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Spatial constancy mechanisms in
motor control

W. Pieter Medendorp*

Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, PO Box 9104,
NL-6500 HE Nijmegen, The Netherlands

The success of the human species in interacting with the environment depends on the ability to
maintain spatial stability despite the continuous changes in sensory and motor inputs owing to
movements of eyes, head and body. In this paper, I will review recent advances in the understanding
of how the brain deals with the dynamic flow of sensory and motor information in order to maintain
spatial constancy of movement goals. The first part summarizes studies in the saccadic system,
showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred
remapping of target representations in anticipation of and across eye movements. The subsequent
sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and
vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy.
Work that studied the geometric complexities in spatial constancy and saccadic guidance across
head and body movements, distinguishing between self-generated and passively induced motion,
indicates that both feed-forward and sensory feedback processing play a role in spatial updating
of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial con-
stancy for arm motor control and their physiological implications for the brain. Taken together, the
emerging picture is that the brain computes an evolving representation of three-dimensional action
space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and
ambiguous afferent and efferent signals.

Keywords: inflow versus outflow; reference frames; Bayesian; neural;
whole-body motion
1. INTRODUCTION
Immanuel Kant argued that spatial representation
plays a fundamental role in how we construct our
thoughts and intuitions [1]. According to the philoso-
pher, we cannot experience and grasp objects without
being able to represent them in a spatial context. While
Kant’s view has highly influenced the field of philos-
ophy, corollaries of his work are also seen in many
other research fields today, such as computer science
and psychology. Without taking a philosophical
stance, the notion of spatial representation is also a
critical assumption in many concepts and theories in
neuroscience and offers a tractable approach to under-
standing information processing in the brain. More
specifically, how the brain represents space and uses
this information to generate goal-directed actions is a
longstanding question that is crucial for a better
understanding of movement disorders. While this
basic question is still the topic of many research endea-
vours, by now it is widely accepted that the brain does
not construct a single, unitary representation of space,
but instead produces multiple representations of space
ndorp@donders.ru.nl

tribution of 11 to a Theme Issue ‘Visual stability’.

476
to subserve stable perception, spatial awareness and
motor guidance (see [2,3], for reviews).

A compromising factor in the coding of a spatial
representation is keeping it online and up-to-date
during self-motion. Are we able to maintain an accurate
representation of the world, and the objects within it,
even when we move around? Our perception of external
space indicates that this is the case. Our perception of
the world remains stable when we make a saccade,
even though the image of the world shifts on our retinas
in the back of our eyes. And when we walk around, we
are not disturbed by the even more complex changes
in the optic flow on our retinas and we can act
rather effortlessly upon our surrounding objects, even
though they continuously change location relative to
our effectors. Thus, despite our movement, we perceive
the world as stable and are able to act upon the objects in
it with great accuracy. How do we do this? How does the
brain achieve spatial stability with its ever-changing sen-
sory and motor inputs? This ability is also referred to as
spatial constancy, or spatial updating, and as we will see
later, involves a prodigious control system in the brain.
In the past, this problem has attracted the attention of
many distinguished scientists, such as Descartes, Von
Helmholtz and Gibson. Although the control of spatial
constancy was first seen as an important component
mediating stable perception, similar mechanisms may
This journal is # 2011 The Royal Society
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also be needed to support behaviour in non-perceptual
tasks, such as in action control.

In recent years, the neural computations for spatial
constancy as well as the role of various inflow and
outflow signals have become topics of direct neuro-
physiological demonstrations. In this review, I will
cover recent developments in this field, with the
main focus on the mechanisms that play a role in
maintaining spatial constancy for ensuring the spatial
accuracy of movements. This means that, besides a
brief historical overview, I will not address in detail
the seminal work that has been performed in relation
to pure perceptual processes (but e.g. [4–6]). Also the
work in relation to building cognitive maps for spatial
navigation will be outside the scope of this paper (but
see [7] for review). I will summarize pertinent exper-
imental studies that have been performed in the
oculomotor system with visual stimuli, and from that
gradually expand by reviewing spatial updating exper-
iments during more complex self-motion conditions
and in other effector systems. Mathematical concepts
such as computation, optimization and inference will
be used to guide this review where possible.
2. HISTORICAL BACKGROUND
In a discussion of spatial constancy mechanisms, it is
important to make a distinction between the ability
to correct for intervening motion in goal-directed
motor control and the ability to keep perceptual
stability despite intervening motion, although it is
undeniable that these are mutually related. Through-
out this review, we will refer to the former as
sensorimotor constancy and to the latter as perceptual
stability. Classically, the spatial constancy problem was
predominantly considered a perceptual problem.
Phil. T
The visual world has the property of being stable . . . .

By stability is meant the fact that it does not seem to

move when one turns his eyes or himself around . . . .

The perceptual experience of the stable, unbounded

visual world comes from the information in the ambient

array that is sampled by a mobile retina. The reason the

world does not seem to move when the eye moves, there-

fore, is not as complicated as it has seemed to be. Why

should it move? The movement of the eye and its

retina is registered instead; the retina is proprioceptive.

[8, p. 256]
Gibson argued that the brain relies on the fact that the
world is stable ecologically as an inbuilt assumption, so
that any motion of the image as a whole must be due to
the eye movement rather than the world movement
[9]. However, knowing that there is a change in the
information in the optic array sampled by the retina
does not suffice to indicate what type of signal about
the eye movement is used for visual stability. Descartes
[10] was the first to point out that the world seems to
move when the retina is passively displaced by tapping
on the canthus of the eye, which argues against the sole
use of retinal cues for visual stability.

In stabilizing the visual world across saccades,
therefore, the information about the eye movement
must be of extraretinal nature. Two types of extraret-
inal information about the eye movements are
rans. R. Soc. B (2011)
centrally available: inflow and outflow signals. Inflow
relates to reafferent feedback, which includes somato-
sensory signals and proprioceptive signals from the eye
muscles. Descartes’ experiment would also argue
against a contribution of proprioceptive information
about the extraocular muscles. That is, the stretch
receptors in the extraocular muscles by themselves
cannot prevent the destabilization of the visual world
in response to the tap (but see [11] for a role of pro-
prioceptive inflow to spatial constancy under some
conditions).

The outflow signal relates to a copy of the motor
command, also termed efference copy (or corollary
discharge), and is only present in the context of
actively generated motion, such as during saccades.
Von Helmholtz [12] was the first to discuss the poten-
tial importance of efference copy in perceptual
stability. He proposed that visual stability is achieved
by using a copy of a movement command (which
he called ‘effort of will’) to simultaneously adjust
perception for the corresponding eye movement. In
other words, the brain transmits a copy of a movement
command, like sending a cc in your email communi-
cation, into ostensibly sensory areas, effectively
informing itself about the sensory consequences of
its own actions [13,14]. Put differently, the efference
copy is thought to help differentiating between
sensations that arise as a consequence of one’s own
actions from those that arise from the environment,
and hence contributes to maintaining perceptual
stability across saccades.

In the next section, I will review neurophysiological
evidence for a putative role of efference copy in spatial
constancy across saccades. The evidence stems mainly
from regions located within the dorsal action stream,
which has led some authors to put forward the per-
spective that efference copy signals support primarily
spatial constancy for action, not perception [15].
3. SACCADIC UPDATING
Hallett & Lightstone [16] were the first to systemati-
cally investigate sensorimotor constancy for saccadic
control, using a so-called double-step saccade task.
Subjects were briefly presented with two targets in
the visual periphery, one after the other, and sub-
sequently asked to make saccadic eye movements to
both locations in quick succession. Because the
second target disappeared before the first saccade
occurred, the second saccade will not reach the
target if its metrics are based on the retinal coordinates
of the target only. Instead, for accurate performance,
subjects must compute the dimensions of the second
saccade by combining the retinal coordinates of the
target and the metrics of the first saccade. Their obser-
vation that the eye reaches the final target position
irrespective of the amplitude of the first saccade
suggests that sensorimotor constancy is maintained
during oculomotor performance by correcting target
representations for intervening eye movements.

Similar findings in totally different experimental
settings were made in a monkey neurophysiological
experiment by Mays & Sparks [17]. They tested
the accuracy of saccades towards brief visual stimuli.

http://rstb.royalsocietypublishing.org/
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Figure 1. Spatial updating in parietal area LIP. (a) The
neuron responded phasically to the onset of visual stimulued

in its receptive field (RF), sustained its activation during the
memory interval and had again a phasic burst during the sac-
cade. Trials have been aligned with the beginning of the
saccade. (b) Response of the neuron during double-saccade
trials with a movement first down then back up into the

cell’s RF. The activity of the neuron increased as soon as
the first target was achieved and the next saccade was
planned into the cell’s response field, when its RF covered
the previously stimulated location. Trials are aligned to the
first movement. Modified from Gnadt & Andersen [19],

with permission.
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Just before the monkeys moved their eyes, the superior
colliculus (SC)—a midbrain area involved in the
generation of eye movements—was electrically stimu-
lated. To correct for the stimulation-induced eye
movement, the brain generated a corrective saccade
to bring the eyes to the target location, even though
the target was no longer visible.

Similar corrective saccades for maintaining updat-
ing accuracy were obtained while stimulating areas
more upstream from the SC, such as the frontal eye
fields (FEFs), but remained absent when stimulation
was applied downstream of the SC, on the motor
neurons or nerves (reviewed in [18]). This would be
consistent with the notion that an efference copy,
rather than muscular proprioception, plays an important
role in maintaining spatial constancy across saccades.

The neural signature of the updating process was
first observed by Gnadt & Andersen [19], in the lateral
intraparietal area (LIP). They trained monkeys to
look from an extinguished fixation spot towards a
briefly flashed target and then back towards the
remembered fixation position in complete darkness.
They identified neurons that increased their firing
rate after the monkey achieved the first target and
planned the return saccade to the remembered fixation
Phil. Trans. R. Soc. B (2011)
spot, the location of which was in their response fields.
Because these neurons never had the fixation stimulus
physically presented in their receptive field (RF),
their response must reflect updating (figure 1). This
means that the representation of the fixation stimulus
is transferred, or remapped, from the group of
neurons that was physically stimulated by it, to the
group of neurons that have their RFs at the location
of the, now extinguished, fixation stimulus after the
first saccade.

A few years later, Duhamel et al. [20] published a
landmark study on spatial constancy mechanisms,
showing that most neurons in LIP respond when a sac-
cade brings the location of a previously flashed
stimulus into their RF. More importantly, some (not
all) LIP neurons responded predictively to the ‘new’
situation that would arise after the saccade. They
shifted their eye-centred RF in anticipation of the sac-
cade that would bring a stationary stimulus into their
RF, as if they are transiently craniotopic [21]. This
shifting seems to take the form of a jump, rather
than a spread, in a direction parallel to the saccade
[22]. Predictive updating implies that these neurons
have access to the size and direction of the upcoming
eye movement, which can be provided by an efference
copy signal of the motor command. At the population
level, the remapping of activity takes place indepen-
dent of saccade direction, indicating that LIP
neurons have access to spatial information throughout
the visual field [23]. Recently, it was demonstrated
that extrastriate areas V2, V3 and V3A also remap
activity across saccades, but the proportion of neurons
in these regions showing this behaviour becomes
smaller and smaller when going backward from LIP
in the visual pathway and the latency of remapping
increases (i.e. the remapping becomes less predictive)
relative to saccade onset [24]. Also more motor-
related areas such as the FEFs [25] and the SC
[26,27] have been shown to remap neural activity
across saccades.

Recently, Sommer & Wurtz [22,25,28] and Wurtz
[29] have identified a pathway providing an efference
copy signal related to the forthcoming eye movement.
This pathway runs from the SC via the mediodorsal
thalamus to the FEF. Sommer & Wurtz found that
inactivation of the mediodorsal nucleus impaired the
spatial processing and remapping of RFs in the FEF,
which implied and was observed behaviourally as
impaired performance in the double-step saccade
task. It should be noted, however, that the behavioural
updating deficits were only modest, i.e. 19 per cent on
average. This suggests that other pathways may be
involved in relaying the efferent signal. Indeed,
recent work has shown that parietal areas receive eye
position and velocity inputs in association with
oculomotor functions via an ascending preposito-
thalamo-cortical pathway [30–32]. Conversely,
inactivation of area LIP has been shown to also
impair performance in monkey’s double saccades [33].

Thus, the remapping mechanism operates such that
sensorimotor constancy is maintained dynamically, i.e.
by updating spatial information in an eye-based gaze-
centred reference frame. Bringing this in relation
with perception, following the Helmholtzian view,

http://rstb.royalsocietypublishing.org/
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Figure 2. A bilateral region (indicated by white thick lines) in the human posterior parietal cortex is involved in spatial updating

during double-step saccades. Two stimuli (stim), flashed in the left hemifield, cause increased activity in the right parietal area.
After a 7 s delay, the subject makes the first saccade (sac1) and another 12 s later the second saccade (sac2) is executed. After the
first saccade, the remembered target of the second saccade remains in the left hemifield (left–left trial) or switches to the right hemi-
field (left–right trial). For the latter trials, the region’s sustained activation also shifted: if the target shifted into the right hemifield, a
high sustained activation was observed in the left parietal area, prior to the second saccade. Activation related to the execution of the

second saccade is not shown. LH, left hemisphere; RH, right hemisphere. Modified from Medendorp et al. [36].
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comparing the remapped information with re-afferent
sensory feedback of the same saccade, if available,
would allow for the evaluation of perceptual stability
[34] and/or detect changes in the spatial world by
external sources (i.e. ex-afference). Whether LIP
or FEF is also involved in this comparison (see [35]
for a preliminary report), by means of their efference
copy inputs and visual inputs from occipital cortex,
or whether another neural structure (e.g. the cerebel-
lum) is implicated, is still an open question. Double-
step saccade experiments in complete darkness do
not assess this comparison—they only address the
remapping ability (but see §10).

In the human, gaze-centred remapping obser-
vations for saccades have also been made, using
the coarse time resolution of functional magnetic res-
onance imaging (fMRI) [36–39], the millisecond
temporal resolution of magneto- and electroencepha-
lography [40,41] and transcranial magnetic
stimulation experiments [42,43]. In the fMRI
studies by Medendorp et al. [36,37,44], remapping
was demonstrated in the human posterior parietal
cortex during a double-step saccade task, in a region
showing contralateral topography of memorized
target locations, perhaps the analogue of monkey
LIP [45,46]. It was found that when eye movements
reversed the side of the remembered target location
relative to fixation, the region exchanged activity
across the two cortical lobules. As shown in figure 2,
Phil. Trans. R. Soc. B (2011)
the activity in the right parietal region increases
when the two targets are presented to the left of
fixation. If, after the first saccade, the location of the
second target remains to the left, the activity remains
high in the right region, but when its location shifts
to the right of fixation, the activity decreases, and in
due course the activity increases in the left parietal
region. This shows that the location of the second
target is remapped from the right to the left hemi-
sphere (figure 2). Similar remapping observations
were observed when the two targets were initially
presented in the right hemifield (not shown).

As in the monkey, remapping of activity has also
been shown in earlier visual areas, with decreasing
strength towards areas lower in the hierarchy from
V3A down to V2/V1 [39]. It is also important to
point out that the gaze-centred remapping obser-
vations do not argue against the idea that these
regions may also implicitly code their representations
into other reference frames, using position signals of
the eyes or other body parts, expressed in gain fields
[47–49] or muscle proprioception [50,51].
4. SMOOTH MOVEMENTS
Although the double-step saccade task has yielded
many insights in the mechanisms resulting in sensori-
motor constancy, it is not trivial that these
mechanisms also apply to other oculomotor functions.

http://rstb.royalsocietypublishing.org/
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Saccades are fast and highly stereotyped movements,
which make the use of an efference copy signal in sen-
sorimotor constancy (and perceptual stability) a
feasible, if not necessary, conception. For a complete
picture it is equally important to understand sensori-
motor constancy and its neural implementation
across other types of eye movements, such as saccadic
eye–head gaze shifts, smooth pursuit, vergence and
vestibular nystagmus.

Starting with the first, Vliegen et al. [52,53] have
recently demonstrated that correct double-step eye–
head gaze shifts can be made to two remembered
target locations, irrespective of whether the second
target was presented visually or acoustically. In fact,
even when the second target was presented in mid-
flight during the first movement, the second
movement reached that target accurately. The latter
finding would argue against an updating mechanism
that operates solely on the basis of a predictive motor
command, i.e. using an efference copy of the pre-pro-
grammed gaze displacement, and at least suggests that
continuous dynamic feedback about the actual move-
ments of eyes and head also plays a role in this
updating behaviour (see figure 7).

The quality of spatial constancy during smooth pur-
suit has been tested in many studies, often in a
paradigm requiring subjects to make saccades to
briefly flashed targets, after an intervening smooth
eye movement. Recent observations based on this
paradigm, made by Blohm et al. [54], have resolved
an apparent discrepancy in this field. These authors
found that short-latency (less than 175 ms) saccades
were coded based on the initial retinal location of the
target (cf. [55,56]), whereas longer latency (greater
than 175 ms) saccades were programmed based on
the initial retinal target location and extraretinal
information about the smooth eye displacement (cf.
[57–60]). Blohm et al.’s [54] findings suggest that
the extra-retinal information about the motion of the
eye is not available at a very short latency but takes
some time to be integrated before it can mediate spatial
constancy in the oculomotor system. Neurophysiologi-
cal data supporting this idea are lacking, but
preliminary reports allude to a role of the posterior
parietal cortex (see [61,62]).

Spatial updating across vergence eye movements
has been rarely studied. One study was performed
by Krommenhoek & Van Gisbergen [63], testing
combined version–vergence movements during
double-step target jumps in direction and depth.
Non-retinal information about the first movement in
direction and depth was used in the execution of the
second movement, but compensation was clearly
better for the directional than depth component of
the intervening eye movement. Like for pursuit updat-
ing, physiological correlates of these manifestations of
spatial updating remain to be revealed. However, it has
been shown that neurons in parietal (LIP) and frontal
areas (FEF) have three-dimensional RFs [64–67],
showing that these neurons are not only sensitive
to the direction of a target but also to its depth.
Given that these regions are involved in updating
across saccades, it would be interesting to test whether
the anticipatory shifting can be shown also in
Phil. Trans. R. Soc. B (2011)
three-dimensional visual RFs. In this context, Genove-
sio et al. [68] recorded neural activity in LIP while
monkeys performed saccades between targets at differ-
ent depths. They showed that in the post-saccadic
period, neural activity is influenced jointly by both
the eye displacement and the new eye position. It
can be argued that these signals play a role in the
dynamic retinal representation of visual space and in
the further transformation of spatial information into
other coordinates systems [47,68].

Spatial constancy in the oculomotor system has also
been shown during ongoing nystagmus, as generated
by whole-body rotations in complete darkness [69].
Rotating subjects can saccade to flashed visual targets,
compensating for the quick-phases that intervene
between the presentation of target and the execution
of the saccade. Whether these quick-phases can
induce a remapping of activity in cortical structures,
or whether their effects are accounted for at a
subcortical level requires further investigation.

The wealth of studies reviewed so far indicates that
significant progress has been made in understanding
the computational constraints and the physiologi-
cal implementation of (visuo)motor constancy in
the oculomotor system. Sensorimotor constancy is
maintained for both smooth and fast intervening eye
movements, and elements of underlying neural
correlates have begun to be discovered. But sensorimo-
tor constancy is not only important across eye
movements—it should also be maintained across head
and body movements to serve accurate motor control.
The following sections expand to these conditions.
5. PASSIVE VERSUS ACTIVE SELF-MOTION
A distinction has to be made between passive
and active self-motion. These types of movement
differ in the presence of efference copies of motor
commands, which are only available during active
motion. Only efference copies of intended movements
can play a role in predictive spatial updating, as
argued above for saccade updating. When movements
are passive, such as when we ride in a train or drive a
car, the amount of self-motion can only be estimated
by our internal sensors. Because these sensory signals
are caused by the actual motion, they obviously
cannot account for predictive properties of spatial
updating. In the following section, I discuss the sen-
sory sources available to estimate self-motion during
passive movement.

First there is the optokinetic system, a visual sub-
system for motion detection based on optic flow
[70,71]. Optokinetic cues are mainly important for
the detection of low-frequency body translations and
rotations. Flight simulations, for example, exploit that
the brain interprets sustained large-field optic flow as
owing to self motion. Recent evidence by Wolbers
et al. [72] suggests that the brain can use optic flow to
monitor target locations in an egocentric map of space
(see figure 7). Also, Warren & Rushton [73] showed a
role of optic flow in the estimation of scene-relative
object movement during self movement.

Information about head motion in space may also
come from the vestibular system. The vestibular

http://rstb.royalsocietypublishing.org/
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system, located in the inner ear, is comprised of the
otoliths and semicircular canals, which detect the
head’s linear acceleration and angular velocity,
respectively (see [74], for a review). The otoliths
sense gravito-inertial force and cannot distinguish
between tilt and linear accelerations for elementary
physics reasons [75]. In essence, this is simply a conse-
quence of Einstein’s equivalence principle stating that
inertial accelerations and gravitational acceleration
are physically indistinguishable. One recent theory
suggests that the canal signal is used to disambiguate
the otolith signal [74,76,77]. Neural underpinnings
for this theory have been found at various levels in
the brain, including the cerebellum, thalamus and
brainstem [78]. Otolith disambiguation is obviously
very important in compensating for linear self-
motion (thus not confusing it for tilt) in order not to
compromise spatial constancy.

Also the somatosensory system may contribute to
spatial constancy by detecting the changing pressures
on the skin during motion and possible differences in
posture, including proprioceptive signals that provide
information about the relative position of body, head
and eyes [79,80].

How all these sensory signals affect the neural com-
putations underlying spatial constancy is a difficult
question, given the differences in noise properties,
internal dynamics and intrinsic reference frames of the
various sensors (see [81] for a review of computational
approaches). Moreover, signals from vestibular and
somatosensory receptors are intermingled and cannot
easily be separated even at the level of the vestibular
nucleus (see [82] for review). A later section will
describe some recent insights on signal combination
for spatial constancy in the motor system.
6. ROTATIONAL SELF-MOTION
Many studies have tested spatial constancy mechan-
isms during both active and passive head and body
rotations (reviewed in [18]). The conclusion drawn
from these studies is that the quality of spatial con-
stancy depends on the axis of rotation, the presence
of gravitational cues, and on the availability of effer-
ence copies. The evidence is as follows. Updating is
quite accurate for active rotations, in both yaw [83]
and roll directions [84]. For passive rotations, updat-
ing in yaw is substantially compromised (approx.
70% compensation) [83,85,86], but still nearly
perfect in roll [85,87]. This suggests that updating
for active yaw rotations, which leave the body fixed
relative to gravity, relies on efference copy signals. To
further test the contribution of gravitational cues,
Klier et al. tested rotation updating with supine body
orientations. Gravitational cues had differential effects:
yaw updating in supine condition does not improve
when these cues are available, while roll updating
deteriorates significantly when these cues are taken
away [85,87].

A number of additional conclusions in relation to
the computations for spatial constancy can be made
on the basis of these studies. For the transformations
considered in the previous sections, it is often thought
that updating simply shifts the stored locations of all
Phil. Trans. R. Soc. B (2011)
targets uniformly, by a common vector, when the eye
or head turns. That is, the updating mechanism is
modelled as a subtraction of the vector representing
the eye or head movement from other vectors represent-
ing the target locations relative to the eye. Although
such a uniform shift would often approximate the
real changes in location of targets in front of the
subject during yaw rotations, for roll rotations with
the body upright, a simple vector subtraction would
be inadequate. The observed accurate roll updating
suggests a more geometrically exact remapping, which
involves rotating the stored target locations through
the inverse of the eye’s rotation in space [84,88]. This
conclusion holds irrespective of how the spatial
constancy is implemented, whether it works with effer-
ence copy or vestibular inputs, whether it operates
in gaze coordinates or in another reference frame.
Recently, it has been shown that spatial updating also
handles the non-commutativity of two rotations in a
geometrically correct fashion [89,90].

Two studies were recently performed that explicitly
asked which reference frame underlies the implemen-
tation of sensorimotor constancy during head and
body rotations. Baker et al. [59] trained monkeys to
make saccades to locations of briefly flashed targets
that were remembered as either fixed in the world or
fixed to gaze, after upright yaw rotations. They found
saccade endpoints to be less variable when the targets
were memorized in a gaze-fixed frame as opposed to a
world-fixed frame. This suggests that a gaze-centred
mechanism is involved in coding sensorimotor con-
stancy during these rotations, which is in line with the
findings for saccadic updating, reviewed above.

In contrast, for roll updating, Van Pelt et al. [91]
found evidence for world-centred representations,
not gaze-centred coding. In their test, they exploited
the fact that subjects, when in a static tilt position in
the dark, make systematic errors in indicating world-
centred directions [92,93], while the estimation of
egocentric directions remain unaffected. Updating
accuracy during dynamic tilts, as probed by memory-
guided saccades, was in favour of the allocentric
model, with the saccade errors more closely related
to the amount of subjective allocentric distortion at
both the initial and final tilt angle than to the
amount of intervening rotation (figure 3). This work
suggests that the brain uses an allocentric reference
frame, possibly gravity-based, to construct and main-
tain a spatial representation during rotation in roll. It
remains an open question of how such an allocentric
representation is encoded in the brain.

This difference in ego- versus allocentric coding of
spatial constancy depending on rotation direction is con-
sistent with the earlier suggestions that the brain can
implement spatial constancy in multiple frames of refer-
ence, depending on sensory inputs and task demands
(see [94] for review). Most probably, the brain inter-
changes information between allocentric maps and
egocentric representations in the organization of spatially
guided motor behaviour in complex environments [95].
Of course, ultimately, for movement generation, all
spatial representations must be transformed in effector-
related, muscle-based reference frames, depending on
the motor system under control.
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7. TRANSLATIONAL SELF-MOTION
In natural situations, our head and body not only
rotate but also translate through the environment; for
example, when we walk or drive a car, and even
when the head rotates about the vertebral column,
eye translations are being induced. To compensate
for the effects of translations, the brain must perform
more sophisticated computations than for rotational
motion. First, distances of objects relative to the obser-
ver change during translations, not during rotations.
Second, during translations, stationary objects show
Phil. Trans. R. Soc. B (2011)
motion parallax: their directions relative to the obser-
ver change at different rates, depending on their
distance relative to the observer. In the absence of allo-
centric cues, translational updating in an egocentric,
gaze-centred frame requires each target to be handled
differently, depending on its distance. Does the brain
incorporate the geometry of parallax in the compu-
tations for spatial constancy? Medendorp et al. [96]
were the first to address this question. In their test,
subjects fixated a distant target, while targets were
flashed, at different distances, onto the retinal
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periphery. Subjects then actively translated sideways
while keeping gaze on the distant target and sub-
sequently had to make a combined saccade–vergence
movement to the remembered target location. The
eye movements corrected almost perfectly for parallax:
the changes in both version (direction) and vergence
(depth) angles of the eyes followed the required
nonlinear patterns (figure 4a).

Recently, it was shown that human subjects can,
to a large degree, also update the locations of visual
targets in space following passively induced trans-
lations [97]. Similar experiments in monkeys have
also suggested a clear compensation for translational
motion in their updating of visual space, although
the amount of updating was typically less than
geometrically required (figure 4b, [98,99]).

In labyrinthectomized monkeys, however, updating
for translations was found to be severely compromi-
sed [98,100]. This clearly suggests that in the
intact brain vestibular information (from the otoliths)
interacts with visual information to update the goal
of memory-guided eye movements. Whether this pro-
cess works via temporal integration of velocity and/or
acceleration information from the vestibular system,
via efference copies of the vestibulo-ocular reflex
(VOR), or internal signals that suppress the VOR,
is unknown. Also the anatomical and functional
Phil. Trans. R. Soc. B (2011)
pathways transmitting such signals to cortical areas
that mediate spatial constancy remain to be delineated
in future studies.
8. SENSORIMOTOR CONSTANCY
FOR ARM MOVEMENTS
Spatial constancy is not only important in relation to
eye movement planning, but also in the spatial gui-
dance of other effectors, such as the arm and the
hand. It has been suggested that the posterior parietal
cortex, which is seen as a key structure in maintaining
spatial constancy, contains specialized subunits for the
processing of spatial goals of saccades and reaching
movements. The LIP is involved in representing tar-
gets locations of saccades; the medial intraparietal
area (MIP) and extrastriate visual area V6A, together
called the parietal reach region (PRR), code targets
of reaching movements (see [2,3,101,102] for
reviews). Similar distinctions have been proposed in
the frontal cortex, with the FEF and the dorsal pre-
motor area (PMd) coding for eye and reaching
movements, respectively (see [103] for review).

If there are separate spatial representations for sac-
cades and reaching movements, then maintaining
and updating them might involve different mechan-
isms that perhaps rely on different sources of
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information. This section reviews the work that has
been done in relation to target coding and updating
for arm movement control.

Psychophysical studies suggest that the frame of
reference used to specify the target of a reaching move-
ment is of a hybrid and probabilistic nature [104],
depending on the available sensory information, task
constraints, presence of allocentric cues and the cogni-
tive context [94]. The construction of this abstract
reference frame may rely on the ‘early’ feed-forward
and the ‘late’ feedback transformations within sensor-
imotor processing for reaching movements [95]. Here,
we will consider only the early aspects of processing,
which are related to how sensory information is
coded and updated for arm movements performed in
an otherwise neutral or empty space. Henriques et al.
[105] examined the behavioural reference frame
involved in the updating of reach targets across sacca-
dic eye movements. To do so, they investigated the
directional errors of reaching movements towards
remembered visual targets, which were initially flashed
on the fovea, but had their memory trace in the retinal
periphery owing to the intervening saccade. While
reaches were relatively accurate for foveal targets with-
out intervening saccades, the reaches after intervening
gaze shifts were biased in the same direction as reaches
to targets presented at the same location in the retinal
periphery. Although the reason for the directional bias
is unclear, these findings suggest that the bias arises
after the reach target is updated relative to gaze, in
the subsequent reference frame transformations for
arm movement [105–107]. Recent studies have
made the same observations with proprioceptive and
auditory targets [108], with targets in near and far
space [109,110], and when targets are updated
across smooth pursuit eye movements [111]. These
findings are consistent with physiological observations
that PRR updates its reach-related activity relative to
gaze, in both single unit recordings in the monkey
[112] and fMRI recordings in the human [36], as
well as with the disturbance of the updating process
in optic ataxia patients [106,113].

While all of the studies described above were con-
cerned with the representation of the direction of
the reach target, a reaching movement also has a dis-
tance component. Van Pelt & Medendorp [107]
applied the same logic as was applied to the studies
focused on direction to assess the maintenance of
reach depth, which is not a trivial question given
earlier suggestions that depth and directional infor-
mation for reaching movements are processed
separately [114]. Their experiment, illustrated in
figure 5a, studied reaching movements with interven-
ing vergence eye movements. With vergence shifts,
they found an error pattern that was based on the
new eye position and on the depth of the remembered
target relative to that position. This suggests that target
depth is recomputed after the gaze shift. Updating
gains were found close to unity. Their experiment con-
firmed also previous results for the updating of target
direction (figure 5b).

A neurophysiological correlate of this behavioural
finding was recently reported by Bhattacharyya et al.
[115], who showed that PRR neurons code depth
Phil. Trans. R. Soc. B (2011)
with respect to the fixation point, that is, in gaze-
centred coordinates. They further observed gain
modulation by vergence angle, which may facilitate
the computation of depth representations in other
reference frames at the population level, for example,
head-centric depth or depth relative to hand position
[116]. It remains to be investigated whether this
coding in additional reference frames is an automated
process or is enforced on demand only when a (reach)
action is prepared.

In this context, recently Sorrento & Henriques [117]
examined the effects of gaze changes on repeated arm
movements to the same target. They found that even
when a second movement was made to the same
location, it is initially guided by an updated represen-
tation relative to gaze, suggesting that the brain over-
rides the arm-related representation and/or memory
signals of the previous movement. In other words, the
brain refers back to a remapped representation of the
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target relative to gaze when programming repeated
movements. These findings are consistent with recent
neurophysiological observations that the parietal
cortex, particularly the gaze-centred PRR, represents
immediate and subsequent movement goals in a
sequential movement task [44,118,119].

In the remainder of this section, we will discuss the
effects of head and body motion on the updating of
reach targets. Bresciani et al. [120,121] compared
the performance of human subjects while reaching to
a remembered target under continuous passively
induced body rotation about an Earth-vertical yaw
axis and when the rotation occurred before the
reach. It was found that subjects are more accurate
when the vestibular signals are processed for online
control of the reach than when they are used to
update the internal representation of reaching space.

In contrast to rotations, however, target updating
seems fairly veridical for reaching after super-threshold
translational motion [107,122–125]. Recently, Van
Pelt & Medendorp [126] examined the dominant
reference frame in the updating of reach targets
during active translation of the whole body. Targets
were presented at opposite positions (near versus far)
from the subjects’ fixation plane (figure 6a, middle
panel). They argued that if spatial constancy is
implemented in gaze-centred coordinates, then
Phil. Trans. R. Soc. B (2011)
representations of the far and near targets should
shift in opposite directions in spatial memory during
the translation (figure 6a, left panel). Hence, if the
amount of translation is misestimated in the updating
process, the updated target representations will have
opposite biases relative to their actual locations in
space. In contrast, if the brain implements spatial con-
stancy across translation motion in a gaze-independent
reference frame (e.g. a body-centred frame), misjud-
ging translations would lead to biases in the updated
representations in the same direction, irrespective of
their initial location relative to gaze (figure 6a, right
panel). The observed error patterns clearly favoured
the gaze-centred scheme (figure 6b,c), indicating that
translational updating is organized similarly as head-
fixed saccadic updating. In other words, the brain
encodes a geometrically complete, dynamic map of
remembered space, whose spatial accuracy is main-
tained in gaze-centred coordinates by internally
simulating the geometry of motion parallax during
translations of the body. Taken together, the results
of saccade and reaching studies on moving subjects
suggest that vestibular signals interact with retinal
disparity and eccentricity information to retain three-
dimensional spatial constancy during body motion
in space—a proposal that now awaits testing at the
physiological level.
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9. SENSORY VERSUS MOTOR
REPRESENTATIONS
In a review of the spatial constancy mechanisms for
motor control, an important question to address is
whether the updating mechanisms pertain merely to
the coordinates of the sensory stimulus or more so to
the coordinates of the movement plan. The answer
to this question is difficult to pin down. Because sen-
sory and motor coordinates require essentially the
same updating during self-motion, the updating
results described so far are consistent with both
interpretations. One way to obtain further insights is
by examining the activation of the neural structures
involved in spatial constancy during tasks that expli-
citly dissociate the sensory from the motor goal
representations. Antimovements, which dissociate
stimulus and movement direction, are thought to
serve this purpose [127]. Zhang & Barash [128] have
shown that in a memory-delayed version of the anti-
saccade task, population activity in LIP turns very
rapidly, within 50 ms, from the visual direction to the
motor direction during the memory interval. Recent
observations in the human posterior parietal cortex
on fMRI and magnetoencephalography have also
shown reversal of activity during antisaccade tasks
[37,129]. Gail & Andersen [130] provided evidence
that, during the delay period of a memory reach
task, monkey PRR represents motor goals, not sensory
memories. Relating these results to the spatial con-
stancy findings, it may be suggested that the
updating relates to the goal of a movement, not to a
pure sensory representation of the physical stimulus
Phil. Trans. R. Soc. B (2011)
location. Collins et al. [131] used saccadic adaptation
with pro- and antisaccades to visual stimuli to further
address the nature of the updated goal representation.
They found rightward saccade adaptation to transfer
to rightward antisaccades but not to leftward antisac-
cades, suggesting that the sensory coordinates of the
movement goal are updated. Recent results of Fernan-
dez-Ruiz et al. [132] are consistent with this notion.
Using fRMI, they showed that the movement-related
topography in the human PRR reverses when subjects
are adapted to left/right reversing prisms. Together,
the results of these studies indicate that the mechanisms
for spatial constancy in the motor system operate at an
abstract level, i.e. they update locations of movement
goals in sensory, gaze-centred coordinates, not the
sensory stimuli or the upcoming motor commands.
10. OPTIMAL INTEGRATION FOR
SENSORIMOTOR CONSTANCY
Finally, the question remains how the reviewed exper-
imental evidence using remembered target stimuli
relates to everyday life experience. In many daily
actions, targets do not disappear from the sensory
environment during the self-motion. For example,
one can view a cup of coffee in central vision, but
can pick it up after an intervening eye movement,
which has brought the cup into peripheral vision. In
such cases, re-afferent sensory feedback of the same
stimuli will become available after the self-motion,
e.g. after the saccade. Von Helmholtz suggested that
the sensory feedback and the internally updated
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information could be compared (‘subtracted’) to
detect a change of the sensory world, but ‘addition’
of the two sources of information might serve a
useful motor purpose [133]. More specifically, since
both bits of information are to some extent unreliable,
using them in combination could assist in obtaining a
better estimate of the state of the world. Within this
perspective, recent reports have suggested that Baye-
sian statistics may be a fundamental element in such
signal combination (see figure 7). This idea entails
that the brain processes the noisy neuronal signals in
a statistically optimal fashion, implementing the rules
of Bayesian inference [92,134–137]. In other words,
Bayesian models combine various sources of infor-
mation, taking into account their uncertainty, to
optimize performance in the context of optimal
observer theory. At the neural level, Ma et al. [138]
proposed recently a scheme for the implementation
of optimal statistical inference, suggesting that neurons
could accomplish Bayesian integration via linear
summation of unimodal inputs.

Vaziri et al. [133] tested reaches to visual targets that
were initially on the fovea, but saccadically brought to
the periphery, before the reach. The authors manipu-
lated the uncertainty of the post-saccadic peripheral
target information by varying the length of target
exposure. They reported evidence that the motor
system optimally integrates the updated spatial infor-
mation and the actual visual feedback: there was a
more precise estimate of the target location than
could be obtained from either source alone. Likewise,
Munuera et al. [139] showed that, in double-step sac-
cades, visual cues and efference copies of the first
saccade are combined. They asked subjects to perform
two eye movements in quick succession, and intro-
duced an artificial motor error by randomly moving
the target of the first saccade during the movement.
The extent to which the second saccade was corrected
for this visual feedback obeyed the Bayesian rules of
inference. It is noteworthy that Bayesian computations
have also been implicated in relation to perceptual
stability of items in a visual world, and their integration
and decay across saccadic eye movements ([140–142].
Whether these optimal integration principles also
apply to spatial constancy across more complex con-
ditions of self-motion, where visual, vestibular and
somatosensory signals as well as efference copies and
other forms of instantaneous motor feedback are
concurrently available, is still an open question
[135,143]. A complicating factor in these compu-
tations is that the feed-forward and feedback signals
are encoded in different reference frames, which
necessitate coordinate transformations before they
can be integrated [74].

While the Bayesian concept may provide a valuable
scaffolding to model signal combination for spatial
constancy, it is also worth stressing that other model-
ling approaches have been shown useful in dealing
with other aspects of spatial constancy. For example,
neural network studies have successfully modelled
the dynamic remapping of RFs [126,144–147], have
dealt with non-commutativity issues [96,148], and
have revealed a role of gain fields for coordinate trans-
formations [108,149,150].
Phil. Trans. R. Soc. B (2011)
11. CONCLUSION
In this paper, we have reviewed recent advances in the
understanding of the spatial constancy mechanisms for
motor control. The picture that emerges is drawn in
figure 7, which regards sensorimotor constancy as a
multisensory process, integrating efference copies,
motor feedback and other sensory signals to update
target locations, in an optimal fashion. The anticipat-
ory shifts of RFs in the LIP and FEF during
saccadic eye movements implicate these regions as
components of a forward internal model for updating
spatial movement goals in sensory (gaze-centred)
coordinates. Such feed-forward processes do not play
a role during passive body motion when updating is
entirely dependent on sensory feedback signals,
including visual, vestibular and other proprioceptive
signals. During active body translations, however,
both efference copies, in combination with a forward
model of body dynamics, and sensory feedback can
assist in the spatial updating of movement goals.
Despite all these new insights in mechanisms of spatial
updating, throughout this review we have listed
numerous questions that require further study. These
studies should not only address the neural correlates
and pathways of spatial updating, but should also
come up with new paradigms to reverse-engineer
the key computational processes that enable spatial
constancy for motor control.
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De Vrijer and Frank Leoné for many fruitful discussions and
critical comments on previous versions of this manuscript.
This work was supported by grants from The Netherlands
Organization for Scientific Research (VIDI: 452-03-307)
and the Human Frontier Science Programme Organization.
REFERENCES
1 Kant, I. 1781/1787 Critique of pure reason. A24/B38–9.

London, UK: Macmillan.
2 Andersen, R. A. & Buneo, C. A. 2002 Intentional maps

in posterior parietal cortex. Annu. Rev. Neurosci.
25, 189–220. (doi:10.1146/annurev.neuro.25.112701.

142922)
3 Colby, C. L. & Goldberg, M. E. 1999 Space and

attention in parietal cortex. Annu. Rev. Neurosci. 22,
319–349. (doi:10.1146/annurev.neuro.22.1.319)

4 Melcher, D. & Colby, C. L. 2008 Trans-saccadic
perception. Trends Cogn. Sci. 12, 466–473. (doi:10.
1016/j.tics.2008.09.003)

5 Prime, S. L., Niemeier, M. & Crawford, J. D. 2006
Transsaccadic integration of visual features in a line

intersection task. Exp. Brain Res. 169, 532–548.
(doi:10.1007/s00221-005-0164-1)

6 Vingerhoets, R. A., Medendorp, W. P. & Van Gisbergen,
J. A. M. 2008 Body-tilt and visual verticality perception
during multiple cycles of roll rotation. J. Neurophysiol.
99, 2264–2280. (doi:10.1152/jn.00704.2007)

7 Moser, E. I., Kropff, E. & Moser, M. B. 2008 Place
cells, grid cells, and the brain’s spatial representation
system. Annu. Rev. Neurosci. 31, 69–89. (doi:10.1146/
annurev.neuro.31.061307.090723)

8 Gibson, J. J. 1996 The senses considered as perceptual
systems. Boston, MA: Hougton Mifflin.

9 Bridgeman, B., Van der Hejiden, A. H. C. &
Velichkovsky, B. M. 1994 A theory of visual stability

across saccadic eye movements. Behav. Brain Sci. 17,
247–292. (doi:10.1017/S0140525X00034361)

http://dx.doi.org/10.1146/annurev.neuro.25.112701.142922
http://dx.doi.org/10.1146/annurev.neuro.25.112701.142922
http://dx.doi.org/10.1146/annurev.neuro.22.1.319
http://dx.doi.org/10.1016/j.tics.2008.09.003
http://dx.doi.org/10.1016/j.tics.2008.09.003
http://dx.doi.org/10.1007/s00221-005-0164-1
http://dx.doi.org/10.1152/jn.00704.2007
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1017/S0140525X00034361
http://rstb.royalsocietypublishing.org/


488 W. P. Medendorp Review. Updating during eye and body motion

 on June 18, 2012rstb.royalsocietypublishing.orgDownloaded from 
10 Descartes, R. 1644 Traité de l’homme. Paris, France.
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