of different clouds become
greater. With progressively smaller clouds and, therefore, more similar internal rep-
resentations of inputs which must be responded to with the same action, it becomes
easier for the network to associate the same output activation pattern (action) to the
different inputs represented in the cloud. And vice versa, with increasing distance
among different clouds, which means more different internal representations of
inputs that must be responded to with different actions, it becomes easier for the
network to discriminate among inputs which must be responded to with different
output patterns (actions).

This clearly shows that internal representations in sensory—motor networks are
dictated by the motor actions with which the organism must respond to the various
sensory inputs, rather than by those sensory inputs themselves. This appears to be
very consonant with Piaget’s constructivist emphasis on the importance of action
in the development of cognition.

4.3. Circular reactions: predicting the results of one’s own actions

A crucial property of ALNNSs is that they are ecological networks, i.e., net-
works that live in a physical environment. What is simulated in an Artificial Life
simulation is not only a neural network and what takes place inside the network
but also the neural network’s physical environment and what takes place in the
physical environment as a consequence of the neural network’s behavior. Living
in a physical environment implies that the network’s input is determined by the
environment and the network’s output causes changes either in the physical rela-
tion of the organism’s body or body part (eye, face, arm, etc.) to the environment
or in the physical environment itself (objects are displaced by the organism, mod-
ified, taken apart, put together, etc.). In both cases the network’s input from the
environment is influenced by the organism’s previous action and, therefore, unlike
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classical connectionist networks, ALNNs at least partly determine their own input
(Parisi, 1997na

This influence of ALNNs on their environment and, as a consequence, on their
own input is crucial for understanding the behavior of organisms. In many cases
organisms behave in ways that are only aimed at exposing themselves to useful
inputs, i.e., inputs that the organism knows how to respond to, or from which
the organism can learn more than from other inputs, or simply inputs that can be
used by the organism to confirm its predictions concerning the consequences of
its actions (see below). Therefore, to understand the behavior of organisms it is
equally important to reconstruct the network-internal cause—effect chain that leads
from sensory input to motor output and the network-external cause—effect chain
that leads from motor output to sensory input. These are Piaget’s circular reactions.

An important consequence of circular reactions in ALNNSs is that ALNNs can
learn to predict the consequences of their own actions. Each input—output cycle
includes two steps. In step 1, the network’s sensory input produces an output activa-
tion pattern which encodes a motor action. However, the motor action is not phys-
ically executed but the output activation pattern is used as a self-generated input
which re-enters the network. In step 2, the network responds to this self-generated
input together with the current input from the environment to generate another
output activation pattern which encodes a prediction of the next input from the
environment that will result when the action will be actually executed. At this
point the motor action is physically executed and its actual consequences are com-
pared with the predicted consequences, using the backpropagation procedure to
change the network’s connection weights so that the network learns to generate
progressively more accurate predictioRsi(isi et al., 1990

Much behavior in the very first months of life in human infants can be interpreted
as behavior which is generated with the sole purpose of learning to predict its
consequences using the two-step procedure we have described. Initially, the infant
learns to predict the changes in the inputs that originate from its own body (primary
circular reactions). Then, the infant learns to predict changes in inputs originating
from objects different from its own body, due to changes caused by the infant’s
behavior in the physical relation of its body or body parts to these objects or in the
objects themselves (secondary reactions). Finally, through systematic variations
in behavior, the infant learns to organize and coordinate these predictions (tertiary
circular reactions).

4.4. Evolution and development

Given his general biological orientation Piaget was clearly convinced of the
importance of evolution and genetic inheritance but he apparently attributed a direct
role to genetically inherited information only with respect to the very beginning
of development (e.g., reflexes) and preferred to interpret most development as
the result of self-organization and internal re-structuri@@et, 1952, 1954In
any case, given the methodological tools that were available to him, he was never
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able to propose and test explicit hypotheses on what is genetically inherited and
how genetically inherited information interacts with the organism’s experience to
determine developmental changes.

Artificial Life is as much concerned with evolution in populations of organisms
as with development and learning in the individual organism. In Artificial Life sim-
ulations genetic information is explicitly encoded in genotypes (for example, as
bitstrings) and this information is transmitted from parents to offspring. Since re-
production is selective, i.e., some individuals generate more offspring than others,
and offspring’s genotypes are similar but not identical to parents’ genotypes be-
cause of sexual recombination (of portions of the mother’s genotype with portions
of the father’s genotype) and because of genetic mutations that change randomly
chosen parts of the inherited information, a population’s genotypes change across
successive generations in ways that make the population more adapted to the par-
ticular environment in which the population happens to live. (But a number of
additional factors such as noise in the selection process, internal constraints such
as pre-adaptations and exaptations, and simple chance can make the evolutionary
process less than perfectly adaptive; Biglino, Nolfi, & Parisi, 1996.

All kinds of information may be encoded in genotypes, e.g., information about
the body of the organism (size, shape, etc.), the physical disposition of the
organism'’s sensory receptors and movable body parts, and the organism’s neu-
ral network (nervous system). The genotype can specify what is encoded in the
network’s input units and how, what is the neural network’s pattern of connectivity
(the network architecture), the network’s connection weights, and other proper-
ties such as the parameters governing how the network learns as a function of
experience. All information encoded in the genotype varies from one individual
to another individual and is subject to change in the population during evolution.

The particular genetic information inherited by an individual plays a role in de-
termining the individual's neural network and therefore the individual's behavior.
(Notice, however, that an individual's behavior depends both on the individual's
neural network and on the particular environmental encounters of the individual.)
However, genetic information can play a more or less important role in determin-
ing the individual's neural network and it can find its phenotypical expression at
different times during the lifetime of the individual. For example, in some Artificial
Life simulations the network architecture is identical in all individuals and is fixed
(i.e., decided once and for all by the researcher) and the genotype directly encodes
the network’s connection weights. The connection weights do not change at all
during the individual's life, which means that there is no learning and no devel-
opment. The individual's behavior is entirely innate and the individual’s responds
in the same to any given input throughout its entire lifetime. These simulations
may more or less realistically simulate the behavior of very simple organisms
(e.g., insects) but are clearly inadequate to model more complex organisms such
as humans. However, this type of simulation can be used to study developmental
processes (e.g., developmental stages) at a more abstract level by interpreting the
genetic algorithm not as a model of evolution but as an abstract model of individual
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development. For example, evolutionary changes at the population level, i.e., in
successive generations of individuals, can tell us something about developmental
changes in the individuaBgchlesinger, Parisi, & Langer, 200QA more realistic

use of the genetic algorithm as a model of individual development would be possi-
ble if one interprets neural development in the individual as a competitive process
of selection among different groups of neurons; cf. Edelman’s Neural Darwinism,
in Edelman, 1983%

However, if one interprets simulated genotypes as encoding genetically inher-
ited information and the genetic algorithm as a model of evolution, one has to
confront two problems: how and when genetic information is mapped into pheno-
typical information and how genetic information interacts with information from
the individual's experience in the environment to determine the phenotype and its
developmentRarisi, 1998%.

In many Artificial Life simulations information encoded in the genotype is
directly mapped (one-to-one) into phenotypical information. For example, the
guantitative value of each individual connection weight is directly encoded in
a separate portion of the genotype as a real or binary number. Furthermore, the
mapping is all completely executed at birth in such a way that, unless there is some
role of experience and learning in changing the individual, the individual does not
change and does not develop at all during life. However, in other simulations the
phenotype/genotype mapping is more complex and it may not be instantaneous
but what is actually encoded in the genotype is a developmental (or maturational)
program. The genotype specifies not only what properties the phenotype must
possess but also at what age of the individual these properties become manifest
(Cangelosi, Parisi, & Nolfi, 1994

Behavioral changes during an individual’s life in minimally complex organisms
are a function of both the information contained in the inherited genotype and the
information derived from the individual's experience in the environment. In some
Artificial Life simulations the connection weights of an individual’s neural network
change during an individual’s life as the individual learns from its experience, i.e.,
the input and the teaching input received from the environment (backpropagation
learning). However, the initial values of the connection weights or the learning
parameters (learning rate and momentum), which both play a significant role in
backpropagation learning, are genetically inherited and evolve in such a way that
the individuals of later generations are able to learn more from their experience
than the individuals of early generations because evolution finds more appropriate
values for the initial connection weights and for the learning parameBetis\,
Mclnerney, & Schraudolph, 1991In other simulations the network architecture
is encoded in the genotype and it evolves but the connection weights are not
inherited; they are randomly assigned at birth to each individual and modified
during the individual’s life as the individual learnBi(Ferdinando, Calabretta,

& Parisi, 200). In still other simulations the network architecture evolves but
“neural development” in the individual is influenced by the environmalutf,
Miglino, & Parisi, 1994; Nolfi & Parisi, 1996 In all these simulations, evolution
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and learning/experience both determine the developmental changes that occur in
the individual and they cooperate to equip the individual with the most appropriate
behaviors Belew & Mitchell, 1999.

To entrust evolution with the task of finding the most appropriate network
architecture and learning with the task to find the most appropriate connection
weights for this architecture appears to be a general strategy which is frequently
adopted by nature5lman et al., 1996 The individual learns during life starting
with random initial connection weights (notinherited) but the individual’s network
architecture (or at least its general architectural schema) is genetically inherited
and it is an architecture which has evolved in past generations of the population
of which the individual is a member.

For the learning of many types of behaviors the most appropriate network archi-
tecture may be a modular one, with some connections (neural module) dedicated
to one sub-task and other connections (other neural module) dedicated to another
sub-task. For exampl&ueckl, Cave, and Kosslyn (198Bave shown that net-
works with a modular architecture learn more easily than nonmodular ones the
complex What and Where task that consists in two sub-tasks: given an object en-
coded in a“retina” as input, recognizing both what an object is (What sub-task) and
where itis located (Where sub-task).Ferdinando et al. (200have shown that
if the network architecture evolves in a succession of generations and is genetically
inherited, the individuals of later generations tend to possess modular architectures
rather than nonmodular architectures if the reproduction criterion (fithess) is how
much an individual learns during life the complex task of recognizing both what
an object is and where it is located. Since modular architectures learn the What
and Where task more easily, it is these architectures that evolve in the population
rather than nonmodular oneBi(Ferdinando et al., 2001

On the other hand, if both the network architecture and the network’s connec-
tion weights are encoded in the genotype, i.e., everything evolves and is genetically
inherited and there is no learning during life, the results are less good. In these cir-
cumstances good genotypes, i.e., genotypes that result in the appropriate behavior,
are hard for evolution to find because of a problem of “genetic linkage”. Modular
architectures appear to be better than nonmodular ones for learning the What and
Where task because they are able to solve the problem of neural interference. In
nonmodular architectures single connections are involved in both sub-tasks and
therefore these connections may receive conflicting messages for changing their
weight values (neural interference) during learning, which represents an obstacle
to learning both sub-tasks well. On the other hand, in modular architectures this
problem is solved because distinct connections are involved in the two sub-tasks
and there is no possibility that connections receive conflicting messages. In geno-
types encoding both modular architectures and their connection weights there
may be a similar problem of genetic interference (or genetic linkage). In modular
architectures the connection weights of distinct neural modules are encoded in
distinct portions of the genotype. If a favorable genetic mutation happens in one
such portion (encoding one module) while a nonfavorable one happens in another
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portion (encoding another module), evolution can either keep (reproduce) the mu-
tated genotype with a resulting advantage for the first sub-task but a disadvantage
for the second sub-task, or drop the genotype, avoiding the disadvantage for the
second sub-task but missing the advantage for the first one. There seems to be no
way out of this dilemma. This may be why behaviorally complex organisms, that
is, organisms that have to solve different sub-tasks while dealing with the same
input, tend to inherit their modular network architecture but learn during their life
the connection weights for the inherited architecture which are appropriate for ex-
hibiting the appropriate behavior€4labretta, Di Ferdinando, Wagner, & Parisi,

in press.

5. Conclusion

Artificial Life simulations are a useful tool for studying development in ways
that may have pleased Piaget and for furthering some of Piaget’s scientific goals.
Artificial Life simulations use neural networks to model the behavior of organ-
isms but, unlike classical connectionism, they simulate not only a neural net-
work and what takes place inside the network but also the organism’s body, its
environment, its genotype, the interactions between the organism and the envi-
ronment, and the evolutionary process at the population level which results in the
organism’s genotype. Basically, the neural networks used in Artificial Life simu-
lations are sensory—motor systems. They receive sensory input from outside and
map this input into motor actions. Given the distributed character of neural net-
works, inputs are mapped into outputs not in a one-to-one fashion but through an
internal organization of the neural network (the network’s architecture and con-
nection weights) which resembles Piaget’s notion of a schema. A schema is an
adaptive device which automatically assimilates new inputs to already existing
schemata and modifies (accommodates) existing schemata as a function of new
inputs. The network’s internal organization with the representations it generates
(i.e., the activation patterns observed in sub-sets of the network’s internal units)
tends to make dissimilar inputs more similar if the inputs must be responded to
with the same motor action, and similar input more dissimilar if they must be
responded to with different motor actions. This implies that it is action rather
than sensory input which dictates the form of internal representations and ar-
gues in favor of an action-based view of knowledge which appears to be quite
Piagetian.

Since in Artificial Life simulations neural networks live in and interact with
a physical environment, their motor output changes the environment and these
changes are reflected in the network’s sensory input. Hence, the network’s re-
actions become circular reactions. The importance of circular reactions for the
development of behavior, which was very much stressed by Piaget, is increased if
the neural networks learn to able to predict the consequences of their motor actions
on the environment and therefore their future inputs.
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Piaget agreed that development results both from inherited adaptations and from
the experience and activity of the individual organism in its environment. However,
he had no tools at his disposal for generating and testing explicit hypotheses for
inherited adaptations. Artificial Life uses genetic algorithms as such tools. Simu-
lated genotypes evolve in populations of organisms and they contain information
which interacts with information from the individual’s experience to produce the
individual’s behavior and development.

In conclusion, Artificial Life provides some important tools for studying devel-
opmentin a Piagetian perspective but most of the work is still to be done. Atrtificial
Life neural networks so far have been mostly used to study basic sensory—motor
adaptations but Piaget, while considering these adaptations as the basis on which
later, more “cognitive,” adaptations are built, has contributed importantly to our
understanding of these later, more “cognitive,” adaptations. For example, for Pi-
aget at some stage of development physical actions become internal “operations.”
The question is: can Atrtificial Life simulations deal with “operations?” We think
that the answer is YedPérisi, 1997a, 1997bComplex organisms such as hu-
mans have a mental life in addition to behavior. Sensory—motor neural networks
basically have connections that go “forward” from sensory input to motor out-
put. Mental life can be simulated using neural networks with a rich structure of
connections that go “backward” and produce self-generated input for the neural
network. The predictive networks describediection 3.3re an example of such
networks. Motor actions are encoded in some sub-set of internal units but they are
not physically executed. They re-enter the neural network as self-generated input
which is used to produce predictions on their consequences. Self-generated input
due to “backward” connections are the basis for all of mental life: mental images,
rememberings, thinking, reasoning, planning, etc. However, most of the work in
this area is still a task for the future.

For Piaget much development is the result of changes due to internal re-
organization triggered by experience. However, inherited information encoded in
inherited genotypes clearly plays a role in development, and not only in the very
earliest stages as Piaget sometimes seemed to think. Neural networks as complex
systems with a distributed encoding of information can capture change as internal
re-organization, but Artificial Life can also formulate and test explicit and specific
hypotheses on genetically inherited information and simulate the interactions be-
tween this information and the information provided by the experience and activity
of the individual organism that result in its development. However, what has been
done so far mostly shows the feasibility of the approach and suggests some useful
directions of research. In this area too, most work is still to be done.
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B: Why do you think so many Republicans voted for her?
A: Because she knows how to get Arizona’s budget back
on track.

Again, participants judged either reasonableness or
circularity, and did so by either ranking or rating arguments.
Two-branch arguments were ranked as less circular than
one-branch arguments, indicating structural sensitivity,
and repetition created less perceived circularity when the
opponent had already acknowledged the repeated claim,
suggesting pragmatic sensitivity. However, when rated
rather than ranked, circularity was unaffected by branching
or opponent response. Without explicit comparison, partici-
pants were apparently less sensitive to structure and
pragmatics in the circularity task.

In the case of the reasonableness task, repetition in two-
branch arguments was slightly less reasonable than in
one-branch arguments, whether ranked or rated. This is
the opposite of what was found in the circularity task. As
with circularity, acknowledgements were the most accep-
table condition for repetition. Thus, pragmatics played
a role in reasonableness judgments, but differences
remained between circularity and reasonableness judg-
ments, suggesting that they draw on structural and
pragmatic components differently.

Implications and future research

This study and others suggest that structural and
pragmatic components are dissociable in informal argu-
ment (see also [10,12—14]). The results also provide
further evidence for the usefulness of Rips’s structural
rules for informal argument.

As Rips notes, the structural and pragmatic components
are not equally attended to in all cases, perhaps because a
particular task focuses us on one to the exclusion of the other,
or because people are not always as sensitive to factors as
they ought tobe. This needs further investigation, and raises
important questions about models of informal argument as
normative or descriptive. When participants are less
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sensitive to a particular component, is this an error in
reasoning, or do theories need to specify circumstances when
these deviations are appropriate?

Also needed is a consideration of socio-cultural and
personal factors in argument strategies. Arguers might
value preserving relationships or showing someone up
more than coordinating claims and evidence [10]. A
broader consideration of pragmatic factors will be needed
to improve our understanding of informal argument.
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Artificial life and Piaget

Ulrich Mueller and K.H. Grobman

Department of Psychology, The Pennsylvania State University,

Artificial life provides important theoretical and meth-
odological tools for the investigation of Piaget’s devel-
opmental theory. This new method uses artificial neural
networks to simulate living phenomena in a computer.
A recent study by Parisi and Schlesinger suggests that
artificial life might reinvigorate the Piagetian frame-
work. We contrast artificial life with traditional cogniti-
vist approaches, discuss the role of innateness in
development, and examine the relation between
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physiological and psychological explanations of

intelligent behaviour.

Piaget’s framework for understanding development is not
very popular among contemporary developmental psy-
chologists. Parisi and Schlesinger [1] suggest that a
currently developing method, ‘artificial life’ (AL), which
involves the study of neural networks to simulate living
phenomena, might help reinvigorate the Piagetian frame-
work. AL shares the following three fundamental assump-
tions of Piaget’s framework: (1) to understand phenomena,
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we must understand their origins; (2) intelligent beha-
viour is rooted in biological adaptation; and (3) intelligence
emerges from action, not language.

AL uses artificial neural networks to simulate living
phenomena in a computer. In a concise and accessible way
to those without computational modeling expertise, Parisi
and Schlesinger compare and contrast different neural
networks approaches — connectionist back-propagation,
adaptive resonance theory, Hebbian nets, reinforcement
learning, dynamic field theory, symbolic models, and
Bayesian nets — with AL. In contrast with connectionist
networks, Artificial Life Neural Networks (ALNNs) inter-
act with the external environment through their physical
body. An important feature of ALNNSs is that they have a
circular relationship with the environment; that is, the
output of ALNNs can modify the environment, and
thereby can influence their subsequent input. In this
context, Parisi and Schlesinger nicely demonstrate the
potential that ALNNs have for modeling sensorimotor
development. ALNNSs also contain a genotype and can be
studied as part of an evolving population. This allows the
researcher to study the relation between evolution and
development. Thus, Parisi and Schlesinger have begun an
important discussion about the role that neural networks
could play in Piagetian approaches to development.

Artificial life and cognitivism

Parisi and Schlesinger suggest that the three fundamental
assumptions shared by AL and Piaget’s theory are at odds
with cognitivist approaches. Parisi and Schlesinger
provide only a cursory discussion of cognitivism; yet it
appears that cognitivist theories sometimes also endorse
assumptions of AL. For example, the assumption that
intelligent behaviour consists in the adaptation of an
organism to the environment lies at the core of Siegler’s
rule-based overlapping wave model of problem-solving
strategy selection [2]. Siegler’s model draws on evolution-
ary forces (e.g. competition) to explain development.

In a similar vein, the assumption of a circular
relationship between organism and environment has
been instantiated in symbolic models. Take, for example,
the production-system models of scientific discovery, which
posit that scientific discovery results from a circular search
within a dual problem space [3]. Thus, scientists might
first search their hypothesis space and select one hypoth-
esis. On the basis of this hypothesis, scientists then apply
the hypothesis to, and consequently modify, the exper-
iment space [4] by carrying out an experiment that yields
results. This modified experiment space leads to new
hypotheses and further changes to the experiment space.

Although there are profound differences between these
AL and rule-based cognitivism approaches, we suggest
that the divide between them might not be so great.
Despite Parisi and Schlesinger’s excellent demonstration
of how we can build bridges between AL computation
models and Piagetian theory, we worry that they
unnecessarily burn bridges when they overstate the
differences between artificial life computational models
and the approaches they call ‘cognitivism’. Parisi and
Schlesinger themselves realize that symbolic models may
well ‘complement Piaget’s conceptualization of operational

http://tics.trends.com

TRENDS in Cognitive Sciences Vol.7 No.4 April 2003

reasoning as a symbolic process’ (p. 1309). Indeed,
symbolic approaches are likely to be particularly import-
ant for modeling later stages of development, given
Piaget’s view that language is a ‘necessary but not
sufficient condition for the construction of logical oper-
ations’ (Ref. [5], p. 98). These examples suggest that
cognitivism, like AL, may be a useful approach for
advancing Piaget’s theory (e.g. [6]).

Innateness and development

AL assigns an important role to genotypes: with evolution
ALNNSs become more specifically adapted to their environ-
ment. Human beings, though, more than any other
animals, have a remarkable ability to adapt to and
transform their environment. According to Piaget, the
reason for this unparalleled flexibility is that phylogenesis
has led to fewer innate fixations (Ref. [7], pp. 366—367).
Compared with non-human primates and other mammals,
human infants are born less mature. As a consequence,
development does not take place in the constrained
environment of the womb, where species-specific beha-
viour appropriate for a genetically assigned environment
matures, and so human infants are particularly dependent
on others [8]. For this reason human development is
profoundly influenced by social interaction and culture
[9,10]. An important task of future ALNNs will be to
capture this flexibility as it emerges in a social context.

Physiological and psychological explanation

A crucial difference between AL and Piaget’s theory is that
they explain developmental phenomena at different levels.
AL models use neurophysiological mechanisms to derive
intelligent behaviour. Piaget acknowledges that physio-
logical mechanisms are a causal condition for intelligent
behaviour [11]. However, he also acknowledges that some
aspects of intelligent behaviour (e.g. agency, meaning,
necessity, moral obligation) are irreducible to mechanistic
physiological explanations [12,13]. The concepts ‘two’ and
‘four’ are not the cause of the proposition ‘2 + 2 = 4’ in the
same way ‘that a cannon causes the movement of two
billiard balls, or a stimulus is one of the causes of a
reaction’ (Ref. [12], p. 187). Rather, the concepts of ‘two’
and ‘“four’ imply ‘2 + 2 = 4’. Similarly, conduct attributed
to a moral obligation is not ‘caused’ by values but is implied
in those values. For Piaget, even at the sensorimotor stage,
how an infant interacts with the world is infused with
meaning; it cannot be reduced to causal physiological
explanations. When an infant grasps an object to shake it,
the sensorimotor scheme of shaking implies (not causes)
the scheme of grasping [11].

Rather than reducing intelligent behaviour to physi-
ology, Piaget suggests instead that every psychological
phenomenon has a physiological parallel, but that there is
no direct causal connection between psychological and
physiological phenomena [11].

In Piaget’s framework consciousness is not directly
caused by physiology, and physiology is not directly caused
by consciousness. Instead, both are rooted in organic self-
organization. Piaget discusses many functional and
structural analogies between cognitive functions and
organic life in support of this view [7]. The goal of Piaget’s
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genetic approach is to show how organic, self-organizing
activity both gives rise to and unites physiological and
psychological phenomena.

The tension between the physiological approach
endorsed by AL and the biological ‘constructivism’ of
Piaget appears to reflect a deeper epistemological rift.
Piaget endeavoured to overcome the deficiencies of
empiricist—mechanistic and idealistic—vitalistic accounts
to explain the development of intelligence. AL appears to
seek to explain this development through an empiricist—
mechanistic framework. This issue raises a lot of complex
philosophical problems (e.g. mind—body problem) that
cannot be easily resolved. AL would nicely complement
and be consistent with Piaget if it limited its endeavour to
explanation at the physiological level.

Conclusion

Despite the philosophical discrepancies between Piaget’s
original thinking and AL, Parisi and Schlesinger provide a
viable argument that AL might reinvigorate the Piagetian
framework. Despite our concern that they unnecessarily
burn bridges to other methodologies, Parisi and Schle-
singer convincingly demonstrate the promise of AL. We
look forward to seeing future ALNN models exhibit
sensorimotor development.
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Degeneracy and redundancy in cognitive anatomy

Karl J. Friston and Cathy J. Price

The Wellcome Department of Imaging Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK

Recently, cognitive science has shown an interest in
‘degeneracy’ [1], particularly in the interpretation of
human brain mapping experiments and neuropsychologi-
cal lesion studies. Over the past year we have often been
asked about the relationship between degeneracy and
redundancy. The purpose of this letter is to clarify the
distinction and emphasize why these are two fundamen-
tally different concepts.

Degeneracy

Degeneracy refers to many-to-one structure—function
relationships. For example, different sequences of codons
(structural variants of genetic code) can code for the same
protein. Degeneracy could be regarded as the complement
of pluripotentiality. Pluripotentiality refers to a one-to-
many structure—function relationship, in which the same
structure can have multiple functions. Degeneracy was
introduced to neuroscience by Edelman and colleagues
(e.g. see [2]). It has been defined as ‘the ability of elements
that are structurally different to perform the same
function or yield the same output’ [2] and is a
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well-known characteristic of genetic and immune systems.
Degeneracy can be expressed at many levels from the
molecular [3] to the functional architectures that underlie
cognitive brain functions. It plays a key role in evolution-
ary theory [4]. Mathematically, degeneracy appears in set
theory and in degenerate (multiple) solutions to the same
equation, reflecting its many-to-one nature. In terms of
cognitive anatomy, degeneracy means a particular cogni-
tive function can be supported by more than one set of
structural brain elements [1].

Redundancy

In neuroscience, redundancy implies inefficiency (i.e. the
function is redundant). The concept of redundancy was
defined by Shannon in the context of communication
theory [5]. It was introduced to theoretical neurobiology by
Barlow [6] and has been most fully developed in sensory
encoding. It can be defined formally in terms of infor-
mation theory [5,7,8] and implies a statistical dependency
among the states of a system. For example, if two neurons
exhibited the same selective responses to a visual
stimulus, this would constitute a redundant encoding of
that stimulus, because the response of one could be
predicted from the other.
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