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Knowing Where and Getting There: A Human
Navigation Network

Eleanor A. Maguire,* Neil Burgess, James G. Donnett,
Richard S. J. Frackowiak, Christopher D. Frith, John O’Keefe

The neural basis of navigation by humans was investigated with functional neuroimaging
of brain activity during navigation in a familiar, yet complex virtual reality town. Activation
of the right hippocampus was strongly associated with knowing accurately where places
were located and navigating accurately between them. Getting to those places quickly
was strongly associated with activation of the right caudate nucleus. These two right-side
brain structures function in the context of associated activity in right inferior parietal and
bilateral medial parietal regions that support egocentric movement through the virtual
town, and activity in other left-side regions (hippocampus, frontal cortex) probably
involved in nonspatial aspects of navigation. These findings outline a network of brain
areas that support navigation in humans and link the functions of these regions to
physiological observations in other mammals.

Where am I? Where are other places in the
environment? How do I get there? Ques-
tions such as these reflect the essential
functions of a navigation system. The neu-
ral basis of way-finding activity has been
extensively studied. Spatially tuned neurons
found in the hippocampal formation of free-
ly moving rats [place cells coding for the
rat’s location (1) and head direction cells
coding for its orientation (2)] support the
idea that this part of the brain provides an
allocentric (world-centered) representation
of locations, or cognitive map (3). The
posterior parietal lobe has been implicated
in providing complementary egocentric
representations of locations (centered on
parts of the body) (4). Other brain regions,
such as the dorsal striatum (5), have also
been identified as possible elements of a
navigation system. In humans, there has
been much evidence for the involvement of
the hippocampus in episodic memory, the
memory for events set in their spatio-tem-

poral context (3, 6). By contrast, the role of
the hippocampus in human navigation has
remained controversial, and the wider neu-
ral network supporting human navigation is
even less well understood. We attack this
issue by combining functional neuroimag-
ing with a quantitative characterization of
human navigation within a complex virtual
reality environment.

We used positron emission tomography
(PET) (7) to scan subjects while they nav-
igated to locations in a familiar virtual re-
ality town using their internal representa-
tion of the town built up during a contin-
uous period of exploration immediately be-
fore scanning (Fig. 1A). In one navigation
condition, the subjects could head directly
toward the goal (nav1), while in the other
(nav2), direct routes were precluded by
closing some of the doors and placing a
barrier to block one of the roads, forcing the
subjects to take detours. Navigation was
compared to a task in which subjects moved
through the town following a trail of arrows,
thus not needing to refer to an internal
representation of the town. An additional
task requiring the identification of features
in static scenes from the town was included
for contrast with the three dynamic tasks
(8).

We first investigated which brain re-
gions were involved in successful naviga-
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tion in both direct and detour way-finding.
The trials in these conditions were divided
into successful ones in which the correct
destination was reached (22/30 trials in
nav1 and 21/30 in nav2 across the 10 sub-
jects) and those in which it was not. The
successful trials compared to the arrows task
showed significant activation of the right
hippocampus (Fig. 1B), as did the compar-
ison of the successful trials with the unsuc-
cessful trials. This latter comparison also
revealed activation in the left hippocampus,
left lateral temporal cortex, left frontal cor-
tex, and in the thalamus (Fig. 1B).

In order to explore in greater depth the
relationship between regional cerebral
blood flow (rCBF) and behavior during di-
rect way-finding (nav1), we derived a quan-

titative measure of the accuracy of heading
toward the goal (9). The accuracy of head-
ing measured across all trials in nav1 covar-
ied significantly with rCBF in the right
hippocampus and the right inferior parietal
cortex (Fig. 2). Not only is the right hip-
pocampus more active during navigation
than trail-following, but the more accurate
the navigation, the more active it is.

These results are consistent with our
interpretation that the right hippocampus
and inferior parietal cortex cooperate to
enable navigation to an unseen goal: The
hippocampus provides an allocentric (envi-
ronment-based) representation of space
that allows the computation of the direc-
tion from any start location to any goal
location, and the right inferior parietal cor-
tex uses this information to compute the
correct body turns to enable movement to-
ward the goal given the relative (egocen-
tric, body-centered) location of obstacles in
the way (doorways to go through, barriers
across roads, and so forth) and the current
heading direction. Because the parietal cor-
tex takes account of information in addi-
tion to the allocentric direction to the goal,
it would not have as high a correlation with
the accuracy of heading toward the goal as
the hippocampal formation (consistent
with our findings; Fig. 2). Similarly, rCBF
in the right inferior parietal cortex would
not be significantly different in the trail-

following and way-finding conditions, be-
cause both tasks have similar egocentric
requirements, and no such difference was
found (Fig. 1B). However, differences in
right inferior parietal activity would be ex-
pected when subtracting the static condi-
tion from either trail-following or way-find-
ing. This comparison did indeed show right
inferior parietal activation, along with bi-
lateral activation of medial parietal areas,
which we assume are also involved in ego-
centric aspects of movement, for example,
processing the optic flow generated by the
movement (Fig. 3B) (10).

Activity in the left hippocampus, al-
though associated with successful naviga-
tion, does not covary significantly with our
measure of the accuracy of navigation. We
interpret this as a role in actively maintain-
ing the memory trace of the appropriate
destination during navigation or recollect-
ing specific paths taken during learning that
lead to the goal but are not necessarily
direct. Either role would be consistent with
the known involvement of the left hip-
pocampus in “episodic” memory for person-
ally experienced events (6).

These results are consistent with previ-
ous reports of the involvement of the hip-
pocampal or parietal areas in topographical
memory (11) and provide a more precise
interpretation of their roles in the actual
performance of navigation.

A

B

Fig. 1. (A) Example of view from inside the virtual
town. (B) The comparison between successful
navigation (nav1 and nav2) compared to following
a trail of arrows. PET data are superimposed onto
the averaged MRI of the 10 subjects at the voxel of
peak activation in the right hippocampus dis-
played in the coronal plane. The color scale of the
activation pertains to the significance level of the z
scores with the peak of the activation in white.
Coordinates in stereotactic space (x,y,z, respec-
tively) and z scores of the activations are: right
hippocampus (30, 216, 222; z 5 3.74) and left
tail of caudate (228, 216, 28; z 5 3.05). Other
areas activated in this comparison but not dis-
played on this plane were: left occipital area 18
(224, 2102, 22; z 5 3.50) and left superior fron-
tal gyrus (222, 52, 22; z 5 3.65). The comparison
between successful versus lost trials showed the
following activations: right hippocampus (30,
220, 216; z 5 3.61); left hippocampus (216,
226, 26; z 5 4.10); left superior temporal gyrus
(254, 230, 14; z 5 3.86); left inferior temporal
gyrus (–52, 250, 212; z 5 5.23); left inferior fron-
tal gyrus (–46, 22, 6; z 5 4.59); and right thalamus
(6, 26, 12; z 5 4.25).

A B

C

Fig. 2. (A) The virtual en-
vironment is shown from
an aerial perspective,
demonstrating the com-
plexity of the town and
the many possible paths
between the various
places. Subjects’ navi-
gation during scanning
on the navigation task
was analyzed in terms of
accuracy in degrees (9).
Three trajectories be-
tween the screens at A and B (18 m
apart) are shown from the range of
subjects’ behavior: an accurate tra-
jectory (yellow, accuracy 5 155.3°),
an inaccurate but successful trajec-
tory (green, accuracy 5 127.9°),
and an inaccurate “lost” trajectory
(red, accuracy 5 70.6°). (B) The
PET data from the correlational
analysis of rCBF (22) and accuracy
are superimposed onto the aver-
aged MRI of the 10 subjects at the
voxel of peak activation in the right
hippocampus displayed in the
coronal plane. Areas activated in this comparison were right hippocampus (36, –12, –20; z 5 3.66;
displayed in figure) and right inferior parietal cortex (60, –30, 50; z 5 3.36). (C) Scatter plot of the
correlation of rCBF values at the voxel of peak activation in the right hippocampus plotted against the
accuracy of navigation (r 5 0.56, P , 0.002). The behavioral data for one trial of one subject (subject 6)
was not available. The data points for each subject are plotted in different colors. The correlation of
accuracy of navigation and perfusion in the right inferior parietal cortex was r 5 0.43, P , 0.02.
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Next, we looked at successful navigation
requiring detours (nav2) compared to suc-
cessful navigation in the nav1 condition.
This comparison revealed left frontal acti-
vation (Fig. 3A). The increased require-
ment for strategy switching in the presence
of obstacles (nav2) compared to direct way-
finding (nav1) is consistent with findings of
frontal involvement in other studies with
tasks making similar demands (12). Left
frontal activation was also apparent when
successful navigation was compared to fol-
lowing arrows or compared to unsuccessful
navigation. These frontal activations are
consistent with a role for this region in
planning and decision making (13). It is
likely that following the trail of arrows de-
mands less planning than way-finding.

As well as comparing the dynamic and
static tasks detailed above, we further char-
acterized movement in the town in terms of
the speed of motion, that is, the ratio be-
tween distance traveled and time taken,
producing an average speed measure in vir-
tual meters per second. In contrast to the
areas whose activity correlated with naviga-

tional accuracy, the only area of regional
activation that covaried significantly with
speed of navigation in the nav1 condition
was in the right caudate nucleus; rCBF in
this region increased as speed increased (Fig
3, C and D). This correlation with speed of
virtual navigation was much more signifi-
cant than that with simple motor response
variables such as the rate or average dura-
tion of keypad presses (Fig. 3D). It suggests
a higher function than the simple control of
the physical movement of parts of the body,
although its precise interpretation remains
open. The dorsomedial caudate region re-
ceives projections from the cortices adja-
cent to the hippocampus in rats (14). We
suggest that location within the environ-
ment or spatial context might provide an
important source of information for the stri-
atal control of higher-level aspects of cur-
rent or planned movements and that this
control is reflected in the amplitude or
speed of movement, rather than the direc-
tion of movement.

In conclusion, our results outline the
network of brain regions supporting human

navigation and suggest specific roles for
each of these regions. They agree with, and
further illuminate, previous findings show-
ing that lesions of the right human hip-
pocampus result in deficits of spatial mem-
ory (15) while those of the right inferior
parietal cortex result in deficits of the abil-
ity to represent or act on objects located
with respect to the egocentric left-right
body axis (16). Our interpretation of the
parietal role in navigation agrees with neu-
ronal responses from inferior parietal cortex
in monkeys (in particular, area 7a and the
lateral intraparietal area) implicating it in
the translation of the location of stimuli
from retinal to head- or body-centered co-
ordinates (4), and with the connections of
area 7a to the hippocampal formation [in-
cluding the presubiculum which, at least in
rats, codes for the current head direction
(2)]. Our interpretation of the hippocampal
role in navigation is concordant with neuro-
nal responses in rats (3) and with models of
how the hippocampus guides rats’ navigation
(17), from which our measure of navigation-
al accuracy was explicitly derived. Our find-
ing that rCBF in the right caudate nucleus
correlates with the speed of navigation is
compatible with its proposed role in motor
learning (18) and the process by which
movements are reinforced [and hence, the
occurrence of abulia after lesions of this re-
gion (19)], and also with the more general
hypothesis of a role in context recognition
(20). It also has relevance to the suggestions
that rats may use signals derived from cells
that encode their speed of movement to
determine distances and that such speed cells
might be located in one of the sub-cortical
nuclei (21), perhaps in the basal ganglia as
we identified here. Although many details of
the inputs and outputs of a human naviga-
tion network remain to be specified, we have
demonstrated the closest link yet between
humans and other mammals in the neural
implementation of navigation.
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