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Recent research on navigation has been particularly notable
for the increased understanding of the factors affecting
human navigation and the neural networks supporting it. The
use of virtual reality environments has made it possible to
explore the effect of environment layout and content on
way-finding performance, and it has shown that these effects
may interact with the sex and age of subjects. Functional
brain imaging, combined with the use of virtual environments,
has revealed strong parallels between humans and other
animals in the neural basis of navigation.
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Introduction
The study of navigation has a long history in neuroscience.
The course of its investigation is marked by a number of key
events, not least of which took place over fifty years ago with
Tolman’s assertion [1] that rats have cognitive maps of the
spatial layout of their environments. Several decades later,
the discovery of place cells — pyramidal cells in the rat hip-
pocampus with location-specific activity [2] — provided
physiological grounding for the study of navigation. Since
then, much has been learned about navigation in rodents
[3,4,5•,6,7] and birds [8••,9]. Recent studies have also begun
to elucidate the neural representation of allocentric (world-
centred) spatial locations in the hippocampus [10•,11•] and
posterior parietal cortex [12•] of monkeys.

In this review, we address the issue of how much of this
applies to human navigation. The past year or so is notable
in witnessing a convergence of findings across species and
methodologies, with increased understanding of human
navigation particularly evident. Recent investigations have
examined the roles of three important variables involved in
human navigation research: the stimuli employed to exam-
ine navigation and their manipulation; the sex and age of
the human subjects; and the neural network supporting
navigation and possible functions of its key elements.

Embracing the real world, virtually
One of the major steps forward in the past year in the neu-
roscience of human navigation is the widespread
acknowledgement that navigation is not the same as table-
top tests of spatial memory (but see [13•]) and that direct
inferences cannot be made about one from the other. Not
only do they differ in terms of the perspective from which
the observer is required to operate (i.e. viewer-centred dur-
ing navigation compared to an aerial perspective in
table-top/geographical knowledge tasks), but, arguably, also
in their frames of reference (i.e. allocentric in navigation
and egocentric in table-top tasks). On the table-top, all
information is within one field of view; this is not the case
in a complex environment through which one has to navi-
gate where much of the relevant information is unseen.
Patients with topographical memory deficits, who are
unimpaired on table-top spatial/geographical knowledge
tests, have been described in the literature [14,15]. The
opposite type of impairment has also been observed recently.
Maguire and Cipolotti [16•] reported the case of a patient
with selective preservation of navigation ability in the con-
text of profound verbal and visual memory deficits and poor
geographical knowledge, confirming the double dissocia-
tion between navigation and table-top spatial tasks.

In order to capture the true dynamism of real navigation
while maintaining some degree of stimulus control, com-
puter-simulated or virtual reality environments have
been widely used in the past year to study navigation.
Primarily, this has involved the use of non-immersive
(monitor-displayed) virtual environments. There are
issues surrounding the representation of virtual com-
pared to physically real space: the field of view is
typically narrower than that available in the real world
and detail resolution may be reduced; navigation is per-
formed on the basis of visual information with an
absence of vestibular or proprioceptive information; and
subjects must become familiar with the use of a
mouse/keypad to direct movement. Despite current lim-
itations [17], it has been shown that cognitive maps built
up in virtual environments are comparable to those
acquired in the real environment [18•]. Recent studies
have also confirmed that representations of large-scale
space learned in virtual environments are transferred
when subjects subsequently navigate in the real place
[19–22]. Held and Durlach [23] suggest that an impor-
tant advantage of virtual reality is that it elicits a strong
sense of ‘presence’ compared to table-top tests. Defining
‘presence’ as the subjective experience of being in one
place when one is physically in another, Witmer and
Singer [24] found significant correlations between
‘presence’ and performance in virtual environments. 
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In one line of research, there have been attempts to exam-
ine human place learning in virtual environments by
mirroring previous rodent work. Jacobs et al. [25•] replicat-
ed the Morris water maze test [26] by using a hidden
platform in a virtual circular arena within a square room.
They found that subjects learned the position of the hid-
den platform on the basis of distal cues alone, and that the
use of distal cues was not disengaged by the presence of
proximal cues. Subjects were also able to generalise place
learning from familiar to novel start locations. A related
finding in rats shows that while the orientation of the place
cell representation of space depends on distal visual cues,
it does not depend on intramaze cues [27]. Interestingly,
while hippocampal lesions impair rats’ ability to return to a
hidden platform located relative to the constellation of dis-
tal cues [28], they do not impair their ability to return to a
hidden platform located at a fixed bearing from a single
intramaze cue [29•]. 

In a further set of experiments, Jacobs et al. [30•] removed
sets of distal cues (which covered whole walls) and
observed the effect on place learning. They found that
removing cues from one, two or three out of four distal walls

did not significantly disrupt the ability of human subjects to
relocate a place. These findings are concordant with find-
ings reported for place learning by rats in a Morris water
maze [31]. Cognitive mapping theory predicts that changes
in the topological relations among distal cues rather than a
decrease in their number will disrupt place learning [3].
This was found to be the case in rats [32–34], and now
Jacobs et al. [30•] report it in humans where place learning
in the virtual environment was disrupted by changes to the
relations among distal landmarks, confirming that cognitive
mapping operates in humans as well as rats.

The effect on navigational performance of manipulating the
objects, textures and landmarks in an environment has been
a strong feature of much research into navigation in virtual
environments. As well as place learning in a convex arena,
other studies have used more complex virtual environments
to study navigation between different places on a larger scale
(see e.g. [18•,20,35•,36]). Ruddle et al. [18•] found that route-
finding accuracy was not improved by the use of abstract
coloured patterns as landmarks; however, when familiar
objects were used as landmarks instead, route-finding accu-
racy improved compared to a no-landmark condition.
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Figure 1

Activation of the right hippocampus during
navigation. (a) Scenes from the virtual town
used by Maguire et al. [63••]. Subjects
navigated through the town, which they
viewed in colour. (b) PET scans showing the
location of the increased activity in the right
hippocampal formation associated with
increased accuracy of navigation in the virtual
town. The full coronal section is shown on the
left, with a magnified view of the right medial
temporal region on the right-hand side.
(c) The same activation is shown in a sagittal
section, again with the medial temporal region
magnified on the right-hand side.



Previously, it has been shown that the route through a series
of linked identical rooms with two possible exits in each
room could be learned better if landmarks were associated
with the correct door compared to when they were not [37].
Interestingly, however, this effect was only apparent if sub-
jects in the no-landmark condition were required to engage
in a verbal interference task, which prevented them from
employing a left/right list-learning strategy. 

These studies reveal several important points about navi-
gation. Firstly, they confirm the importance of landmarks as
major constituents of spatial representations (see [38]).
Secondly, they demonstrate the importance of ‘presence’ in
stimulus environment — landmarks need to be realistic if
they are to be used by the navigator in more complex envi-
ronments. Thirdly, it is clear that the design of simulated
environments, the level of differentiation, the number of
choice points [36], the placement of landmarks and their
orientation [18•] require careful consideration so as to
engage as much as possible the cognitive processes that are
used in navigation in real, complex large-scale spaces.

Navigation: a sexually dimorphic skill?
The points discussed above are relevant to another strand of
navigation research assessing whether navigation perfor-
mance is sensitive to gender. Several studies using
computer-simulated environments have found male advan-
tages in navigation performance using either landmark-free
or landmark-limited environments [13•,39]. A study by
Sandstrom et al. [40••] probes the navigation strategies of
both sexes. By manipulating the availability of geometric
cues and landmarks as distal cues in a virtual water maze
environment, they found that female subjects rely predom-
inantly on landmark cues whereas males use both geometric
and landmark cues. Male advantages on virtual maze tasks
must be interpreted in the light of these findings, and
underlines the need to prevent biasing of environmental
construction towards one strategy/cue type over another, or
at least balancing the representation of the sexes in subject
samples during navigation experiments. This work in virtu-
al environments echoes findings in the real world, where
similar differences between the sexes have been found
[41,42]. In rats, there are also reports of males attending pri-
marily to the global shape of the environment, whereas
females consider this and landmark cues in addition [43].

The possible bases of sex differences in navigation have
been interpreted in evolutionary terms (see [13•,44]).
However, in a recent study by Schmitz [45•] of way-finding
by boys and girls aged 10–17 years in a real environment,
girls scored higher on fear and anxiety scales than boys and
moved more slowly through the environment than boys,
but showed no overall difference in the total number of ele-
ments recalled. Such data, coupled with the acknowledged
greater experience of males on video games reported in
several studies [13•,39,40••], must also be factored into the
complex interaction between the characteristics of the
environment and those doing the navigating.

As well as possible sex differences, studies have revealed
how the ability to navigate changes throughout develop-
ment. Hermer and Spelke [46], and more recently Hermer
[47••], have shown that children below 5.5 years of age
have internally consistent representations of object loca-
tions, but rely on the geometrical properties of an
environment (in this case a room) for reorientation, even in
the presence of a distinctive physical cue. This finding
may have parallels with reports of the preferential respon-
siveness of rats’ place cells to geometric properties of
environments [48]. In contrast to young children, adult
humans were found to take account of nongeometric as
well as geometric information to aid orientation [47••]. 

Neural substrates of navigation
Much work in the past year has gone into exploring further
the neural basis of navigation in humans. Just as the layout,
complexity and content of environments affect navigation
performance and interact with the sex and age of subjects,
so might environmental and subject factors interact with
the neural mechanisms supporting navigation. Very little is
yet known about the neuroanatomical differences, if any,
that are associated with sex or age differences and human
navigation. In contrast, the effects of environmental
manipulations have been examined by functional imaging
studies in which subjects navigate in virtual environments
during PET or fMRI scanning. Neuroimaging provides
unique insights into the networks of brain regions support-
ing navigation in the normal human brain in vivo. A
consistent pattern of brain activity associated with naviga-
tion has emerged from imaging work in the past year or so,
but there are still some disagreements about the exact
functions of particular elements of the navigation system.
From recent imaging work it seems clear that key regions
for navigation in humans include the medial and right infe-
rior parietal cortex, the posterior cingulate cortex, parts of
the basal ganglia, the left prefrontal cortex, the bilateral
medial temporal region (including the parahippocampal
gyrus) and the hippocampus proper. Disagreement sur-
rounds the role of the medial temporal region in particular. 

Using fMRI scanning, Aguirre et al. [49] have reported that
navigation in a virtual maze is associated with increased
activity in the parahippocampal gyrus but not in the hip-
pocampus, giving rise to the suggestion that, unlike rats, the
parahippocampal gyrus but not the hippocampus is the cru-
cial neural structure supporting spatial mapping in humans
[50]. Other imaging studies, however, suggest a different
role for the parahippocampal gyrus. This area is active when
recalling landmarks, but not when recalling complex routes
where the use of a cognitive map would be required [51•]. A
PET study found that the parahippocampal gyrus is activat-
ed when the recall of object location in a spatial array is
required, akin to traditional table-top tasks [52]. Passive pro-
cessing of scenes [53•,54•] also activate this area.

This evidence points to a role for the parahippocampal
gyrus and posterior occipito-temporal cortex [55•] in
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object–location associations (as in the monkey, see [56]),
but not more complex cognitive mapping. Further evi-
dence of this comes from a PET study in which navigation
in a stark featureless virtual maze-like environment was
compared to navigation in a maze-like environment that
included several everyday objects as landmarks. The
parahippocampal gyrus was activated only when naviga-
tion occurred in the maze with landmarks ([57•]; but see
[53•]). Thus, just as landmarks were found to have an
impact on way-finding in the behavioural studies
described above, their presence is also an influential factor
on the neural mechanisms supporting navigation. A recent
report of patients with selective bilateral damage restricted
to the hippocampus (and where the surrounding cortex
was intact) found that, as well as having impaired episodic
memory, these patients are also unable to find their way
around, despite having an intact parahippocampal cortex
[58••]. This suggests that representing large-scale space
depends on the human hippocampus proper, either direct-
ly, or at least via its role in episodic memory [59,60].

The imaging work just described also highlights a further
effect of environmental manipulation, with implications for
the brain regions activated. In scanning studies using sim-
ple maze-like environments [49,57•], there was no
increased activation of the hippocampus proper. We believe
that these environments, limited in their range of texture,
number of choice points and arrangements of landmarks,
may have two drawbacks in relation to study of the hip-
pocampus. They do not feel realistic (i.e. they have poor
‘presence’), and they can be amenable to solution without
recourse to a cognitive map (e.g. by using a linear or verbal
representation). This stands in contrast to the increases in
hippocampal activity observed when subjects learned how
to navigate through a town by watching film footage of trav-
el through a real town [61], by recalling routes through a
real city [51•], or by recalling a route learned in the real
world before scanning took place [62•]. Taking these find-
ings into consideration, scanning experiments are now
using more realistic town-like environments to simulate
real navigation with increased ‘presence’. The opportunity
afforded by being able to combine monitoring changes in
blood flow with recording and measuring online navigation
performance has given further insights into the precise
activity of elements of the navigation network. 

Recently, we used PET to scan subjects while they per-
formed retrieval tasks in a complex computer-simulated
town they had spent time learning prior to scanning [63••]
(see Figure 1). Subjects either found their way to specified
destinations in the town using the internal representation
they built up during learning or followed a trial of arrows
through the town that did not require the use of topo-
graphical memory but controlled for movement and optical
flow. Subjects’ behavioural performances as well as changes
in cerebral perfusion during scanning were recorded and
analysed. The right hippocampus was more activated when
reaching a destination successfully than when following the

trail of arrows, and during successful trials than during
unsuccessful trials. This latter finding was also true for the
left hippocampus. In addition, there was a significant corre-
lation between blood flow changes in the right
hippocampus and right inferior parietal cortex with the
accuracy of navigation — the more accurate the path taken
to the goal place, the more active these regions. The high-
est correlation was found in the right hippocampus and the
second highest in the right inferior parietal cortex.

We interpret these findings to mean that the output of the
hippocampus on the right side is a vector that continuous-
ly points to the goal location, a finding consistent with a
model of the rat hippocampus (see [64]). The lower corre-
lation in the parietal cortex may reflect its response to
other variables, such as egocentric trunk/head position
information. Activity in the left hippocampus, although
associated with successful navigation, did not covary sig-
nificantly with the measure of navigation accuracy. This
means that it is involved in navigation but in a way differ-
ent from the right hippocampus. Lesions to either the left
or the right medial temporal regions in humans are known
to affect navigation ([65]; see also [66]), although lesions on
the right are more generally associated with impairments
to spatial memory [67,68••]. Perhaps the left hippocampus
has a less specifically spatial role (e.g. verbal) in memory
that is useful in navigation nonetheless. 

Which part of the hippocampus is associated
with navigation?
From a recent meta-analysis of PET studies that have
activated the hippocampal region, Lepage et al. [69•] sug-
gest that activations associated with memory encoding
are located primarily in the anterior portion of the hip-
pocampus, whereas retrieval activations are located more
posteriorly. They have called this the HIPER (hippocam-
pal encoding/retrieval) model. Imaging of navigation does
not fit with this model, with both encoding and retrieval
typically associated with activation of more posterior por-
tions of the hippocampal region. The inclusion criteria for
the meta-analysis were somewhat arbitrary and another
meta-analysis study found a less clear-cut distinction
[70•]. Nevertheless, the navigation imaging findings do
fit with rat studies where it has been shown that damage
to the dorsal third of the rat hippocampus, but not lesions
to the ventral two thirds, is sufficient to cause severe
impairments on the Morris water maze task [71]. Recent
rodent studies continue to explore the dorsal/ventral dis-
tinction [72,73], which is perhaps equivalent to the
posterior/anterior distinction in humans. Bohbot et al.
[68••] examined epilepsy surgery patients and found that
four out of six patients with right hippocampal lesions,
who were unimpaired on a spatial task modelled on the
Morris water maze, had intact posterior portions of the
right hippocampus. More work is needed to examine this
more closely in humans, paying particular attention to the
remnant of hippocampal tissue and its fate in the months
following epilepsy surgery [74].
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Conclusions
Recent work examining human navigation has employed
more realistic stimuli, often in the form of virtual reality envi-
ronments, to characterise the cognitive processes engaged
during dynamic way-finding in large-scale space. The com-
plexity and content of the environment affects navigation
success and may also interact with the sex and age of the sub-
jects being tested. The nature of the environment also
impacts upon the neural mechanisms required to support
navigation. It is not possible on the basis of the data gathered
so far to determine how the hippocampal formation and the
parietal cortex interact during human navigation (see [75••])
nor the precise inputs and outputs of the human navigation
system in general. Currently, there are limitations to virtual
environments; as mentioned previously, they lack the
requirement for vestibular inputs that take place during real
navigation [6,76]. Future technologies will need to address
this. Nevertheless, the past year has demonstrated that
humans can navigate in complex virtual environments with
solely visual stimulation and that the function of the right
human hippocampus has strong parallels with hippocampal
function in navigating rats and other animals. Precisely how
the role of the hippocampus in navigation dovetails with its
acknowledged importance in the wider context of episodic
memory [59,60] has been the subject of speculation
(e.g. [3,75••]), but remains a critical issue for future research.
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