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The execution of a simple pointing task invokes a chain of processing
that includes visual acquisition of the target, coordination of multimodal
proprioceptive signals, and ultimately the generation of a motor com-
mand that will drive the finger to the desired target location. These pro-
cesses in the sensorimotor chain can be described in terms of internal
representations of the target or limb positions and coordinate transfor-
mations between different internal reference frames. In this article we
first describe how different types of error analysis can be used to identify
properties of the internal representations and coordinate transformations
within the central nervous system. We then describe a series of experi-
ments in which subjects pointed to remembered 3D visual targets under
two lighting conditions (dim light and total darkness) and after two dif-
ferent memory delays (0.5 and 5.0 s) and report results in terms of variable
error, constant error, and local distortion. Finally, we present a set of sim-
ulations to help explain the patterns of errors produced in this pointing
task. These analyses and experiments provide insight into the structure of
the underlying sensorimotor processes employed by the central nervous
system.
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1 Introduction

Assessment of errors in pointing toward visual targets has long been used
to study the neural control of movement. Sherrington (1918), and later Mer-
ton (1961), used observations about eye movement accuracy to argue for
or against a role of eye muscle proprioception in oculomotor control. Mer-
ton recognized the importance of measuring response variability (variable
error), rather than mean error (constant error), to assess the performance of
the sensory motor chain. More recently, analyses of constant and variable
pointing errors have been used to identify the sources of information that
contribute to the internal representation of a memorized target position (Fo-
ley & Held, 1972; Prablanc, Echallier, Komilis, & Jeannerod, 1979; Poulton,
1981; Soechting & Flanders, 1989a; Darling & Miller, 1993; Berkinblit, Fook-
son, Smetanin, Adamovich, & Poizner, 1995; Desmurget, Jordan, Prablanc,
& Jeannerod, 1997; Baud-Bovy & Viviani, 1998; McIntyre, Stratta, & Lac-
quaniti, 1997, 1998; Lacquaniti, 1997). Recently, we have proposed a third
measure of pointing errors, called the local distortion, which we have used to
characterize neural mechanisms involved in pointing to visually presented
3D targets. In this article, we set out to formalize the relationship of these
three different measures of pointing error. We then apply these measures to
the analysis of errors observed in a 3D pointing experiment (the data have
been previously reported in McIntyre et al., 1998). Finally, through a set of
simulations, we show how the analysis of pointing errors can contribute to
the understanding of the neural processes involved in pointing.

2 Local Distortion

As a complement to the standard measures of constant and variable er-
rors, we propose an additional measure, which we call local distortion. Local
distortion describes the mapping of spatial relationships between nearby
points as data are transformed between coordinate systems. Consider a cir-
cular array of targets (see Figure 1a, open circles). The mean position of re-
peated movements to each target creates an array of final pointing positions
(filled circles in Figure 1). If the sensorimotor transformation is accurate, the
array of mean final positions should reproduce exactly the spatial relation-
ships between the individual targets of the array. The measurement of local
distortion refers to the fidelity with which the relative spatial organization
of the targets is maintained in the configuration of final pointing positions,
independent of displacement of the entire array. If the constant error in the
mapping from target to end point position is the same for all eight targets,
the array of final pointing positions will be an undistorted replica of the
target array, even though it may be displaced by a large, constant error
common to all targets (see Figure 1b). On the other hand, differences in
the mapping of individual targets can result in a distorted representation
of the target array within the pattern of final pointing positions. This dis-
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Figure 1: Definition of local distortion. An undistorted representation of the
relative target positions is reproduced in the final pointing positions (closed cir-
cles) if errors in transformations are absent (A) or restricted to biases common
to all targets (B). Distorted end point configurations may be produced by inac-
curate transformations, resulting in expansion (C), contraction (D), anisotropic
expansion and/or contraction (E, F). Rotations (G) or reflections (H) may also
appear, with or without accompanying expansion or contraction.

tortion can manifest itself as an expansion or contraction of the local space
(see Figures 1c and 1d), and the expansion or contraction may be unequal
for different dimensions, resulting in an anisotropic distortion of the target
array (see Figures 1e and 1f). The transformation from target to end point
position might also include a rotation or reflection of the local space, either
alone or in combination with local expansion or contraction (see Figures 1g
and 1h).

The transformation from target to final pointing position will in general
be a nonlinear process in which the binocularly acquired target position
is transformed into an appropriate joint posture. For a small area of the
workspace, however, one would expect the transformation to be continu-
ous and smooth. In this case, local distortions of the spatial organization
of the targets can be approximated by a linear transformation from target
to end point position. Such linear approximations can be described by a
transformation matrix, which can be presented graphically as an oriented
ellipse (ellipsoid in 3D). Figures 1a–1h show the representation of each type
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of distortion as an ellipse. The ellipse encompasses the area that would be
occupied by a circular array of targets after passage through the transforma-
tion. Note that an ellipse cannot be used to indicate or assess the presence of
rotations or mirror reflections within the local transformation. The ellipses
in Figures 1f and 1g, for instance, are identical, although they result from two
different distorted transformations. However, if the absence of rotations or
reflections in the local transformation can be demonstrated independently,
the graphical presentation of the local transformation as an ellipse provides
an intuitive and unambiguous visual representation of local distortions in
the mapping from target to end point positions.

3 Sources of Error

Conceptually, one can identify two distinct components in the processes
leading from target localization to end point specification during a reach-
ing or pointing task: (1) internal representations of the target location and
(2) transformations of information between internal representations. For in-
stance, the encoding of a target’s projection on the retina, the eyes’ position
in the orbit, and the head’s position with respect to the trunk all consti-
tute potential internal representations, while the combination of these three
sources of information into a (hypothetical) representation of the target lo-
cation with respect to the body would involve a coordinate transformation.
The three measures of error defined above can be used to identify the char-
acteristics of these different components within a sensorimotor pathway.

Consider, for example, an idealized system that converts a 2D Cartesian
target location into an internal polar representation, then back into a 2D
Cartesian end point position (see Figure 2). In this hypothetical system,
we have three representations of the target position (the Cartesian input
and output plus the polar intermediate representation) and two coordinate
transformations. By tracking the effects of bias, noise, and distortions as
information passes through this system, one can see how each of these effects
can be observed in measurements of error at the output and, conversely, how
measurements of error at the output can be used to identify the internal
structure of the system.

3.1 Bias. The observation of constant errors at the output of a sensori-
motor transformation suggests the presence of bias in an internal represen-
tation of the target position or motor command. Patterns of constant error
might therefore indicate the coordinate system of the biased internal rep-
resentation. If the bias is assumed to occur in only one channel of a given
coordinate system (an unlikely assumption), the patterns of constant error
seen for different workspace regions would indicate the orientation of that
internal coordinate system with respect to the world. For example, a con-
stant bias in the estimated distance of the target position would generate
a radial pattern of constant errors in the final pointing positions (see Fig-
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Figure 2: Model system for demonstrating the relationship between variable
error, constant error, and local distortions. The model converts a 2D target posi-
tion into an internal polar representation, then back to a 2D Cartesian pointing
position.

Figure 3: (A) Pattern of constant error (undershoot) for pointing to six different
targets (closed circles) induced by a fixed bias in the estimate of target distance.
Constant errors (arrows) point toward the origin (open circle) of the polar coor-
dinate system. (B) Pattern of constant error induced by a fixed bias in both the
target distance and along the x-axis in the output stage. In this case, the con-
stant error vectors do not point directly toward the origin of the internal polar
representation, but rotate around the y-axis.

ure 3A). The existence of such a pattern of errors would therefore provide
evidence for the internal polar representation of our model system. Fur-
thermore, the constant error vectors would point to the origin of the polar
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coordinate frame. However, bias is not likely to be restricted to a single co-
ordinate axis, and biases in different coordinate frames can add, resulting in
a potentially confusing array of constant errors in the workspace (see Fig-
ure 3B). Nevertheless, if biases in the system depend on only the workspace
location, rotation of the constant error vectors around a single workspace
axis would still argue for an internal polar representation of the target posi-
tion. Parallel constant errors, on the other hand, would indicate a Cartesian
representation that for our model system would correspond to bias in either
the input or output stages.

3.2 Random Noise. The measurement of the variable error can detect
the presence of random noise added at any of the stages of a sensorimotor
transformation and thus reveal features of the internal representation of the
target location or intended movement. Random noise should be statistically
independent between two truly separate channels of information. If the
level of noise is greater in one channel than another, the eigenvectors of
the covariance matrix will indicate the directions of maximal and minimal
variance, and if the two channels are orthogonal, they will thus reveal the
local spatial orientation of the underlying independent channels. Changing
patterns of variable error across different workspace regions can indicate
the existence and the origin of an internal data representation. For instance,
in our model system, a greater level of variability in the estimate of target
distance versus direction1 would result in a radial pattern of variable error
eigenvectors, as seen in Figure 4a.

In a multistage transformation, noise added at different stages in the
sensorimotor chain may add to form complex patterns of variability at the
output. The orientation of anisotropic noise at the output will depend on
the relative magnitude of noise at the different intermediate stages. For in-
stance, the radial pattern of variable error produced by noise in the polar
representation will become progressively more parallel in the vertical direc-
tion as more and more noise is added to the Y channel in the output stage
(see Figures 4d and 4g). Adding noise to the X output channel will cause the
variable error ellipses to widen, ultimately resulting in ellipses that are hor-
izontally oriented (see Figure 4c). This occurs after passing through a point
where anisotropy in the polar and Cartesian representations cancels to gen-
erate isotropic output noise (see Figure 4b, near center position). Adding
isotropic noise at the output will cause the ellipses to expand in all directions
while having a minimal effect on the orientation of the major eigenvector
(see Figure 4e), until the isotropic output noise dominates and the output
variability becomes essentially circular (see Figure 4i).

1 Although one cannot in general compare variability of target distance, measured in
mm, with the variable error of target direction, measured in degrees, one can compare the
effect of a given noise level in each channel on the Cartesian position of the output at a
given nominal distance.
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Figure 4: Patterns of variable error expected from an independent estimate of
target distance and direction, plus variable levels of noise in X and Y at the out-
put. Black bars in plots of variable error indicate the axis of maximum variability.
Anisotropy is apparent in the variable-error ellipse, despite accurate transforma-
tions between coordinate systems. Noise in the polar representation of distance
and direction generates a radial pattern of variable errors (a). Increasing vari-
ability in X (b, c) or Y (d, g) in addition to the noise in distance and direction
causes variable errors to align gradually with the x- or y-axis, respectively. The
addition of isotropic noise (σx = σy; e, i) changes the size but not the orientation
of the variable-error ellipsoids.

3.3 Distortion. Errors in transformations between coordinate systems
can lead to distortions in the mapping from target locations to pointing
positions. Consider, for example, an output transformation in which the
distance to the target is improperly computed:

Px
f = f (d) cosα

Py
f = f (d) sinα, (3.1)

where Px
f and Py

f represent the Cartesian coordinates of the end point, d and
α are the internal representation of the distance and direction to the target,
respectively, and f (d) represents the distorted computation of distance in the
transformation from polar to Cartesian coordinates. If the distorted distance
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is simply a scaled representation of the true distance,

f (d) = λd, (3.2)

the output pointing positions will result in a systematic pattern of radial
constant errors that increase with the distance from the origin and isotropic
contraction (λ < 1) or expansion (λ > 1) of relative pointing positions
that can be quantified by the measurement of local distortion (see Fig-
ure 5A).

Bias, which we have previously considered to be a property of a data
representation, may in fact be due to an erroneous coordinate transforma-
tion. The addition of bias in the output of a transformation will not in itself
change the local spatial organization of the output and as such should not be
considered as a case of local distortion. In our model system, the addition
of bias in the Cartesian output would generate a shift (constant error) of
all output positions, but would not affect the relative spatial organization
between targets. On the other hand, the addition of bias to an intermediate
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representation, followed by a second nonlinear transformation, can lead to
local distortion in the output. For instance, in our model system, bias added
to the internal representation of target distance,

f (d) = d+ γ, (3.3)

creates not only a radial pattern of constant error but also an anisotropic
contraction (γ < 0) or expansion (γ > 0) of the relative pointing positions
that depends on the distance from the origin (see Figure 5B).

The combination of both scaling and offset errors,

f (d) = λd+ γ, (3.4)

leads to a more complicated pattern of constant error and local distortion at
the output. Both undershoot and overshoot may appear in the radial pat-
tern of constant errors. For λ < 1, this type of error will also manifest itself
as an anisotropic contraction along radially oriented axes (see Figure 5C),
but there will be lateral expansion or contraction depending on whether
there is overshoot or undershoot for a particular workspace region. In this
example, the orientation of both the constant error and the local distortion
ellipse would indicate a property of the erroneous coordinate transforma-
tion. Of course, other nonlinear distortions of the estimated target distance
might also introduce anisotropic distortions at the output. But to the ex-
tent that well-behaved (i.e., continuous and smooth) transformations can
be locally approximated by a linear function, the ellipses in Figure 5C are
representative of the types of local distortion that might be observed in a
real sensorimotor chain.

Figure 5: Facing page. Patterns of constant error and local distortion induced
by incorrect estimates of target distance in the transformation from polar to
Cartesian coordinates. Dotted circles indicate an undistorted transformation for
reference, while solid circles and ellipses indicate the local distortion for a given
workspace region. (A) For a proportional underestimation of target distance
(see equation 3.2), constant errors point inward, and local distortion indicates
isotropic contraction. (B) A constant undershoot in the estimate of target dis-
tance (see equation 3.3) will evoke both a radial pattern of constant errors and
anisotropic contraction perpendicular to the radial axis (black bars). (C) Contrac-
tion and bias in estimated target distances or contraction toward an average dis-
tance (see equation 3.4) may yield both overshoot and undershoot in measures
of constant error. Measurements of local distortion show anisotropic contraction
along a radial axis toward the origin of the polar coordinate system, as indicated
by the dark bars (eigenvector corresponding to the smallest eigenvalue). Local
distortion may indicate lateral expansion or contraction, depending on whether
the target distance is over- or underestimated in a given region.
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One can see from these examples that measurements of constant error
and local distortion are closely related. Both arise from errors in transfor-
mations. Figure 5C demonstrates, however, that the measurement of lo-
cal distortion complements the classical assessment of constant error; com-
puting both may lead to a better understanding of the underlying neural
mechanisms. In the next section we describe how measurements of local
distortion can also be useful in interpreting measurements of variable er-
ror.

3.4 Transformed Variable Error. Distortions introduced in coordinate
transformations will also affect patterns of variable error as the error is
passed from one coordinate frame to another. Noise at the input will be
reshaped by an inaccurate coordinate transformation such that a distorted
transformation may introduce anisotropy to otherwise balanced input noise.
In our model system, the improper computation of target distance would
create laterally oriented variable-error ellipsoids from isotropic input noise
(see Figure 6A). Furthermore, the combination of bias, noise, and local
distortions can create diverse patterns of orientation in each of the three
measures of error. Figure 6B indicates the patterns of error seen for our
model system in the combined presence of (1) radially oriented input noise
that increases with the square of the target distance, as would be expected
from a binocular estimate of target distance and direction, (2) rightward
bias in the internal representation of target direction, and (3) distortion
in the polar-to-Cartesian transformation as defined by equation 3.4. One
can see from this example that local distortions later in the transforma-
tion can reshape anisotropic input noise in a workspace-dependent fash-
ion.

To understand the effect of a given transformation on the shape of a
variable-error distribution, one must know the Jacobian matrix of the trans-
formation in question (McIntyre et al., 1997):

Sout = JTSinJ, (3.5)

where Sin and Sout are the input and output covariance matrices. The lin-
ear estimation of local distortion provides a direct estimate of this Jaco-
bian matrix. The calculation of both variable error and local distortion can
therefore be useful in identifying the steps in a sensorimotor transforma-
tion.

Consider, for example, hypothetical measurements of variable error in
the input and output of our model system. Differences between the in-
put and output distributions are ambiguously related to either a distortion
introduced in a coordinate transformation or to additive noise at an in-
termediate step along the pathway. In the former case, the transformation
error will also be evident in the measurement of local distortion. In fact, by
combining measurements of variable error and local distortion, one may
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Figure 6: (A) Patterns of constant error, variable error, and local distortion in-
duced by an incorrect scaling and offset in target distance for the transformation
from polar to Cartesian coordinates at the output. Isotropic input noise is re-
shaped by the radial contraction, resulting in a lateral pattern of variable errors.
For this simple and unique distortion, all three measurements of error provide
congruent evidence for the internal polar coordinate system. (B) Combined ef-
fects of three different sources of error: noise in the estimate of distance that
increases with the square of the distance, linear distortion and bias in the trans-
formation from polar to Cartesian coordinates, and bias in X and Y. The three
different measurements may show three different spatial patterns. The presence
of bias can tilt the constant error vectors away from the origin of the intrinsic
coordinate system. The anisotropic variability of the input is reshaped by the
local distortion in the erroneous coordinate transformation. The measurement
of local distortion is relatively independent of bias and noise that are injected
into the system.

be able to identify specific representations of the target position that are
not apparent in the output. By passing the known or measured input vari-
ance through the measured local distortion transformation, a prediction of
the resulting output variability can be made. Features of the measured out-
put variability that are seen in the predicted distribution can be attributed
to coordinate transformations along the sensorimotor pathway. Patterns of
variability not accounted for in the prediction would reflect noise added to
the system at intermediate steps, giving evidence for an additional internal
reference frame.
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3.5 Neural Implementations. We have presented an idealized concep-
tion of sensorimotor processing in which data representations and coordi-
nate transformations are distinct. Under this idealized framework, we have
associated output variability with noise added to any or all of the data rep-
resentations or in the execution of the motor output. For instance, noise
could arise from the variability of the frequency of discharge of action po-
tentials or from the variability of postsynaptic potentials. Conversely, we
have attributed patterns of constant error or distortion to errors in transfor-
mations. In a neural circuit, distortions may arise from inaccuracies in the
transmission or fusion of signals arising from separate neural pathways.
These inaccuracies may, for example, arise from inappropriate tuning of
synaptic weights within the circuitry, or they may reflect inherent limita-
tions on the complexity of transformations that may be represented by a
neuronal network.

It is likely, however, that many or all neural mechanisms manifest prop-
erties of both internal representations and transformations within the same
circuitry. Memory storage provides a good example of this mix. Logically,
the storage of a target position in memory would be described as an inter-
nal representation. One can expect that noise will increase over time as the
memory of the target position fades. Drift might also occur, which would
show up as time-dependent increases in measurements of constant error.
Memory storage may also exhibit properties of a transformation or distor-
tion. For instance, the subject’s responses may converge toward a nominal or
average pointing location as the quality of information in memory storage
diminishes. Such a decay would appear as a gradually increasing contrac-
tion in measurements of local distortion. Thus, memory storage may best
be described as a combination of internal representations and data transfor-
mations, although an explicit transformation between coordinate systems
may not exist. The evolution of all three types of error (variable error, con-
stant error, and local distortion) for different imposed delays may provide
insight into the neural mechanisms that underlie the memory processes.
The conceptual divide between representation and transformations can be
a useful tool for describing these mechanisms even though neither of these
constructs may exist in its pure form within the nervous system.

The methods described for analyzing errors must be used appropriately,
so as not to ignore the assumptions underlying the analysis. For instance, the
measurement of local distortion is precisely that: a local approximation of
a global function. In essence, we are estimating the spatial derivative of the
global transformation. The global function cannot be uniquely determined
from a given derivative, and different global transformation might lead to
similar patterns of local distortion. In addition, distortions at different lev-
els along the sensorimotor chain will add. A blind calculation of the local
distortion eigenvectors will not necessarily align with any of the internal
reference frames. A similar caution applies to the analysis of variable error
through the use of principal component analysis (PCA). As illustrated in
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Figure 4, different sources of noise may add, leading to eigenvectors of the
covariance matrix that do not align with any of the internal data represen-
tations. Furthermore, PCA assumes that the underlying coordinate axes are
orthogonal. Violation of this assumption will also generate principal axes
in the covariance matrix that would be misleading if blindly applied. The
backward identification of a sensorimotor process based on measurements
of error is thus ill posed. A more appropriate use of these methods is to
test specific hypotheses about the neuronal process. Given a model of the
transformations involved, one can predict the patterns of errors that will be
seen at the output and compare these predictions with experimental results.

4 Experimental Methods

Subjects performed a pointing task to remembered visual targets presented
by a robot in 3D space. The subject sat in a dimly lit room in front of a
black table and backboard. The subject placed the index finger at a specified
starting position, indicated by an upraised bump on the tabletop. A target
LED was positioned by a robot at a specific 3D location, illuminated for 2 s,
and then removed. After a programmed delay, an audible beep signaled to
the subject to perform the pointing movement. The subject was instructed to
place the tip of the index finger so as to touch the remembered position of the
target LED. The subject was allowed 2 s to execute the pointing movement
and hold the finger at the remembered target position. After a second beep,
the subject returned the finger to the starting position in preparation for the
next trial. Movements were recorded by an Elite 3D tracking system with
a resolution of approximately 0.5 mm RMS. The final pointing position for
each trial was calculated as the average final position over the last 10 samples
(100 msec).

Subjects performed trials in blocks of 45 trials, each block lasting about
15 min. In a single block of trials, target locations were restricted to a small re-
gion of the workspace. Eight targets were distributed uniformly on a 22 mm
radius sphere, with a ninth target position located at the center. Each of the
nine targets was presented five times within a given block, and subjects per-
formed four blocks of trials to each workspace region, for a total of 180 trials
per region.

Three workspace regions were tested, located slightly above shoulder
level, 60 cm in front of the subject. The center workspace regions was located
on the midline, while the left and right regions were located 38 cm to each
side of the center. Two starting positions, left and right, were tested, located
on the table top approximately 20 cm in front of the subject and 20 cm to
either side of the midline.

Subjects were tested with two different delay durations, 0.5 and 5.0 s, and
two lighting conditions. In the lighted condition, dim room lights allowed
the subject barely to see the fingertip against the black background. For
the dark condition, the target was presented with the dim lights on, but at
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the moment of target extinction, the room lights were extinguished, leaving
the subject to wait during the memory delay and perform the pointing
movement in total darkness.

Five right-handed subjects performed a complete set of pointing trials
after a 0.5 s delay, using the right hand and starting from the right position, to
all three workspace regions in dim light (light-short). The same five subjects
performed trials in darkness for a 0.5 s (dark-short) and 5.0 s (dark-long)
memory delay. Two right-handed subjects pointed to targets in all three
workspace regions after a 5.0 s delay, using the right arm and starting from
the right side (light-long). Five different right-handed subjects pointed in
darkness after a 5.0 s delay with the right hand starting from the left side
(right-left). A third set of eight right-handed subjects pointed to the left and
right target regions only in darkness after a 5.0 s delay, using the left arm and
starting from the left side (left-left). The dark-long condition is also referred
to as the right-right condition, indicating use of the right hand from the right
starting position.

4.1 Data Analysis. Constant error vectors, computed as the average er-
ror over all nine targets within a single workspace region, were calculated
for each workspace region as described in McIntyre et al. (1997):

e = 1
n

9∑
i=1

ni∑
j=1

pi
j − ti (4.1)

where ti is the 3D vector location of target i, pi
j is the final pointing position

for trial j to target i, and ni and n are the number of valid trials to target
i and the total number of valid trials to all nine targets, respectively. The
3D covariance estimated from data over all k = 9 targets is computed by
Morrison (1990):

S =
∑k

i=1
∑ni

j=1 δ
i
j (δ

i
j )

T

n− k
, (4.2)

where the deviation δi
j = pi

j − p̄i for trial j to target i is computed relative to
the mean p̄i of trials to target i, not to the overall mean for all targets. The
3D covariance matrix S can be scaled to compute the matrix describing the
95% tolerance ellipsoid, based on the total number of trials n:

T0.95 = q
(n+ 1)(n− k)

n(n− q− k+ 1)
F0.05,q,n−q−k+1S (4.3)

where q = 3 is the dimensionality of the Cartesian vector space and k = 9 is
the number of targets.
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The local transformation matrix M was computed as the linear relation-
ship that best describes the transformation between a target position (rel-
ative to the average target position) and the displacement of end point
positions for pointing trials to that target (relative to the overall average
endpoint position for all trials), as computed by linear-least-squares meth-
ods.

The linear estimation of the local transformation may contain rotation or
reflections as well as a local expansion and/or contraction. The overall local
transformation can thus be represented as the cascade of two components:
a symmetric matrix A, representing the local distortion, and an orthogonal
matrix R,

M̃ = RA. (4.4)

The symmetric component A was computed from the eigenvectors and
eigenvalues of the quantity M̃TM̃ as follows:

A =W

±√λ1 0 0
0 ±√λ2 0
0 0 ±√λ3

WT (4.5)

where

M̃TM̃ =W

λ1 0 0
0 λ2 0
0 0 λ3

WT (4.6)

and W is thus the matrix of eigenvectors for the matrix M̃TM̃. By judiciously
selecting the signs of the roots in equation 4.5 so as to match the signs of
the corresponding eigenvalues of M̃, reflections in the local transformation,
if any, were included in the symmetric component A, and the orthogonal
matrix R represents a rotation around a single axis. For A nonsingular, the
matrix R is given by

R = MA−1. (4.7)

Expansion or contraction in the local transformation can be described by
the matrix we call the local distortion, defined as

3 = MTM, (4.8)

where the square root of the eigenvalues of 3 indicates the amount of ex-
pansion or contraction of output vectors along the eigenvectors of 3 (an
eigenvalue equal to 1 implies no local distortion in that direction). The local
distortion matrix can be plotted as an oriented 3D ellipsoid, where the major
and minor axes indicated the directions of maximal and minimal expansion.
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5 Experimental Results

Measurements of variable errors and local distortion showed anisotropic
patterns for error that varied systematically as a function of workspace
location. Figure 7 summarizes the patterns of variable error (A) and local
distortion (B) observed for two memory delays and two lighting conditions.
The data in this figure represent the average responses computed across
subjects for each memory delay and lighting condition. In Figure 7A, each
ellipsoid represents the combined 95% tolerance ellipsoid for pointing to
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all nine targets within each workspace region. For pointing in the light,
the axes of maximum variability for the computed variable-error ellipsoids,
as indicated by dark bars passing along the major axis of each ellipsoid,
converge toward the head of the subject. These data indicate a viewer-
centered reference frame for the representation of the final pointing position
when vision of the fingertip is allowed. A more detailed examination (data
not shown) showed that this reference frame was independent of the starting
hand position and the effector arm (McIntyre et al., 1997). In darkness, the
major axes of the variable-error ellipsoids do not converge, and thus do not
indicate a well-defined reference frame for the final pointing position when
the fingertip is no longer visible.

Average local distortion ellipsoids for all subjects are presented in Fig-
ure 7B, where the axis of maximum contraction (third eigenvector) is indi-
cated by dark bars. Local distortion measurements show a spatial organi-
zation that is common to both lighting conditions and memory delays and
is more consistent than the pattern of variable errors seen for movements
in the dark. For both lighting conditions, the minor axes of the local distor-
tion ellipsoids point toward the subject, to a location situated somewhere
between the eyes and the right shoulder.

To test for factors affecting the spatial orientation of pointing errors in
the dark, we varied the starting position of the hand and the hand (left
or right) used to perform the pointing task. Figure 8 shows the results of
experiments with different starting positions and effector arms for point-
ing with a long delay in the dark. It can be seen that patterns of variable
error differ according to the workspace region, the effector arm, and the
starting hand position. Viewed from above, the variable-error ellipsoids in-

Figure 7: Facing page. Average variable errors (A) and local distortion (B) across
subjects for two lighting conditions and two delays, viewed from above and
perpendicular to the plane of movement. Small crosses indicate the starting
position of the hand. (A) Ellipsoids represent the 95% tolerance region calcu-
lated from the matrix of variance and covariance, and the black bars indicate
the axis of maximum variability. Dark line segments indicate the direction of
the major eigenvector computed for the tolerance ellipsoid. For movements in
the dark, a pattern of major eigenvector rotations upward and away from the
starting position emerges in the ensemble averages, in comparison to head-
centered eigenvector directions seen in the light. (B) Ellipsoids indicate the local
distortions induced by the sensorimotor transformation, as estimated by a lin-
ear approximation to the local transformation. The unit sphere indicates the
ellipsoid corresponding to an ideal, distortion-free local transformation. Dark
bars indicate the direction of the third (minor) eigenvector, indicating the axis
of maximum local contraction. Under all lighting conditions, axes of maximal
contraction point toward the subject. Note the change of scale for ellipsoids
viewed in the plane of movement.
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Figure 8: Effects of workspace region and movement starting position on es-
timates of variable error (A) and local distortion (B). The orientation of the
variable-error ellipsoids is affected by the relative starting position of the hand
but not by the hand used to perform the pointing. Axes of maximum contrac-
tion are biased slightly toward the side of the effector hand, independent of the
starting hand position.
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dicate a lateral distribution that rotates as the workspace location shifts from
left to right. When viewed in the plane of movement (the plane containing
the two starting positions and the center target location), the variable-error
ellipsoids tend to rotate away from the line of movement in a pattern that is
mirror symmetric for the right versus left starting position. In contrast, the
minor axes for the measurements of local distortion are relatively unaffected
by changes in the starting hand position. However, the axes of maximum
contraction are biased toward the shoulder of the effector arm, independent
of the starting position of the hand.

6 Simulations

The experimental results demonstrate a pattern of errors that at first glance
do not point to a clearly defined reference frame for movements in the dark.
The major axes of variable errors do not converge to a single origin, in con-
trast to the clearly viewer-centered errors seen in the light. Furthermore,
the minor axes for measurements of local distortion, while clearly body-
centered, do not point to a logically defined anatomical origin. However,
distortions introduced at different stages in a sensorimotor chain combine
to produce an overall local transformation in a manner that is not always
intuitively obvious. Furthermore, distributions of errors that arise early in
the sensorimotor pathway will be reshaped by distortions that occur in later
steps of the transformation. We hypothesized that the reshaping and reori-
entation of variable-error ellipsoids observed for long delays in the dark
may have been due entirely to the anisotropic distortions that develop in
the sensorimotor transformation during the memory delay period. To test
this hypothesis, we performed a set of simulations to see whether (1) a
contraction of data along a shoulder-centered or a head-centered axis, or a
combination of the two, can explain the observed patterns of local distor-
tions and (2) whether local distortions in the target to end point mapping can
explain the changes seen in the variable-error ellipsoids when movements
are performed in the dark.

To this end we synthesized local transformation matrices Mv and Ma
corresponding to local distortions aligned with the eyes and the shoulder,
respectively. Each distortion was characterized by the unit vector v0 parallel
to the line from the designated origin to the center target position for a given
workspace region and the amount of distortion (λv and λa) along this axis.
The off-axis distortion eigenvalues were set to unity, and the simulated local
transformations had no rotational component or reflections. The simulated
local transformation can thus be computed as:

M =W

λon 0 0
0 λoff 0
0 0 λoff

WT (6.1)
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Figure 9: Simulation of net visuomotor transformations resulting from a cas-
cade of two local distortions: one with an anisotropic contraction of end point
positions along a head-centered direction and the second with a similar con-
traction along a shoulder-centered axis. In panel A, a–i represent the net local
distortion at the output for different levels of contraction in each of the compo-
nent steps. Starting from no distortion in either component for the upper left
panel, shoulder-centered contraction increases from 1.0 on the left to 0.6 on the
right, while head-centered distortion increases from 1.0 on the top to 0.6 on the
bottom. To facilitate comparisons, the measured local distortion for pointing in
the dark (see Figure 7) is presented in panel B.

where

W = [v0 v1 v2
]

(6.2)

is a orthogonal matrix formed from the desired major or minor axis v0 and
two mutually orthogonal unit vectors v1 and v2 lying in the plane per-
pendicular to v0. The net local transformation for a serial organization of
eye-centered and then shoulder-centered distortion is given by

Mnet = MaMv. (6.3)

Figure 9A shows the simulated distortion ellipsoids for different com-
binations of head-centered and shoulder-centered contraction. In the grid,
shoulder-centered contraction increases from left to right (λa varies from
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Figure 10: (A) Simulation of variable-error ellipsoids for each of the computed
local transformations shown in Figure 9, viewed from above. Input variance for
each workspace is taken from measurements of variable errors for pointing in
the light with a short memory delay. (B) Average measured variable error for
pointing in the dark (from Figure 7). (C) Simulated viewer-centered input noise
transformed by the average local distortion measured for movements in the
dark. Simulations e, f, and h, capture the qualitative features of the measured
and predicted variable-error ellipsoids for a 5.0 s delay, but not for a 0.5 s delay.

1.0 to 0.6), while head-centered contraction increases from top to bottom
(λv varies from 1.0 to 0.6). It is evident, as expected, that neither source of
distortion alone can predict the actual measured transformation shown in
Figure 9B. Axes of maximum contraction would point directly at the shoul-
der for a shoulder-centered-only distortion (top row) while viewer-centered
distortions (left column) would produce a strictly head-centered pattern of
orientations. The combined effect of both types of distortion, however, can
create an intermediate center of rotation, with Figure 9h showing reasonably
good correspondence with the average measured values.

Figures 10 through 12 show the predicted variable-error ellipsoids for
each of the simulated local distortions shown in Figure 9, assuming a
viewer-centered input distribution. A purely viewer-centered input vari-
ance Sv was computed using eigenvalues (λon = √25.0, λoff =

√
12.0) simi-

lar to those found for movements in the light with a 5.0 s delay (see Figure 7).
The predicted end point variable error for each simulated distortion from
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Figure 11: The same simulated and measured data as in Figure 10, viewed from
the side. Simulations f and h show features qualitatively similar to the measured
data in panel C, with variable-error ellipsoids pointing above the head of the
subject.

Figure 9 was computed by inserting Sv and Mnet into equation 3.5:

S = MT
netSvMnet (6.4)

S = MT
a MT

v SvMvMa. (6.5)

For comparison, the average variable-error ellipsoids for movements in
the dark (also from Figure 7) are included in panel B of each figure. In
addition, a second simulation is included in panel C, in which the viewer-
centered variable-error ellipsoid Sv was transformed by the average mea-
sured local transformation M̃ for delayed movements in the dark (from
Figure 7). Viewed from above (see Figure 10) and from the side (see Fig-
ure 11), transformations of the viewer-centered variable error by either the
simulated or the measured local distortion capture two of the main quali-
tative features of the measured variable error. Viewed from above, there is
a shift from a converging pattern of variable-error axes toward the subject
to a lateral pattern of variability, as both the combined head- and shoulder-
centered contraction increases in the simulation, and in the measured and
predicted variable errors for the long delay in the dark. Viewed from the
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Figure 12: The same simulated and measured data as in Figure 10, viewed
perpendicular to the movement plane. Neither the simulated data in A nor
the computed variance distributions in C reflect the starting-point dependence
evident in B and in Figure 8.

side, the simulated head and shoulder contraction also predicts the upward
rotation of the major eigenvectors toward the vertical.

The simulations do not, however, reproduce all of the qualitative features
of the measured variable-error ellipsoids. The major eigenvectors of variable
errors measured for a short delay do not seem to converge, in contrast to the
simulated patterns seen in Figure 10. Furthermore, when observed from a
viewpoint perpendicular to the movement plane (see Figure 12), the simu-
lations that best reproduce the data in the other planes do not reproduce the
characteristic rotation of the variable-error ellipsoids away from the starting
hand position. On the other hand, neither does the transformation of the
viewer-centered input variance by the measured distortion, shown in Fig-
ure 12C. Thus, the effect of starting hand position (or movement direction)
reflects an additional source of noise added to the sensorimotor pathway,
rather than a distorted transformation into a hand-centered representation
of the upcoming movement.

Figures 13 and 14 show the effects on the simulated variable-error ellip-
soids of adding increased noise along the axis of movement of the hand
(which we will refer to as hand-centered noise). In these figures, head-
centered contraction is held constant at λv = 0.8 while shoulder-centered
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Figure 13: Simulation of variable-error ellipsoids for each of the computed local
transformations, with the addition of anisotropic noise along the line from the
initial hand position to the final end point position. Viewer-centered contraction
is held constant at 0.8. Shoulder-centered contraction increases from 0.0 in A to
0.6 in C. Additive hand-centered noise is 0 mm (S.D.) in the first row of each
group (a–c) and 6 mm in the second (d–f). For up to 6 mm of hand-centered
noise, the patterns of variable error are dominated by the viewer-centered input
noise and the head- and shoulder-centered contraction, resulting in the lateral
pattern of major eigenvectors seen for human subjects.
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Figure 14: Same as Figure 13, viewed perpendicular to the movement plane.
When hand-centered noise is absent (a–c in each group), the pattern of variable
errors depends on the effector hand, not the starting hand position Increasing
levels of hand-centered noise (d–f) can generate patterns that depend on hand
starting position, as seen in Figure 8.

contraction increases from 0.0 (A) to 0.6 (C). Variance along the line from
starting to final pointing position is σh = 0 for panels a through c in each
group and σh = 6 mm for panels d through f. Viewed in the horizontal
plane, the pattern of major eigenvectors for variable error is dominated by
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viewer-centered input noise and the head- and shoulder-centered contrac-
tions, resulting in a lateral pattern of major eigenvectors as the shoulder-
centered contract increases. One can see how the parallel variable-error axis
seen for the 0.5 s delay in the dark might result from a moderate amount
of head-centered and shoulder-centered contraction plus additional noise
along the hand movement axis. With the shoulder-centered distortion fixed
at λa = 0.8 (see Figure 13B), increasing the amount of hand-centered noise
(panel f versus c) causes the major eigenvector to swing toward the left
shoulder, and the convergence of the eigenvectors decreases.

Figure 14 demonstrates how the added hand-centered noise can cause
the variable-error major axes to point away from the starting hand position
when viewed in the plane of movement. The simulation of noise along
the line from the left starting position produces a mirror effect of starting
position when viewed in the same plane. Note that the effects of hand-
centered noise not seen in the orientation of the variable major axis (see
Figure 14A, panels d–f) can be revealed by increasing levels of body-centered
local contraction (see Figures 14B and 14C, panels d–f). Thus, a given level
of hand-centered noise will have a greater effect on the direction of the
variable-error major eigenvector as local contraction increases. It is therefore
possible that the effects of starting hand position on variable error may in
fact be present for pointing in the dark for all memory delays, but that these
effects are not revealed in the measurement of variable error until a longer
memory delay generates a sufficiently high level of contraction in depth.

The simulations depicted in Figures 10 through 14 do not reproduce ex-
actly the measured patterns of variable error. For example, there is not a
single combination of viewer-centered contraction, shoulder-centered con-
traction, and hand-centered noise that can match precisely the features of
the measured variable error from all viewpoints simultaneously. Neverthe-
less, these simulations demonstrate how the different qualitative features
can be achieved by varying the weight of the different sources of error. Dis-
crepancies between the simulations and the measured data may arise from
varying relative weights for the different error sources among different sub-
jects included in the average. On the other hand, some additional differences
between the simulations and measurements, such as the counterclockwise
rotation of the variable-error major axis viewed in the movement plane (see
Figure 8), may be due to additional features of the sensorimotor process
that have yet to be accounted for.

7 Discussion

In this article we have formally described how various sources of error
added along a sensorimotor pathway can combine to generate patterns of
errors in the motor output of a pointing task. Conversely, we have shown
how measurements of errors at the output can reveal properties of the under-
lying neural circuitry. We have used these concepts to model the behavior
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of human subjects for pointing to remembered 3D targets. Although this
particular model may not provide the only explanation of the observed be-
havior, the results of this study demonstrate how the cumulative effects of
noise and distortion lead to patterns of variable error that might not be oth-
erwise intuitively obvious. We propose that computational analyses of the
type described here may be useful in understanding electrophysiological
and psychophysical data and will lead to experimentally verifiable models
of biological sensorimotor systems, as we will discuss below.

The measure of local distortion described in this article provides a useful
complement to the measures of variable and constant error. First, because
it is based on local rather than global linearization methods, it is much less
sensitive to nonlinearity in the sensorimotor pathways. The validity of the
measurement of local distortion requires only that the overall transforma-
tion be smooth. Thus, the calculation of local distortion will be appropriate
even if a global linearization is not (Bookstein, 1992). Furthermore, spa-
tial patterns of local distortion for these experiments have proved to be
more consistent across subjects than are measures of constant error (McIn-
tyre et al., 1998). This indicates that local contraction, rather than global
bias, is an invariant property of pointing behavior. Finally, the calculation
of local distortion allows for a better understanding of observed patterns
of variable error. As shown by the simulations presented above, patterns
of measured variable errors may be due to inaccurate coordinate transfor-
mations between reference frames rather than to noise added to additional
intermediate internal representations.

In the experiments described here, the consideration of local distortion in
addition to measures of constant and variable error provided a clearer pic-
ture of the underlying neural mechanisms. By comparing the experimental
results and the simulations presented here, one can conclude that much of
the difference in variable errors observed for pointing in the dark versus
the light can be attributed to distortions introduced in the transformation of
the visual acquired target location to the final finger position. This transfor-
mation includes effects contributed by the storage of the desired pointing
position, as indicated by the increasing effect of local distortion for longer
memory delays (McIntyre et al., 1998). However, an additional source of
noise is required to account fully for the dependence of variable-error ori-
entation on the starting hand position, which is likely to be related to the
direction of movement. In the following paragraphs we consider the signif-
icance of the identified viewer-centered noise, head- and shoulder-centered
distortion, and hand-centered variability.

The compression of responses toward the mean is a general phenomenon
known as a central tendency or range effect (Poulton, 1981). A general com-
pression of the data toward the center would not in itself be very inter-
esting; however, when the central tendency is anisotropic, as in this study,
the anisotropy can indicate the separation of spatial information into in-
dependent channels, each of which exhibits its own range effect. In our
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experiments, the direction of maximum contraction is almost, but not quite,
aligned with the viewer-centered axes of maximum variability observed for
pointing in the light. This behavior suggests a Kalman filter type of process-
ing in which the pointing response is the weighted sum of input signals and
an “average” response, and in which the weight given to each input channel
is determined by the expected noise in that channel. Because binocular es-
timates of distance are noisier than estimates of target direction, one would
expect that the contraction toward the central value would be stronger in a
radial direction. Furthermore, as noise increases in the stored representation
of the target position, contraction should also increase. This appears to be
the case for increasing memory delays in the dark (McIntyre et al., 1998).

It might seem therefore that the anisotropic contraction can be attributed
to processing of the visual input. Foley (1980) found that the slope of per-
ceived versus actual target distance is consistently less than unity for a
variety of different estimation tasks. Gogel (1973) proposed that the central
nervous system computes target distance as a weighted sum of different in-
puts (e.g., stereodisparity, vergence, accommodation), including a “specific
distance” toward which the estimate is biased in the absence of adequate
sensory cues. Contractions of pointing positions may reflect the bias toward
the specific distance postulated by Gogel, and we propose further that the
weighting of different visual cues may be determined by the expected vari-
ability in each channel. For pointing, however, one cannot predict the rota-
tion of the local distortion ellipsoid toward the effector arm by the filtering
of viewer-centered noise mapped onto an isotropic internal representation
of the target position. Noise in the binocular acquisition of the target should
not depend on the effector arm. Observed patterns of local distortion would,
on the other hand, be consistent with a mapping of the target position into
a shoulder-centered reference frame, followed by a Kalman-type filter ap-
plied in this transformed coordinate system.

There is, in fact, also evidence for arm-centered local contraction in
pure motor tasks. When pointing to kinesthetically presented targets, sub-
jects tend to underestimate the perceived target distance from the shoulder
(Baud-Bovy & Viviani, 1998). These data indicate a polar representation of
the target position in separate channels of shoulder-centered distance, az-
imuth, and elevation, as has previously been proposed (Soechting & Flan-
ders, 1989a; Lacquaniti et al., 1995). Local distortion data from the current
experiment are, however, also consistent with a distorted transformation
into arm segment orientations (arm and forearm azimuth and elevation;
Soechting & Flanders, 1989b) or intrinsic shoulder and elbow angle compo-
nents. This is because the direction to the fingertip is determined primarily
by the two shoulder angles, while the distance from shoulder to finger is
largely determined by the degree of elbow extension. Note that it is difficult
to differentiate between these models because they are intrinsically related.
An underestimation of shoulder-centered target distance would generate an
underestimation of elbow extension and vice versa (Bennett & Loeb, 1992).
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Indeed, Baud-Bovy and Viviani (1998) observed slopes consistently less than
unity in the regression of perceived versus actual arm elevation for pointing
to a kinesthetically presented target. Nevertheless, these authors have ar-
gued for a spherical target position representation centered at the shoulder,
rather than a limb orientation or joint angle representation, based on the
analysis of noise correlation for different hypothesized coordinate frames.

Thus, a number of studies have identified a viewer-centered reference
frame for visually guided pointing to visually presented targets (Soechting,
Helms Tillery, & Flanders, 1990; McIntyre et al., 1997). Conversely, an arm-
centered reference frame has been identified for pointing to kinesthetically
presented targets (Baud-Bovy & Viviani, 1998). In the experiments presented
here for pointing to visually presented targets without visual guidance,
our measurements of local distortions indicate an intermediate reference
frame with an origin located between the eyes and shoulder. Using different
methods, Soechting and colleagues (Soechting et al., 1990; Helms Tillery,
Flanders, & Soechting, 1991; Flanders, Helms Tillery, & Soechting, 1992)
have also identified an intermediate reference frame related to both the
visual target and the effector arm. Our analysis provides a more explicit
explanation for this intermediate representation. Simulations show how
the cascading effects of two transformations, one centered at the eyes and
the second at the shoulder, can predict the intermediate center of rotation
seen in the data.

Data from three different experiments support the hypothesis of a two-
stage transformation, with a gradual passage from viewer-centered to shoul-
der-centered coordinates. For pointing to continuously visible targets, with-
out vision of the hand, Carrozzo, McIntyre, Zago, and Lacquaniti (1999)
found local contraction axes that point toward the subject but that are not
necessarily biased toward the shoulder. Although Baud-Bovy and Viviani
(1998) did not explicitly measure local distortion, in their experiments on
pointing to kinesthetic targets, the observed convergence of the minor axes
for the variable-error ellipsoids toward the shoulder of the effector arm is
consistent with a local distortion (local contraction) in a shoulder reference
frame. In our experiments for pointing to remembered visual targets, we
found significant local distortion for both lighting conditions and memory
delays, but the bias toward the effector arm is most readily apparent for
the longer delay in the dark. Nevertheless, the bias toward the shoulder
for pointing to visual targets (see Figure 7) does not appear to be as strong
as that seen for pointing to kinesthetic targets (see Baud-Bovy & Viviani,
1998, Figure 7). The ensemble of these results suggests that a visual target is
first represented in a viewer-centered reference frame, with a contraction of
perceived distances along the sight line, and then transformed into an arm-
centered representation, with an associated distortion in the arm-linked
reference frame. As the memory delay increases, the internal representa-
tion of the intended hand movement appears to decay in this arm-linked
reference frame.



2852 J. McIntyre, F. Stratta, J. Droulez, and F. Lacquaniti

7.1 Implications for Neural Circuits. Anisotropies in the transforma-
tion process, particularly those arising from the decay in the memory of
the target position, have meaningful implications for the neural mecha-
nisms involved in sensorimotor transformations and memory. Anisotropic
compression along an egocentric axis is a behavioral characteristic that one
can search for within the neural networks of the brain, in much the same
way that behavioral phenomena such as mental rotation (Georgopoulos,
Lurito, Petrides, Schwartz, & Massey, 1989) and the two-thirds power law
(Schwartz, 1994) have been observed in population vectors measured in M1.
Evidence for egocentric compression within a specific neural representation
of the target position would help to identify the structures that implement
the sensorimotor transformations and short-term working memory. Note
that the tuning curves of neurons in the superior parietal lobule of the
monkey recorded during pointing to visual targets exhibit a body-centered
contraction reminiscent of the radial contraction described here (Lacquaniti,
Guignon, Bianchi, Ferraina, & Caminiti, 1995), suggesting a neural mani-
festation of the observed behavioral effects. In addition, neurological pa-
tients affected by optic ataxia, a disturbance of visuomotor coordination
due to lesions of the interparietal sulcus and the superior parietal lobule,
exhibit a specific deficit in pointing to a visual target (Perenin & Vighetto,
1988; Ratcliff & Davies-Jones, 1972) that consists of a pattern of local distor-
tion qualitatively akin to the one we have reported here, although of much
greater magnitude. Thus, this particular deficit may be an exaggeration of
a relatively normal physiological process.

Known properties of a variety of different cortical areas provide a num-
ber of potential loci for the transformations and representations proposed
here. Parietal cortex is replete with cells that combine information about
eye, neck, arm, and hand positions, as is the case for premotor cortex (An-
derson, Snyder, Bradley, & Xing, 1997; Boussaoud, 1995). Cells in LIP seem
to code 3D space through the mechanism of gain fields, in which radial
2D receptive fields are modulated multiplicatively by a sigmoid function
of depth. This representation mechanism could account for the anisotropic
distortion between depth and direction observed for the final positions in
our pointing task.

The anisotropic modification of the memorized target location (or in-
tended movement end point) over the delay period argues for a parcelation
of target position information into separate channels, each represented by
a relatively independent set of memory-related neurons. In this light, end-
point–position sensitive neurons, such as those found in parietal cortex area
5, become good candidates for the locus of the target position memory (Lac-
quaniti et al., 1995). On the other hand, uniform encoding of hand displace-
ment direction, as has been postulated for area M1 (Georgopoulos et al.,
1988), would be inconsistent with the anisotropic memory decay observed
for movements in the dark. Although the vector coding scheme proposed
for M1 separates movement distance from direction, the reference frame for
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this system is the hand’s initial position, not a body-centered origin. This is
not to say that alternative representations situated upstream or downstream
from the egocentric working memory would have no effect on the evolution
of the stored target position over time. On the contrary, both the fact that
hand-centered M1 neurons are active during memory delay periods (Smyr-
nis, Taira, Ashe, & Georgopoulos, 1992) and that noise tends to be greater
along the axis of movement (Gordon, Ghilardi, & Ghez, 1994; Desmurget et
al., 1997; McIntyre et al., 1998) indicate that a hand-centered representation
of the intended limb displacement plays a detectable role in the representa-
tion of the upcoming movement. Furthermore, undistorted pointing when
vision of the fingertip is allowed suggests that the visual representation of
the target persists in memory during the delay period. Likewise, shifts in
gaze direction during the memory delay period can affect the final point-
ing position, even when vision of the fingertip is prevented (Enright, 1995;
Henriques, Klier, Smith, Lowy, & Crawford, 1998). These results suggest an
ongoing influence of visuomotor inputs to the short-term memory of the tar-
get position or intended movement. Theoretical models suggest how neural
networks might represent target locations simultaneously in different ref-
erence frames linked to different sensory modalities and/or motor outputs,
and how coherence may be maintained between these different reference
frames (Droulez & Berthoz, 1991; Pouget & Sejnowski, 1997). Nevertheless,
in our experiments, distortion of the final end point positions along a head-
shoulder axis increased in a time-dependent fashion during the memory
delay period when there was no modification of the visual input, eye posi-
tion, or body posture. We therefore postulate that the primary storage of the
target position or intended movement during the memory delay is carried
out in an egocentric representation of the final end point position.

Acknowledgments

This work was carried out under the auspices of the European Laboratory
for the Neuroscience of Action. This work was supported in part by grants
from the Italian Health Ministry, the Italian Space Agency ASI, the French
space agency CNES, the Ministero della Università a Ricerca Scientifica e
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