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Do Fielders Know Where to Go to Catch the Ball or Only How 
to Get There? 
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Skilled fielders were filmed as they ran backward or forward to catch balls projected toward 
them from a bowling machine 45 m away. They ran at a speed that kept the acceleration of 
the tangent of the angle of elevation of gaze to the ball at 0. This algorithm does not tell 
fielders where or when the ball will land, but it ensures that they run through the place where 
the ball drops to catch height at the precise moment that the ball arrives there. The algorithm 
leads to interception of the ball irrespective of the effect of wind resistance on the trajectory 
of the ball. 

The everyday nature of the act of running to catch a ball 
can obscure the remarkable predictive ability that it re- 
quires. Figure 1 shows the trajectories of three balls pro- 
jected at 45 ° and approximately 22, 24, and 26 m/s toward 
a stationary fielder 45 m away. They will land 5 m in front 
of, at, or 5 m behind the fielder, respectively. The solid line 
shows the trajectory of each ball in the first 840 ms; the 
dashed line shows the rest of the flight. Within 840 ms, most 
competent fielders would have started running forward for 
the ball on the lower trajectory and backward for the ball on 
the higher trajectory. 1 Yet, the only difference between 
these two flights at this time is the difference between the 
longest and shortest solid lines. How is the fielder able to 
work out where to go from so little information? 

Precise calculation of the trajectory is not possible be- 
cause the essential ball flight parameters of projection angle, 
velocity, and wind resistance are available to the fielder 
only as, at best, crude estimates. Nor, given the infinite 
variation of trajectory, does it seem possible that learning to 
catch involves learning individual trajectories. An alterna- 
tive is that an algorithm exists that links the visual infor- 
mation obtained from watching the bali's flight to a running 
speed that will bring the fielders to the correct place, irre- 
spective of their starting position or the bali's trajectory. 
Learning to catch would involve the discovery of this 
algorithm. 
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Chapman (1968) analyzed the visual information avail- 
able to a fielder watching a ball approaching in parabolic 
flight. He showed that if a is the angle of elevation of gaze 
from the fielder to the ball, then the acceleration of the 
tangent of or, d2(tan a)/dt 2, will be zero if, and only if, the 
fielder is standing at the place where the ball will land. He 
also suggested that this might be the basis of an interception 
algorithm. A fielder who starts at a place other than where 
the ball will land and runs at a constant velocity that keeps 
d2(tan t~)/dt 2 at zero will arrive at the correct place to make 
the catch at the same time as the ball. 

However, because Chapman's (1968) work is based on 
the information provided by watching an object in parabolic 
flight, it is not clear what relevance it has to catching. Wind 
resistance ensures that objects in the real world do not 
follow parabolic trajectories. The departure from parabolic 
flight can be substantial at the speeds encountered in ball 
games. For example, Brancazio (1985) estimated that the 
effect of wind resistance on a well-hit baseball would be to 
reduce the horizontal distance traveled by up to 40% of the 
distance it would have achieved in parabolic flight. Further- 
more, given identical projection angle and initial velocity, 
different objects follow different trajectories because of 
their different wind resistances. If catching involves learn- 
ing an algorithm that links visual information to running 
speed, it must be one that works independently of the effect 
of wind resistance on trajectory. 

Given Brancazio's (1985) analysis, one might be tempted 
to think that demonstrations of geometrical relationships 
that could form the basis of algorithms for intercepting balls 
in parabolic flight have no relation to real catching. How- 
ever, a recent article has suggested otherwise. Michaels and 
Oudejans (1992) filmed two people running backward or 
forward to catch a ball. From the position of the catcher's 
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In the current study, for example, the fielder started running in 
the correct direction within 840 ms for 74% of catches. Michaels 
and Oudejans (1992) also found that catchers started to run shortly 
after the ball appeared. 
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Figure 1. The trajectories of three balls projected at 45* and a velocity (v) of 22.3, 24.0, and 25.7 
m/s, respectively, toward a fielder 45 m away. They experienced a deceleration due to aerodynamic 
drag proportional to v 2. The constant of proportionality was 0.007 m-  1, a value typical of objects 
such as cricket balls (Daish, 1972). 

head and of the ball, they were able to calculate the optic 
height of the ball throughout its flight. (The optic height is 
the position of the bali's image on an imaginary plane a 
fixed distance in front of the fielder's eye.) They showed 
that when fielders moved to make a catch, optic height 
increased with roughly constant velocity until just before 
the catch. Optic height is equivalent to the tangent of the 
angle of gaze, and constant velocity implies zero accelera- 
tion. Therefore, their result appears to offer support for 
Chapman's (1968) proposal that interception is ensured by 
running at a speed that maintains the acceleration of the 
tangent of the angle of gaze at zero. 2 

Before one concludes that Chapman (1968) was correct, we 
must elaborate on Michaels and Oudejans's (1992) result. 
First, their main experiment presented data from only 10 catch- 
es: 7 from one ridder and 3 from another. Second, they offered 
no statistical test of the linearity of the plots of optic height 
against time (i.e., of the claim that optic height increases at 
constant velocity). Third, although it is possible to fit a straight 
line by eye to the early parts of the plots of optic height against 
time for each catch, in the majority of catches there is a 
departure from linearity in the second half of the flight. 3 They 
did not show whether Chapman's strategy will lead to inter- 
ception (and that these deviations are unimportant) or whether 
the deviations are a necessary corrective process because 
Chapman's strategy does not actually get the fielder close 
enough to the ball to catch it (because of the effects of wind 
resistance). Finally, Michaels and Oudejans did not analyze the 
fielders' running velocity. Chapman's analysis requires not 
only that fielders should keep the velocity of optic height 
constant as they run but also that they find the constant running 
velocity at which this happens. If  Chapman's analysis explains 
how fielders get to the right place at the fight time, this 
condition must be met too. 

The aim of the experiments reported here was to extend 
Michaels and Oudejans's (1992) analysis of whether run- 
ning speed is controlled by an algorithm linked to some 
function of the angle of elevation of gaze to cover the four 

points above. We measured the running speed and the angle 
of elevation of gaze as skilled fielders ran to catch a ball. 
Successful interception usually requires the fielder to judge 
whether the ball is going to the left or the fight as well as 
whether it is going to drop in front or behind. Visual cues 
that are available to make the left-right judgment have been 
identified (Regan, Beverley, & Cynader, 1979; see also 
Regan, 1993; Regan & Kanshal, 1994). Like Michaels and 
Oudejans, we considered the remaining problem of whether 
the fielder should move backward or forward to catch the 
ball. For simplicity, all our experiments involved balls pro- 
jected in a vertical plane between the point of projection and 
the fielder so that the fielder did not have to move left or 
fight. The algorithm that we show that fielders use in this 
situation works equally well in the more general case where 
the fielder must decide whether to move left or fight as well 
as backward or forward. 

Exper iment  1 

Method 

Participants 

Six skillful ball catchers participated. One was a professional 
soccer player, 1 played cricket at the professional level, and the 
remaining 4 were keen amateur cricket players. All were male. 

2 Optic height and the tangent of the angle of gaze are mathe- 
matically equivalent quantifies, so the choice of one rather than the 
other may seem arbitrary. Angle of gaze is available directly to a 
fielder who looks at the ball; optic height is available directly to a 
fielder who maintains fixation on the point from which the ball 
was projected. Because fielders look at the bail when trying to 
catch it, not at the point of projection, it seems more appropriate to 
choose a function of the angle of gaze as the basis for the analysis. 

3 There is also a catastrophic departure, just before the catch, 
that occurs too late to be relevant to the question of how the fielder 
arrives at the right place to make the catch. 
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Catching 

The fielder stood approximately 45 m from a bowling machine, 
which projected a hard white ball into the air directly toward him 
at a projection angle of 45*. For different deliveries the speed was 
varied randomly over a range of about 20-25 m/s so that the ball 
would unpredictably go over his head or fall short, with a range of 
about -+ 10 m around his starting position. About 50 balls were 
fired at each fielder. He ran backward or forward or stayed where 
he was, trying to catch each ball. 

Measurement 

Fielder's position and velocity. Figure 2 shows a bird's-eye 
view of the experimental setup. The fielder ran backward and 
forward along an imaginary line between himself and the bowling 
machine to catch the ball. As he ran, he was tracked by a video 
camera. This had an electronic shutter, set to take images in 2 ms, 
producing a blur-free image of the fielder. Beyond the fielder was 
a wall marked in units of 36 cm. In frame-by-frame replay of the 
video, the position of the back of the fielder's head could be 
estimated to about ---5 cm on the wall. Given the distance between 
camera, fielder, and wall, this uncertainty in measurement corre- 
sponded to an estimate of the position of the fielder accurate to 
about --+3 cm. The fielder's position was sampled every 120 ms. 
The positional estimates from the frame-by-frame analysis were 
smoothed with a Hanning window, each position being recalcu- 
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Figure 2. The experimental setup as viewed from above. As the 
fielder ran to catch the ball, he was tracked by the video camera. 
Given that he was running in a straight line toward or away from 
the bowling machine, his real position could be calculated from the 
position that he had reached against the structured background. 

lated as half of itself plus one quarter of each of its immediate 
neighbors. The smoothed position estimates were differentiated to 
give the fielder's velocity. 

Position of the ball. The position of the ball in flight was not 
recorded on video (except in the final frames when the fielder was 
about to catch it), but it was possible to analytically estimate its 
position throughout the flight. The initial velocity and projection 
angle of the ball were known. The distance it traveled was known 
because its position was recorded on the video as it appeared 
against the structured background just before it was caught. The 
flight duration was known (to within +-.40 ms, the duration of the 
video frame) because a marker appeared on the video at the 
moment the ball left the bowling machine and the moment when 
the ball was caught was recorded on the video. 

These four values were used to compute the trajectory of the 
ball, assuming parabolic flight modified by an aerodynamic drag 
factor, proportional to the square of the bali's velocity. The value 
of the drag factor was estimated by finding the value that gave the 
lowest summed mean squared difference between observed and 
predicted values of flight distance and flight time. With the best fit 
value for wind resistance, the errors were about 3% in estimating 
flight duration and 1% in estimating flight extent. The values we 
obtained were similar to that given by Daish (1972) for a cricket 
ball. Given drag, initial velocity, and projection angle, it was 
possible to calculate the height of the bail and its distance from the 
bowling machine at any time during the flight. (A detailed account 
of the method is given in the article by Dienes and McLeod, 1993.) 

Angle of gaze. The initial positions of the fielder and the ball 
were known. The position of the fielder after Time t was measured 
from the video, and the position of the ball after Time t was 
calculated as described above. The angle of gaze from the fielder 
to the ball follows directly. 

Results 

Running Speed 

The left side of  Figure 3 shows six typical examples of  
running data from 1 fielder. His velocity as he ran to catch 
the ball  is plotted against time, each curve ending at the time 
when the ball  was caught. Each curve is labeled with the 
distance he ran, a negative sign indicating that he ran 
backward. (All  fielders showed qualitatively similar pat- 
terns. Combining data to show average running patterns, or 
to compute the variance of  the running patterns, is prob- 
lematic because the fielders ran different distances and 
paused for different lengths of  t ime before starting to run.) 

Figure 3 demonstrates two effects shown by all fielders. 4 
First, they were always moving when they caught the ball  
(except when they had no more than 1-2 m to cover to make 
the catch). (Although Michaels and Oudejans, 1992, did not 
comment on this effect, it can be seen from their Figure 4 
that they found the same result. In all of  the catches where 
the fielder moved more than about 2 m, she was moving 

4 The fielder shown in Figure 3 also showed one effect not 
shown by all fielders. He always took one or two steps forward 
before moving backward. This may reflect the fact that in cricket, 
deep fielders (i.e., ones fielding at some distance from the bat) 
usually walk toward the batsman as the ball is bowled. However, 
we do not know why some of our participants did this and others 
did not. 
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Figure 3. The left panel shows the fielder' s running speed as a function of time as he ran forward 
to catch balls 8•8, 5.5, or 2.7 m in front of his starting position or as he ran backward to catch balls 
2.8, 4•3, or 8.1 m behind his starting position. (He actually started running about 0.5 s after the ball 
appeared. His velocity is shown as greater than zero slightly earlier as a result of the smoothing 
algorithm being applied to the raw position data before the velocity was calculated.) The right panel 

2 2 shows d (tan ot)/dt, where t~ is the angle of elevation of gaze from the fielder to the ball. The solid 
line shows the value that we calculated the fielder saw as he ran with the velocity shown on the left 
of the figure; the dashed lines show the value that he would have seen if he had run at a constant 
velocity, which was either too fast or too slow so that he missed the ball by 2 m. 

when she caught the ball.) Thus, the fielder does not run to 
the point where the ball will fall and then walt for it but 
rather runs through the point where the ball will fall at the 
exact moment that it arrives there. A fielder who knew 
where the ball was going to fall would presumably run to 
that point and wait for it to arrive. So, it is possible that the 
fielder does not know where the ball will fall when running. 

This possibility suggests a solution to the problem, illus- 
trated by Figure 1, that when the fielder starts to run, there 
appears to be insufficient information to work out where the 
ball will land. This lack of  information is paradoxical if the 
fielder is assumed to know where the ball will land when 
starting to run. However, if it turns out that the fielder does 
not know where the ball will land, the problem disappears. 
There may be sufficient information in the first few hundred 

milliseconds of  the bali 's flight to tell the fielder in which 
direction to start running, even though there is not enough to 
tell where or when the ball will land. 

The second point made by Figure 3 is that the running 
patterns for different distances had nothing in common. 
Long runs involved continuous acceleration, medium dis- 
tances involved acceleration and then constant velocity, and 
short distances involved acceleration and then deceleration. 
The requirement of  Chapman's  (1968) analysis, that fielders 
should run at constant velocity, did not hold. A variant of  
Chapman's  proposal that might allow for this has been put 
forward by Babler and Dannemiller (1993)• They suggested 
that the fielder starts running at the constant velocity that 
zeros optic acceleration, as Chapman suggested. When, 
owing to the nonparabolic flight, optic acceleration starts to 
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increase or decrease, the fielder finds a new velocity that 
zeros it, and so on, repeatedly throughout the flight. The 
idea, in effect, is that a nonparabolic flight could be approx- 
imated by a series of  roughly parabolic sections. Thus, even 
a fielder following Chapman's  method might not run at the 
same speed throughout the catch. Although Babler and 
Dannemiller 's proposal seems intuitively reasonable, they 
gave no proof of  the effectiveness of  this algorithm. Nor 
does it resolve the problem, inherent in Chapman'  s strategy, 
of  how the fielder finds the constant running speed that 
results in zero optic acceleration. Whether the strategy could 
work in principle, it is difficult to see either of  the catches 
at the longest distance, with continuous acceleration 
throughout the flight, offering support even for this modi- 
fied version of  Chapman's  proposal. 

Angle of Gaze 

The right side of  Figure 3 shows the value of  d2(tan c0/dt 2 
(where ot is the angle of  elevation of  gaze from the fielder 
to the ball) that the fielder would have seen as he watched 
the ball during each run up to 240 ms before the catch was 
made. 5 It appears that he waited for about 0.5 s and then 
started to run, accelerating until he reached a speed where 
d2(tan a)/dt 2 = 0. Then, he modulated his speed up to the 
point of  catching the ball. If  he was running forward, he ran 
faster if d2(tan c0/dt 2 became negative and more slowly if it 
became positive, and if he was running backward, vice 
versa. 

Clearly, d2(tan a)/dt 2 is maintained close to zero, but is it 
close enough to ensure that the bail is caught? This can be 
assessed by considering what the value would be if the 
fielder just failed to reach the ball. Given that ann reach is 
about 1 m and allowing for a jump or lunge as the ball is 
caught, the fielder would just be unable to catch the ball if 
he was about 2 m away from the bail when it reached 
catching height. The dashed lines show the value of  d2(tan 
c0/dt 2 that the fielder would have observed had he run at a 
constant speed that would have taken him to a point either 
2 m short of  or 2 m beyond the place where the ball would 
fall. It can be seen that in every flight the value of  d2(tan 
a)/dt 2 actually experienced by the fielder would take him to 
less than 2 m from the place where the ball would fail. The 
deviations of  d2(tan ot)/dt 2 from zero were insufficient to 
prevent the fielder from intercepting the ball. 

To test the claim that d2(tan a)/dt 2 = 0, we plotted 
regression lines of  d2(tan a)/dt 2 against time, from the time 
when the fielder started running until 240 ms before he 
made the catch. For a random sample of  15 successful 
catches by the fielder whose data are shown in Figure 3, the 
medians of  the absolute values of  the intercepts and the 
slopes of  these regression lines (i.e., taking the median of  
the absolute value and ignoring the sign) were 0.02 s -2 
(signed range from - 0 . 0 7  to 0.07) and 0.02 s -3 (signed 
range from - 0 . 0 4  to 0.10), respectively. In only one flight 
was the value of  either slope or intercept reliably different 
(at the 5% level) from zero. A random sample of  27 suc- 
cessful catches from the other fielders showed a similar 

result: The median values of  the absolute intercepts and 
slopes were 0.04 s -2 (signed range from - 0 . 0 8  to 0.09) and 
0.04 s -3 (signed range from - 0 . 0 4  to 0.09), respectively. 
Only 2 of  the catches gave either a slope or an intercept 
reliably different from zero. 

Expe r imen t  2 

Experiment 1 showed that when the fielder had less far to 
run he ran more slowly, rather than running to the point 
where the ball would fall and waiting for it (see the running- 
speed data in Figure 3). If  he knew where to go, running 
more slowly and arriving just in time to catch the ball would 
seem a pointlessly risky strategy. Why not go to the right 
place and wait? However, if the fielder does not know 
where the ball will land but is following a strategy that will 
get him to the right place at the right time, it is inevitable 
that he will run more slowly if he has more time. Experi- 
ment 2 was a direct test of  this possibility. 

Me~od 

The projection angle of the ball was increased to 640 . With an 
initial projection velocity of 24 m/s, it now fell about 36 m from 
the bowling machine, a distance similar to the balls projected at 
45 ° and 20 m/s in Experiment 1. However, because the trajectory 
was higher, the ball took longer to get there. If the fielder knew 
where he was going, he could go there and wait for the ball on the 
higher, longer trajectory. But if he was following a strategy that 
would lead him to arrive at the same time as the ball, he would run 
more slowly. 

Results 

Running Speed 

Figure 4 (upper panel) shows the fielder's speed for six 
different catches as he ran 8 - 1 0  m to catch the balls on the 
two different trajectories. The upper curve shows his mean 
speed for three catches when the ball was projected at 450; 
the lower curve shows his mean speed for three catches 
when the ball was projected at 64 ° . The bars show the range 
of  speed over the three runs. It can be seen that the sepa- 
ration of  the curves representing the means is an accurate 
reflection of  the individual catches because there is no 
overlap between the individual curves from the two groups. 
The curves end at the point where the fielder made the 
catch. In both cases, he arrived at the point where the ball 
fell at the same time as the ball (i.e., he had a positive 
velocity at the moment that he made the catch). With the 

5 Like Michaels and Oudejans (1992), we usually found a cat- 
astrophic jump in d2(tan ct)/dt 2 over the last two data points. The 
sudden change in a that gave rise to this effect was caused, at least 
in part, by the fact that the ball was not caught at the point that was 
taken to represent the origin of the fielder's angle of gaze. The 
sudden change in a may well have had some role in the terminal 
reach adjustment immediately before the catch, but it occurred too 
late to be relevant to the question of how the fielder got close 
enough to the ball to make the catch, so we ignored it. 
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Figure 4. The fielder ran to catch balls landing 8-10 m in front 
of him. The ball had an initial projection angle of 45* (flight time 
about 3 s) or 64* (flight time about 4 s). The top panel shows the 
fielder's running speed as a function of time as he ran to catch the 
ball. Each curve is the mean of three runs. The bars show the range 
of velocities across the three runs. In the bottom panel, the solid 
lines show d2(tan a)/dt 2 for each run, and the dashed lines show 
what the value would have been if he had run at constant velocity 
to a point 2 m short of or 2 m beyond the point where the ball fell. 

longer trajectory, he ran more slowly. This finding supports 
the conclusion of Experiment 1: The strategy he used got 
him to the right place at the right time. However, it does not 
appear to tell him where that place is in advance. 

Angle of Gaze 

Figure 4 (lower panel) plots the value of d2(tan t~)/dt 2 for 
each run. The solid lines are the values of d2(tan c0/dt 2 that 
the fielder would have seen as he ran (averaged over the 
three flights). The dashed lines show what he would have 
seen if he had run at constant velocity to a point 2 m short 
of or 2 m beyond the place where the ball fell. 

The upper panel of Figure 4 shows that two quite different 
running patterns were produced to get the fielder to the 
same place when the bali's trajectory was changed. What 
they have in common is that the fielder ran at a speed that 
kept d2(tan ot)/dt 2 close to zero. Regression lines of d2(tan 
ot)/dt 2 against time, plotted for the individual catches, show 
only one catch for which either intercept or slope was 
reliably different from zero. For the 45 ° projection angle, 
the medians of the absolute values of the intercepts and the 
slopes were 0.04 s -2 (range from -0 .07  to 0.04) and 0.02 
s - °  (range from 0.02 to 0.04), respectively. For the 64* 
projection angle, the medians of the absolute values of the 
intercepts and the slo~aes were 0.07 s -2 (range from -0 .07  
to 0.09) and 0.04 s -°  (range from -0 .04  to 0.05), respec- 
tively. 

Conclusion 

The fact that the fielders did not use spare time to run to 
the place where the ball would fall and wait suggests that 
they did not know where it would fall. However, the exper- 
iments did not directly test the fielders' knowledge of where 
the ball would fail. It can be concluded that the algorithm 
fielders use to intercept the ball is one that ensures they 
arrive at the right place at the right time but does not tell 
them where or when that is. Whether fielders know where 
the ball will land but choose not to use this information as 
they run to catch it is a possibility that awaits further 
experimentation. 

Missing the Ball 

We claim that fielders use the sign of d2(tan a)/dt 2 as the 
input to a servo that controls running speed. When running 
backward, they speed up when it is positive and slow down 
when it is negative, and when running forward, vice versa. 
This strategy is illustrated by seeing what happens when a 
fielder fails to run fast enough to catch the ball. Figure 5 
compares two catches where the bail landed in roughly the 
same place, about 6 m behind the starting position of the 
fielder. In one case (open circles), he successfully caught 
the ball; in the other (filled circles), he started running 
backward too slowly, and the ball went over his head, just 
out of reach of his outstretched hand. 

The upper panel of Figure 5 shows his velocity. For the 
successful catch, he initially accelerated backward, eventu- 
ally decelerated, and maintained an approximately constant 
velocity until he made the catch. In the unsuccessful case, 
he was slower to start and accelerated more slowly but 
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Figure 5. Velocity and d2(tan ~)/dt 2, as in Figure 3, for two 
catches where the fielder ran backward. Open circles represent that 
he caught the ball; filled circles represent that the bail went over 
his head. 

continued to accelerate throughout the flight of  the bail. 
Why did he produce these different running patterns? 

The lower panel of  Figure 5 shows d2(tan ct)/dt 2 for each 
flight. In both cases, the value started positive (because the 
bail was going over the fielder's head) and increased (be- 
cause the fielder was initially stationary). Once the fielder 
started to run in the appropriate direction, the value came 
down. For the successful catch (open circles), it reached 
zero, so he stopped accelerating. For the unsuccessful catch 

2 2 (filled circles), d (tan a)/dt remained positive throughout 
the flight, so the fielder continued to accelerate but to no 
avail. He started too late and could not run fast enough to 
intercept the ball. 

Genera l  Discuss ion  

We manipulated the time that a fielder had to run for a 
catch in two ways. We made the bail fall nearer to or farther 
from him (Experiment 1); we made it land at the same place, 
but it took longer to get there (Experiment 2). In both 
experiments there were apparently complex changes in the 
fielder's running speed (see Figures 3 and 4). But in all 
cases one thing remained constant: He ran at a speed that 
kept the acceleration of  the tangent of  the angle of  elevation 
of  gaze close to zero. This result was predicted by Chapman 
(1968). But we know that Chapman's  analysis cannot be 
correct. First, it is based on the information available from 
watching a parabolic flight. The bails in this experiment 
were thrown sufficiently fast to have departed considerably 

from parabolic flight. 6 Second, Chapman's  algorithm as- 
sumes that fielders run at constant velocity. Figures 3 and 4 
show that typically they do not do so. 

A possible resolution is Babler and Dannemiller 's (1993) 
suggestion that these two problems are linked. They pro- 
posed that as the flight departs from parabolic, the fielders 
adjust their running velocity, finding a series of  new values 
of  constant velocity throughout the flight successively ze- 
roing out optic acceleration. But a fundamental problem still 
remains. To discover that Chapman's  (1968) strategy works 
requires people to view parabolic flights (which they never, 
in fact, experience) while running at one particular constant 
velocity (or set of  constant velocities, if we adopt Babler & 
Dannemiller's, 1993, argument). The value of  the constant 
velocity (or set of  velocities) would be different for every 
flight they experienced. The implausibility of  anyone ever 
discovering that Chapman's  algorithm led to interception, 
coupled with the fact that most children learn to catch just 
by watching bails in flight, suggests the need for a different 
approach. 

H o w  to Intercept  a Ball  

Consider Figure 6a. A bail is failing, watched by a fielder. 
The angle of  elevation of  gaze from the fielder to the ball is 
a. The height of  the ball above the ground is y, and the 
horizontal distance from the fielder to the bail is x. The 
requirement for intercepting the ball before it hits the 
ground is simple: As y ~ 0, x ~ O. That is, as the ball drops 
to the ground, the fielder reaches the place where it drops. 
This is illustrated in Figures 6b and 6c, where the fielder 
closes in on the bail (x ~ 0) as it fails (y ~ 0). If  both x and 
y ~ 0 together, a will always be positive but less than 90 °, 
that is, 0 ° < ct < 90 °. I f  the fielder fails to intercept the ball, 
one of  two things must happen: Either it falls in front of  
him, in which case a <- 0 ° (Figure 6d) or it goes over his 
head, in which case ct >-- 90 ° (Figure 6e). 7 

The conditions for intercepting or, aiternatively, failing to 
reach the ball are surprisingly simple: If  the fielder runs at 
a speed that ensures that the angle of  gaze is greater than 0 ° 
but less than 90 ° throughout the flight, the bail will be 
intercepted. If  the angle of  gaze reaches either 0 ° or 90 °, the 

6 For example, the bail projected at 64 ° and 24 m/s in Experi- 
ment 2 traveled 36 m. In parabolic flight, it would have traveled 
about 46 m. 

7 Strictly, this is true only if balls can only be caught just in front 
of the eyes--the point from which the angle of elevation of gaze 
is measured. Of course, fielders can stretch their arms forward and 
catch a ball a few feet in front of them, despite the fact that t~ has 
gone to 0 °, or catch one going just over their head, when c~ will 
have reached 90*. However, in cricket at least, fielders prefer to 
catch a bail that has been hit high in the air just in front of their 
eyes (see, e.g., Richards & Murphy, 1988, p. 127). They stretch 
their arms out to catch the ball as a last moment adjustment only 
if they have failed to get to the right place. We based our analysis 
on the assumption that fielders are endeavoring to run to the 
optimum place for catching, realizing that some other algorithm 
also exists to control the ann movements that allow for a correc- 
tion just as the ball arrives if they fail to reach the ideal point. 
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Figure 6. The conditions for intercepting or missing the ball. (a) o~ is the angle of elevation of gaze 
as the fielder watched the ball. If  the fielder ran at a speed that kept a positive but less than 90 ° as 
the ball fell (b and c), it would be intercepted. If  a fell to 0 ° or reached 90 °, the ball would not be 
intercepted because it would have fallen in front (d) or gone over the fielder 's head (e). 
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ball will be missed (with the exception mentioned above of 
a ball within reach of an outstretched hand). This is illus- 
trated in Figure 7, which shows the angle of gaze for the 
fielder in Figure 1 watching the flight of the balls on the 
three trajectories shown there. (Figure 7 shows the angle of 
gaze for a stationary fielder. If the fielder ran to catch the 
ball, unsuccessfully in the case of the ball landing in front of 
or behind him or successfully in the case of the ball landing 
in his hands, the picture would be qualitatively similar.) The 
angle of elevation of gaze, a, starts at zero in each case and 
increases as the fielder watches the ball rising in the air. For 
the ball that will land in his hands, ot continues to increase 
throughout the flight. But the rate of increase slows down as 
the flight progresses, and ot never reaches 90 °. For the ball 
that will fall in front of him, ot reaches a maximum, starts to 
decrease, and accelerates back toward zero. For the ball that 
will go over his head, a accelerates throughout the flight, 
reaching 90 ° as the ball passes over his head. Although the 
exact way that ot changes throughout the flights will, of 
course, vary with angle and velocity of projection and the 
wind resistance of the object, this general pattern is shown 
for all flights. For any flight that the fielder misses, a 
reaches either 0 ° or 90°; for any flight that is intercepted, 
00 < a < 90 ° throughout the flight. 

Why Running so That d2(tan t~)ldt 2 = 0 Results in 
the Ball Being Intercepted 

The reason why running at a speed that keeps d2(tan 
a)/dt 2 = 0 leads to interception can be understood by 
considering the usual case where the fielder starts to run 
while the angle of elevation of gaze is increasing; a, and 
thus tan a, will be positive and increasing when the fielder 
starts. If the fielder runs at a speed that keeps d2(tan a)/dt 2 
= 0, tan a must be positive and finite at the end of the flight 
(i.e., 0 < tan a < 0% Because tan 0 ° is 0 and tan 90* is oo, 
it follows that a will lie between 0 ° and 90 ° at the end of the 
flight. But this is the condition for intercepting the ball. 
Therefore, if the fielder can run fast enough to keep d2(tan 
a)/dt 2 = 0, the ball will be intercepted. 8 

Chapman and de(tan ot)/dt e 

Chapman (1968) demonstrated a curious geometrical re- 
lationship. If a fielder runs toward the place where a ball in 
parabolic flight will fall at the constant velocity that will 
cause him or her to arrive at the same time as the ball, d(tan 
a)/dt will be constant throughout the run. Because, by 
definition, Chapman's fielder successfully intercepts the 
ball, this observation has sometimes been seen as offering a 
solution to the problem of how to catch the ball. The fact 
that Michads and Oudejans (1992; and now we) have 
shown that d(tan t~)/dt is constant, that is, d2(tan o0/dt 2 = 0, 
as fielders run is seen as support for this belief. 

Chapman's (1968) observation is geometrically correct, 
but it does not offer a solution to the problem facing the 
fielder. To run at constant velocity to the interception point 
requires the fielder to know, when he or she starts, what 

distance must be run in what length of time. Running at 
constant velocity thus requires the fielder to know where 
and when the ball will land. So Chapman's observation does 
not lead to a solution to the problem of intercepting the ball 
because it requires the ridder to know the answer (i.e., 
where and when the ball will land) before it can be imple- 
mented. 

An alternative way of construing Chapman's (1968) ob- 
servation into a solution of the problem facing the fielder is 
to turn it round. If the fielder runs so as to keep d(tan a)/dt 
constant at one particular value, velocity will turn out to be 
the one constant velocity that produces interception. The 
problem with this is that the crucial value of d(tan a)/dt 
would be different for every ball trajectory and every start- 
ing position. There is no reason to believe that the fielder 
could know all these values. (There is also the empirical 
problem for this approach that people do not run at constant 
velocity!) 

Although we agree with Chapman (1968; and with 
Michaels & Oudejans, 1992) that a crucial part of the 
fielder's strategy involves keeping d2(tan a)/dt 2 at zero, our 
interpretation of what the fielder is doing is entirely differ- 
ent from theirs. We believe that keeping d(tan ot)/dt constant 
leads to interception because it keeps a between 0 ° and 90 °, 
not because it produces the one constant running velocity 
that will produce interception. Chapman showed that inter- 
ception would occur if the fielder kept the one value of d(tan 
u)/dt constant that produces constant running speed. In fact, 
a fielder who keeps any value of d(tan ot)/dt constant will 

intercept the ball (see Dienes & McLeod, 1993), but only 
the "Chapman" value for any given flight will result in a 
constant running velocity. 

Once one realizes that any constant value of d(tan a)/dt 
will produce interception, the problem for the fielder, in- 
herent in Chapman's (1968) strategy, of knowing the crucial 
value of d(tan a)/dt disappears. The fielder, having sighted 
the ball for long enough to have generated a value of d(tan 
o0/dt (which will be different for different trajectories), 
simply has to run at a speed that keeps it constant. This 
speed will usually vary during the run. If the fielder waits a 
little longer before starting to run, the initial value of d(tan 
a)/dt will change, and a different running pattern will result. 
But the ball will still be intercepted if the fielder can run fast 
enough to keep d(tan a)/dt constant. 

Alternative Strategies 

Interception will occur provided the fielder ensures that 
0 ° < a < 90 ° throughout the bali's flight. The strategy that 
skilled fielders appear to use, keeping d2(tan a)/dt 2 at zero, 
has been shown to be a very effective strategy for doing this. 
It works for any trajectory and whatever the time the fielder 
starts running, provided the ball has a horizontal velocity 

s Surprisingly, this strategy usually leads to interception even if 
d(tan a)/dt < 0 (i.e., the hall is already falling) when the fielder 
starts to run. Proof of this and an analysis of the conditions when 
the strategy will not work can be found in Dienes and McLeod 
(1993). 
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Figure 7. 
Figure 1 watched the flights of the ball falling in front (1), at (2), or going overhead (3). 

How the angle of elevation of gaze, a, varied with time as the stationary fielder in 

component toward the fielder (Dienes & McLeod, 1993). 
However, it might seem unnecessarily complex. We exam- '  
ined two strategies that might seem simpler and thus more 
plausible but showed that they were not as effective. 

Constant a 

The simplest strategy for ensuring that ot lies between 0 ° 
and 90 ° is to maintain a constant t~. Maintaining a constant 
a is equivalent to keeping d(tan a)/dt rather than d2(tan 
a)/dt 2 at zero. 

In games like cricket and baseball, the ball is seldom in 
the air for more than a few seconds. So one limit on the 
ability of fielders to catch the ball is set by how far they can 
run while the ball is in the air. The sooner fielders start 
running in the fight direction, the farther they will be able to 
run in the time available. Thus, the most effective strategy 
is the one that gets the fielder running in the fight direction, 
at the highest speed, soonest. 

Figure 8 shows the flight of a ball that will fall in front of 
the fielder. To intercept it, the fielder must run forward. A 
fielder who tries to ensure interception by maintaining a 
constant angle of gaze (see Figure 8a) will start by running 
in the wrong direction. As the ball descends, the fielder will 
then have to change direction, recovering lost ground before 
starting to make any progress from the original starting 
position to the place where the ball will land. Obviously a 
more effective strategy is one that sends the fielder in the 
correct direction immediately. To do this, the angle of gaze 
must be allowed to increase (see Figure 8b). 

The same argument applies if the ball is going to land 

behind the fielder. A fielder who maintains a constant angle 
of gaze will pass the place where the ball will land and have 
to run back to it (see Figure 9a). In contrast, a fielder who 
allows the angle of gaze to increase throughout the flight 
can arrive at the place to make the catch without overshoot- 
ing it (see Figure 9b). 

Constant d( a )/dt 

The analysis described above shows the importance of 
allowing a to increase. One way to accomplish this is to run 
so that d(a)/dt remains constant, that is, keeping d2(~t)/dt 2 
rather than d2(tan a)/dt 2 at zero. 

The problem with letting a increase is the danger that it 
will exceed 90 °. Dienes and McLeod (1993) showed, for 
example, that allowing a to increase at constant velocity led 
to fielders running back too slowly to catch balls that were 
going over their heads on trajectories that we know, exper- 
imentally, skilled fielders would catch. Keeping d2(ot)/dt 2 at 
zero allows a to exceed 90 ° before the fielder reaches the 
place where the ball can be caught. Keeping d2(tan ot)/dt 2 at 
zero also allows ct to increase. However, because tan tx 
grows more quickly than a, the rate of increase slows down 
as a increases. Because tan c~ grows more and more quickly 
as a approaches 90 °, keeping d2(tan ct)/dt 2 at zero ensures 
that the rate of increase of ct slows more and more as t~ 
increases. Thus, provided the fielder can run fast enough to 
keep d2(tan ot)/dt 2 at zero, this strategy ensures that tx will 
never exceed 90 ° . 

The way that the strategy followed by expert fielders 
allows tz to increase but slows down the rate of increase as 
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Figure 8. Two strategies for interception when the fielder should run forward. (a) Keeping the 
angle of elevation of gaze constant is a poor strategy because it can send the fielder in the wrong 
direction. (b) Allowing the angle of gaze to increase ensures that the fielder moves in the right 
direction. 

a increases can be seen by plotting the value of t~ against 
time for the six catches shown in Figure 3. This is shown in 
Figure 10. The reduction in the rate of increase of a as ct 
increases is demonstrated by the highly significant quadratic 
component to multiple regressions of a on t (p < .001 for 
each catch). This shows that fielders do not keep d(a)/dt 
constant as they run. Thus, as complex as the strategy of 
keeping d2(tan ot)/dt 2 at zero might seem, there are good 
reasons for both elements of it to have evolved. 

What Do Children Learn? 

Children who are learning to catch start by watching balls 
thrown toward them while standing still. Since 0 ° < ct < 

90 ° will be true of all flights that land in their arms, and only 
those flights, it would not be surprising if they discovered 
the importance of this relationship. It seems reasonable to 
assume that they might try to use this fact when they have 
to start running for the ball. That is, they will try to keep 
0 ° < a < 90* as they run. 

But why should they discover that maintaining d2(tan 
ot)/dt 2 at zero is an efficient way of keeping 0 ° < a < 90°? 
Extending the original observations of Chapman (1968) 
about watching parabolic flights, Dienes and McLeod 
(1993) showed that for a stationary fielder, at any point in 
the bali's flight and whatever its trajectory (i.e., independent 
of the effects of wind resistance), the sign of dE(tan a)/dt 2 is 
almost always negative if the ball will land in front of the 
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Figure 9. Two strategies for interception when the fielder is running backward. (a) Keeping the 
angle of elevation of gaze constant is an inefficient strategy because it will send the fielder past the 
point where the catch can be made. (b) Allowing the angle of gaze to increase avoids this problem. 

observer and almost always positive if it will land behind 
the observer. 9 So the fact that d2(tan ct)/dt 2 is correlated 
with the catchability of a ball flight is available to the 
stationary child. Whether mere exposure is sufficient to 
allow acquisition of this fact is a question that remains to be 
answered. 

Are People Really Computing d2(tan a)/dt2? 

Our data support those of Michaels and Oudejans (1992) 
in suggesting that competent catchers have discovered the 

2 2 effectiveness of keeping d (tan a)/dt at zero as the basis for 
an interception strategy. Of course, our data do not indicate 
how the computational problem of keeping d2(tan a)/dt 2 at 
zero is solved. Skepticism about the conclusion might stem 
from the feeling that d2(tan ot)/dt 2 does not seem a partic- 
ularly likely quantity for the nervous system to represent. 

Todd (1981) showed that if participants knew the actual 
size of the ball and the acceleration due to gravity, zeroing 
an expression involving the second power of the optic size 
of the ball was equivalent to maintaining d2(tan t~)/dt 2 at 
zero in vacuo. Direct extension of Todd's analysis shows 

that the wind resistance problem can be overcome by using 
an expression involving the third power of optic size and the 
square of its first derivative. However, given that fielders 
start running almost immediately to catch balls thrown from 
distances of more than 50 m, an approach requiting acute 
sensitivity to optic size seems implausible. It is possible that 
fielders do not compute tan a at all. If  they were to reduce 
a maintained value of d(a)/dt in a systematic way as o~ 
increased (as described in Dienes & McLeod, 1993), this 
would keep d2(tan a)/dt 2 at zero. 

Another problem with the strategy of maintaining d2(tan 
o0/dt 2 at zero is that the visual system is generally not 
particularly sensitive to acceleration. However, both Babler 
and Dannemiller (1993) and Tresilian (1995) have shown 
that the performance reported by us and by Michaels and 
Oudejans (1992) can be achieved by a system with the 
limitations of the human visual system. 

9 The limitations that lead to the qualifications almost and usu- 
ally are described in detail in Dienes and McLeod (1993). 
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Figure 10. Angle of gaze as a function of time for the six 
catches shown in Figure 3. The numerical label shows how far (in 
meters) the catcher ran to make the catch. A negative sign indicates 
that he ran backward. 
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