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The CODE Theory of Visual Attention: 
An Integration of Space-Based and Object-Based Attention 

G o r d o n  D .  L o g a n  
University of  Illinois 

This article presents a theory that inte~ates space-based and object-based approaches to visual 
attention. The theory puts together M. P. van Oeffelen and P. G. Vos's ( 1982, 1983) COntour DE- 
tector (CODE) theory of perceptual grouping by proximity with C. Bundesen's (1990) theory of 
visual attention (TVA). CODE provides input to TVA, accounting for spatially based between-object 
selection, and TVA converts the input to output, accounting for feature- and category-based within- 
object selection. CODE clusters nearby items into perceptual groups that are both perceptual objects 
and regions of space, thereby integrating object-based and space-based approaches to attention. The 
combined theory provides a quantitative account of the effects of grouping by proximity and dis~nce 
between items on reaction time and accuracy data in 7 empirical situations that shaped the current 
literature on visual spatial attention. 

For the last decade the attention literature has been em- 
broiled in a debate over the nature of  visual spatial attention 
that focuses on the "thing" that attention selects (e.g., Baylis & 
Driver, 1993; Driver & Baylis, 1989; Duncan, 1984; Egly, 
Driver, & Rafal, 1994; Kramer & Jacobson, 1991; Vecera & Fa- 
rah, 1994). Advocates of  space-based attention argue that at- 
tention selects regions of  space independent of the objects they 
contain. Attention is like a spotlight illuminating a region of  
space. Objects that fall within the beam are processed; objects 
that fall outside it are not (Eriksen & Eriksen, 1974; Eriksen & 
St. James, 1986; Posner, 1980; Posner & Cohen, 1984; Treis- 
man & Gelade, 1980; Treisman & Gormican, 1988). Advocates 
of  object-based attention argue that attention selects objects 
rather than regions of  space. Selection is spatial because objects 
necessarily occupy regions of  space, but objects rather than the 
regions themselves are the things that are selected (Kahneman 
& Henik, 1981; Kahneman & Treisman, 1984; Kahneman, 
Treisman, & Gibbs, 1992; Pylyshyn & Storm, 1988). Object- 
based theories assume that attention only selects regions of  
space that are occupied by objects, whereas space-based theo- 
ries assume that attention can select empty regions of  space (cf. 
Yantis, 1992). 

The purpose of this article is to propose a theory of visual 
spatial attention that integrates space-based and object-based 
views. The theory takes a computational approach to the prob- 
lem, characterizing attention in terms of  representations and 
the processes that operate on them. It differs from most ap- 
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proaches to attention by being concerned with the representa- 
tion of space and the representation of  objects, incorporating a 
theory of  perceptual organization and a theory of  selection. The 
resolution of  the controversy derives from the theory's assump- 
tions about representation. 

The article begins by describing five important questions that 
face any theory of visual spatial attention. The answers pro- 
posed by the new theory are presented by way of  describing the 
theory. The theory is applied to seven important paradigms that 
shaped the current literature on visual spatial attention. Finally, 
the benefits and limitations of  the theory are discussed, and 
fruitful directions for future research are pointed out. 

Five Key  Ques t ions  

How Is Space Represented? 

A key question for both space-based and object-based theo- 
ries of  attention is how space is represented. Despite the impor- 
tance of  space in theories of  attention for the last decade or two, 
very little has been said explicitly about the representation of  
space, perhaps because it seems that little needs to be said: Ob- 
jects are arrayed in space in the world. Optics preserve the spa- 
tial array as the world is projected on the retinae. Retinotopic 
projection from retinae to cortex preserves the spatial arrange- 
ment in visual cortex, which is interpreted (by theorists) as a 

representation of space. 
Space-based theories of  attention appear to assume that space 

is represented by a two- or three-dimensional ( 2-D or 3-D) map 
of  locations, with objects represented as points in space (Cave 
& Wolfe, 1990; Treisman, 1990; Treisman & Gelade, 1980; 
Treisman & Gormican, 1988; Wolfe, 1994). Theorists appear 
to assume that distance between objects is represented by a Eu- 
clidean metric, because Euclidean distance is an important 
variable in studies of space-based attention (e.g., Eriksen & 
Hoffman, 1973; Shulman, Remington, & McLean, t979; Tsal, 
1983). 

Object-based theories have been even less explicit about the 
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representation of space. They appear to assume that space is 
represented as a 2-D or 3-D array of objects, organized by Ge- 
stalt grouping principles. The distance metric is not clear, but 
Euclidean distance is not especially important. Researchers of- 
ten interpret data as evidence for object-based attention when 
grouping factors counteract Euclidean distance (Baylis & 
Driver, 1993; Driver & Baylis, 1989; Kramer & Jacobson, 
1991 ). This abandonment of Euclidean distance and granting 
it to the opposition is a peculiar tactic for object-based theorists 
because grouping by proximity is a powerful and important Ge- 
stalt principle. 

A theory of space-based or object-based attention must be 
explicit in its assumptions about how space is represented. Oth- 
erwise, the theories cannot be tested adequately. Moreover, 
comparisons between classes of theories can be made only if 
their assumptions about spatial representation are explicit. 
Otherwise, it is difficult to derive contrasting predictions. 

What Is an Object? 

The definition of an object is a central issue in object-based 
theories. Nevertheless, there is no commonly agreed upon 
definition. The most common tactic is to rely on intuition, as if 
William James had said, "Everyone knows what an object is." 
Some researchers rely on ratings of"goodness" of objects (e.g., 
Kramer & Jacobson, 1991), democratizing intuition. Others 
rely on Gestalt grouping principles, like similarity (Kahneman 
& Henik, 1977), common fate (Driver & Baylis, 1989), and 
proximity (Banks & Prinzmetal, 1976; Prinzmetal, 1981 ). Still 
others rely on spatial contiguity: Objects are conjunctions of 
properties that occur at a common location (Kahneman & 
Treisman, 1984; Kahneman, Treisman, & Gibbs, 1992). De- 
spite the lack of consensual definition, most researchers agree 
that objects are hierarchical; objects can be decomposed into 
parts, and each part can be treated as a single object (Baylis & 
Driver, 1993; Biederman, 1987; Marr & Nishihara, 1978; Na- 
von, 1977; Palmer, 1977; Palmer & Rock, 1994). A theory of 
object-based attention should say what an object is and should 
account for hierarchical organization in the definition it 
provides. 

What Determines Shape of  the Spotlight? 

A great deal of space-based research has addressed the shape 
of the region that attention selects. The default assumption 
seems to be that the region is round, like a spotlight beam, but 
some researchers have suggested different shapes, from ovals 
(Eriksen, Pan, & Botella, 1994) to doughnuts (Juola, Bouw- 
huis, Cooper, & Warner, 1991 ). In most of these approaches, 
the shape is determined by "endogenous factors" or "higher- 
level processes" that are outside the scope of the theory. If that 
is the case, then the shape of  the region becomes a free parame- 
ter (or set of parameters) that the theorist can set without con- 
straint to accomodate whatever data may appear. The theory I 
am proposing constrains the shape of the spotlight, reducing the 
need to invoke a homunculus to explain selection. 

LaBerge and Brown (1989) took a more principled approach 
to the shape of the spotlight in their gradient theory of  attention. 
They assumed that the spotlight adjusts to the shape of  the se- 

lected object, opening an aperture the size and shape of the ob- 
ject through which perceptual features are sampled. The main 
empirical thrust of their assumption focused on aftereffects of 
selection, providing data that suggested that an aperture the size 
and shape of the target remained open for a short time after the 
selected object disappeared. 

A theory of space-based attention must be explicit about 
what determines the shape of the spotlight. Better theories will 
be more specific about the factors that determine it and leave 
less work for an omnipotent homunculus to do. 

How Does Selection Occur Within 
the Focus of  Attention? 

Space-based and object-based theories both assume that ev- 
erything within the focus of attention is processed. Space-based 
theories assume that everything within the spotlight is pro- 
cessed (e.g., Eriksen & St. James, 1986; Treisman & Gormican, 
1988 ), and object-based theories assume that every property of 
the selected object is processed (e.g., Kahneman & Henik, 
1981 ; Kahneman & Treisman, 1984; Kahneman et al., 1992). 
These assumptions, by themselves, cannot account for cases in 
which selection occurs within the focus of  attention (see 
Kahneman, 1973; Posner & Boies, 1971; Treisman, 1969). 

The Stroop (1935) task provides a compelling example of 
selection within the spatial focus of attention. The task requires 
subjects to name the color in which a word is written and ignore 
the name of the word. They manage to do so with great success. 
Reaction times may be slower when the word names a different 
color than the target (incompatible displays, e.g., GREEN in 
red) than when the word names a noncolor (neutral displays, 
e.g., MOST in red) or the same color as the target (compatible 
displays, e.g., RED in red),  but accuracy is high. Subjects rarely 
report the word instead of the color (for a review, see MacLeod, 
1991)/ 

The basic Stroop results are difficult to accomodate with the 
assumption that everything in the spatial focus of attention is 
processed. If everything in the spotlight or every property of  the 
selected object was processed, then the ~vord should have been 
processed as well as the color. Moreover, the word is usually pro- 
cessed faster and more accurately than the color (Cohen, Dun- 
bar, & McClelland, 1990; Logan, 1980). So why doesn't the 
word determine performance? Because there is more to atten- 
tion than spatial selection (Broadbent, 1971; Kahneman, 1973; 
Posner & Boies, 1971; Treisman, 1969 ). Theories of visual-spa- 
tial attention must interface with theories of  other kinds of se- 
lection to account for the basic phenomena in visual-spatial at- 
tention and to provide a realistic account of attention in general 
(Phaf, van der Heijden, & Hudson, 1990). 

How Does Selection Between Objects Occur? 

Most theories agree that visual attention is sometimes serial, 
focusing on one item or one set of  items at a time, moving from 

Subjects rarely make mistakes; error rate is typically lower than 
10%. When they do make errors, they tend to report the word 
(Hillstrom & Logan, in press, found that subjects reported the word on 
83% of the error trials), but they do not make errors very often. 
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one to the other. Serial shifting of  the focus is an important issue 
in search tasks (e.g., Duncan & Humphreys, 1989; Treisman & 
Gelade, 1980; Treisman & Gormican, 1988; Wolfe, 1994). Se- 
rial search raises important questions for between-object selec- 
tion: How does attention know which item to choose next? How 
does the spotlight know where to go? There are very few theories 
of  the processes that govern the movements of  attention (but see 
Cave & Wolfe, 1990; Koch & Ullman, 1985; Wolfe, 1994; 
Wolfe, Cave, & Franzel, 1989). Most often, the government is 
left to "higher order processes" or homunculi. 

Selection between objects is a prominent feature of atten- 
tional cuing tasks, which many theories address (e.g., Eriksen 
& St. James, 1986; Eriksen & Yeh, 1985; Posner, 1980; Posner 
& Cohen, 1984). Cues are presented that indicate which item 
is the target or which location is likely to contain the target, and 
subjects benefit from using the cues. Cuing also raises impor- 
tant questions about between-object selection: How does atten- 
tion know where to go? It has to go to the cue first and then 
from the cue to the target. How does it know what to do? The 
computational problem is more complex than with search, be- 
cause attention has to move in a specific direction. Few theories 
address the problem even though it is a major issue in cuing 
tasks (but see Logan, 1995). 

The problem for space-based and object-based theories is 
that they must interface with other theories o f  cognition in or- 
der to account for basic phenomena like serial visual search or 
moving attention from cue to target. The other theories may 
be able to explain some of the things that are currently left to 
homunculi (Attneave, 1960). 

T h e o r y  o f  A t t en t ion  

In this article, I propose the CODE theory of visual attention 
(CTVA) that integrates space-based and object-based ap- 
proaches to attention and interfaces visual spatial attention 
with other kinds of  attentional selection and with higher level 
processes that apprehendrelations between objects. The theory 
is a wedding of the COntour DEtector (CODE) theory of per- 
ceptual grouping by proximity (Compton & Logan, 1993; van 
Oeffelen & Vos, 1982, 1983) and Bundesen's (1990) theory of 
visual attention (TVA). As with most weddings, each theory 
retains its fundamental identity but compromises on details in 
order to work with the other. This section of  the article describes 
the fundamental assumptions of the theories before and after 
the wedding and describes the compromises and developments 
that were necessary to join the theories together. 

Basic Architecture 

The basic architecture of  the theory is illustrated in the top 
panel of  Figure 1. Many theories of visual spatial attention use 
the same architecture (e.g., Milner, 1974; Mozer, 1991; Treis- 
man & Gormican, 1988; van der Heijden, 1992): There are 
early visual processes and late visual processes. The early visual 
processes, often identified with V 1 in striate cortex, represent 
location and identity together. Later processes distinguish be- 
tween location and identity and represent them separately. The 
late location system is identified with processes in the magno- 
cellular pathway leading through V2, V3, and V5 to posterior 

Figure 1. Architecture of the CODE Theory of Visual Attention, in- 
cluding an early system in which location and identity information are 
combined, represented by the CODE theory, a late system that pro- 
cesses identity information, represented by Bundesen's (1990) Theory 
of Visual Attention (TVA), and a late location system, represented by 
Logan's ( 1995 ) spatial relation theory. Top panel: schematic represen- 
tation of components; bottom panel: theories associated with the 
components. 

parietal cortex, whereas the late identity system is identified 
with processes in the parvoceUular pathway leading through 
V2, V3, and V4 to inferotemporal cortex (Ungerleider & Mis- 
hkin, 1982; van der Heijden, 1992). 

The CODE theory of visual attention adopts the same archi- 
tecture but fleshes out the details. As illustrated in the bottom 
panel of  Figure 1, the early visual processes are represented by 
van Oeffelen and Vos's ( 1982, 1983) and Compton and Logan's 
(1993) CODE model of  perceptual grouping by proximity and 
the late identity processes are represented by Bundesen's 
(1990) TVA model  of  parallel selection in vision. The late loca- 
tion system is less well developed because less is known about 
conceptual representation of location. The CODE theory of vi- 
sual attention adopts a preliminary theory proposed by Logan 
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( 1995 ) that accounts for some instances of conceptually guided 
selection between perceptual objects. 

Representing Space and Defining Objects 

CODE theory of grouping by proximity. Representation of 
space and objects is the key to the theoretical integration of 
space-based and object-based approaches to attention. The new 
theory's representation derives from the CODE theory of per- 
ceptual grouping by proximity proposed originally by van 
Oeffelen and Vos ( 1982, 1983) and extended by Compton and 
Logan ( 1993 ). The CODE theory provides two representations 
of space, an analog representation of the locations of items and 
a quasi-analog, quasi-discrete representation of objects and 
groups of objects. The analog representation of location is pro- 
duced by bottom-up processes that depend entirely on the prox- 
imities of the various items in the display. The representation of 
objects and groups is produced by an interaction between top- 
down processes that apply a threshold to the analog representa- 
tion of locations and the bottom-up processes that generated the 
analog representation in the first place. 

Locations of items are distributed in space. A key assump- 
tion of the CODE theory, which contrasts with the implicit as- 
sumption in most theories of attention, is that the representa- 
tion of location is distributed across space. Locations are not 
points but distributions in l-D, 2-D, and 3-D space (also see 
Ashby, Prinzmetal, lvry, & Maddox, 1996; Maddox, Prinz- 
metal, Ivry, & Ashby, 1994). The form of the distribution may 
not matter much, as long as it is roughly symmetrical and 
peaked in the center. Van Oeffelen and Vos ( 1982, 1983 ) origi- 
nally assumed that the distribution was normal, but Compton 
and Logan (1993) showed that Laplace distributions worked 
just as well in accounting for subjects' grouping judgments. I 
chose the Laplace distribution for the current theory because it 
is easier to work with than the normal. Like the normal, the 
Laplace distribution can be defined in more than one dimen- 
sion. One- and two-dimensional definitions are sufficient for the 
examples of perceptual organization considered in this article. 
The probability density function for the 1-D Laplace distribu- 
tion is: 

X Y Z 

× Y z 

Figure 2. Feature distributions and the CODE surface representing 
three items (X, Y, and Z) arrayed in one dimension. The top panel 
shows the feature distributions and the CODE surface; the bottom panel 
shows three thresholds applied to the CODE surface that parse the dis- 
play into a three ( high threshold), two (intermediate threshold), or one 
(low threshold) group. 

f ( x ) :  L/2Aexp[--~lx--OI]. (1) 

The mean is 0 and the standard deviation is f2~, ~. The mean 
represents the center of the item in the x dimension, and the 
standard deviation determines the spread of the distribution 
over the x dimension. 

The representation of locations as distributions is illustrated 
in Figure 2. The points x, y, and z represent the locations of the 
items in the x dimension in the display. The dotted lines above 
each of the points are the distributions that represent the loca- 
tion of the items in the CODE representation. The points x, y, 
and z are the means of those distributions. The spread of the 
distributions is determined by the standard deviation, which is 
the same for all three items in this example (cf. Compton & 
Logan, 1993). 

Representation of spatial array is" a CODE surface. CODE 
assumes that the location of each item in space is represented 
by its own distribution. Bottom-up processes sum the distribu- 

tions for the different items producing a CODE surface. The 
top panel of Figure 2 illustrates how a 1-D CODE surface is 
generated from items whose locations vary in one dimension. 
The dotted lines represent the distributions for each item, and 
the solid line represents the CODE surface, which is the sum 
of the distributions of locations of the individual items. To for- 
malize this notion, the height of the CODE surface at point x, 
h(x), is 

N 
h(x)  = ~ 1//2 ~k i exp [ - X / i x  - a,I]. ( 2 )  

i - i  

for a display of N items. 
Figures 3A and 3B illustrate how a 2-D CODE surface is gen- 

erated from items whose locations vary in two dimensions, such 
as an array of letters presented in a visual search task. Figure 
3A shows the distribution of items (points) in 2-D space, and 
Figure 3B shows the CODE surface that represents their loca- 
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Figure 3. A dot pattern arrayed in two dimensions (3A), the corresponding CODE surface (3B) with a 
threshold applied to it (3C), and a contour map of the CODE surface ( 3D ) representing all possible group- 
ings of the dots in the pattern. 

tions. As in the I-D case, the distributions for individual items 
are summed to produce the CODE surface. In this case, the 
distributions of individual items are 2-D, so the resulting 
CODE surface is 2-D. 

Perceptual groups depend on a threshoM applied to CODE 
surface. Bottom-up processes produce the CODE surface and 
make it available to top-down processes. Perceptual groups are 
produced by applying a threshold to the CODE surface. The 
threshold cuts off peaks in the CODE surface, and items resid- 
ing in the same above-threshold region of the CODE surface 
belong to the same perceptual group. Items that reside in 
different above-threshold regions are part of different percep- 
tual groups. 

The operation of the threshold is illustrated in the bottom 
panel of Figure 2. The threshold is a y value that intersects the 
CODE surface at particular x-y  points. An above-threshold re- 
gion is a range of x values for which the y value of the CODE 
surface is greater than the y value for the threshold. Items that 
fall within the range o fx  values for a given above-threshold re- 
gion are part of the same perceptual group. 

Perceptual grouping is hierarchical. Hierarchical grouping 
is an inherent property of CODE. It is produced by varying the 
threshold. The lower the threshold, the larger the groups (i.e., 
the more items they contain). As the threshold is raised, large 
groups break up into smaller ones, but the relationship is hier- 
archical in that smaller groups are always nested within the 
larger ones. Hierarchical grouping is illustrated in the bottom 
panel of Figure 2. The lowest threshold value groups all of the 
items together. The intermediate value breaks the large group 
into two smaller ones, and the highest value groups each item 
separately. 

The operation of the threshold in the 2-D case is illustrated in 
Figures 3C and 3D. Figure 3C shows the same surface displayed 

in Figure 3B with the peaks "sliced off" the CODE surface by 
a threshold. Figure 3D shows a contour map of alternative 
groupings, generated by applying several different thresholds to 
the CODE surface. As in the l-D case, grouping is hierarchical, 
with smaller groups nested in larger ones. 

Van Oeffelen and Vos (1982) showed that CODE could ac- 
count for the subjects' judgments about the appearance of 
groups in the sorts of stimuli that appear in textbook demon- 
strations (e.g., a matrix ofx 's  organized in rows or columns by 
manipulating proximity). Compton and Logan ( 1993 ) showed 
that several different parametric variations of CODE could ac- 
count for subjects' judgments of grouping in random dot pat- 
terns. The variation used in the current theory--Laplace distri- 
butions with equal standard deviations--accounted for group- 
ing judgments as well as any other. Compton and Logan (1996) 
examined the invariance of grouping judgments over transfor- 
mations of size and orientation, which CODE predicts, and 
found that subjects' judgments were not invariant. They were 
close, however, and CODE provided a reasonable description of 
the data. 

Extension o f  CODE to Attention 

CODE distributions are distributions of item features. The 
application of CODE to attention involves a straightforward 
extension of the assumption about representation of location: 
Location is distributed in the sense that information about the 
features of the items is distributed over space. The distributions 
that make up the CODE surface are distributions of item fea- 
tures. The height of a distribution at any point in space repre- 
sents probability (density) of sampling the features of the item 
it represents. Given the shape of the assumed distribution 
(Laplace), the probability of sampling features will be highest 
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X Y Z 

Figure 4. Illustration of the feature catch produced by applying a 
threshold to a CODE surface representing three items (X, Y, and Z ). 
(Note that part of the feature distribution for item X is included in the 
feature catch for items Yand Z.) 

near the center of  the item. It will drop off exponentially as dis- 
tance from the center o f  the i tem increases. 2 

The assumption that information about features are distrib- 
uted over space is similar to assumptions made by Wolford 
(1975),  Ratcliff ( 1981 ), Maddox et al. (1994),  and Ashby et 
al. ( 1996 ) to account for spatial factors in visual tasks. The as- 
sumption can be articulated in terms of  the receptive fields of  
feature detectors in visual cortex: If an item falls in the center 
of  a receptive field, the detector will respond strongly to it. I f  the 
i tem falls near the edge or on the edge of  a receptive field, the 
detector will respond less strongly. A given i tem will stimulate 
several feature detectors, some in the center and some near the 
periphery. The representation of  the i tem's  features is distrib- 
uted over space in the sense that the detectors that respond to 
them are distributed over space. 

The C O D E  surface also represents distributions of  features. 
It represents the sum of  the distributions of  the features of  all 
the items in the display. The height of  C O D E  surface at any 
point  in space represents probability (density) of  sampling fea- 
tures of  all of  the i tems whose distributions intersect at that 
point. 

Attention selects CODE-defined objects. The theory as- 
sumes that attention chooses among perceptual objects in the 
sense that it chooses among above-threshold regions. It assumes 
that attention samples the features that are available within the 
above-threshold region. The features o f  different i tems falling 
within the above-threshold region are sampled with a probabil- 
ity equal to the area of  the distribution of  the i tem that falls 
within the above-threshold region; this probability of  sampling 
features is called the feature catch. Figure 4 depicts a three-item 
display with a threshold set so that two of  the i tems are grouped 
together, in that they both fall within the above-threshold re- 
gion. The probability of  sampling features from those i tems 
(the feature catch for those i tems) is high because large parts of  
the distributions that represent them fall in the above-threshold 
region. Note, however, that part of  the distribution for the third 
item that is not  grouped together with the other two neverthe- 
less falls within the above-threshold region. Features of  that 
i tem will be sampled along with features of  the items within the 

group with a probability proportional to the area of  the distri- 
bution in the above-threshold region (i.e., the feature catch for 
the third i tem is greater than zero).  

To formalize this idea in the I -D case, the feature catch for 
i tem z, c=l T, for a given threshold, T, may be defined as 

CzlT = , l / z ~ z e X p [ - X z l x - O z l ] d x ,  (3) 

where Io and hi represent the limits o f  the above-threshold re- 
gion. The sample that is taken from the above-threshold region 
and subjected to later processing (e.g., TVA), is the sum of  the 
N individual feature catches. 

N 

Sample  = ~ cz4 v 
z = l  

= ' / 2 ~ z e x p [ - ~ = l x - O z l ] d x  . (4) 

The idea of  the feature catch makes CTVA like object-based 
theories of  attention. Object-based theories assume that all 
properties of  a selected object are processed (Kahneman  & 
Treisman, 1984; Treisman, 1969); in CTVA, the above-thresh- 
old region corresponds to the selected object, and all features 
available in that region are sampled. However, CTVA is unlike 
object-based theories in that features of  i tems outside the se- 
lected perceptual group are also sampled with some nonzero 
probability. The sample that is subjected to later processing 
contains features of  all of  the items in the display, not  just those 
in the selected group. 

The CODE theory of  visual attention is like space-based theo- 
ries in that it assumes that features are sampled from items other 
than the one that is the current focus of  attention. Both assume a 
kind of  "fuzziness" in the processing, so that features of  unat- 
tended items intrude in the processing of  attended items. How- 
ever, the fuzziness lies in different parts of  the system. Space- 
based theories of  attention assume that the boundary of  the sam- 
pled region-- the  edge of  the spotl ight--is  fuzzy (e.g., Eriksen & 
Eriksen, 1974; Eriksen & Hoffman, 1973). This idea is explicit 
in LaBerge and Brown's (1989) gradient theory. By contrast, in 
CTVA, the boundary of  the attended region is sharp and the rep- 

2 At this point in the development of the theory, I do not wish to draw 
a strong distinction between items and features, so I will treat the feature 
distributions in CODE as distributions of individual features and as 
distributions of the entire set of features that belong to an item. Many 
current theories of visual search propose separate spatial maps for the 
individual features of an item--one map for redness, one for vertical 
lines, and so on--with a master map of item locations that can be used 
to address the individual features of an item (e.g., Cave & Wolfe, 1990; 
Treisman & Gelade, 1980; Treisman & Sato, 1990; Wolfe, 1994; Wolfe, 
Cave, & Franzel, 1989). In principle, CTVA could be applied to the 
individual feature maps or to the master location map. The mathemat- 
ics would be the same in either case, and as long as the (spatial) variabil- 
ity of the distributions was the same for different features, the predic- 
tions would be essentially the same. However, there is nothing in CTVA 
that forces the same variability on distributions for different features 
and it could be fruitful to use CTVA to explore the idea of multiple maps 
and multiple CODE surfaces. That exploration is beyond the scope of 
this article. 



CODE THEORY OF VISUAL ATTENTION 609 

resentation of items in space is fuzzy. Unattended items intrude 
on the processing of attended ones because their representations 
are distributed across space and fall within the (sharply 
circumscribed) above-threshold region that attention samples. 

Thresholds, variability, and the feature catch. CTVA pro- 
vides later processes with a sample of  features to process. The 
probabilities of sampling features from particular items (the 
feature catches for those items) depend on the proximities of 
the items in the display, the variability of the feature distribu- 
tions, and the threshold applied to the CODE surface. The prox- 
imities are determined outside the theory by the experimenter 
or the external world. The variability scales the proximities. 
CTVA assumes that the variability of the feature distribution is 
the same for all items in the display. Variability is manipulated 
as a parameter of the model. Increasing variability has two 
effects on the feature catch: It decreases the contribution of 
items within the group to the feature catch (by decreasing the 
area of  their feature distributions that falls within the limits of 
the above-threshold region), and it increases the contribution 
of items outside the group but nearby (by increasing the area of 
their feature distributions that falls within the limits of the 
above-threshold region). 

The threshold is manipulated as another parameter of the 
model. Increasing the threshold decreases the magnitude of the 
feature catch, decreasing the contribution of items inside and 
outside the above-threshold region. The effects can be seen in 
Equations 3 and 4. Increasing the threshold amounts to decreas- 
ing the range of the limits of integration, including less of the 
distribution in the sample. 

The CODE surface and the feature catch. The local minima 
or "saddle-points" on the CODE surface are important  because 
they represent the boundary between grouping and separating 
sets of items. If the threshold is' higher than the local minimum, 
the items will break into two (or more) groups. If the threshold 
is lower, the items will cluster into one group (Compton & Lo- 
gan, 1993). For CTVA, this represents a boundary between se- 
rial and parallel processing: If the threshold is higher than the 
local minimum, groups of items can be processed one at a time. 
If the threshold is lower than the local minimum, the items are 
grouped together and must be processed together. 

The effect of threshold variation on the feature catch is illus- 
trated in Figure 5. The top panel represents the feature distri- 
butions and CODE surfaces for three i t ems- -a  central target 
and two flanking distractors (e.g., Eriksen & Eriksen, 1974). 
The left panel represents items placed closer together than the 
right panel. The middle panel plots the area in the feature catch 
for the central target and the sum of  the areas in the feature 
catch from the two flanking distractors as a function of thresh- 
old setting, going from low on the left to high on the right. The 
total volume of the feature catch decreases as the threshold in- 
creases. At low threshold values, below the local minimum, in- 
formation is sampled from the whole display and the contribu- 
tion from the distractors outweighs the contribution from the 
target by a substantial margin. At high threshold values, above 
the local minimum, attention is focused on the central target 
item and information from the target outweighs information 
from the distractors. 

The impact of these effects on the feature catch can be seen 
in the bottom panel of Figure 5, which plots the ratio of the 

feature catch for the central target to the feature catch for the 
sum of  the distractors--a  signal-to-noise ratio. The signal-to- 
noise ratio is less than 1.0 and approximately invariant for low 
thresholds smaller than the local minimum, but it jumps 
abruptly at the local minimum to a value above 1.0 and grows 
substantially as the threshold increases further. 

There is a tradeoff between the magnitude of  the signal and 
the quality of  the signal: Bigger signals have lower signal-to- 
noise ratios; signal-to-noise ratio can be increased only by de- 
creasing signal magnitude. In CTVA, the tradeoffis masked be- 
cause signal magnitude and signal-to-noise ratio are both posi- 
tively related to speed and response probability. Thus, different 
combinations of signal magnitude and signal-to-noise ratio can 
produce the same reaction time and accuracy. The tradeoff is 
bounded by a sharp discontinuity (in the curve in the bottom 
panel of Figure 5 ) at the point at which the threshold equals the 
local minimum. In fitting the theory to data, I found that the 
model performed similarly at all threshold values below the lo- 
cal minimum and similarly (but differently) at all threshold val- 
ues above the local minimum. The largest difference occurred 
when the threshold crossed the local minimum. 

Spatial indexing. The local minima between items or groups 
is lower the further apart the items or groups are. Conversely, the 
local minimum increases as items or groups get closer together. 
This can be confirmed by inspecting Figures 2 and 3. The local 
minimum represents the lowest threshold value at which an item 
or group can be separated from the rest, and that threshold value 
is different in different parts of a display, increasing with the den- 
sity of items in the display. The question for theory is whether the 
system maintains a single threshold for all of the items in the 
display or takes advantage of these differences and allows several 
different thresholds to operate at once. 

There should be no problem with multiple thresholds if the 
different items or groups are processed serially. The system could 
reset the threshold before each serial inspection. Still, the system 
must keep track of which items or groups have been processed, 
and in doing so, it might also keep track of the threshold level 
associated with each item or group. If items or groups are pro- 
cessed in parallel, there must be some way of keeping track of 
thresholds and keeping track of which item or group goes with 
which threshold. Between-object parallel processing has the 
same problem with multiple groups even if the threshold value is 
the same for each group. The system must keep track of which 
group is which. Keeping track of which threshold went with 
which group should not be much more difficult. 

Spatial indices are often proposed as a solution to the problem 
of keeping track (Pylyshyn, 1984, 1989; Trick & Pylyshyn, 1994; 
Ullman, 1984). Spatial indices provide an identity-neutral way 
of refering to perceptual objects, and it seems reasonable to at- 
tach things like threshold values to the spatial indices. The idea is 
similar to Kahneman and Treisman's (1984; Kahneman et al., 
1992) idea of an object file: I am proposing a temporary episodic 
representation of an object that includes an index to the percep- 
tual representation of the object and information about the 
threshold value at which the object was defined. The object file 
serves as a referent to which other information can be attached, 
such as the identity of the object or some other categorization. 

Ultimately, the answer to the question of  whether the system 
can support multiple thresholds is "yes, but with a cost." The 
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Figure 5. CODE surfaces representing a central target item and two flanking distractors (top panels) 
placed near ( left panels) or far (right panels) from the target; magnitudes of the feature catches (areas under 
the above-threshold regions) for targets and distractors as a function of threshold (middle panels); and 
signal-to-noise ratios reflecting the ratio of the target feature catch to the distractor feature catch as a 
function of threshold (bottom panels). (Note the discontinuity in the bottom and middle panels when the 
threshold increases above the local minima that separate the target from the distractors. Signal-to-noise 
ratio increases markedly after the discontinuity.) 

cost is that it must have some way of  implement ing a spatial 
indexing process and it must implement  an episodic memory  
that keeps track of  objects'  locations and the spatial resolution 
(threshold value) at which they were seen. There are many rea- 
sons for proposing a system with a capacity for spatial indexing 
and episodic storage. Keeping track of  different threshold values 
in CTVA is another one. 

Bundesen's (1990) Theory of Visual Attention 

The C O D E  theory o f  visual attention still does not  deal with 
within-object or within-region selection. C O D E  provides the 
input  to subsequent selection mechanisms. C O D E  says that the 
input  consists of  the sum of  the feature catches from all o f  the 
i tems whose distributions fall in the above-threshold region, but  
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CODE does not say how that input is processed. I adopted Bun- 
desen's(1990) theory of  visual attention (TVA) as the recipient 
of  the input that CODE provides. 

In many ways, Bundesen's (1990) TVA model is an ideal 
match for CODE. They are both formal theories, and their 
mathematics are compatible. They address phenomena at the 
same level of  abstractness, focusing, for example, on the idea 
that items are composed of  features without specifying the na- 
ture or the number of  the features. Most importantly, they are 
compatible in that CODE provides as output what TVA takes 
as i npu t - - a  sampling of  visual features. The original CODE 
changed for the wedding, extending its assumptions about the 
distribution of  location to include the idea that the distributions 
were distributions of  feature values. TVA must change for the 
wedding as well by altering its assumption about the represen- 
tation of  location. 

Basic TVA. Bundesen (1990) conceived of TVA as a model 
of selection, intended to explain the process by which people 
choose among the inputs confronting them. TVA evolved over 
several years, beginning with an attempt to model selection in 
partial report tasks (Bundesen, Pedersen, & Larsen, 1984; Bun- 
desen, Shibuya, & Larsen, 1985; Shibuya & Bundesen, 1988). 
Bundesen (1987) generalized the model of  partial report to a 
fixed-capacity and independent race model of selection that was 
the direct ancestor of TVA. Since 1990, Bundesen generalized 
the model further, showing that fixed- and unlimited-capacity 
versions of TVA correspond to Luce's (1959) choice model of 
selection ( Bundesen, 1993). The 1990 version addresses atten- 
tion most directly and most generally, so that was the version I 
married to CODE. The mathematical details of  TVA are de- 
scribed and explained in Appendixes A and B. 

Basically, TVA chooses among categorizations of perceptual 
inputs. TVA assumes two levels of representation: (a) a percep- 
tual level that consists of  features of display items; and (b) a 
conceptual level that consists of categorizations of display items 
and display features. The two representations are linked by a 
parameter n( x,  i),  which represents the amount of  sensory evi- 
dence for membership in category i that comes from item x. 
The greater the ~(x, i) ,  the more likely x is to belong to category 
i. The n(x, i) reflects the bottom-up component of TVA. They 
are determined entirely by the quality of the data and the set of  
categories. 

Variable x is an index for a display item, representing one 
member of  a set, S, of  display items. Variable x is a symbol at 
the categorical level of  representation that stands for a sample 
of  information from the perceptual representation (i.e., a per- 
ceptual item). Variable x does not represent the location of  the 
item. In Bundesen's (1990) theory, location is just another ca- 
tegorizible feature of the item, like color or form. 

Variable i represents a particular categorization for x. It 
could be "red," "square," or "located in the top left corner." 
The variable i represents one member of  a set, R, of possible 
categorizations. There is an n value for each combination of  
item and categorization, reflecting the strength of  perceptual 
evidence that each x belongs to each i. 

TVA selects among perceptual items and categorizations by 
choosing a particular categorization for a particular item (or 
particular categorizations for K items). The choice is deter- 
mined by the outcome of a race between the alternative catego- 

rizations, with the first one to finish being the one that is selected 
(or the first K t o  finish). It is important to note that two things 
are selected simultaneously by the outcome of  the race: (a) a 
perceptual item and (b)  a categorization for it. Thus, TVA is 
both an early selection theory and a late selection theory. It is an 
early selection theory in that items are not identified before they 
are selected; it is a late selection theory in that items are selected 
on the basis of their identities, on the basis of  the categorization 
that wins the race (Bundesen, 1990). 

Strength of perceptual evidence. The ~ values are important 
determinants of the outcome of the race. ~ values, modified by 
two attentional parameters, determine the rate at which the cat- 
egorizations that correspond to them are processed. Thus, ~(x, 
i) determines the rate at which x is categorized as an i. The 
larger the ~ value, the faster the process. Other things equal, the 
categorization with the largest ~ value is most likely to win the 
race. It is likely to be fastest and thus finish first. However, the 
race is stochastic. Ultimately, n values represent the rate param- 
eters in exponential distributions of finishing times for the 
different categorizations (see Appendix A).  The race is between 
the exponential distributions, and no one of  them is guaranteed 
to finish first. 

Bundesen (1990) formalized the race model by specifying the 
rate of categorization, v(x, i) in terms of ~(x, i) and two atten- 
tional parameters in the following equation: 

w~ (5) v(x, i) = ~(x, i)13i ~ w~" 

z¢S 

Perceptual bias. In Equation 5, n values are modified by 
two kinds of  attentional weight, ~s and ws. Bi reflects the per- 
son's bias to categorize the display as i. Bi is a bias because it 
raises the probability that the first categorization will be i but it 
does not change the likelihood that any given item (e.g., x) will 
win the race (i.e., be the first item categorized as i; see Appendix 
B). Note that the ~i values are under the person's control (i.e., 
the homunculus). They can be varied to control the categoriza~ 
tion process, to determine which way the display is categorized. 
The display is likely to be categorized as i ifBi is high, so desired 
analyses can be selected by raising ~, values. Moreover, the dis- 
play is unlikely to be categorized a s j  ifOj is low, so undesired or 
irrelevant categorizations can be turned off by setting their Bj 
values low. (The default assumption is that Bi is low unless cat- 
egory i is relevant.) 

Attentional weights and priority The variable wx reflects the 
attentional weight on item x. It is an attentional weight because 
increasing its value makes it more likely that item x will be cat- 
egorized, but it does not change the likelihood of any particular 
categorization o f x  (see Appendix B). Thus, it provides a way 
of  focusing in on item x in the display. According to Bundesen 
(1990), the attentional weight, Wx, is determined by the follow- 
ing equation: 

Wx = Z B(x,j)Tr). (6) 
j~R 

The new term in Equation 6 is 7rj, which represents the prio- 
rity of attending to items that belong to categoryj.  Like #, rr can 
be set by" the "person" (homunculus). The variable 7r works 
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together with ~ to determine the attentional weight. The item 
with the largest combination of n and z receives the greatest 
weight. That item is the most likely to contain relevant infor- 
mation: A high value of n suggests that it contains much infor- 
mation, and a high value of ~r suggests that the information is 
pertinent. Thus, the homunculus can use TVA to focus in on 
relevant items by controlling the ~r values. Setting rr~ high makes 
items in category i more likely to be selected. Setting ~ri low 
makes items in category i less likely to be selected. Combining 
the 7r values with n values focuses attention on the most infor- 
mative items. 

Predicting accuracy and reaction time. The ease with which 
predictions can be derived from TVA is one of its nicest features. 
The predictions follow from Bundesen's (1990) interpretation 
of the v(x, i) values as rate parameters in exponential distribu- 
tions. The exponential distributions are functions of time, and 
the rate parameter determines the mean finishing time. More- 
over, Bundesen (1990) assumed that the different exponential 
distributions race against each other, and the race model allows 
predictions of response probability. Accuracy depends on the 
relative magnitudes of the rate parameters. The connections be- 
tween the v(x, i) values and exponential distributions are given 
in Appendix A. 

TVA can predict reaction time and accuracy in several ways. 
The simplest, which Bundesen (1990) used most often, in- 
volves a simple race in which the first categorization is the one 
that is selected. Accuracy is the probability of choosing the ap- 
propriate categorization first. The probability that categoriza- 
tion "x  belongs to i" finishes first is computed by taking the 
ratio v(x, i) to all of the v's in the display: 

v(x,i)  
P(x ~ i first) (7) 

Z Z v(z,j)" 
z~S j*R 

ured as a counter model, in which Ki categorizations of type i 
must be made before the person responds with "i?" Reaction 
time would depend on an additive constant, b, and the time 
required to make K categorizations. The time to make K cate- 
gorizations can be computed using a standard Poisson counter 
model (Townsend & Ashby, 1983). A counter model would be 
useful in a situation in which a race model produced less than 
ideal accuracy (say 80% ). The imperfect accuracy could be im- 
proved by sampling repeatedly and accumulating the results of 
the sampling. 3 

To make the predictions concrete, consider a case in which a 
person discriminates between an H and an S. The counting 
model has two counters, one for H and one for S. There is a 
criterion number of counts for each counter, Kn and Ks, and 
the process terminates when the criterion number of counts ac- 
cumulates in one counter or the other. The probability of re- 
sponding correctly (i.e., responding "H" when the target was an 
H) is 

KS-I 

j=O 

v(x,H) xn 

and mean reaction time for correct responses is 

y( K.+j /] 
v(x, hSZV x,S) / / j 

1 ]+b.  (10) 
P(RHI S.) 

Mean reaction time is simply the mean finishing time of the 
winner of the race plus some additive constant, b, that repre- 
sents stimulus and response processing. The rate parameter of 
the distribution of finishing times for the winner of the race is 
the sum of the v(x,j) values for each x in S and eachj in R, and 
the mean of the distribution is the reciprocal of its rate param- 
eter (see Appendix A); that is, 

1 
RT~,i) ~ ~ V(z,j) + b. (8) 

zcS j~R 

Predictions about accuracy and reaction time depend on the 
three parameters that determine the v values, expressed in 
Equations 5 and 6: •, the strength of sensory evidence,/3, per- 
ceptual bias, and ~r, pertinence. In wedding TVA to CODE, one 
more parameter is added, that represents the proportion of the 
feature catch corresponding to each item. Adding that parame- 
ter to the model requires some changes in TVA's assumptions 
about the representation of location. 

These predictions about reaction time and accuracy assume 
that the response is determined by the first categorization--a 
simple race between the alternative categorizations. However, 
TVA can support more than a simple race. TVA can be config- 

The counter model is a straightforward generalization of the 
original race model in TVA. The counter model involves a race 
between the H counter and the S counter. Accuracy depends on 
the probability that the H counter finishes first, given that "H" 
was presented, and the reaction time depends on the time taken 
to accumulate Kn counts. The H counter can finish first if Kn 
counts accumulate in it before Ks counts accumulate in the S 
counter. The S counter can accumulate j = 0 to Ks - 1 counts 
before the H counter accumulates Kn counts, and the H counter 
will still win the race. The j counts can accumulate in the S 
counter in many ways. The first S count could occur before the 
first H count, before the second H count and so on. The actual 
number ofwaysj counts could accumulate is given by the bino- 
mial expression in the first term of Equation 9. The probability 
that the H counter will increment is given by the ratio v(x, H)/ 

a Bundesen (personal communication, February 1995) considered 
implementing TVA as a counter model in his original conception of 
the model to account for speed-accuracy tradeoff effects and the like. 
However, the main focus of his theorizing was on simple detection tasks, 
in which one look at the stimulus would suffice, and on partial report 
tasks, in which the main focus was on the probability that the first K 
categorizations to finish were part of the cued subset, so he left the 
counter model for future development. 
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[v(x, H) + v(x, S)] in the second term of Equation 9. The 
probability that that Kn counts will accumulate in the H 
counter is given by raising v(x, H)/[v(x ,  H) + v(x, S)] to the 
Knth power, as is shown in the second term in Equation 9. The 
probability that the S counter will increment is given by the 
ratio v(x, S)/[ v(x, H) + v(x, S)] in the third term of Equation 
9. The probability that j  = 0 to Ks - 1 counts accumulate in the 
S counter is given in the third term of Equation 9, by raising 
v(x, S) /[v(x ,  H) + v(x, S)] to thej th  power. The three terms 
in Equation 9 combine to produce the probability that the H 
counter will finish first given that "H" was presented, which 
measures response accuracy. Equation 10 includes these three 
terms plus a fourth that is the mean of a Gamma distribution 
for the time required to reach Kn + j  counts. The four terms in 
the numerator of Equation 10 are divided by P ( R n  I Sn ) to yield 
mean counting time conditional on making a correct response, 
and an intercept constant b is added to yield mean reaction 
time. For further details on Poisson counting models, see Town- 
send and Ashby ( 1983, pp. 272-280).4 

The race model is a special case of the counter model in which 
the counting process terminates when the first runner finishes 
(i.e., Kn = Ks = 1, so only the first runner is counted). The 
counter model adds two more parameters to TVA--Kn and 
Ks--for  a total of five. In many applications it is reasonable to 
set the criteria equal to each other, so that only one more pa- 
rameter is required beyond the three in the original TVA. 

The predictions for the counter interpretation of TVA are 
more complicated than the predictions for the simple race 
model, but ultimately, they still depend on the v(x, i) values, 
and those values depend on 77, B, and 7r, which are at the heart 
of TVA. The predictions depend on the rate of counting, and 
distribution of intervals between counts is the same exponential 
distribution that governs the simple race model. Predicted reac- 
tion times will be longer in a counter model than in a simple 
race, because the process in the simple race has to iterate at least 
K times. Predicted accuracy will be higher as well, because of 
the repeated sampling. But reaction time and accuracy depend 
on the same factors--the v (x , / ) - - in  both interpretations. 

CTVA is largely agnostic with respect to the process by which 
TVA determines reaction time and accuracy. Its main purpose 
is to describe the processes that give input to TVA and how that 
input is modulated by the perceived spatial organization of the 
display. Response-related processing is important, because the 
input, modulated and processed, has to produce a response to 
be measured, but it is not a central factor in the theorizing. Ei- 
ther the race or the counter interpretation could serve my 
purposes. 

The Wedding o f  CODE and TVA 

The wedding of CODE and TVA is straightforward: CODE 
provides the input to TVA. CODE's feature catch provides the 
sensory data that defines the n values in TVA. TVA provides the 
/3 and ~- values that allow selection of an appropriate response. 
The feature catch is run through Equations 5-10 to provide 
predictions of reaction time and accuracy. CODE and TVA be- 
come CTVA. 

Feature catch weights sensory evidence. The feature catch 
modifies the strength of sensory evidence from the various 

items in the display. Items that fall within the perceptual group 
from which the feature catch is sampled will contribute a great 
deal of sensory evidence. Items that fall outside but nearby will 
contribute some sensory evidence, but less than the amount 
contributed by items within the group. Items far from the group 
will contribute very little sensory evidence. Thus, attention is 
focused primarily on the members of the selected group and to 
a lesser extent on their near neighbors. 

From a formal perspective, the feature catch from item x, 
defined in Equation 3 modifies the n(x, i) values, multiplying 
them by a number, Cx, between 0 and 1.0 that depends on the 
area of the distribution ofx that falls within the above-threshold 
region, that is, n(x, i)cx. Thus, the attentional weights, Wx, 
become 

wx = E ~(x,j)a'jc~, ( 1 1 ) 
j,~R 

and v( x, i) becomes 

v(x, i) = cxn(x, i)[3i - -  
w~ 

Ew~ 
z6S 

E n(x,j)Trjcx 
= cxn(x, i)~i i,l~ (12) 

E Z n(z,j)TrjG" 
z~S j~R 

If all of the ns, ¢~s, and 7rs are equal to 1, Equation 12 reduces to 

Cx (13) 
V(X, i) = Cx ~ Cz" 

z¢S 

According to Equation 13, v(x, i) depends on the ratio oftbe 
feature catch for x to the sum of the feature catches from all of 
the items in and nearby the selected perceptual group (i.e., the 
sum of the feature catches within the selected above-thresbold 
region). Inserting Equation 13 into Equations 7-10 shows that 
reaction time and accuracy also depend on the ratio oftbe fea- 
ture catches. Control of the feature catches--by controlling the 
threshold--is an important function in the new theory. 

How did TVA change? Items play a different role in CTVA 
than they do in TVA. TVA treats items as discrete units. Items 
can be selected individually, and sensory evidence and atten- 
tional weights are attached to items. By contrast, CTVA treats 
items as spatial distributions and attaches sensory evidence and 
attentional weights to parts of those distributions. CTVA selects 
perceptual objects, not items. Perceptual objects may be made 
of several items, and a given perceptual object may contain in- 
formation from adjacent items that do not belong to it. The 

4 Nosofsky and Palmeri (in press) present an exponential random 
walk model as an alternative to the Poisson counter model. The main 
difference is that, in the random walk model, evidence for one alterna- 
tive is evidence against the other, whereas in the counter model, evidence 
for the different alternatives accumulates independently. There is noth- 
ing inherent in CTVA that would lead one to choose a Poisson counter 
model over an exponential random walk model; CTVA could be con- 
figured either way. I present the counter version here because the math- 
ematics were easy to derive. 
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information in a perceptual object is a blend of the information 
about items inside and nearby the object. 

The representation of location information in CTVA is much 
more complex than it is in TVA. TVA treats location as an attri- 
bute of an item,just like color and shape. Location is a category, 
like color and shape are categories, and items can be selected by 
location by increasing the priority for the desired location. 
CTVA represents location in several ways. First, it retains TVA's 
notion of location categories but it relies much less heavily on 
them, generally not distinguishing item locations within a per- 
ceptual group. Second, in CTVA, location is a factor in the per- 
ceptual representation of the display, in that item locations are 
represented as distributions over space (cf. Ashby et al., 1996; 
Maddox et al., 1994). Third, the locations of perceptual objects 
are represented in the set of groups constructed by applying a 
threshold to a CODE surface. And fourth, locations of groups 
relative to each other may be represented conceptually by pred- 
icates like above (x, y) that express categorical spatial relations 
(Logan & Sadler, 1996). Location can be selected in the third 
and fourth senses by applying visual routines that are outside 
the current model (Cave & Wolfe, 1990; Koch & Ullman, 1985; 
Logan, 1995). 

Finally, CTVA can process displays in parallel or in series, 
whereas TVA processes only in parallel. In CTVA, processing 
within perceptual groups is parallel. Processing between per- 
ceptual groups can be serial or parallel, depending on the task 
and the situation. In this respect, CTVA is midway between the- 
ories like TVA that process all items at once and theories like 
Treisman's feature integration theory (Treisman & Gelade, 
1980) that process items one at a time. CTVA is like the theories 
of Treisman and Gormican (1988), Duncan and Humphreys 
(1989), Humphreys and Miiller (1993), and Grossberg, Min- 
golla, and Ross (1994) in that it processes parts of the display 
in parallel and parts in series, but it differs from those theories 
in how it defines the parts. 

From a formal perspective, the difference can be understood 
in terms of weights on the items, Cx: TVA assumes that cx equals 
1.0 for all the items in the display, and serial processing theories 
assume that Cx equals 1.0 for the currently selected item and 0.0 
for all other items. CTVA assumes that Cx is distributed un- 
evenly between 0.0 and 1.0 over all the items in the display, with 
the value depending on the area of the item's feature distribu- 
tion that falls within the sampled region. 

Parallel and serial processing are both possible in CTVA, de- 
pending on the threshold applied to the CODE surface. As de- 
picted in the bottom panel of Figure 2 and in Figure 3D, a low 
threshold includes all the items in one group. The areas of the 
different items' feature distributions are approximately equal, 
so the weight on each item is approximately equal, as in parallel 
processing. A high threshold picks off the peak of one of the 
items in the display. The feature catch under that threshold 
weights the central item heavily and adjacent items lightly, ap- 
proximating the all-or-none distribution of weights in serial 
processing. Raising the threshold from low to high changes the 
emphasis from parallel to serial processing. 5 

Thus, the original TVA model is a special case of CTVA, in 
which the entire distribution for every item in the display enters 
into the sample. Each item has equal (and maximum) weight, 
so CODE drops out of the picture and performance depends 

entirely on TVA. In principle, CTVA can be compared against 
the special case of TVA to see the extent to which modulating 
the input with CODE improves prediction. One could ask 
whether TVA needs CODE, and this comparison will answer the 
question: To the extent that CODE improves the predictions, 
TVA needs CODE. 

One could also ask whether CODE needs TVA, and the an- 
swer is clearly "yes," if CODE is to account for attention. TVA 
provides CODE with the capacity for within-object selection 
and for response generation, which CODE lacks. TVA does a lot 
of the work in the fits of the model to data, with three or four 
parameters to CODE's two. TVA could improve other models 
of visual spatial attention that do not specify means of within- 
object selection or response selection (e.g., Eriksen & St. James, 
1986; Kahneman et al., 1992 ). Thus, when comparing CTVA's 
ability to account for data against other theories of visual spatial 
attention, we must be careful to distinguish between what 
CODE predicts uniquely and what TVA would do for any other 
theory it interfaced with. To facilitate the distinction, I focused 
on tasks that emphasized spatial factors that CODE accounts 
for rather than TVA. 

Between-group selection. CODE provides TVA with several 
different perceptual groups to sample, at intermediate thresh- 
old levels. I assume that in some cases, TVA is applied to one 
perceptual group at a time, processing the display serially, fo- 
cusing on one above-threshold region and then another. The 
processes that govern the selection of above-threshold regions 
for processing are outside the scope of CODE and TVA. Not 
much is known about them (but see Cave & Wolfe, 1990; Koch 
& Ullman, 1985; Logan, 1995). Nevertheless, they must take 
time and that time must contribute to the effects that appear in 
human performance. They complicate the predictions of the 
theory but perhaps not enough to make it intractible. I will at- 
tempt to separate effects due to within-object selection from 
effects due to between-object selection in the CTVA analysis of 
attentional phenomena. 

I assume that in other cases, TVA is applied to all of the per- 
ceptual groups simultaneously. The different groups race 
against each other, and the winner is selected. The winner has 
two components, a categorization, i, into one of the R response 
categories, and an index, x, that distinguishes the winning 
group from the other ones in the display. The race selects both 
the response and the perceptual group that gave rise to the re- 
sponse. The index, x, is important because it can be interpreted 
computationally as a spatial index (Pylyshyn, 1984, 1989; Trick 
& Pylyshyn, 1994; Ullman, 1984). Spatial indexing is required 

5 Note, however, that two kinds of paraUel processing are possible in 
CTVA--within objects and between objects. Within-object parallel pro- 
cessing is a necessary consequence of CTVA's assumptions about the 
sampling of features. All items that fall within the above-threshold re- 
gion will be processed in parallel. This is true regardless of the value 
of the threshold, whether it is low enough to include all of the feature 
distributions of all of the items or high enough to emphasize one item 
over the rest. Between-object parallel processing depends on assump- 
tions about between-object selection that lie mostly outside of CTVA. 
Different perceptual groups can be processed in parallel by assigning a 
separate spatial index to each group (cf. Pylyshyn, 1989; Trick & Pyly- 
shyn, 1994). 
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in the serial processing version of  CTVA. The spatial index, x,  
keeps track of the current object of attention. 

Spatial indices are discussed extensively in the literature on 
visual cognition (e.g., Pinker, 1984), where, among other 
things, they are proposed as a solution to the binding problem 
(see Pylyshyn, 1984; Treisman & Gelade, 1980; Trick & Pyly- 
shyn, 1994; Ullman, 1984). A spatial index is a symbol (e.g., x 
or g) that corresponds to a perceptual object. The symbol acts 
as an address for the perceptual object, in that it provides a 
means by which processes that operate on the symbol can access 
perceptual information about the object to which it refers. The 
spatial index distinguishes its referent from the alternatives 
without conferring a particular identity on it. The system sim- 
ply knows "a thing is there" without knowing what the thing is. 
Once it knows this, it can ask other questions about it (e.g., "Is 
it red?" "Is it a T?" "Is it above that other thing?") by accessing 
the perceptual information it contains (i.e., by applying TVA). 

In principle, CTVA should interface nicely with theories in 
which spatial indexing is an important process. The CODE part 
of  the theory defines the objects that can be spatially indexed, 
and the TVA part of  the theory defines the processing that is 
done on the indexed objects. Theories of spatial indexing have 
to explain the processes that choose among perceptual objects. 

CTVA may not explain selection between groups, but it inter- 
faces nicely with Logan's (1995 ) theory of linguistic and con- 
ceptual control of attention that accounts for the direction of 
attention from cues to targets. CODE interfaces with Logan's 
(1995) theory in the same way it interfaced with TVA: It pro- 
vides the input that Logan's ( 1995 ) theory needs to process. 

The inputs to Logan's ( 1995 ) theory are schematic represen- 
tations of objects as points, lines, surfaces, and regions, and 
these are what CODE provides. The perceptual objects defined 
by applying a threshold to a CODE surface serve nicely as in- 
puts to Logan's theory. Logan's choice of  schematic representa- 
tions for the input to his theory was motivated by linguistic anal- 
yses of the semantics of  spatial relations, on which Logan's the- 
ory relies heavily. According to linguistic analyses, the spatial 
relations expressed in language (e.g., those expressed by prepo- 
sitions in English) schematize the objects they take as argu- 
ments, so that a small number of relations (roughly 80 in 
English) can apply to an indefinitely large number of  objects 
(Clark, 1973; Herskovits, 1986; Jackendoff & Landau, 199 l; 
Talmy, 1983; Vandaloise, 1991 ). 

Logan's (1995) theory involves two representations--a per- 
ceptual representation of the layout of objects and surfaces and 
a conceptual representation of propositions that express spatial 
relations between objects. Directing attention from one percep- 
tual object to another involves apprehending the spatial re- 
lations between the objects, and that involves coordinating the 
two representations. Coordination requires two more represen- 
tations and the processes that operate on them: (a) a reference 
frame that defines an origin, orientation, direction, and scale in 
perceptual space and (b)  a spatial template that represents the 
different regions of acceptability associated with the relation. 

Apprehending a relation like above(x, y) involves the follow- 
ing steps: (a)  finding the perceptual object corresponding to y, 
(b)  imposing the reference frame relevant to the relation 
(above) on the perceptual object corresponding to y, (c) align- 
ing the spatial template for above with the reference frame cen- 

tered on y, and (d)  determine whether x falls in a good or bad 
region of acceptability relative to the template centered on y. 

Cuing attention--directing attention from one object to an- 
other--involves the same four steps that were just described. 
The cue is y, the target is x,  and the relation is (typically) 
next_to(target, cue). Attention is directed to the cue (step a) 
and then from the cue to the target (steps b -d ) .  Once attention 
is on the target, the target itself can be processed (i.e., with 
TVA). 

Basic Architect ure Revisited 

Figure 6 represents the complete version of the sketch of the 
basic architecture. In the early visual processes, location and 
identity are bound together in the feature distributions and the 
CODE surface. The locations of  items are given by the environ- 
ment and the spread of features from the items is determined 
by the CODE ~, parameter. The threshold parameter parses the 
display into perceptual groups that serve as input to the later 
processes. From the perspective of the late identity system, the 
threshold defines the feature catch from each item in the dis- 
play. From the perspective of  the late location system, the 
threshold defines a perceptual organization for the display. 

TVA is the late identity system. It takes the feature catch as 
input and computes the strength of sensory evidence for the cat- 
egories relevant to the response alternatives--the ~ values. The 
~/values, modulated by bias (/~) and pertinence (7r), determine 
the probability and the latency with which different categoriza- 
t i o n s - i d e n t i t i e s - a r e  selected. 

The late location system is represented less completely and 
much less formally by Logan's (1995) theory of  conceptual di- 
rection of attention. It takes as input the perceptual groups de- 
fined by CODE. It takes two perceptual objects and outputs 
a relation between them. It takes one perceptual object and a 
linguistic direction (e.g., above) as input and outputs a percep- 
tual object that stands in that direction with respect to the first 
object. 

Individually, the components of  this architecture can account 
for a considerable range of attentional behavior. In combina- 
tion, as specified by the architecture, they should be able to ac- 
count for an even broader range of phenomena. It should be 
possible to make quantitative predictions in each case. The ar- 
chitecture affords a lot of flexibility, so it should be easy to pro- 
vide quantitative accounts for different phenomena. The re- 
mainder of the paper applies CTVA to seven phenomena that 
have had an important impact on research and theory in visual 
spatial attention. 

App ly ing  the T h e o r y  to D a t a  

The theory can be understood best by applying it to data. In 
the remainder of the article, CTVA is applied to reaction time 
and accuracy data from seven empirical situations in which 
grouping by proximity and distance between items have impor- 
tant effects. None of  the current models of attention deal with 
these effects very adequately, including TVA, so they provide a 
good arena in which to investigate CTVA, to assess the benefits 
of  marriage CODE to TVA. The fits to the data illustrate how 
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Figure 6. Architecture of the CODE theory of visual attention indicating the parameters and representa- 
tions associated with the early identity and location system, the late identity system, and the late location 
system (cf. Figure 1 ). RT = reaction time. 

different parts of the theory work and show which parameters 
are important. 

The fits use the 1-D version of CODE because it is more trac- 
table than the 2-D version. The feature catch for the I-D case is 
defined by limits of integration that are single points on the one 
dimension. The points can be selected to group the display in 
various ways, as Figure 2 illustrates. The feature catch for the 2- 
D case is more complicated because the limits of integration 
extend irregularly in two dimensions, as illustrated by the con- 
tour lines defining the different threshold levels in Figure 3. 
Thus, the feature catch is much harder to compute in the 2-D 
case than in the 1-D case. Fortunately, the 1-D case provides a 
reasonable approximation to the situations I chose to fit. 

The model involves a minimum of five parameters, and many 
of the phenomena to be modeled involve fewer than five condi- 
tions. For example, the flanker paradigm introduced by Eriksen 
and Eriksen (1974) involves three main conditions: compati- 
ble, incompatible, and neutral flankers. However, in many 
cases, several of the parameters can be held constant, so that 
(many) fewer than five actually predict performance. I tried to 
keep the spatial parameters close to the same values across the 
different paradigms. In most cases, I set the threshold equal to 
the local minimum between the target item and the nearest dis- 
tractor. In most cases, the stimuli were roughly the same size-- 
3/4 to 1 ° of visual angle--so I set 1" equal to 100 units of distance 
in the model and fixed the standard deviation of the feature dis- 
tributions (i.e., lf2x-l)  at 50. Details of the fits to individual 
data sets can be found in Appendix C. 

Prinzmetal (1981): Grouping Effects in Conjunction 
Search 

For the last 15 years, much of the research on visual spatial 
attention has been driven by Treisman's feature integration 
theory (Treisman & Gelade, 1980; Treisman & Sato, 1990; 
Treisman & Schmidt, 1982). Feature integration theory argues 

that attention is necessary to conjoin features that are processed 
separately. Attentional limitations on the conjunction process 
led to two predictions that were readily confirmed in the initial 
research and remain the focus of research today. First, visual 
search for targets that are conjunctions of separable features 
(such as a red T i n  a display of green 7~ and red Ls) should be 
difficult, compared to search for the features themselves (such 
as a red T i n  a display of green Ts; Treisman & Gelade, 1980). 
Second, when attention is stressed or overloaded, people should 
erroneously combine features from different objects. These er- 
rors, known as illusory conjunctions, appear as false alarms in 
search tasks or false reports of feature combinations in identi- 
fication tasks (Treisman & Schmidt, 1982). 

Prinzmetal (1981) demonstrated an important effect of 
grouping by proximity on illusory conjunctions. He found that 
illusory conjunctions were more likely if the features to be con- 
joined belonged to the same perceptual group than if they be- 
longed to different groups. This result is well cited, and it is re- 
garded as a strong piece of evidence for object-based attention 
(Kahneman & Treisman, 1984; Kahneman et al., 1992). It is 
an interesting test for CTVA because it can be accounted for 
entirely in terms of between-object selection, alternating be- 
tween perceptual organizations produced at different threshold 
values. Within-object effects are not very important. 

Method and results. Prinzmetal ( 1981 ) showed his subjects 
displays like those in Figure 7. Their task was to indicate 
whether or not the display contained a "plus": a vertical line 
superimposed on a horizontal line. The displays were preceded 
and followed by a noise mask and exposure duration was varied 
so that mean accuracy was approximately 85%. Exposure du- 
rations ranged from 30-150 ms between subjects. Mean 
exposure duration across Experiments 1-3 was 96.2 ms. 

There were two important manipulations: The type of display 
(target, conjunction, or feature) and the way the features of 
target and nontarget items were distributed across the percep- 
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Figure 7. Examples of displays from Prinzmetal's (1981 ) experi- 
ments. Top panels = target-present displays; middle panels = target- 
absent conjunction displays; bottom panels = target-absent feature dis- 
plays; left panels = same-object displays; right panels = different-object 
displays. 

tual groups formed by the circles. There were three types of 
display: Target displays contained the target "plus" and one 
other feature (either a horizontal or a vertical line); nontarget 
feature displays contained two examples of one of the features 
in separate locations but no plus (i.e., two horizontal lines or 
two vertical lines); nontarget conjunction displays contained 
one example of each feature (i.e., a horizontal line and a vertical 
line) but no plus. One third of the trials involved target displays, 
one third involved nontarget feature displays, and one third in- 
volved nontarget conjunction displays. 

The contrast between conjunction and feature displays was 
critical: People should find it harder to say "no" to conjunction 
displays than to feature displays, because conjunction displays 
contain the two features that are conjoined in the target plus, 
whereas feature displays contain only one of the features, albeit 
repeated. Prinzmetal's (1981) subjects produced more than 
twice as many errors with conjunction displays than with fea- 
ture displays. Averaging over Experiments 1-3, the probability 
of saying "yes" was .949 for target displays, .215 for conjunction 
displays, and .087 for feature displays. 

More interesting, the difference between conjunction displays 
and feature displays was affected strongly by the distribution 
of features between groups. The features in each display were 
presented in the context of 8 (Experiments 1 and 2) or 10 
(Experiment 3) circles organized by proximity into rows or col- 
umns. Figure 7 illustrates the displays from Experiment 1. The 
features of  the conjunction display could either occur in the 
same group, as illustrated in the left panels of Figure 7, or in 
different groups, as illustrated in the right panels of Figure 7. 
Prinzmetal ( 1981 ) arranged the displays so that the Euclidean 
distance between the features was the same whether they ap- 
peared in the same or different groups, so that any difference in 
the probability of falsely conjoining the features of the display 

would be due to perceptual organization rather than distance. 
If people processed all of  the features of  a perceptual group at 
once, as object-based theories assume (Kahneman & Henik, 
1977, 1981; Kahneman & Treisman, 1984; Kahneman et al., 
1992), they should say "yes" to conjunction displays, because 
one perceptual object--group--possesses both features of  the 
target plus. 

The data, averaged over Experiments 1-3 and presented in 
Table 1, showed a strong effect of perceptual organization. 
When the features were in the same group, the difference in 
false-alarm rates between conjunction displays and feature dis- 
plays was.  147; when the features were in different groups, the 
difference decreased to.  110. Prinzmetal ( 1981 ) argued that this 
interaction could not be interpreted without assuming that sub- 
jects processed the display in two groups. 

CODE. The first step in applying CTVA to the data is to 
analyse the feature catch provided by CODE. Figure 8A repre- 
sents the CODE surface that would be produced by the stimuli 
Prinzmetal ( 1981 ) used in Experiment 1. Figures 8B-D illus- 
trate three alternative feature catches available in the display 
that result from applying thresholds at three different levels. 
The highest threshold value cuts offthe tips of  each of  the peaks, 
providing a feature catch that comes predominantly from the 
item on which the peak is centered. 

The intermediate threshold value divides the display into two 
elongated objects, as Prinzmetal ( 1981 ) intended. The feature 
catch available at this threshold value lumps together all of  the 
features in a perceptual group. Thus, within-group conjunction 
displays should be hard to distinguish from target displays, be- 
cause their feature catches both contain the critical horizontal 
and vertical lines that make up the target plus. Between-group 
conjunction displays should be indistinguishable from feature 
displays because each group contains only one feature. 

The lowest threshold value includes all of the items in the 
display in a single group. The feature catch for targets would 
include three features; the feature catch for nontargets would 
include two features. Conjunction displays and target displays 
would both contain the critical horizontal and vertical lines that 
form the target plus. 

Prinzmetal 's (1981 ) results require a mixture of threshold 

Table 1 
Observed and Predicted Probabilities of"Target-Present'" 
Responses From Prinzmetal's (I 981) Experiments on 
Grouping Effects in Illusory Conjunctions 

Group Target Conjunction Feature 

Prinzmetal ( 1981 ) data 
Same .956 .247 .100 
Different .942 .183 .073 

Middle threshold (two groups) 
Same .899 .810 .083 
Different .996 .178 .083 

High threshold serial (2 items) 
Same .996 .175 .083 
Different .996 .175 .083 

High and middle threshold 
Same .985 .247 .083 
Different .996 .175 .083 
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Figure 8. The CODE surface for Prinzmetal's ( 1981 ) displays ( 8A ) with a high (8B), intermediate (8C), 
and low ( 8 D) threshold applied to it ( cf. Figure 7 ). 

values. The highest and lowest thresholds predict no difference 
between same and different groups, and that difference was 
prominent in Prinzmetal's (1981) results. The intermediate 
threshold accounts for the difference but goes too far. It predicts 
a large difference between conjunction and feature displays in 
the same-group condition but no difference in the different- 
group condition. In Prinzmetal's ( 1981 ) data, the difference be- 
tween conjunction and feature displays was almost as large in 
the different-group condition (. 110) as in the same-group con- 
dition (. 147 ). 

The CODE analysis already constrains the interpretation of 
Prinzmetal's (1981) experiments. The data cannot be ac- 
counted for by a single threshold applied to the CODE surface. 
At least two different thresholds must alternate with one an- 
other. Alternation between the lowest and the highest cannot 
work because neither of them is sensitive to the distribution of 
features within and between groups. Alternation between the 
intermediate threshold and either the highest or the lowest may 
work, if performance with the high or low threshold (or both) 
is sensitive to the difference between conjunction and feature 
displays. The purpose of the TVA analysis is to see whether a 
two-threshold theory can account for the data. 

CTVA. In order to fit TVA to Prinzmetal's ( 1981 ) data, I 
had to decide how to represent the features in the display and 
how to represent conjunctions. I accepted Prinzmetal's as- 
sumption that the features were horizontal and vertical lines 
and that the target cross was detected when the person perceived 
both a horizontal and a vertical line. To model the detection 
process, I let the presence of each feature race against the ab- 
sence of that feature. Thus, horizontal raced with not-horizon- 
tal, and vertical raced with not-vertical. The n values for feature 
absence were 1 minus the n values for feature presence. The fits 
assumed n = .99 for feature presence and n = .01 for feature 
absence. Feature presence and absence had different ~ values 

(.90 and.  10, respectively, in the fits). The wx values were set to 
1.0 for both objects. 

The CODE surface was built by placing the centers of the 
nearest items 125 units apart and setting the standard deviation 
of the feature distributions to 50. The feature-bearing items 
were 250 units apart in both the same- and different-group con- 
ditions. Two thresholds were applied to the CODE surface, one 
just above the local minimum between the nearest items and 
one just below it. The first (high) threshold organized the dis- 
play into eight groups, as illustrated in Figure 8B, and the sec- 
ond (intermediate) threshold organized the display into two 
groups, as illustrated in Figure 8C. With the high threshold, if 
one feature-bearing object was selected, the feature catch for 
that object was .849 and the feature catch for the other feature- 
bearing object was .012 in both same-group and different-group 
conditions. With the intermediate threshold, the feature catch 
was .855 for both feature-bearing objects in the same-group 
condition and.855 for the selected object and .012 for the non- 
selected object in the different-group condition. 

I tried two different fits. First, the intermediate threshold was 
fitted, which divided the display into two groups. Target-present 
displays contain the critical features necessary for correct de- 
tection no matter how the display was grouped. In conjunction 
displays the critical features necessary for an illusory conjunc- 
tion were both present in one group in the same-group condi- 
tion but distributed across groups in the different-group condi- 
tion. In feature displays, neither grouping contained the critical 
features. 

The predicted results, presented in Table l, show a difference 
between conjunction and feature displays in both conditions 
and an interaction between grouping condition and display type 
like the one Prinzmetal (1981) observed. However, the false- 
alarm rate was much too high for the same-group conjunction 
displays; the difference between target-present displays and con- 
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junct ion displays was very small. Clearly, the intermediate 
threshold by itself cannot  account  for the data. 

Next, the high threshold was fitted, which divides the display 
into eight objects. Only two of  the objects contained features, 
and I assumed that attention was focused on one of  them. The 
predicted results, presented in Table 1, captured the difference 
between conjunct ion and feature displays but  not  the interac- 
tion between display type and grouping. The difference between 
conjunct ion and feature displays was the same in the two group- 
ing conditions. Apparently, the high threshold by itself cannot  
account  for the data either. 

No single threshold accounted for the data, so I tr ied com- 
bining the intermediate and high thresholds. From the subject's 
perspective, this amounts  to changing between organizations of  
the display from trial to trial, sometimes seeing it as two rows or 
columns and sometimes seeing it as eight objects. I looked for a 
mixture  that would give a false-alarm rate of .247  in the same- 
group conjunction condit ion and found that a mixture  proba- 
bility o f .  1135 was sufficient. In other words, subjects saw the 
display as two groups on 11% of  the trials and as eight groups 
on 89% of  the trials. The results, presented in Table 1, capture 
Prinzmetal ' s  ( 1981 ) interaction. 

Evaluation. CTVA did a reasonable job  o f  accounting for 
Prinzmetal 's  (1981) data. The numbers from the combined-  
threshold fits in Table 1 are close to Prinzmetal 's  even though I 
did not  try to optimize the fit formally. More important ,  the 
process o f  fitting was revealing. Prinzmetal  ( 1981 ) wrote as i f  
subjects always saw the display as two groups and didn ' t  con- 
sider the possibility o f  alternative organizations. By contrast, 
CTVA could account  for the interaction between display type 
and grouping only if  subjects were allowed to group the display 
in different ways on different trials. In hindsight, subjects might  
have been expected to alternate between organizations. Prinz- 
metal  drew the circles in blue and the lines and crosses in black. 
It is possible that on some t r i a l s - -many  trials, by the present 
analysis--subjects segregated the black objects from the blue 
ones and saw only the lines and crosses. 6 

Cohen and Ivry (1989): Distance Effects in Illusory 
Conjunctions 

In their original investigation of  illusory conjunctions,  Treis- 
man and Schmidt  (1982) found no effect of  distance on the 
probabili ty of  an illusory conjunction.  However, since then, sev- 
eral researchers have found distance effects, such that the prob- 
ability of  an illusory conjunct ion decreases as the distance be- 
tween the objects that contribute the miscombined features 
increases (Chastain, 1982; Cohen & Ivry, 1989; Ivry & Prinz- 
metal, 1991; Lasaga & Hecht,  1991; Prinzmetal  & Keysar, 
1989; Prinzmetal  & Mills-Wright, 1984; Prinzmetal ,  Treiman, 
& Rho, 1986; Wolford & Shum, 1980). CTVA provides a 
straightforward account  of  this distance effect. The analysis fo- 
cuses on Cohen and Ivry 's  (1989) experiments because they 
were concerned pr imari ly  with distance effects. 

Method and results: Experiments 1 and 2. Cohen and Ivry 
(1989) reported four experiments on distance effects in illusory 
conjunctions. Their  experiments were organized in sets of  two. 
The procedures of  the first two experiments were straightfor- 
ward: Subjects were presented with a central digit (Exper iment  

Table 2 
Observed and Predicted Response Probabilities From 
Cohen and lvry's (1989) Experiments I and2 
on Distance Effects in Illusory Conjunctions 

Experiment 1 Experiment 2 Predictions 

Response Near Far Near Far Near Far 

Correct .535 .679 .608 .759 .558 .673 
Color feature .171 .160 .101 .101 .149 .150 
Color conj unction .135 .061 .130 .041 .189 .076 
Letter feature .063 .050 .074 .055 .065 .075 
Letter and color 

feature .052 .033 .047 .029 .017 .017 
Letter and color 

conjunction .044 .017 .039 .016 .022 .009 

Note. Correct = probability of reporting letter and color of target ob- 
ject correctly; color feature = probability of reporting letter correctly 
and color incorrectly; color conjunction = probability of reporting let- 
ter correctly and reporting color of nontarget object; letter feature = 
probability of reporting letter incorrectly and color correctly; letter and 
color feature = probability of reporting letter and color incorrectly; let- 
ter and color conjunction = probability of reporting letter incorrectly 
and reporting color of nontarget object. 

1 ) or pair of  digits (Exper iment  2) and a pair o f  peripheral let- 
ters on an imaginary circle about  2.5* from fixation. The dis- 
plays were exposed briefly and masked. The task was to first 
name the digit (Exper iment  1) or the smaller or larger of  the 
two digits ( Experiment  2) and then name the color and identity 
of  one o f  the letters. One letter was always an O. The other was 
either an F or an X. The colors were pink, yellow, green, and 
blue. The letter O was a distractor; the task was to name the 
color and the identity of  the letter that was not O. The main 
manipulat ion was the distance between the letters, which was 
either .88* (near)  or 2.86* (far),  center to center. 

The main data were the probabilities o f  reporting combina-  
tions o f  letter identities and colors, which are presented in Table 
2. These probabilities came from trials in which the digit was 

6 Accuracy is better overall in the high-threshold condition than in 
the middle-threshold condition, which raises the question why subjects 
would ever adopt the middle threshold instead of relying exclusively on 
the high threshold. The answer must be that grouping by proximity is 
compelling; subjects cannot avoid perceiving the display as two groups 
entirely. The reason for this can be seen in the CODE surfaces depicted 
in Figure 8: Prinzmetal's ( 1981 ) displays are organized in two groups 
over much of the possible range of threshold variation. Very high thresh- 
olds are required to separate the items within groups, and higher thresh- 
olds might exclude all the items. The range of threshold variation that 
parses the display into eight objects is relatively narrow. Note as well 
that the accuracy for the high-threshold condition is as good as the ac- 
curacy for the middle-threshold, different-group condition. This was a 
consequence of my decision to consider only the two feature-bearing 
items in the fits. If all eight items were included in the high-threshold 
fits, accuracy would be lower because of noise from the six featureless 
items (see Equations 16 and 17 ). Nevertheless, it would still be higher 
than accuracy in the middle-threshold, same-group condition, in which 
the two target features are included in the same group. In that condition, 
the false-alarm rate for conjunction displays will always be close to the 
hit rate for target displays because both target features are present in the 
feature catch. 
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reported correctly. The requirement to report the digit was in- 
tended to focus subjects' attention on the digit, away from the 
peripheral letters. Treisman and Schmidt (1982) argued that 
illusory conjunctions occurred primarily when attention was 
stressed or distracted, and this manipulation was intended to 
have that effect. The requirement to report the larger or smaller 
of  the two digits in the second experiment was intended to focus 
attention more stringently than in the first experiment. Report- 
ing a conjunction ( of size and identity) should require a sharper 
focus of attention than reporting a single feature (identity; 
Treisman & Gelade, 1980). 

The results of the two experiments were essentially the same. 
Subjects made illusory conjunctions in the near-spacing condi- 
tion but not in the far-spacing condition. Evidence of illusory 
conjunctions was obtained by comparing the probability of a 
color-feature error (given that letter identity was reported 
correctly) with the probability of  a color-conjunction error 
(given that letter identity was reported correctly). There were 
four colors, one correct and three incorrect. A color-feature er- 
ror occurred if the reported color was not present in the other 
item in the display. There were two possible color-feature errors. 
A color-conjunction error occurred if the reported color was the 
color of the other item in the display. If color report was at 
chance, then there should be half as many color-conjunction 
errors as color-feature errors because there was one nontarget 
color presented in the display and two not presented (i.e., a ratio 
of  1"2). The number of color conjunction errors was greater 
than this chance expectation in the near spacing condition, 
showing that illusory conjunctions were prevalent when the 
contributing items were close. The number of  color conjunction 
errors was less than the chance expectation (slightly but 
significantly) in the far spacing condition, showing that illusory 
conjunctions were unlikely to occur when the items were far 
apart. Thus, the probability of illusory conjunction decreases 
with distance. Cohen and Ivry (1989) interpreted the less-than- 
chance frequency of illusory conjunctions in the far condition 
as evidence of an "exclusionary guessing strategy," whereby 
subjects would detect the color of the far item correctly and ex- 
clude it from their guesses. 

CODE. The CODE analysis is straightforward. The dis- 
plays would contain three (Experiment l ) or four distributions 
( Experiment 2), two of which correspond to the critical colored 
letters. The analysis focused on the two distributions for the col- 
ored letters. I ignored the distributions for the digits because 
they are far from the colored letters and differ from them cate- 
gorically. Thus, TVA would set the fl and 7r values for digits close 
to zero when selecting colored letters, so the digits would have 
virtually no impact on the race even if they were present in the 
feature catch. 

The feature distributions for the colored letters were set 50 
units apart in the near condition and 250 units apart  in the far 
condition. I set the standard deviation of  the feature distribu- 
tions at 50. The threshold was set just above the local minimum 
between the distributions in order to maximize the feature 
catch. According to CTVA, illusory conjunctions occur when 
the feature catch from a selected above-threshold region con- 
tains features from different items and the first relevant features 
to finish come from different items. For example, if a pink X 
and a green O are both sampled in the feature catch and " X "  

and "green" are the first relevant categorizations to finish, the 
person will report an illusory conjunction. The probability that 
illusory conjunctions will occur depends on the overlap of  the 
feature distributions from the different items in the feature 
catch. The further apart the items, the smaller the overlap, and 
the less likely the illusory conjunctions. With these parameters, 
the feature catch for the target item and its neighbor were .394 
and.  192, respectively, in the near condition, and .918 and .041 
in the far condition. 

CTVA. The TVA analysis involved deciding whether the 
target item was one of two letters (Xor  F )  and one of  four colors 
(pink, green, yellow, or blue). The/3 and wx values for these 
categorizations were set to 1.0, and the 7(x, i) values ranged 
between 0 and 1. The 7 values for target letters and colors were 
set to 0.9, and the 7 values for the nontarget categorizations, 
given that a target was present, were set to 0.1. Thus, if the target 
was F ,  n( x,  F )  was set to 0.9 and 7(x, X)  value for X was set to 
0.1. If the color was pink, 7(x, pink) was set to 0.9 and the 7(x, 
i)s for the other colors were set to 0.1. The predicted results 
appear in Table 2 along with the observed data. 

The predicted results capture the main effect observed by Co- 
hen and Ivry ( 1989): Illusory conjunctions were more preva- 
lent in the near condition than in the far condition. In the near 
condition, the ratio of color conjunction errors to color feature 
errors was 1.267 in the simulated data, compared to .789 and 
1.287 in Cohen and Ivry's (1989) Experiments 1 and 2, respec- 
tively. By contrast, in the far condition, the ratio of  color-con- 
junction errors to color-feature errors was .508 in the simulated 
data, which is close to chance expectation. Cohen and Ivry 
(1989) found ratios of.381 and .405 in their far condition, pre- 
sumably because their subjects used an exclusionary guessing 
strategy that I did not attempt to model. Nevertheless, the 
CTVA predictions are reasonably close to their data even 
though there was no formal attempt to optimize the fit. 

Method and results: Experiments 3 and 4. Cohen and Ivry's 
(1989) third and fourth experiments attempted to test the hy- 
pothesis that illusory conj unctions occurred between items that 
fell within the spotlight beam but not between items that fell 
outside it. To this end, they had subjects report two digits 3.3* 
or 6.6* apart  (Experiment 3) or 3* or 6* apart  (Experiment 4) 
and then report the color and identity of an X or F that appeared 
with a colored, nontarget O, as in Experiments I and 2. The two 
colored letters appeared between the digits, one outside and one 
between the digits, or both outside the digits. According to Co- 
hen and Ivry's hypothesis, subjects would expand the spotlight 
to encompass both of  the digits, so the spotlight would be larger 
when the digits were more widely spaced. The letters to be re- 
ported were presented in two out of  six equally spaced locations, 
which Cohen and Ivry (1989) labeled from left to right asA-F. 
The digits appeared between positions A-B and E-Fin the large 
spotlight condition and between positions B-C and D-E in the 
small spotlight condition. The two experiments were close rep- 
lications; the only difference was that visual angle was smaller 
by 10% in Experiment 4. Examples of  their displays are pre- 
sented in Table 3. 

The hypothesis that illusory conjunctions would occur within 
the spotlight beam but not outside it led to several predictions: 
First, it predicted illusory conjunctions only in condition CD in 
the small spotlight condition (narrowly spaced digits), because 
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Table 3 
Examples of Displays and Observed and Predicted Rates 
of Illusory Conjunctions in Cohen and Ivry's 
(1989) Experiments 3 and 4 

Position Example displays Exp. 3 Exp. 4 CTVA 

Small 

CD wX Yz wY Xz .111 .070 .136 
BD-CE Xw Yz Yw Xz .008 .022 .071 
BE Xw zY Yw zX -.013 .032 .019 
AD-CF X w Yz Y w Xz .016 .017 .032 
AE-BF X w zY Y w zX -.023 -.009 .009 
AF X w z Y Y w z X .004 .010 .004 

Large 

CD w X Y  z w Y X  z .119 .149 .138 
BD-CE wX Y z wY X z .103 .081 .084 
BE wX Yz wY Xz .046 .109 .047 
AD-CF Xw Y z Yw X z .039 .033 .035 
AE-BF Xw Yz Yw Xz .021 .065 .022 
AF Xw zY Yw zX .015 .010 .003 

of Prinzmetal (1981). Furthermore, in order to include both 
digits in a single spotlight beam, the threshold would have to be 
set so low that it would include the two colored letters wherever 
they appeared in the display. Letters outside the digits would be 
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Note. In the example displays, X and Y represent the locations of the 
colored letters to be reported in the conjunction task, and w and z rep- 
resent the locations of the digits to be reported in the primary task. 
Small and Large refer to the distance between the digits. The letters A- 
F represent Cohen and lvry's (1989) notation for the position of the 
colored letters, where A is the leftmost position, B is second from the 
left, and so on. The rate of illusory conjunction is the probability of a 
color conjunction error minus half of the probability of a color feature 
e r r o r .  

that was the only condition in which both letters fell between 
the digits and therefore within the beam. Second, it predicted 
illusory conjunctions in conditions CD, BD, CE, and BE in the 
large spotlight condition (widely spaced digits) because both 
letters fell between the digits in each of  those conditions. Third, 
it predicted no illusory conjunctions outside the spotlight in any 
condition (i.e., in conditions BD, CE, BE, AD, CF, AE, BF, 
or AF in the small spotlight condition or in conditions AD, CF, 
AE, BF, or AF in the large spotlight condition). And fourth, it 
predicted no effect of  distance on the rate of  illusory conjunc- 
tions when the letters fell within the spotlight. 

The illusory conjunction rates, presented as a function of 
condition in Table 3 and plotted as a function of distance be- 
tween the letters in Figure 9, provided partial support for their 
hypothesis. Illusory conjunctions tended to occur within the 
spotlight but not outside it in the small spotlight condition. 
However, in the large spotlight condition, illusory conjunctions 
occurred between letters inside and outside the spotlight 
(condi t ions  AD, CF, AE, and BF) and there were strong dis- 
tance effects within the spotlight ( see Figure 9).  Indeed, inspec- 
tion o f  Figure 9 reveals no sharp discontinuity in the rate of  
illusory conjunct ions  at the boundary  o f  the spotlight. 

CODE. The CODE analysis begins by rejecting the idea 
that  the spotlight can be stretched arbitrarily to include the two 
digits. If the spotlight included the two digits and the space be- 
tween them,  then there should be no basis for conjoining colors 
and letter identities correctly, so illusory conjunct ions  should 
occur  as often as correct  conjunctions.  We saw this effect in the 
CTVA analysis o f  the middle-threshold,  same-group condit ion 
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Figure 9. Rates of illusory conjunctions (the probability of a color 
conjunction error minus half the probability of a color feature error) as 
a function of distance between the colored letters observed in Cohen 
and Ivry's (1989) Experiment 3 (top panel ) and Experiment 4 (middle 
panel), and predicted by CTVA (bottom panel ). CTVA = CODE the- 
ory of visual attention. 
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Table 4 
Feature Catches for Each Condition of Cohen and Ivry ~ 
(1989) Experiments 3 and 4 

Small spotlight Large spotlight 

Position Target Distractor Target Distractor 

CD .1490 .1095 .1397 .1038 
BD-CE .1329 .0623 .3119 .1634 
BE .0050 .0011 .4513 .1665 
AD-CF .1779 .0525 .1809 .0564 
AE-BF .0332 .0050 .2549 .0618 
AF .0838 .0079 .0149 .0012 

Note. The letters A-F represent Cohen and lvry's (1989) notation for 
the position of the colored letters, where A is the leftmost position, B is 
second from the left, and so on. 

just as likely to be included in the above-threshold region as 
letters between the digits. Because of  these problems, the C O D E  
analysis took a different tack. 

The C O D E  analysis assumes that the regions of  the display 
from which features are sampled depend on the shape of  the 
C O D E  surface and the threshold setting. Cohen and Ivry's 
(1989) displays were represented as C O D E  surfaces generated 
from four feature distributions, with thresholds set at the local 
min ima  between the distributions, slicing off four separate re- 
gions from which features can be sampled. C O D E  accounts for 
the putative effects of  the spotlight in terms of  the influence of  
the feature distributions of  the digits on the C O D E  surface. 

The smallest distance in the set of  displays was set to 25 units 
(i.e., the distance between X and w in conditions CD, BD, CE, 
and BE in the small spotlight condit ion) and the distance be- 
tween alternative letter positions was set to 50 units (i.e., the 
distance between X a n d  Yin condition CD in both the small and 
large spotlight conditions).  All other distances were multiples 
of  these distances. I set the standard deviation of  the feature 
distribution at 100. The threshold was set differently in each 
condition at the local m i n i m u m  between the letters and their 
nearest neighbors. The feature catches for targets and distrac- 
tors computed from these parameters are presented in Table 4, 
averaged over the two positions that targets could have occupied 
in each display (i.e., the positions corresponding to X and Y in 
each row of Table 3). Cohen and Ivry (1989) did not  report  
data separately for the two positions. 

CTVA. As in the analysis of  Experiments 1 and 2, ~ and wx 
were set to 1.0 for color and letter categorizations. The n(x, i) 
values for target letters and colors were set to 0.825, and the n(x, 
i) values for the nontarget categorizations, given that a target 
was present, were set to 0.175. The predicted illusory conjunc- 
tion rates (the probability of  a color-conjunction error minus 
half  the probability of  a color-feature error) are presented in 
Table 3 as a function of  condition and plotted in Figure 9 as a 
function of  distance between the colored letters. The correlation 
between observed and predicted values was .888 for Experi- 
ment  3 and .729 for Experiment  4. These correlations are high 
considering that the observed illusory conjunction rates from 
Experiments 3 and 4 correlated only .805 with each other (i.e., 
the data were somewhat unreliable).  

As in Experiments 1 and 2, CTVA did a good job  of  capturing 
the reduction in illusory conjunct ion rate as the distance be- 
tween the letters increased. The predicted data in Figure 9 de- 
crease with distance at about the same rate as the observed data 
in both experiments. Moreover, the predicted data showed illu- 
sory conjunctions between letters inside and outside the spot- 
light and distance effects within the beam in the large spotlight 
condition, just like the observed data. 

CTVA predicted a difference in the right direction between 
the illusory conjunction rates in the small and large spotlight 
conditions. Even though the distance between the letters was 
the same in the two conditions, the model 's  performance was 
influenced in the same manner  as human subjects' by adding 
the digits to the display. However, the CTVA fit was not perfect. 
It tended to overpredict the data in the small spotlight condition 
and underpredict them in the large spotlight condition; the ob- 
served difference was larger than the predicted one. Thus, there 
may be more going on in these experiments than CTVA can 
account for. 7 

Evaluation. The CTVA model  captured the essential fea- 
ture of  Cohen and Ivry's (1989) experiments,  which is a reduc- 
tion in illusory conjunction errors as the distance between items 
increased. The model  provided a better account of  the simple 
distance effects in Experiments 1 and 2 than the modulat ion of  
distance effects by the spacing of  the digits in Experiments 3 and 
4. Thus, there is room for improvement.  Note, however, that the 
spotlight model proposed by Cohen and Ivry (1989) did not  
fare very well either, even though it made only qualitative pre- 
dictions (also see Ashby et al., 1996). Nevertheless, the CTVA 
fits are encouraging. They suggest that the model could be ex- 
tended to deal with the other cases in the literature (e.g., Chas- 
tain, 1982; Ivry & Prinzmetal,  1991; Lasaga & Hecht, 1991; 
Prinzmetal  & Keysar, 1989; Prinzmetal  & Mills-Wright, 1984; 
Prinzmetal,  Treiman, & Rho, 1986; Wolford & Shum, 1980). 
The model did not deal with the initial digit-report task or the 
shift of  attention from the digits to the target in any of  the ex- 

71 was able to improve the fit and capture the quantitative difference 
between the large and small spotlight conditions by allowing the stan- 
dard deviation of the feature distributions to vary between spotlight 
conditions, following Ashby et al. (1996) who fitted the same data by 
allowing larger variance in the large spotlight condition. I set the stan- 
dard deviation of the feature distributions to 60 units for the small spot- 
light condition and kept the other parameters the same (i.e.,/3 and w~ - 
1 ; ~ = 0.825 for color and letter presence; n = 0.175 for color and letter 
absence). The large spotlight condition was fitted with the same param- 
eters used for the fits to both conditions in Table 3 and Figure 9 ( i.e., the 
predicted data are the same as those for the large spotlight condition in 
Table 3). The predicted illusory conjunction rates for the small spot- 
light condition were much closer to the observed values: .096, .015, 
.003, .004, .001, and .0002 for Conditions CD, BD-CE, BE, AD-CE 
AE-BE and AE respectively. The correlations between the predicted 
and observed illusory conjunction rates (including the new predictions 
for the small spotlight condition and the old predictions for the large 
spotlight condition ) were much higher than with the previous fits: .986 
for Experiment 3 and .869 for Experiment 4. However, these improved 
fits required me to violate the CTVA assumption that the feature distri- 
butions are built by bottom-up processes, which implies that their stan- 
dard deviations should be independent of how top-down attention is 
deployed to the displays. 
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Figure 10. Examples of displays from Banks and Prinzmetal's (1976) experiments. Column 1 = good 
figure condition; Column 2 = isolated target condition; Columns 3-5 = camouflaged target conditions. 

periments. The digit-report task would be easy to model but the 
shift in attention would require further specification of be- 
tween-object processing, which is beyond the scope of  this arti- 
cle (but see Logan, 1995; Logan & Sadler, 1996). 

Banks and Prinzmetal (19 76): Grouping Effects in 
Visual Search 

Banks and Prinzmetal (1976) published an important series 
of experiments that pitted grouping by proximity against the 
number of items in the display. The results were counterintu- 
itive: Adding items to a display usually impairs performance 
(e.g., Duncan & Humphreys, 1989; Treisman & Gormican, 
1988; Wolfe, 1994), but Banks and Prinzmetal (1976) found 
that adding items improved performance when those items 
clustered together with other distractors to isolate the target. 
These results are well cited and viewed as strong evidence for 
object-based attention (e.g., Kahneman & Treisman, 1984; 
Kahneman et al., 1992). 

The grouping principle in the Banks and Prinzmetal (1976) 
experiment is proximity, so CTVA is clearly relevant. In the 
CTVA analysis, adding items has two effects, one on between- 
group selection and one on within-group selection. The effect 
on between-group selection is that adding items makes the iso- 
lated target more likely to be selected than in the original dis- 
plays, and it makes targets that were not isolated but camou- 
flaged by the added items, less likely to be selected than targets 
in the original displays. The effect on within-group selection is 
primarily on processing the camouflaged targets: Adding items 
to the display places one or two more distractors close to the 
target, close enough to affect a feature catch centered on the 
target. 

Method and results. Banks and Prinzmetal (1976) showed 
their subjects displays like those in Figure 10. Each display con- 
tained a Tor  an F a n d  two to six T - F  hybrids (formed, roughly, 
by moving the right half of the top bar of  the T down the stem 
to the position of  lower bar of  the F) .  Ts and Fs occurred only 

in the four corners of  the display in Conditions A and B and 
close to the corners in Condition C. The task was to say whether 
each display contained a T or an F.  

There were three experiments. Experiment 1 used the full set 
of  displays in Figure 10, exposing them until the subject re- 
sponded, so reaction time was the main dependent variable. Ex- 
periment 2 used a subset of the displays (those in Figure 10A). 
The displays were exposed briefly ( 50 ms in the first session, 40 
ms in the second) and followed by a blank field with twice the 
luminance. Accuracy became an important dependent variable 
as well as reaction time. Experiment 3 used the full set of  dis- 
plays to gather measures of grouping. Subjects looked at pic- 
tures of the displays in Figure l0 and drew lines around the 
groups they saw. The grouping measure, reported in Banks and 
Prinzmetal's (1976) Table l, reflected the mean number of  
group boundaries between the target and the average distractor. 

The design of Experiments l and 2 compared the five condi- 
tions represented in the columns of Figure 10. Condition 1 was 
the goodfigure condition, in which the target and distractors 
together formed a simple figure: a diagonal line, a square, or a 
square with a dot in the middle. Banks and Prinzmetal (1976) 
expected the target to be embedded in this simple structure. 

Condition 2 was the main focus of  their research. It was the 
isolated target condition, in which the added distractor grouped 
together with the other ones to form a cluster separate from the 
target. Banks and Prinzmetal (1976) expected better perfor- 
mance in the isolated target condition than in the good figure 
condition, because the target would be easier to extract from the 
distractors. 

Conditions 3-5 were the camouflaged target conditions, in 
which the target appeared in the cluster of items formed by add- 
ing two new distractors. Banks and Prinzmetal (1976) expected 
worse performance in the camouflaged target conditions than 
in the good figure condition because of a display size effect: 
There were two more distractors in the displays. 

Averaged over the three stimulus sets in Experiment l, mean 
reaction times were 576, 553,632, 670, and 726 ms for Condi- 
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Figure ll. The CODE surface for Banks and Prinzmetal's (1976) displays (11A) with a high (11B), 
intermediate 1 IC), and low (11D) threshold applied to it (cf. Figure 9). 

tions 1-5, respectively. Experiment 2 confirmed these results, 
producing mean reaction times of 583, 559, 596, 613, and 651 
ms and mean probabilities of a correct response of.973, .987, 
.970, .942, and .915 for Conditions 1-5, respectively. The data 
confirmed Banks and Prinzmetal's (1976) expectations: Reac- 
tion time was faster for isolated targets than for good-figure 
targets, and reaction time was slower for camouflaged targets 
than for good-figure targets. 

CODE. The CODE surface for the isolated- and camou- 
flaged-target displays are illustrated in Figure 11A. There is no 
difference between targets and distractors in Figure 11, so the 
isolated target display has the same CODE surface as the three 
camouflaged target conditions. Figure 11B illustrates the appli- 
cation of a high threshold to the CODE surface, one that sepa- 
rates each of the items from the others in the display. Figure 11C 
illustrates an intermediate threshold that clumps the cluster of 
items into one group and isolates the singleton. Figure 11D il- 
lustrates a low threshold that groups all of the items together. 

The CODE analysis provides some insight into the configu- 
ration of CODE and TVA that is required to fit the data. The 
low-threshold setting is an unlikely candidate for the CODE 
contribution because it ignores the spatial arrangement of the 
items. Banks and Prinzmetal ( 1976 ) found strong effects of spa- 
tial arrangement. The low-threshold setting could predict the 
display-size effect that Banks and Prinzmetal (1976) observed, 
but it could not predict the crucial difference between good fig- 
ure and isolated target displays, in which the effects of grouping 
were pitted against display size and grouping won. 

The intermediate- and high-threshold settings are reasonable 
candidates whose viability rests on the TVA analysis. The inter- 
mediate-threshold setting requires processing the clustered 
items in the camouflaged target conditions in parallel, and that 
may or may not be feasible depending on the signal to noise 
ratio in TVA. 

Between-object effects. The high-threshold setting requires 
serial processing, and that requires a theory of between-object 
selection, which is outside the scope of CTVA. Nevertheless, 
some simple assumptions can be made that lead to testable pre- 
dictions. I assumed that items are processed in an order that 
corresponds to their degree of isolation. Thus, the isolated item 
is processed first, then the two items with two neighbors, and 
finally, the item with three neighbors. Banks and Prinzmetal 
(1976) dismiss strategies like this as "far from optimal" (p. 
362) because the target is more likely to occur in a nonisolated 
position in Conditions 1-4. However, the target is no more likely 
to occur in any other single position than in the isolated posi- 
tion, so there is no reason to prefer any other position to the 
isolated one. The strategies are no worse than random choice. 
Moreover, the strategies may be reasonable iftbey are consistent 
with habits or "natural tendencies" or iftbey interact with the 
recognition system in a way that benefits performance (see Lo- 
gan, 1994). 

This search strategy allows an estimate of the mean number 
of comparisons required to find the target (search depth) for the 
displays in Figure 10. If subjects examine only the four positions 
that targets can occur in, search depth will range from 1 to 4. 
The search strategy predicts a search depth of 1 for the isolated 
target condition and 2.5 for the good figure condition. In the 
camouflaged target condition, search depth should be 2.5 for the 
2 two-neighbor positions and 4 for the three-neighbor position, 
averaging 3. 

Within-object effects. CODE by itself also predicts some 
within-object effects in Banks and Prinzmetal's (1976) experi- 
ments. Figure 12 illustrates a I-D CODE surface applied to a 
slice of Banks and Prinzmetal's ( 1976 ) displays. The top panel 
of Figure 12 shows three equally spaced items that correspond 
to the good figure condition. The middle and bottom panels of 
Figure 12 add a fourth item, placing it in between two of the 
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Figurel2. The CODE surface with a threshold applied to it for Banks 
and Prinzmetal's (1976) good figure condition (top panel), isolated 
target condition (middle panel), and camouflaged target condition 
(bottom panel)arrayed in one dimension. T = target, D = distractor. 

three items from the top panel of Figure 12. The middle panel 
of Figure 12 represents the isolated target condition, and the 
bottom panel of Figure 12 represents the camouflaged target 
condition. 

Thresholds have been applied to the different conditions and 
lines have been drawn to delimit the feature catch. The thresh- 
olds represent the high-threshold condition, in which CODE 
parses the display into objects that correspond to individual 
items. The thresholds were set at the lowest level that would 
allow the target item to be separated, which is a local minimum 
between items on the CODE surface. Thresholds higher than 
the local minimum will pick offindividual items, but thresholds 
lower than the local minimum will group the target item with 
its neighbors (i.e., the local minimum represents the boundary 
between the high- and intermediate-threshold conditions). 

The important points to be taken from Figure 12 concern the 
feature catches in the different conditions. The feature catches 
for the good figure condition and the isolated target condition 
are large and not contaminated much by their neighbors. The 
nearest neighbor is relatively far away, and the local minimum 
on the CODE surface between the target and the neighbor is 
relatively low. By contrast, the feature catch for the camou- 
flaged-target condition is smaller and much more contaminated 
by its neighbor. The near neighbor raises the CODE surface in 
the region of the target and, consequently, raises the local mini- 
mum between itself and the target. This reduces the weight, cx, 
on the target, relative to the good figure and isolated target con- 
ditions (by reducing the range of the limits of integration, ex- 
cluding more of the tails of the target's feature distribution), 
and the reduction in the weight necessarily slows reaction time 
and decreases accuracy (see Equations 1 l -13) .  Adding insult 
to injury, the near neighbor intrudes more into the above- 
threshold region, giving it substantial weight in the feature 
catch. The extra item in the feature catch should slow reaction 
time and decrease accuracy further. 

This analysis suggests that the number of near neighbors 
might be an important predictor of reaction times, because the 
threshold adjustment and noise effects are exacerbated by near 
neighbors. I counted the number of near neighbors for Banks 
and Prinzmetal's (1976) displays, portrayed in Figure 10, 
counting a horizontally, vertically, or diagonally adjacent item a 
near neighbor and not counting anything else. So, for example, 
the number of near neighbors in displays in the top row of Fig- 
ure l0 is l, l, 2, 2, and 3 for Conditions 1-5, respectively. Aver- 
aged over all the displays, the number of near neighbors was .67, 
.67, 2.0, 2.0, and 2.67 for Conditions 1-5 respectively. 

Regression analyses. I performed some regression analyses, 
predicting the 15 reaction times in Banks and Prinzmetal's 
( 1976 ) Experiment l (see their Table 1 ) from the CODE-based 
measures of search depth and number of near neighbors and 
comparing the CODE predictions with those from Banks and 
Prinzmetal's (1976) grouping measure and display size. The 
correlations between the measures appear in Table 5. The sim- 
ple and multiple regression equations appear in Table 6. 

Individually, the CODE measures outperformed Banks and 
Prinzmetal's. The measure of search depth and the number of 
nearest neighbors were each more highly correlated with reac- 
tion time than Banks and Prinzmetal's grouping measure and 
display size. The CODE measures outperformed Banks and 
Prinzmetai's in multiple regression as well. Combining number 
of nearest neighbors with the measure of search depth resulted 

Table 5 
Correlations Between Reaction Times (RTs) in Banks 
and Prinzmetal's (1976) Experiment 1 and Measures 
of Grouping (-G), Display Size (D), Number of Near 
Neighbors (N), and Search Depth (S) 

Predictor RT - G  D N 

- G  .567 - -  
D .311 .269 - -  
N .758 .523 .206 - -  
S .826 .732 .000 .620 
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Table 6 
Simple and Multiple Regression Equations Predicting Reaction 
Times (RTs) From Banks and Prinzmetal's (19 76) Experiment 
1 From Measures of  Grouping (-(3), Display Size (D), Number 
of  Near Neighbors (N), and Search Depth (S) 

R or r Predictor Equation 

.5667 - G  RT = 727 - 84.6G 

.3105 D RT = 531 + 17.9D 

.5900 - G  + D RT = 664 - 79.1G + 9.9D 

.7580 N RT = 553 + 49.1N 

.8255 S RT = 488 + 57.4S 

.8831 N + S RT = 489 + 25.7N + 40.3S 

Note. R = multiple correlation from multiple regression; r = simple 
correlation from simple regression. 

in a multiple correlation that was considerably higher than the 
multiple correlation from the grouping measure and display 
size. The multiple correlation including display size was only 
slightly higher than the simple correlation between the grouping 
measure and reaction time. Even without TVA, CODE provides 
a better account of Banks and Prinzmetal's (1976) data than 
their own analyses. 

CTVA. The first step in applying TVA is setting the n values. 
In the Banks and Prinzmetal (1976) experiment, the distractors 
( T -F  hybrids) are similar to the alternative targets ( T and F).  
I used three levels of 71: a high one for targets and distractors 
resembling themselves, an intermediate one for the mutual re- 
semblance between targets and distractors, and a low one for 
the mutual resemblance between alternative targets. Thus, rt(x, 
Tlx  = T)  = n(x, F i x  = F) = n(x, D l x  = D) = 1.0 > n(x, T l x  
= D) = O(x, D l x  = T) = n(x, f l x  = D) = o(x, D lx  = F) = .02 
> rt(x, T[x = F) = ~(x, F[ x = T) = .01. Bias (/3) and attention 
weights (wx) were set to 1.0 for Ts, Fs, and distractors. 

Three between-item distances were included in the calcula- 
tions: nearest neighbors, which were 1" of visual angle away 
(100 units); middle neighbors, which were 1.41" away 
(diagonally; 141 units); and far neighbors, which were 2* away 
(200 units). The standard deviation of the feature distributions 
was set to 50. In order to apply Equations 11 and 12 to the data, 
I treated the displays as if they were 1-D. I generated a CODE 
surface by adding together the feature distribution for the target 
and its nearest neighbor. This allowed me to define the local 
minimum surrounding the target and therefore set the thresh- 
old. I used the threshold set at the local minimum to compute 
the feature catch from each item in the display. 

I fit parallel and serial models to the data. There were two 
versions of each type, one with the same threshold for each of 
the four critical display positions (set to the local minimum be- 
tween the target and the nearest-possible neighbor, which is the 
added item in Figure 10, Conditions 3-5),  and one with a 
different threshold for each critical position (set to the local 
minimum between the target and its nearest neighbor). 

The parallel models focused on the four critical display posi- 
tions (the four corner positions in each display). Each position 
contributed two "runners" to the race, one for each possible 
target (i.e., T vs. F),  and the four positions raced against each 

other. Reaction time and accuracy predictions were generated 
from Equation 12. 

The serial models used the search strategy described above in 
the regression fits, focusing on the most isolated item first and 
proceding through the display according to the degree of isola- 
tion. The race was run separately for each of the four positions 
in the display. There were three runners in the race at each po- 
s i t i o n - T ,  F, and distractor. The distractor ran in the race be- 
cause three out of four positions in each display contained dis- 
tractors, and the appropriate action, if a distractor was present, 
was to proceed to the next display position. Reaction time and 
accuracy predictions were generated by first applying Equation 
12 to generate processing times and accuracies for each display 
position and then integrating them with the serial search strat- 
egy. Reaction times for successive display positions were added, 
and the reaction time for each display was set to the mean of the 
different trajectories through the display. Accuracies for succes- 
sive display positions were multiplied together, and the accuracy 
for each display was set to the mean of the different trajectories. 

The models were fitted to the 15 reaction times in Banks and 
Prinzmetal's (1976) Experiment 1 (see their Table 1). The 
same parameters predicted accuracy, although Banks and 
Prinzmetal did not report it. They did report accuracy for their 
Experiment 2, which was a partial replication of their Experi- 
ment 1 with brief exposures, so we tried to fit those accuracy 
data. The serial model fits were better than the parallel model 
fits and the different-threshold fits were marginally better than 
the same-threshold fits (r = .913 for different- and .903 for 
same-threshold serial fits; r = .808 for different- and .807 for 
same-threshold parallel fits). The results of the different-thresh- 
old fits and the results of Banks and Prinzmetal's ( 1976 ) Exper- 
iment 1 are presented in Table 7. 

The parallel models missed two essential features of Banks 
and Prinzmetal's (1976) results. First, they missed the display 
size effect, predicting longer reaction times for Pattern C dis- 
plays than for Pattern B displays (see Figure 10). This occurred 
because the nearest neighbors were farther from the targets in 
Pattern B displays than in Pattern C displays. (Reaction times 
were slower in Pattern A displays than in Pattern B displays be- 
cause the nearest neighbors were closer to the targets.) Second, 
and more important, the parallel models failed to predict the 
advantage of the isolated target condition over the good-figure 
condition. The near neighbors were the same distance away 
from the targets in the two conditions, so reaction times and 
accuracies were the same, contrary to what Banks and Prinz- 
metal ( 1976 ) observed. 

The serial models captured the essential features of Banks 
and Prinzmetal's (1976) data. Pattern C was faster than Pattern 
B, and Pattern B was faster than Pattern A. More importantly, 
the isolated target displays were faster and more accurate than 
the good-figure displays in each pattern. 

The feature catches ((~) used in the fits for each pattern and 
condition are presented in Table 8. There is a feature catch for 
the target, for the near neighbor, the middle neighbor, and the 
far neighbor in each pattern. The correspondence between these 
values and Banks and Prinzmetal's (1976) displays can be 
gleaned from Figure 10A, Condition 5. Target corresponds to 
the position of the target; near corresponds to the position of 
the distractor immediately to the right or immediately below 
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Table 7 
Observed and Predicted Reaction Times and Predicted Percent 
Correct Scores for Banks and Prinzmetal (19 76) 

Condition 

Pattern 1 2 3 4 5 

Banks and Pfinzmetal's 1976) data 

A 598 558 609 640 759 
B 573 551 638 667 735 
C 557 552 649 703 683 

Parallel processmg 

A 585 585 671 671 675 
99 99 99 99 99 

B 536 536 670 670 674 
99 99 99 99 99 

C 586 586 676 676 676 
99 99 99 99 99 

Sefialprocessing 

A 607 553 628 628 711 
91 97 89 89 82 

B 597 549 623 623 705 
91 97 90 90 83 

C 570 552 709 709 709 
95 97 82 82 82 

the target; middle corresponds to the position of the distractor 
along the diagonal; and far corresponds to the position of the 
distractor in the bottom left or top right positions. The distrac- 
tor in the bottom right position was not considered in the fits. 
The entries in Table 8 correspond to target and distractor posi- 
tions that were employed in the fits. Thus, for example, the near 
condition is blank in Pattern A, Conditions 1 and 2 because 
there were no very near neighbors in those displays (see Figure 
10). 

The feature catches for the same-threshold fits were .757, 
• 1 14, .036, and .007 for all patterns and conditions. 

Evaluation. CTVA did a reasonable job of accounting for 
Banks and Prinzmetal's (1976) data. As they anticipated, be- 
tween-object effects were the most important factors in our ac- 
count. However, in the CTVA analyses, serial processing models 
did better than parallel processing models. Contrary to Banks 
and Prinzmetal's suggestion, CTVA had to assume a serial 
search strategy that focused on the most isolated position first 
in order to capture the advantage of isolated target displays 
over good figure displays. These fits encourage further 
investigations. 

Cohen and Ivry (1991)." Density Effects in Conjunction 
Search 

The difficulty of searching for targets that are conjunctions of 
separable features is another cornerstone prediction of Treis- 
man's feature integration theory (Treisman & Gelade, 1980; 
Treisman & Sato, 1990). Reaction time increases as a linear 
function of display size with a steep slope. Since the original 
demonstration that conjunction search was harder than search 

for the features that made up the conjunction, the result has 
been investigated vigorously. Often, the original result repli- 
cates, but some researchers have shown that conjunction search 
is sometimes easy, producing slopes near zero (e.g., Wolfe et al., 
1989) and sometimes feature search is hard, producing slopes 
well above zero (e.g., Treisman & Gormican, 1988). Recently, 
Cohen and Ivry ( 1991 ) found that the conjunction search slope 
could be reduced considerably if the density of the displays was 
reduced by increasing the distance between adjacent items. 
This distance effect falls in the domain of CTVA, and CTVA 
accounts for it in a way that is similar to its account for distance 
effects on illusory conjunctions. 

CODE. Conjunction search is difficult when distractors 
share features with the target ( e.g., the distractors are green X's  
and red O's, and the target is a red X).  CTVA interprets this as 
a similarity effect; the n(x, i) values for distractors are high in 
conjunction search. In order to avoid target-present responses 
to distractors, the feature catch has to focus on individual items, 
either serially--one by one--or  in parallel with separate spatial 
indices for each item. The threshold is set high so that the con- 
tribution of adjacent items to the feature catch is much smaller 
than the contribution of the item in the current focus of atten- 
tion. Increasing distance between items has two effects in the 
theory: First, it decreases the overlap of distributions from ad- 
jacent items, and that decreases the probability of sampling fea- 
tures from adjacent items and reduces the likelihood of false 
target-present responses• Second, it lowers the local minima on 
the CODE surface, and that lets the system adopt a lower thresh- 
old (i.e., just above the local minimum). That increases the con- 
tribution of the target item to the feature catch and speeds pro- 
cessing (see Equations 12 and 10). Both of these factors would 
speed the search rate, as Cohen and Ivry ( 1991 ) observed. 

CTVA. In order to apply TVA to conjunction search, the 
rules by which responses are chosen must be specified. Consider 
the case in which the target is a red T and the distractors are 
green Ts and red Xs. The person decides a target is present if he 

Table 8 
Feature Catches (cx) for Parallel and Serial Fits 
to Banks and Prinzmetal (19 76) 

Pattern Target Near Middle Far 

A 
Condition 1 .864 
Condition 2 .864 
Condition 3 .757 .114 
Condition 4 .757 .114 
Condition 5 .757 .114 

B 
Condition 1 .941 
Condition 2 .941 
Condition 3 .757 .114 
Condition 4 .757 .114 
Condition 5 .757 .114 

C 
Condition 1 .864 
Condition 2 .864 
Condition 3 .757 .114 
Condition 4 .757 .114 
Condition 5 .757 .114 

.067 .013 

.067 .013 

.036 .007 

.036 .007 

.036 .007 

.067 

.067 

.029 

.029 

.007 

.007 

.007 
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or she determines that a perceptual object is both red and T. 
The person decides that a perceptual object is not a target if he 
or she determines that the object is not red or not T. Thus, the 
decision rules are as follows: 

1. IF red AND T THEN terminate search and say "present." 
2. IF not red OR not T THEN examine the next item. 
3. IF there are no more items to be examined THEN say 

"absent." 
In TVA, the time to decide that an object is red depends on 

the rate of processing, v(x, red) and the time to decide it is T 
depends on v(x, T). The time to decide that an object is not 
red depends on the rate at which "not red" can be detected-- 
v(x, notred), and the time to decide that an object is not T 
depends on v(x, notT). In order to decide that a target is pres- 
ent, both red and T must be detected. Thus, the time to decide 
that a target is present is the maximum of the times required to 
decide that the object is red and it is a T: max(red, T). In order 
to decide that an object is not a target, it is sufficient to detect 
either not red or not T. Thus, the time to decide that an object 
is not a target is the minimum of the time to decide it is not red 
and the time to decide it is not T: min(notred, notT). 

The decision about whether a given object is a target depends 
on a race between the process that decides an object is a target 
and the process that decides an object is not a target. The math- 
ematics underlying the race are developed in Appendix D. 
When CODE and TVA are put together, the v(x, i) values are 
modified by the feature catches, Cx, so reaction time and accu- 
racy depend both on the factors that affect v(x, i) (i.e., sim- 
ilarity between targets and distractors) and the factors that 
affect cx (i.e., the density of the items in the display). 

The finishing times and accuracies for individual compari- 
sons must be combined over items to predict mean reaction 
time and accuracy for the whole display. The traditional way to 
do this in the conjunction search literature is to assume serial 
self-terminating processing, in which attention focuses on the 
items one by one (e.g., Cave & Wolfe, 1990; Treisman & Gelade, 
1980; Treisman & Sato, 1990; Wolfe, 1994; Wolfe et al., 1989). 
In models like these, reaction time is the sum of the individual 
comparison times plus an additive constant, and accuracy is the 
product of the accuracies of the individual comparisons. It is 
also possible to combine individual finishing times and accura- 
cies in various parallel models (e.g., Duncan & Humphreys, 
1989; Pashler, 1987; Townsend & Ashby, 1983 ). Parallel models 
must find some way to keep individual items distinct from each 
other, or else illusory conjunctions would inflate the error rate. 
One way to keep items distinct is to spatially index them, and 
while spatial indexing is often thought of as a serial process (e.g., 
Ullman, 1984), Pylyshyn ( 1989 ) and colleagues (e.g., Pylyshyn 
& Storm, 1988; Trick & Pylyshyn, 1994) suggested that four or 
more spatial indices may be deployed in parallel. In principle, 
CTVA could provide a parallel-processing account of conjunc- 
tion search if it assumed multiple spatial indices. For the present 
purposes, however, I configured CTVA as a serial self-terminat- 
ing search process to make the exposition clearer. The key re- 
suits depend on the finishing times and accuracies for individual 
items (see Appendix D). They should have the same effect on 
overall reaction time and accuracy no matter how they are 
combined. 

In a serial, self-terminating version of CTVA, mean reaction 
time for target-present responses is 

R T e = F T e + ( ~ - ' ~ ) F T A +  b, (14) 

where FTe and FTA are the finishing times for the processes 
that detect target presence and absence, respectively, D is dis- 
play size, and b is an additive constant that represents residual 
time for perceptual encoding and motor processing. For target- 
absent responses, mean reaction time is 

RTA = (D)FTA + b. (15) 

According to Equations 14 and 15, reaction time is a linear 
function of display size with a slope that depends on the finish- 
ing time of the process that detects target absence. The slope 
for target-present responses is approximately half the slope for 
target-absent responses, as is commonly found in conjunction 
search experiments (Treisman & Gelade, 1980). 

The CTVA model also predicts accuracy, although Cohen and 
Ivry ( 1991 ) did not report it. The probability of a correct re- 
sponse for target-present displays is 

P(CIP) = 1 - [ 1 - P ( P ) ] . P ( A )  D-', (16) 

where P(P) and P(A) are the probabilities that the processes 
that detect target presence and absence, respectively, function 
correctly. The probability of correctly detecting the target is one 
minus the probability of missing the target when it is present. 
The system will miss a target when it is present if it fails to detect 
the target, with probability 1 - P(P),  and if it fails to false alarm 
to a distractor, with probability P(A) '°- 1. These probabilities 
are independent, so they combine multiplicatively to produce 
the miss rate, which is subtracted from 1 in Equation 16 to pro- 
duce the hit rate. 

The probability of a correct response for target-absent dis- 
plays is 

P(CIA) = P(A) D. (17) 

Averaged over experiments and target-present and target-ab- 
sent conditions, the mean slope in Cohen and Ivry's (1991) 
clumped condition was 34 ms per item, and the mean slope in 
their spread condition was 14 ms per item. I estimated the slopes 
by calculating finishing times for individual comparisons using 
the equations in Appendix D. The finishing times can be in- 
serted into Equations 14 and 15 to predict mean reaction times 
as a function of display size. I chose not to predict mean reac- 
tion times because there was considerable variation in slopes 
and in the ratio between target-present and target-absent slopes 
in Cohen and Ivry's ( 1991 ) experiments, which suggested that 
the serial, self-terminating model on which Equations 14 and 
15 are based may not be appropriate for all of their data. Indeed, 
Cohen and Ivry ( 1991 ) argued that search was parallel in some 
of their conditions. Consequently, the CTVA analysis focused 
on finishing times, which would support predictions for parallel 
search models as well as serial, self-terminating ones. 

The distances between items were set to 100 units in the 
clumped condition and 200 units in the spread condition. The 
standard deviation of the feature distributions was set to 50 in 
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each case. The threshold was set halfway between the local min- 
imum between items and the peak of  the feature distribution, 
in order to focus more sharply on the target item. With these 
parameters, the mean finishing time for the target-absent pro- 
cess was 3.12 units in the clumped condition and 1.67 units in 
the spread condition. Finishing times for target-absent pro- 
cesses determine the slopes in Equations 14 and 15; if one unit 
equals 10 ms, the predicted results are close to the average val- 
ues in Cohen and Ivry's ( 1991 ) experiments. 8 

In the clumped condition, the feature catch included 39.4% 
of  the target's feature distribution and 7.1% of  each of  the dis- 
tractor's feature distributions. In the spread condition, the fea- 
ture catch included 63.2% of  the target's feature distribution 
and 2.2% of  each of  the distractor's feature distributions. The 
probability of correctly deciding target absence was .972 in the 
clumped condition and .992 in the spread condition. The mean 
finishing time and accuracy for the process that detected target 
presence was 3.04 units and .821 for the clumped condition and 
2.51 units and .967 for the spread condition. 

Evaluation. The CTVA model did a reasonable job of  ac- 
counting for Cohen and Ivry's ( 1991 ) results. Cohen and Ivry 
( 1991 ) proposed two processing mechanisms underlying their 
results: (a) a fine-grained localization process akin to Treis- 
man's conception of  conjunction search in the clumped condi- 
tion and (b)  a coarse-grained localization process different from 
Treisman's conception in the spread condition. By contrast, the 
CTVA analysis accounts for both conditions with the same pro- 
cessing mechanisms. The only difference between the condi- 
tions is the spacing of the item's feature distributions. While it 
remains possible that different mechanisms underlie perfor- 
mance in the different spacing conditions, the CTVA analysis 
suggests that further research with more incisive experiments 
will be necessary to rule out theories (such as CTVA) that pro- 
pose a single mechanism. 

Wolfe, Cave, and Franzel (1989): Double Versus Triple 
Conjunction Search 

Most experiments in the conjunction search literature in- 
volve conjunctions of  two features, or double conjunctions. 
Wolfe, Cave, and Franzel (1989) tested people in a triple con- 
junction task, in which targets were conjunctions of three fea- 
tures (e.g., large red Ts) and distractors contained only one of 
the target features (e.g., large green X s, small red X s, or small 
green Ts). They found that this triple conjunction search was 
much easier than double conjunction search. They interpreted 
their results in terms of  preattentive processes rather than the 
attentive comparison process that operates on the selected 
items, arguing that triple conjunctions stood out more from the 
background of distractor items. To account for the triple con- 
junction results, they proposed guided search theory (Cave & 
Wolfe, 1990; Wolfe, 1994) as an extension of  Treisman's feature 
integration theory. Whereas Treisman argued that preattentive 
and attentive processes were independent, Wolfe et al. (1989) 
argued that preattentive processes interacted with attentive pro- 
cesses, suggesting likely candidates for attention to focus on. 
Triple conjunction search was easy, they argued, because preat- 
tentive processes segregated triple conjunction targets from the 

distractors more easily than they segregated double conjunction 
targets. 

The field appears to have accepted the interpretation offered 
by Wolfe et al. (1989). Treisman and Sato (1990) revised fea- 
ture integration theory to account for the triple conjunction re- 
sults, proposing an inhibitory interaction between attentive and 
preattentive processes. They argued that inhibition was more 
effective when targets differed more from distractors, as with 
triple conjunctions that share only one feature with the target. 
Others in the field apparently agree with Wolfe and Treisman. 
Grossberg, Mingolla, and Ross (1994) modeled the Wolfe et al. 
(1989) data and attributed the ease of triple conjunction search 
to preattentive grouping processes. Surprisingly, no one appears 
to have tried to interpret the advantage of triple conjunctions in 
terms of  the attentive comparison process. 

In the course of modeling Cohen and Ivry's ( 1991; double) 
conjunction search data, it occurred to me that TVA can be 
extended easily to account for triple conjunction search. More- 
over, TVA accounts for the advantage of  triple conjunction 
search over double conjunction search in terms of the attentive 
comparison process and not in terms of  preattentive grouping 
processes. Thus, TVA offers a new approach to the analysis of  
triple conjunction search that differs significantly from other  
current approaches (e.g., Grossberg et al., 1994; Treisman & 
Sato, 1990; Wolfe et al., 1989). 

The TVA analysis can be extended to triple conjunction 
search by simply including a v(x, i) value for each of the three 
features and their absence (i.e., not small, not red, and not T).  
As with double conjunctions, decisions about target presence 
are determined by the outcome of a race between the presence 
and absence of the target features: 

Oulcome3 = min [max( r ,  T, s), min(?,  T, s-)]. 

Notice that there are three runners in the race for target ab- 
sence, which is more than the two that raced for target absence 
in standard conjunction search. This is important because the 
fastest of three runners will finish before the faster of two run- 
ners (see e.g., Logan, 1988, 1992), and this will reduce the slope 
of the function relating reaction time to display size because the 
slope is determined by the rate at which target absence is de- 
cided. Thus, the TVA analysis predicts shallower slopes in triple 
conjunction search than in standard, double conjunction 
search. A formal derivation of  the finishing times and accura- 
cies for target-present and target-absent responses is presented 
in Appendix D. The finishing times developed in Appendix D 
can be put into Equations 14 and 15 to predict slope values. 

Finishing times for target-present and target-absent processes 

8 Similar results are obtained if the threshold is set to the local mini- 
mum. The accuracies are a little lower and the finishing time difference 
between the clumped and spaced conditions is a little smaller. Using the 
same spacing parameters and r/and ~, values but setting the threshold to 
the local minimum, the finishing times (and accuracies) were 1.985 
(.956) and 1.298 (.989) for clumped and spaced target-absent pro- 
cesses, respectively, and 3.037 ( .821 ) and 1.958 (.954) for clumped and 
spaced target-present responses. The feature catches were .632 and .865 
for clumped and spaced targets, respectively, and . 159 and .066 for 
clumped and spaced distractors. 
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Table 9 
Processes Detecting Target Presence and Target Absence 
in Double and Triple Conjunction Search 

Finishing times Accuracies 

Target Target Target Target 
Task present absent present absent 

Double conjunction 4.742 3.122 .887 .972 
Triple conjunction 

two features different 5.628 1.628 .763 .999 
Triple conjunction 

one feature different 5.743 3.014 .849 .979 

were modeled using the parameters from the clumped condi- 
tion from the Cohen and Ivry ( 1991 ) fits. The target was 100 
units from the neighboring distractors; the standard deviation 
of the feature distributions was 50; the n value representing the 
similarity between a feature and its absence was .01; and the 
threshold was set halfway between the local minimum and the 
peak of the target's feature distribution. Table 9 contains the 
predicted finishing times and accuracies. 

Several effects in Table 9 are noteworthy. First, the time to 
detect target presence is greater for triple conjunctions than 
double conjunctions because the maximum of three values is 
larger than the maximum of two values (i.e., max(red, large, 
T) > max(red, T)). Second, the time to detect target absence, 
upon which the search slope depends (see Equations 14 and 
15), is shorter for triple conjunctions than for double conjunc- 
tions. The difference is large when triple conjunction distractors 
differ from targets on two features, as Wolfe et al. (1989) ob- 
served. The difference is smaller when triple conjunction dis- 
tractors differ from targets on only one feature, also as Wolfe et 
al. ( 1989 ) observed. Thus, TVA appears to account for the main 
trends in the data of Wolfe et al. (1989). Interestingly, it attri- 
butes the effects to the attentive comparison process rather than 
the preattentive processes. 

Evaluation. TVA did a good job of accounting for the 
main differences between double and triple conjunction 
search. The credit goes entirely to TVA; Bundesen's (1990) 
theory can account for the differences without recourse to 
CODE. It is significant that TVA accounts for the differences 
entirely in terms of the attentive comparison process. This is 
important because the other approaches to the contrast be- 
tween double and triple conjunctions do not attempt to 
model the comparison process. Some, such as Cave and Wolfe 
(1990) and Grossberg et al. (1994), provide formal accounts 
of preattentive processes but not the attentive comparison 
process. The TVA analyses suggest that other researchers may 
have misattributed the advantage of triple conjunction 
search to preattentive processes. The TVA analyses demon- 
strate that at least one construal of attentive processes--and 
one with considerable predictive power (Bundesen, 1 9 9 0 ) -  
accounts for the advantage of triple conjunctions in terms 
of attention rather than preattention. In the context of that 
theory, it is possible that all of the advantage of triple con- 
junction is due to attentive processes or that part of the ad- 
vantage is due to attention and part is due to preattention. It 
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is not possible, in the TVA theory, to account for the advan- 
tage entirely in terms of preattentive processes. 

Target-Distractor Discriminability and the Size of the 
Spotlight 

Several researchers have been concerned with factors that de- 
termine the size of the region that attention selects. Eriksen and 
St. James's ( 1986 ) zoom lens theory assumes that the spotlight 
can expand and contract according to task demands, but the 
resolving power diminishes as the size increases. Treisman and 
Gormican (1988) assumed that the size of the spotlight in- 
creased as the difficulty of discrimination decreased. Easy dis- 
criminations could be done in parallel all over the visual field, 
whereas difficult discriminations required sharply focused at- 
tention. Duncan and Humphreys (1989) made similar assump- 
tions, arguing that the rate of Processing increased as the sim- 
ilarity between targets and distractors decreased. 9 

The search literature provides strong empirical support for 
these speculations about the size of the spotlight, processing 
rate, and processing power. The rate of processing in visual 
search tasks, measured as the reciprocal of the slope of the linear 
function that relates reaction time to the number of items in the 
display, decreases as the difficulty of discrimination increases 
(Treisman & Gormican, 1988), and it decreases as the sim- 
ilarity between targets and distractors increases (Duncan & 
Humphreys, 1989). 

CTVA provides a straightforward account of the relation be- 
tween discrimination difficulty and search rate. According to 
Equation 7, accuracy depends on the ratio of the correct v(x, i) 
value to the sum of the other v(x, j )  values. Extending Equation 
7 to sum over all of the items in the display and rearranging the 
terms yields 

P(x ~ ifi~t) 
v(x , i )  

Z Z V(z,j) 
z~S j~R 

v(x, i) 

v(x, i) + Z~,  v(z , j )  
z~Sj~R 

X.i ~ z , j  

(18) 

Equation 18 makes it clear that accuracy depends on the sum 
of the rates of processing of the other categorizations of the 
other items in the display, that is, F~E v(z, j). If that sum is 
large, accuracy is low. If that sum is small, accuracy is high. The 
magnitude of the sum depends on the similarities of the other 
categorizations to the correct categorization and on the number 
of other (similar) items in the display. 

9 Duncan and Humphreys' ( 1989 ) theory is not easily characterized 
as a spotlight theory because they were not specific about the mecha- 
nism of selection. A recent extension of their theory by Humphreys and 
M/filler ( 1993 ) seems contrary to the spotlight view, because it assumes 
that processing is always parallel ( i.e., distributed over the whole visual 
field rather than focused in a single beam). 
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From Equation 12, the rate of processing for any given item 
is 

v(x ,  i) = Cx n(x, i) 13i Wx 
E w z  
Z¢8 

The processing rate, v(x ,  i), depends on the magnitude of the 
feature catch, Cx, and the similarity between the item and the 
target ( or nontarget ) categorization, n(x, i). Processing rate can 
be held constant as one or the other of these factors increases if 
the other decreases by a corresponding amount. Thus, cx and 
n(x, i) trade off against each other. A low cx and a high n(x, i) 
can produce the same processing rate as a high cx and a low 
n(x, i), and that provides the account of the relation between 
processing rate and discriminability. When the discriminability 
between targets and distractors is high, n(x, i) for the distractors 
is low, so cx can be high. A high cx occurs when the threshold is 
set low and several items are processed at once, in parallel. 
Thus, high discriminability allows parallel processing. By con- 
trast, when discriminability between targets and distractors is 
low, ~(x, i) for the distractors is high, so cx must be set low to 
prevent false categorizations ofdistractors. The model lowers Cx 
by raising the threshold so that items are segregated perceptu- 
ally from each other, and that segregation promotes serial pro- 
cessing. Thus, low discriminability encourages serial process- 
ing. High discriminability produces big spotlight beams and 
low discriminability produces small ones, consistent with the 
data and with theorists' speculations. 

1. NoiseSameasTarget 
HHHHHHH 

HHH H HHH 

HHH H HHH 

2. NoiseResponseCompatible 

KKKHKKK 

KKK H KKK 

KKK H KKK 

NoiseRespo~elncompatible 

SSSHSSS 

SSS H SSS 

SSS H SSS 

4. Noise Heterogeneous - Similar 

NWZ H NWZ 

NWZ H NWZ 

NWZ H NWZ 

Noise Heterogeneous - Dissimilar 

GJ QHGJ Q 

GJQ H GJQ 

GJQ H GJQ 

Eriksen and Eriksen (19 74) ." Distance Effects With 
Distracting Flankers 

Eriksen and Eriksen (1974) published an important article 
on which much of the debate over space-based and object-based 
attention was grounded. They showed that people were influ- 
enced by distractor items that flanked the target even when 
there was no uncertainty about target location. Flankers that 
were associated with the same response as the target facilitated 
reaction time and accuracy, whereas flankers that were associ- 
ated with the opposite response from the target impaired reac- 
tion time and accuracy. These effects are modulated by distance 
between targets and flankers and by factors that place the target 
and flankers in the same or different perceptual groups, so the 
task is an important test case for CTVA. 

Method and results. Eriksen and Eriksen (1974) presented 
their subjects with displays like those in Figure 13. The task was 
to determine the identity of the central letter and move a lever 
to the left or right, depending on the letter. Two letters were 
mapped onto each response. H and K were mapped onto one 
response, and S and C were mapped onto the other. The central 
letter always appeared in the same position, .5* above the fixa- 
tion point. The displays were exposed for 1 s, so reaction time 
was the most important dependent variable. 

The most important independent variable was the compati- 
bility of the flankers and the target. In response compatible dis- 
plays (Conditions 1 and 2), the target and the flankers both 
called for the same response. In response incompatible displays 
(Condition 3), the target and flankers called for opposite re- 

6. Target Alone 

H 

Figure 13. Examples of displays from Eriksen and Eriksen's (1974) 
experiments, showing noise same as target (top panel), noise response 
compatible ( second panel), noise response incompatible (third panel ), 
noise heterogeneous and similar (fourth panel), noise heterogeneous 
and dissimilar ( fifth panel ), and target alone (bottom panel), and show- 
ing the distance manipulation (Conditions 4 and 5 are neutral ). 

sponses. The other conditions were controls that can be used 
to assess facilitory and inhibitory components of the response 
compatibility effect (i.e., the difference between compatible and 
incompatible displays). Distance between the target and flank- 
ers (.06", .5", and 1.0") was the other important independent 
variable. 

The results, displayed in Figure 14, showed a strong response 
compatibility effect. The difference in reaction time was large 
when the flankers were close to the target and diminished as 
distance increased. This effect is very robust, having been repli- 
cated many times with many variations on the procedure. The 
number of flanking letters does not seem to be a crucial factor; 
similar effects can be obtained with one (Andersen, 1990; Flow- 
ers & Wilcox, 1982; Kramer & Jacobson, 1991) and two 
(Eriksen & Schultz, 1979; Coles, Gratton, Bashore, Eriksen, & 
Donchin, 1985 ) on each side. 

The distance between the target and the flankers is important, 
regardless of the number of flankers. The response compatibil- 
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F~eure 14. Mean reaction times (top panel) and accuracy (bottom 
panel) as a function of distance between the target and the flanking 
distractors in Eriksen and Eriksen's (1974) experiment. 

ity effect decreases as distance increases in many experiments 
(Andersen, 1990; Eriksen & Hoffman, 1972; Flowers & Wilcox, 
1982; Kramer & Jacobson, 1991 ). The distance effect is inter- 
preted as strong evidence for space-based attention. The decline 
in facilitation and interference with distance is interpreted in 
terms of the width of the beam of the attentional spotlight. Fa- 
cilitation and interference occur to the extent that the flankers 
fall within the beam (but see van der Heijden, 1992). 

The response compatibility effect is also influenced by Ge- 
stalt grouping principles that determine whether the target and 
distractors are seen as part of the same or different perceptual 
groups (or objects). Facilitation and interference are stronger 
when the target and distractors are part of the same group than 
when they are part of different groups (Baylis & Driver, 1992; 
Driver & Baylis, 1989; Harms & Bundesen, 1983; Kramer & 
Jacobson, 1991; also see Kahneman & Henik, 1981). This is 
interpreted as strong evidence for object-based attention: Ob- 
ject-based theorists argue that attention selects all of the prop- 
erties of the selected object, relevant and irrelevant. Distractors 
are processed when they are selected together with the target-- 
when they fall in the same group--but  not when they fall in 
different groups. 

Object-based research on the Eriksen and Eriksen (1974) 
paradigm has ignored space in general and proximity in partic- 
ular as an organizing principle, conceding proximity to the 
space-based opposition. This is surprising because the spacing 
effects in the original Eriksen and Eriksen (1974) experiment 
could have been due to grouping rather than distance itself. In 
their displays, depicted in Figure 13, the distance between the 
flankers was held constant as the distance between targets and 

flankers increased. This manipulation would cause the distrac- 
tors to be grouped together by proximity and separated from 
the target. 

The confounding of grouping and distance raises an impor- 
tant question: How do subjects know which item is the target? 
The original design of the Eriksen and Eriksen (1974) task was 
intended to remove the requirement of locating the target. The 
display appeared in the same position from trial to trial and the 
target always appeared in the same position relative to the other 
items in the display and relative to the fixation point. Thus, 
target location was highly predictable. Nevertheless, the predict- 
ability of target location does not mean that subjects did not 
have to engage in some processing to find it. Even if the target is 
always the middle item, subjects must need to compute middle 
in order to find it (Logan, 1995 ). It may have been easier to find 
the target when distractors were separated. 

Grouping effects based on principles other than proximity 
are outside the scope of CTVA. The between-i{em effects in- 
volved in finding the middle item are also outside the immedi- 
ate scope of CTVA. While there may well be between-item 
effects in the Eriksen and Eriksen (1974) task, there are cer- 
tainly within-item effects, and those within-item effects are the 
focus of the CTVA analysis. 

CODE. The CODE analysis defines the feature catch in the 
Eriksen and Eriksen (1974) task. For simplicity, I focused on 
a three-item version of the paradigm, with one target and two 
identical flanking distractors, rather than the seven-item version 
Eriksen and Eriksen (1974) initially studied. Results are similar 
across three- and seven-item versions. CODE analysis would 
suggest that the outside flankers in the seven-item version are 
too far from the target to have much of an impact on it. 

Feature distributions and the CODE surface for the Eriksen 
and Eriksen (1974) task are presented in Figure 15. The top 
panel illustrates a narrow spacing condition, and the bottom 
panel illustrates a wide spacing condition. Also illustrated in 
Figure 15 are thresholds for each condition, set just above the 
local minimum between the target and the flankers, which de- 
fine the feature catch. 

Two effects of the distance between flankers and targets are 
apparent in Figure 15. First, when the flankers are close, a much 
greater area of their distributions falls within the feature catch 
then when the flankers are far. Thus, flankers should have a 
greater impact on the feature catch when the flankers are close 
than when they are far from the target. Second, when the flank- 
ers are close, the local minimum between target and distractors 
is higher, so the threshold is higher. The area of the target's fea- 
ture distribution that falls within the feature catch is smaller 
in close-spaced displays than in far-spaced displays, so overall 
reaction time should be slower. 

Both of these effects are observed in the literature: Many in- 
vestigators report a diminution in the flanker effect as distance 
increases (Andersen, 1990; Eriksen & Hoffman, 1972, 1973; 
Flowers & Wilcox, 1982; Kramer & Jacobson, 1991 ). Those 
same studies found faster reaction times with greater target- 
flanker distances, though most investigators did not comment 
on that effect. 

CTVA. The Eriksen and Eriksen (1974) paradigm presents 
four different kinds of stimuli that need to be represented in 
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CTVA: Two alternative targets (e.g., H and S)  and two alterna- 
tive distractors (response compatible and response incom- 
patible).  Setting the ,1 values is straightforward: n for the target 
H ,  given that an H is presented, should be 1.0. ,7 for the distrac- 
tor H ,  given that the target is an H ,  should be 1.0. n for the target 
S, given that the target is an H ,  should be between 1.0 and 0.0. 
So should n for the distractor S,  given the target H .  ~ should be 
the s a m e - - 1 . 0 - - f o r  the two alternative targets, and Wx should 
be the s a m e - -  1.0--as well. 

This parameterizat ion of  TVA, which is much like the one for 
the preceding paradigms, fails to produce the basic Eriksen and 
Eriksen (1974) results. It predicts a higher error rate on re- 
sponse incompatible trials than on response compatible trials, 
but  it predicts equivalent reaction times. TVA gets the ordering 
o f  difficulty r ight - - response  incompatible displays are harder 
than response compatible o n e s - - b u t  it predicts that the effects 
will appear in error rate rather than reaction time, and the re- 
sults are nearly always the opposite. The major effects are on 
reaction time; the effects on accuracy are weak or nonexistent 
(see e.g., Eriksen & Eriksen, 1974). 

The faulty predictions result from construing TVA as a sim- 
ple race model. The probability o f  a correct response depends 
on the ratio, 

o 

A 

it J,.) 
,,,:i "'t, 

);i 
D T D 

P(correct) = 

v( T, H) + v( D~, H) + v( D2, H) 
v(T, H) + v(T, S) + v(Dt, H) + v(D,, S) + v(D2, H) + v(D2, S)" 

(19) 

On  response compatible trials, v(Dl, H) and v(D:, H) will be 
large, because the flankers, like the target, are Hs. On  response 
incompatible trials, however, v(Dj, H) and v(D2, H) will be 
small because the flankers are Ss rather than Hs. Consequently, 
the probability o f  a correct  response will be higher on compati-  
ble trials than on incompatible trials, by an amount  that de- 
pends on the magnitude of  v(D1, H) and v(D:, H). So TVA 
predicts more errors on incompatible trials, and the difference 
in error rate may be quite large. 

Mean reaction t ime depends on the denominator  of  Equation 
19 (following the logic expressed in Equations 6 and 12 and the 
derivation in Appendix A).  On  compatible trials, V(Dl, H) and 
v(D2, H) will be large and v(Dl, S) and v(D2, S) will be small, 
because the flankers are Hs and not Ss. The situation is reversed 
on incompatible trials. The values ofv(D~,  S) and v(D2, S) will 
be large and v(Di, H) and v(D2, H) will be small, because the 
flankers are Ss and not Hs. The important  point is that the mag- 
nitude of  the denominator  will be the same in both cases. What  
is lost in v(D, H), in going from compatible to incompatible 
trials, is gained in v(D, S). What is lost in v(D, S), in going 
from incompatible to compatible trials, is gained in v(D, H). 
Consequently, mean reaction t ime will remain the same: TVA 
cannot account for the ubiquitous compatibility effect on reac- 
tion t ime. '°  

In order to fit the Eriksen and Eriksen (1974) results, I con- 
figured TVA a counter model (Townsend & Ashby, 1983 ), letting 
the race run until several " runners"  had finished. There were two 
counters, with criteria Ku = Ks = 3, and the counting process 
finished as soon as one counter accumulated its criterion number  
of  counts. The probability of  responding correctly and mean re- 
action t ime for correct responses were computed from Equations 
9 and 10. The v(x, i) values were determined by setting n equal 
to 1.0 for H ,  given H and S, given S, .01 for H given S and S 
given H ,  and .5 for H or S given a neutral distractor./3 and wx 
were set to 1.0. There were two distractors, located 50, 100, and 
150 units on either side of  the target. The standard deviation o f  
target and distractor feature distributions was 50. The results of  
the fits are plotted in Figure 16. 

0 / ....... ;:t:L: . . . . . . . . .  i i t : i  . . . . . . . .  
D T D 

Figure 15. The CODE surface for a three-item version of Eriksen and 
Eriksen's (1974) experiment with a threshold applied just above the 
local minimum between the central target (T) and flanking distractors 
(D). Top panel = narrow spacing; bottom panel = wide spacing. 

l01 think this prediction is generally true of race models. The instance 
theory ofautomaticity ( Logan, 1988), for example, cannot account for 
the Stroop ( 1935 ) effect. Reaction time should be just as fast on incom- 
patible trials as on compatible trials because the word should retrieve 
the same number of traces in both cases. Accuracy should be much 
lower on incompatible trials because there should be more word traces 
than color traces in the race, so the word should be more likely to win. 
The subject should produce an error whenever the word wins on an 
incompatible trial, so error rate should be very high. This problem can 
be solved by allowing the retrieval process to retrieve more than one 
trace before terminating. The retrieval process in the instance theory 
could drive a counter model, as 1 have done here with CTVA, or it could 
drive a random walk model, as in Nosofsky and Palmeri's (in press) 
exemplar-based model of speeded classification. These models are 
straightforward generalizations of the simple race model, and the statis- 
tics underlying the retrieval process remain the same. 
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Figure 16. Mean reaction times for compatible, neutral, and incom- 
patible conditions (top panel), feature catches for target and noise items 
(middle panel), and accuracy (expressed as percent correct) for com- 
patible, neutral, and incompatible conditions (bottom panel ) predicted 
by the CODE theory of visual attention for the Eriksen and Eriksen 
( 1974 ) experiment. 

The mean reaction times, in the top panel of Figure 16, corre- 
late strongly with the observed data in Figure 14: r = .901. The 
predicted reaction times show the two patterns characteristic of 
distance effects in the Eriksen and Eriksen (1974) paradigm. 
First, the compatibility effect decreases as distance between the 
target and the distractors increases. There is a strong compatibil- 
ity effect when the distance is small. Compatible responses are 
faster than neutral responses, which in turn, are faster than in- 
compatible responses. The ordering of conditions remains the 
same as distance increases, but the magnitude of the differences 
decreases. Thus, CTVA captures the effect reported many times 
in the literature (Andersen, 1990; Eriksen & Hoffman, 1972, 
1973; Flowers & Wilcox, 1982; Kramer & Jacobson, 1991 ). The 
predicted compatibility effects in Figure 16 are smaller than the 
observed ones in Figure 14, perhaps because between-object 
effects, which were not modeled, contributed to the observed 
effects. 

Second, mean reaction time in all conditions decreases as the 
distance between targets and distractors increases. Averaged over 
compatibility conditions, the predicted effects were close to the 
observed ones (502, 452, and 433 ms predicted vs. 498,449, and 
439 ms observed). The distance effect is found in all experiments 
in which distance is manipulated, although the investigators typ- 
ically do not comment on it (Andersen, 1990; Eriksen & Hoff- 
man, 1972, 1973; Flowers & Wilcox, 1982; Kramer & Jacobson, 
1991 ). The reduction in reaction time with distance is predicted 
by CTVA. The threshold is set at the local minimum in the 
CODE surface between the target and the distractors. As distance 
increases, the local minimum moves farther away from the target 
and this has two effects, both of which speed processing. It in- 
creases the feature catch, cx, from the target and it decreases the 
feature catch from the distractors. These effects can be seen in 
the middle panel of Figure 16, which plots the feature catch for 
the target and one of the distractors as a function of distance. 

Predicted response accuracy is plotted in the bottom panel of 
Figure 16. Accuracy is at ceiling for response compatible dis- 
plays but varies as a function of  distance for incompatible and 
neutral displays. At the shortest distance, accuracy is well below 
ceiling for response incompatible displays, increasing rapidly as 
distance increases. Accuracy for neutral displays is intermedi- 
ate between compatible and incompatible displays, increasing 
as distance increases. These results capture the pattern ob- 
served by Eriksen and Eriksen (1974) presented in Figure 14. 

Evaluation. The CTVA analysis accounted for the major 
effects in the Eriksen and Eriksen (1974) paradigm. Response 
compatible displays were more difficult than neutral displays, 
which in turn, were more difficult than response compatible 
displays. Construing CTVA as a counter model (rather than a 
simple race model) allowed it to account for the difficulty in 
terms of the appropriate dependent variable, showing strong 
effects on reaction time and substantial effects on accuracy, as 
Eriksen and Eriksen (1974) found. The CTVA analysis pre- 
dicted an overall reduction in reaction time as distance in- 
creased, which is commonly observed in the Eriksen and Erik- 
sen (1974) paradigm but has never before been accounted for. 
Zoom lens models, such as Eriksen and St. James's (1986), 
would predict the opposite result, because they argue that re- 
sources are spread more thinly as the spotlight expands, and 
spreading resources more thinly slows responding. 
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The CTVA analysis does not account for between-object 
effects, which have been shown to be important in the Eriksen 
and Eriksen (1974) paradigm (e.g., Baylis & Driver, 1992; 
Driver & Baylis, 1989; Harms & Bundesen, 1983; Kramer & 
Jacobson, 1991 ). Inspection of  Eriksen and Eriksen's (1974) 
displays in the present Figure 13 suggests that between-object 
grouping by proximity effects may contribute something to the 
distance effect. These effects are beyond the scope of  the current 
version of  CTVA but remain an important topic for future 
research. 

G e n e r a l  Discuss ion  

Answers to the Five Questions 

This article began with five questions that challenge any the- 
ory of visual spatial attention. How does CTVA address them? 
The answers have been implicit in the exposition of the theory 
throughout the paper. Now it is time to make them explicit. 

How is space represented? The theory assumes that space is 
represented in two ways. From a bottom-up perspective, space 
is represented as a CODE surface. Each object is distributed in 
space and the CODE surface is the sum of the distributions. The 
CODE surface is determined completely by bottom-up pro- 
cesses. The theory assumes it is constructed by obligatory par- 
allel processes that operate simultaneously over the whole visual 
field. From a top-down perspective, space is represented in 
terms of perceptual groups defined by the intersection of the 
CODE surface and a threshold. The threshold is set by top- 
down processes, and top-down processes can operate on the 
groups produced by the threshold setting. Processes that appre- 
hend spatial relations, for example, may operate on the groups 
that CODE provides (Logan & Sadler, 1996). 

What is an object? In CODE, an object is a perceptual 
group. Thus, an object is whatever falls within an above-thresh- 
old region of  the CODE surface. CODE defines a hierarchy of 
objects in a principled fashion, by moving the threshold up and 
down the CODE surface. Low thresholds produce a small num- 
ber of  multi-element objects; high thresholds produce a larger 
number of  single-element objects. 

Theoretical integration. At this point, the theoretical inte- 
gration should be clear: The above-threshold region of CODE 
surface is BOTH an object and a spotlight. CTVA selects objects 
and regions of space in the same act of attention. The difference 
between object-based and space-based attention is a matter of  
perspective. In CTVA, the two views are complementary rather 
than adversarial. 

What determines the shape of the spotlight? The spotlight 
in CTVA is the above-threshold region of  the CODE surface. 
The shape of the above-threshold region is determined jointly 
by the shape of  the CODE surface and the threshold. The spot- 
light can have different shapes, depending on the threshold set- 
ting, but the shapes are constrained by the shape of  the CODE 
surface, which depends deterministically on the proximity of  
the items in the display. CTVA does not banish omnipotent ho- 
munculi entirely because top-down processes determine the 
threshold setting, but it eliminates much of  the work the ho- 
munculus had to do in space-based theories by constraining the 
shape of  the spotlight to match the topography of  the CODE 
surface. 

How does selection occur within thefocus of attention? Selec- 
tion within the focus of  attention occurs according to the prin- 
ciples of  Bundesen's (1990) TVA model of  selection. The per- 
son controls a bias parameter that makes a particular categori- 
zation more likely and a priority parameter that makes relevant 
objects more likely to be selected. In the counter-model version 
of the theory, the person also controls the response criteria that 
determine the number of counts required to categorize an 
object. 

How does selection between objects occur? Selection be- 
tween perceptual objects depends on top-down processes that 
apply conceptual representations of  spatial relations to above- 
threshold regions of the CODE surface. The top-down processes 
include spatial indexing and reference frame alignment. The 
top-down processes are addressible by language, so that one per- 
son's utterances can control another person's attention (Logan, 
1995). Selection between objects is the least well-specified part 
of  the theory. Logan and Sadler (1996) sketched the computa- 
tional requirements of  the apprehension of  spatial relations be- 
tween objects, but they did not implement them at the same 
level of specificity as the other components of CTVA. 

Benefits o f  CTVA 

The marriage of  CODE and TVA is beneficial in several re- 
spects. First and foremost, it provides quantitative accounts of 
seven important phenomena that have shaped the current liter- 
ature on visual spatial attention. These accounts are unique be- 
cause the accounts of  competing theories are primarily qualita- 
tive. Moreover, CTVA provides some new insights into the phe- 
nomena that were not apparent in the qualitative accounts. The 
CTVA analysis of Prinzmetal 's ( 1981 ) experiments on grouping 
effects on illusory conjunctions suggested that subjects grouped 
the displays only occasionally and most often treated the display 
items as separate objects. The analysis of  Cohen and Ivry's 
(1989, 1991) experiments on distance effects in illusory con- 
junctions and conjunction search showed that a single mecha- 
nism could account for what appeared to be qualitatively 
different effects. The CTVA analysis of  Banks and Prinzmetal's 
(1976) experiments showed that a serial search strategy, which 
they explicitly discounted, turned out to be necessary to ac- 
count for the advantage of perceptually isolating the target, And 
the CTVA analysis of  double and triple conjunction search sug- 
gested that the advantage of  triple conjunctions may stem, in 
part at least, from attentive processes that compare display 
items with a description of  the target, rather than the preatten- 
tive processes proposed by other theorists (Grossberg et al., 
1994; Treisman & Sato, 1990; Wolfe et al., 1989). 

The CTVA analyses were beneficial because they were among 
the first to provide a formal representation of  space in the atten- 
tion literature. Theories of  visual attention agree that space is 
important and location information is special, but few say any- 
thing explicit about the representation of  space and the proper- 
ties of  the representation (but see Ashby et al., 1996; Maddox 
et al., 1994). The CODE theory is important  because it brings 
grouping by proximity back into the repertoire of  object-based 
approaches to attention and provides a reasonable account of  
that grouping principle (Compton & Logan, 1993; van Oeffelen 
&Vos, 1982, 1983). 
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The CTVA analyses were also beneficial in that they showed 
the power of  Bundesen's (1990) TVA model. Bundesen and col- 
leagues applied the model primarily to partial and whole report 
tasks (Bundesen, 1987; Bundesen, Pedersen, & Larsen, 1984; 
Bundesen, Shibuya, & Larsen, 1985; Shibuya & Bundesen, 
1988). Bundesen (1990) extended it to deal with other phe- 
nomena, and the current analysis extends it even further. The 
idea that selective attention can be based on a race between al- 
ternative candidates is exceptionally powerful and promising 
(e.g., Bundesen, 1993). It is especially interesting because the 
theory is tractible mathematically and assumes independence 
of processes. By contrast, many current formal models of atten- 
tion, typically based on connectionist architectures, assume 
highly interactive processes and, consequently, must be ana- 
lysed by simulation rather than simple mathematics (e.g., Co- 
hen et al., 1990; Grossberg et al., 1994; Humphreys & Miiller, 
1993; Mozer, 1991; Phafet  al., 1990). 

Limitations of CTVA 

The CTVA model is limited in several respects. Some of the 
limitations point out important directions for future research, 
but some are stumbling blocks from which CTVA may never 
recover. Some of  the limitations stem from the fact that CTVA 
is abstract. It says nothing about the nature of the features that 
comprise the feature distributions, and it says nothing about 
how similarity between perceptual objects and category tem- 
plates is computed. It does not deal with other grouping princi- 
ples, such as grouping by similarity, and it does not deal with 
motion. These limitations can be overcome by future research, 
and I will suggest possible solutions to some of these problems 
later. 

More serious limitations stem from CODE's assumption that 
objects can be idealized as points in space (i.e., if the threshold 
is high enough). This assumption prevents CODE from dealing 
with objects that extend in space, with structured objects, and 
with interconnected or overlapping objects. This is an impor- 
tant limitation because many objects in the world have these 
properties. Many objects, such as the page you are reading, ex- 
tend in space and cannot be easily idealized as points. Many 
objects are structured--things are built from interconnected 
parts (Biederman, 1987; Marr & Nishihara, 1978)- -and the 
representations of  structured objects cannot be idealized as 
simple points. Moreover, objects often overlap and occlude each 
other, and that is not easily captured in the pointilistic CODE 
representation. 

In principle, it may be reasonable to idealize the locations of 
objects as points. That strategy is a common one in the linguis- 
tic and psycholinguistic literature on the apprehension of  spatial 
relations (Herskovits, 1986; Jackendoff & Landau, 1991; 
Talmy, 1983). Even in that literature, however, some objects 
are idealized as lines, regions, and volumes, and that is hard to 
reconcile with the CODE idealization. Moreover, idealization of 
objects as points may be a more difficult problem for object 
recognition (identification) than for localization, for reasons 
described above. 

It may be possible to deal with these problems by relaxing the 
assumption that objects are idealized as points, allowing objects 

to occupy l-D, 2-D, and 3-D regions in space. It may be possible 
to account for distance and grouping effects by assuming that 
the boundaries of objects vary in a manner similar to the varia- 
tion in the pointilistic objects in CODE. The position of  a line, 
for example, might vary according to a Laplace distribution in 
a direction orthogonal to its main axis. However, much of  the 
elegance of CODE may be lost in the translation. 

The difficulty with extended, structured, and overlapping ob- 
jects is mitigated somewhat in the experimental paradigms that 
CTVA and the other theories of  visual spatial attention address. 
Most experiments on visual search, partial report, and so on, 
present subjects with separate objects with a simple structure, 
and the CODE representation may be well suited for those dis- 
plays (but see Wolfe, 1996). It may not be unreasonable to ide- 
alize a display of randomly positioned letters as a set of uncon- 
nected points. Thus, CTVA is a reasonable model of  current 
research in visual spatial attention. 

Another difficulty with CTVA is that it defines objects only in 
terms of location. Proximity is the only grouping principle that 
determines what an object is. While many researchers would 
agree that location is an important defining characteristic of  an 
object, most would argue that it is not the only one. Grouping 
by similarity (Baylis & Driver, 1992), common fate (Driver & 
Baylis, 1989), and connectedness (Kramer & Jacobson, 1991 ) 
have been shown to produce strong object-based effects inde- 
pendent of proximity. It may be possible to incorporate the 
effects of  grouping by similarity and common fate into CTVA 
(see below), but connectedness may be difficult because it im- 
plies a hierarchical structure that is not captured in CODE's 
idealization of objects as points (see Palmer & Rock, 1994). 

Capacity Limitations and the Locus of Selection 

The locus of selection and the nature of capacity limitations 
are longstanding issues in the attention literature, occupying 
psychologists since the time of Broadbent (1958) if not earlier. 
The typical theory of  attention includes early preattentive pro- 
cesses that are unlimited in capacity followed by attentive pro- 
cesses that are limited in capacity. Controversy surrounds the 
locus of the boundary between preattentive and attentive pro- 
cesses and the involvement of capacity limitations in each stage 
of processing. The CODE theory of  visual attention takes a po- 
sition on these issues, departing somewhat from the typical 
view. 

Locus of selection. The locus of selection issue has been ar- 
ticulated in at least two ways in the literature: One concerns 
attended items, addressing the kind of information on which 
attentional selection is based. Advocates of early selection argue 
that items are selected on the basis of physical features, like lo- 
cation and color (van der Heijden, 1992), while advocates of 
late selection argue that attentional selection is based on iden- 
tity, meaning, or category membership (e.g., Shiffrin & Schnei- 
der, 1977). The second way of articulating the issue concerns 
unattended items, addressing the level of processing attained by 
stimuli that attention does not select. Advocates of  early selec- 
tion argue that unattended stimuli receive only cursory analysis 
of physical features (Broadbent, 1958) and advocates of late 
selection argue that unattended stimuli are fully processed, to 
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the level of  identification (Deutsch & Deutsch, 1963 ). The two 
approaches appear similar, and many consider them equivalent. 
However, they really address different issues. As van der Heijden 
(1992) points out, all stimuli could be processed fully, to the 
level of  identification, but selection could be based on location 
nevertheless. Late selection in one sense could be paired with 
early selection in the other sense. 

CTVA is both an early selection and a late selection theory 
with respect to attended items. It is an early selection theory 
from the perspective of  CODE, because between-object selec- 
tion is based on location, and selection by location is tradition- 
ally associated with early selection. However, it is a late selection 
theory from the perspective of  TVA, because TVA selects items 
by categorizing them (Bundesen, 1990). Items race to be cate- 
gorized, and the first one (or the first K) to finish is (are) 
selected. 

CTVA is an early selection theory with respect to unattended 
items, because unattended items are not categorized. Categori- 
zation occurs when an item wins the race (or when K items 
finish). Unselected items lose the race and therefore are not 
categorized. They receive only cursory processing. 

Note that CTVA does not accept the common assumption of  
a chain of  increasingly abstract processes going from stimulus 
to response, beginning with low-level representations and pro- 
ceeding to identity, categorization, and meaning. Like TVA, 
CTVA assumes only two levels of representation, precategorical 
and categorical. The precategorical representation consists of  
the feature distributions and the CODE surface; the categorical 
representation consists of  categorizations of display items. In 
principle, the same kinds of  information exist in both represen- 
tations. The precategorical representation contains the percep- 
tual information that supports categorization, and the categor- 
ical representation contains categorizations of perceptual infor- 
mation. Abstract categories, like mammal are defined in terms 
of perceptual features in the precategorical representation, just 
as concrete categories, such as red, are (for further discussion, 
see Logan, 1995). 

Note as well that CTVA does not assume that all possible cat- 
egorizations of  the display can be processed in parallel over the 
whole display. Some categorizations, such as deciding whether a 
display instantiates a categorical spatial relation like above or 
beside require more than the TVA part of  CTVA. Logan ( 1994, 
1995) argued that apprehension of  spatial relations requires 
integrating information from several attentional fixations, 
whereas TVA describes what happens in a single fixation. Ap- 
prehension of  spatial relations requires the underspecified late 
location part of  CTVA depicted in Figures 1 and 6. Other cate- 
gorizations that require more than one fixation of  attention 
likely cannot be done by the TVA part of  CTVA. It is not imme- 
diately clear what kinds of  categorization can and cannot be 
done by TVA. Future research and further specification of the 
TVA and late location parts of  CTVA will be required before an 
answer emerges. 

Capacity limitations. Theories of attention assume that the 
capacity for processing information is unlimited, limited, or 
fixed. According to Townsend and Ashby (1983), capacity is 
unlimited if the rate at which one item is processed does not 
depend on the number of  items being processed simultaneously. 
Capacity is limited if the rate at which an item is processed 

depends on the number of other items being processed. Capac- 
ity is fixed if it is limited, and the limit is constant across dis- 
plays, tasks, and situations. CTVA assumes that capacity is 
limited. 

According to Bundesen (1990), the processing capacity, C, 
of TVA and CTVA can be defined as the sum of  all of the v(x, 
i) values across all perceptual categorizations of  all elements in 
the visual field, that is 

C= ~ ~ v ( x , i ) .  
x~S i~R 

According to this definition, capacity is unlimited if the v (x,  i) 
values do not change when a new item is added to the display; 
that is, C increases by Y~i~n v(x, i) when a new item is added; 
capacity is limited if the v(x, i) values decrease when a new 
item is added to the display; Cincreases by an amount less than 
Y~,~ v(x, i) when a new item is added; and capacity is limited 
and fixed if the v(x, i) values decrease so that C stays constant. 

According to this definition, CTVA and TVA are limited-ca- 
pacity models. This follows from the definition of  v(x, i) in 
Equations 5 and 12. The value o f v ( x ,  i) is the product of  ~(x, 
i),  fli, and the normalized attentional weight, wx/~ w~. As new 
items are added to the display, the attentional weight on item x 
decreases ( see Equation 6) and, consequently, v(x, i) decreases. 
Bundesen (1990) argued that if the items in the display were 
homogeneous, that is, if Y~i,Rv(x, i)fl~ was constant for all items 
in the display, that capacity, C, would be fixed as well as lim- 
ited. ~j In many applications of CTVA, the homogeneity as- 
sumption will be violated because v(x, i) depends on the fea- 
ture catch, Cx, (see Equation 12) and the feature catch will be 
different for different items in the display (i.e., whenever items 
are unevenly spaced). Thus, CTVA assumes limited capacity 
but usually not fixed capacity. 

In some applications, CTVA does not use attention weights 
to select targets to process in the same way that TVA does. In 
the fits to the Eriksen and Eriksen (1974) data, the attention 
weights, Wx, were set to 1 and the central target item was selected 
by the late location system outside of CODE and TVA (i.e., us- 
ing Logan's 1995 theory). In those applications, the v (x,  i) val- 
ues are not affected by adding other items to the display, so 
CTVA assumes unlimited processing capacity. 

Note that processing capacity is not the same theoretical con- 
struct as processing resources. Processing capacity plays a role 
in resource theories, but it is only one of  several constructs at 
work in those theories. Most resource theories make the strong 
assumption that processing capacity is both limited and fixed 
across displays, tasks, and situations (i.e., C is constant in all 
contexts), and neither TVA nor CTVA make that assumption. 

~ The fixed-capacity version of TVA does not assume that capacity is 
fixed at the same value for all displays, tasks, and situations. The same 
experimental procedure can be complicated in a way that violates the 
homogeneity assumption (e.g., by crowding so many items in a display 
that lateral masking is produced), and the factors that limit capacity in 
one situation may not be the ones that limit it in another (e.g., capacity 
may be limited by display contrast in one situation and by item sim- 
ilarity in another). Thus, the TVA idea of fixed capacity is quite differ- 
ent from the resource-theory idea of fixed capacity. 
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Resource theories go beyond the idea of processing capacity, 
making additional assumptions about how capacity can be al- 
located. They argue that resources can be allocated in parallel 
rather than in series and the allocation is graded rather than all 
or none. Moreover, they assume that performance changes in a 
continuously graded fashion as resource allocation varies (see 
e.g., Kahneman, 1973; Navon & Gopher, 1979; Norman & 
Bobrow, 1975 ). None of these ideas is entailed by the concept 
of processing capacity. TVA and CTVA are largely mute on the 
issue of resources and therefore immune to the criticisms of 
resource theory (e.g., Allport, 1980; Duncan, 1980; Logan, in 
press; Navon, 1984; Neisser, 1976). 

Future Directions 

A theory as broad as CTVA is a fertile ground for future re- 
search. By incorporating Bundesen's (1990) TVA, CTVA inher- 
its the phenomena that TVA accounts for, and TVA is already a 
far-reaching theory. One important direction for future re- 
search is to look inward and test the assumptions underlying 
both TVA and CTVA. The distributional assumptions are im- 
portant to test because they were made largely for mathematical 
convenience. Other distributions may do as well as or better 
than the exponential and the Laplace (see e.g., Ashby et al., 
1996; Compton & Logan, 1993; Maddox et al., 1994). Other 
directions for future research are more outward-looking, trying 
to extend the theory to new domains. In the remainder of the 
article, I will describe three that are high on my agenda. 

Proximity and grouping effects in partial report. Several in- 
vestigators have found that performance in partial report tasks 
is influenced by perceptual grouping and by the presence of 
nearby distractors. Fryklund (1975) showed that subjects do 
better if the items they are supposed to report are adjacent to 
each other in coherent groups. Merikle ( 1980 ) found something 
similar, showing that partial report performance was better 
when the to-be-reported subset was compatible with the Gestalt 
grouping of the display than when it was incompatible. It should 
be possible to account for these results with CTVA, using ver- 
sions of TVA that Bundesen and colleagues developed for partial 
report tasks (e.g., Bundesen, 1987; Bundesen et al., 1984; Bun- 
desen et al., 1985; Shibuya & Bundesen, 1988). 

The key to fitting these data may lie in a proximity effect re- 
ported by Snyder (1972) and Mewhort, Campbell, Marchetti, 
and Campbell ( 1981 ). In partial report tasks that probe for a 
single item rather than a set of items, errors are often correct 
reports of the letters adjacent to the target item. The CODE 
theory of visual attention would explain this result in terms of  
the feature catch. Items adjacent to the target are likely to in- 
trude in the feature catch for the target because significant parts 
of their feature distributions are likely to fall in the above- 
threshold region centered on the target. Adjacent items are 
more likely than nonadjacent items to intrude in the target's 
feature catch because the feature distribution falls off exponen- 
tially as distance increases. Thus, in principle, CTVA can ac- 
count for the Snyder (1972) and Mewhort et al. ( 1981 ) results. 
The question is whether it can account for them quantitatively, 
using reasonable parameter values. 

The same idea can be extended to account for the grouping 

effects reported by Fryklund ( 1975 ) and Merikle (1980): Items 
close to each other or in the same perceptual group are likely to 
intrude in each other's feature catch. If the task requires identi- 
fication of adjacent items or items in the same group, these in- 
trusions might be beneficial, perhaps priming responses appro- 
priate for other to-be-reported items. However, if the task re- 
quires identification of nonadjacent items or items in different 
perceptual groups, then intrusions from adjacent items and 
items in the same perceptual group might be harmful, priming 
inappropriate responses that compete with the required re- 
sponses to to-be-reported items. To test this idea, CTVA would 
have to be extended to include the TVA account of multi-item 
partial report performance (e.g., Bundesen, 1987; Bundesen et 
al., 1984; Bundesen et al., 1985; Shibuya & Bundesen, 1988) 
and, possibly, to include priming of  not-yet-reported items. 12 

Grouping by similarity. CODE and CTVA deal only with 
grouping by proximity, yet many other factors affect perceptual 
grouping and grouping by those factors affects performance in 
attention tasks. An important direction for future research is to 
extend CODE and CTVA to deal with other grouping princi- 
ples. Grouping by similarity is a good candidate for the first step 
in that direction because it is well studied perceptually (e.g., 
Beck, Prazdny, & Rosenfeld, 1983; Bergen, 1991 ) and it has 
powerful effects on attention (e.g., Baylis & Driver, 1992; Dun- 
can & Humphreys, 1989; Harms & Bundesen, 1983; Hum- 
phreys & Miiller, 1993; Ivry & Prinzmetal, 1991; Wolfe, 1994). 

The mechanisms for dealing with similarity effects may al- 
ready be present in CTVA. The similarity parameters in TVA 
may interact with CODE to limit access to the attentional sys- 
tem to items that share common characteristics. Manipulating 
Bi increases access for items similar to category i, that is, with 
high ~(x, i) values, and decreases access for items dissimilar to 
category i, (that is, with low ~(x, i) values). If the items in the 
display are diss imilar-- i f  the distribution of  ~(x, i) values is 
distinctly bimodal with some very high and some very low val- 
u e s - t h e n  manipulating/3 should "parse" the display into two 
groups--one with high ~(x, i) values and one with low o(x, i) 
values. However, if the items in the display are s imi lar - - i f  the 
distribution of  ~(x, i) values is unimodal and compact-- then 
manipulating B should not separate the items. 

The effects of manipulating fl and ~ on the feature distribu- 
tions can be seen in Figure 17. Figure 17 represents feature dis- 
tributions and the CODE surface for displays like OXXOXO. 
Similarity between the Xs and Os decreases going from the top 
left to the bottom right, and the effective feature distributions 
for the Os decrease in area as similarity decreases. The feature 
distributions for the Os were multiplied by the product of Bi and 
~(x, i),  which reduces the area under each feature distribution. 
Feature distributions with low values of~(x,  i) are suppressed, 
whereas feature distributions with high values of  ~(x, i) main- 
tain their salience. The CODE surface, however, is built before 

has its effect in the current version of CTVA, so the CODE 
surface remains the same as similarity varies. 

The proposed modification of CTVA is presented in Figure 
18. In the modification, manipulations of  fl feed back to the 

~2 Since this article went to press, Logan and Bundesen (1996) ap- 
plied CTVA to these partial report tasks with considerable success. 
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Figure 17. Feature distributions and original CODE surfaces for items that differ in similarity ( X and O), 
with r/(x, i)~i = 1.0 for the Xs but varying between 1.0 and 0.0 for the Os ( 1.0, 0.8, and 0.6 from top to 
bottom in the left-hand panels; 0.4, 0.2, and 0.0 from top to bottom in the right hand panels). 

CODE surface so that the CODE surface changes as similarity 
between the Xs and the Os decreases. Figure 18 plots effective 
CODE surfaces that were produced by multiplying all of  the 
feature distributions in the display by the product of  Bi and n(x, 
i) and then summing the feature distributions. The multiplica- 
tion changes the shape of  the CODE surface so that items with 
low values of n(x, i) are suppressed, whereas feature distribu- 
tions with high values of  ~(x, i) remain prominent. 

It remains to be seen whether this modification of  CTVA can 
account for similarity effects in grouping and attention experi- 
ments. The idea can be tested quite stringently by requiring the 
model to account for both grouping judgments and effects on 
performance in attention experiments with the same parameter 
values. That test, however, is beyond the scope of  this article. 

One limitation of  the proposed approach is that it depends 
on top-down specification of/~i, which requires foreknowledge 
of  the categorical difference between the groups to be segre- 
gated. Textbook demonstrations of  grouping by similarity do 
not (seem to) require foreknowledge of  the dimension that dis- 
tinguishes the groups, Moreover, visual search for singleton 
targets--i tems that differ in some unforeseen property from the 

distractors--is  almost as easy as search for predesignated 
targets (Miiller, Heller, & Zeigler, 1995; Treisman, 1988). It is 
possible that there is some interaction between bottom-up and 
top-down processes that allow the system to set the appropriate 
/~ values to achieve segregation, but there is not much time for 
those interactions to take place because similarity grouping 
effects are apparent very quickly (Beck et al., 1983) and single- 
ton popout is very fast (i.e., cost of  not knowing the target di- 
mension is small; MiiUer et al., 1995; Treisman, 1988). Perhaps 
CTVA will have to be supplemented by some other mechanism 
that segregates dissimilar items and isolates dissimilar targets 
(cf. Cave & Wolfe, 1990; Humphreys & Miiller, 1993 ). 

Attention and automaticity. Theories of  visual spatial atten- 
tion are intended to interface with theories of other aspects of  
cognition, such as memory retrieval, but they rarely do. Conse- 
quently, theories of  visual spatial attention are largely ahistor- 
ical, capturing a moment in a person's life without describing 
how the knowledge that is necessary to support current perfor- 
mance was acquired. Similarly, theories of  other aspects of cog- 
nition rarely say anything about visual spatial attention and the 
perceptual processes that allow them to inferface with the ex- 
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Figure 18. Feature distributions and modified CODE surfaces for items that differ in similarity ( X and 
O), with n(x, i)/3i = 1.0 for the Xs but varying between 1.0 and 0.0 for the Os ( 1.0, 0.8, and 0.6 from top to 
bottom in the left-hand panels; 0.4, 0.2, and 0.0 from top to bottom in the right-hand panels). 

ternal world. An important goal for future research is to integ- 
rate CTVA with other theories of cognition, especially theories 
that describe learning. 

I am particularly interested in interfacing CTVA with the in- 
stance theory ofautomaticity (Logan, 1988, 1992) and a recent 
generalization of the theory by Nosofsky and Palmeri (in press) 
called the exemplar-based random walk (EBRW) model. The 
instance theory and EBRW describe the acquisition and expres- 
sion of automaticity in a manner that relates it to theories of 
memory (Hintzman, 1988; Jacoby & Brooks, 1984), concept 
learning (Hintzman, 1986; Medin & Schaffer, 1978; Nosof- 
sky, 1988), problem solving (Ross, 1984, 1987), judgment 
(Kahneman & Miller, 1986), and social categorization (Smith 
& Zarat~, 1992). So interfacing CTVA with instance theory 
should go a long way toward a general account of cognition. 

The instance theory is an excellent candidate for interfacing 
with CTVA because they are both race models. The instance the- 
ory describes automaticity as performance based on retrieval of 
past solutions from memory, and during retrieval, the different 
traces of past solutions in memory (the instances) race against 
each other, with the first trace to finish determining performance 

(Logan, 1988, 1992). Until now, the instance theory has as- 
sumed a binary similarity gradient, with traces either identical to 
each other or completely different, and it has assumed that the 
retrieval time distribution was the same for each trace. These 
assumptions were made largely for mathematical convenience, 
in order to support proofs that mean reaction time and the entire 
distribution of reaction times would decrease as a power function 
of practice (Logan, 1992). The EBRW model is an improvement 
over the instance theory because it assumes that similarity is 
graded continuously and retrieval time varies as a function of 
similarity. Moreover, EBRW generalizes the idea of a simple race, 
in which the first instance retrieved is the winner, to a relay race, 
in which several instances are retrieved before the process termi- 
nates. The idea is similar to the counter-model generalization of 
CTVA in Equations 9 and 10. 

The integration of CTVA and the instance-EBRW theory 
would interpret each instance as an ~(x, i) parameter, with a 
retrieval time that depends on v(x, i). As in the original in- 
stance theory, different traces of the same stimulus would have 
distinct but identical ~(x, i) (and v(x, i)) values, so that re- 
trieval time would depend on the number of instances in mem- 
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ory as well as their similarity to the current  object of  attention. 
The novel contribution ( f rom EBRW) is to allow nonidentical 
traces to enter the race with retrieval t imes that are functions of  
their similarity to the current  object o f  attention. Moreover, the 
attentional mechanisms in CTVA would allow a principled ac- 
count  o f  the effects o f  attention in the acquisition and expres- 
sion ofautomaticity,  which is a central topic in recent investiga- 
tions of  the instance theory (Logan & Etherton, 1994; Logan, 
Taylor, & Etherton, 1996). O f  course, the p roof  will be in the 
pudding. It remains to be seen whether these speculations can 
provide reasonable accounts of  the attention and learning phe- 
nomena associated with automaticity. 

Conclusions 

The combinat ion o f  C O D E  and TVA accounted for many 
phenomena in the literature on visual spatial attention. The 
CTVA model  provided coherent answers to the five questions 
that challenge current  theories of  attention. It integrated object- 
based and space-based approaches to attention, arguing that the 
output  of  CODE,  which TVA selects, is both an object and a 
region of  space. The major  contribution of  CTVA was to pro- 
vide coherent accounts o f  seven major  empir ical  phenomena 
that shaped the current  literature on visual spatial attention. 
This was an impor tant  contribution because the CTVA ac- 
counts were quantitative, whereas previous accounts were only 
qualitative. 

The strengths of  CTVA derive equally from the representa- 
tional assumptions of  the C O D E  theory and the processing as- 
sumptions of  the TVA theory. By itself, C O D E  addresses only 
the phenomenology of  grouping by proximity;  combined with 
TVA, it addresses attention. By itself, TVA underestimates the 
importance of  space and cannot  account  for the effects o f  dis- 
tance and grouping by proximity;  combined with C O D E  it pro- 
vides a more complete and more balanced account  of  atten- 
tional phenomena.  The CTVA model  is strong primari ly be- 
cause it was built f rom strong components;  C O D E  and 
especially TVA were impressive theories to begin with. Perhaps 
the most important  contribution of  CTVA is to show that strong 
theories can be made even stronger by combining them with 
other theories and that, ultimately, psychology can progress by 
developing theories cumulatively (Posner, 1982 ). 
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A p p e n d i x  A 

T h e  M a t h e m a t i c a l  B a s i s  o f  T V A  

Bundesen's (1990) TVA depends on the exponential distribution to 
predict reaction time and accuracy. The purpose of  this appendix is to 
provide the derivations and explain the reasoning underlying them. 

E x p o n e n t i a l  D i s t r i b u t i o n  and  v ( x ,  i) 

Bundesen (1990) interprets the v(x, i) values as rate parameters in 
exponential distributions. The exponential distribution's density func- 
tion is 

f ( t )  = •exp[-Xt] .  (AI )  

Its cumulative distribution function is 

F ( t ) =  f ( t ) d t =  1 - exp[-~ , t ] .  

The relation between v(x, i) and the exponential distribution de- 
pends on the hazard function, h (t) .  Bundesen (1990) assumed that the 
v(x, i) values were hazard functions for exponential distributions. The 
general expression for the hazard function is 

f ( t )  
h(t) 

1 - F ( t )  " 

The hazard function for an exponential distribution is 0 for time < 0 
and constant over time > 0, as can be verified by inserting Equations A l 
and A2 into A3. The value of  the constant is ~,, the rate parameter for 
the exponential distribution. 

The hazard function is useful for many reasons (see Luce, 1986; 
Townsend & Ashby, 1983). For our purposes, the hazard function is 
useful because it leads directly to the distribution function: 

F(t)= 1 - e x p  - h(x)dx . 

Substituting the constant hazard function for the exponential distribu- 
tion, h(x) = ~, into Equation A4 yields: 

F(t) = 1 - e x p [ - M ] ,  (A5) 

which is the same as Equation A2. Thus, in Bundesen's (1990) theory, 
the v(x, i) values are directly interpretable as rate parameters - -h  val- 
u e s - f o r  exponential distributions. The exponential distributions are 
important because they yield estimates of  reaction time immediately: 
The mean and standard deviation of  the exponential and, hence, reac- 
tion time, are both l / h .  

R eac t i on  T i m e  

Exponential distributions behave nicely when they race against each 
(A2) other. The density function,fmi. (t),  for the minima of  two distributions, 

fj (t) and f2 (t) ,  is 

fm~.(t) =f~(t)[1 - F2(t)] +J~( t ) [ l  - El ( t ) ] .  (A6) 

If the distributions are exponential, then A6 becomes 

fmin(t) = ~lexp[--hd]exp[--~,2t]  + X2exp[-~,2t ]exp[-Xd] .  

(A3) = ( ~  + h2)exp[-(h~ + h2)t].  (A7) 

Thus, the distribution of  minima sampled from two exponential distri- 
butions is itself an exponential distribution with a rate parameter equal 
to the sum of  the rate parameters from the parent distributions from 
which the samples were drawn. This result can be generalized, using 
Equations A6 and A7 recursively, to prove that the distribution of  min- 
ima sampled from n exponential distributions is itself an exponential 
distribution with a rate parameter equal to the sum of  the n rate param- 
eters. This generalization is important because it allows Bundesen (and 
me) to predict the mean and the standard deviations of  the finishing 

(A4) times of  the race; they are simply the reciprocal o f  the rate parameter of 
the exponential distribution that describes the race. 
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Accuracy 

Response probabilities can be derived from Equations A6 and A7. 
The probability that fl (t) wins the race can be obtained by integrating 
the first term on the right-hand side of  A6, that i s, f~ ( t ) [ l  - F2 ( t)] ,  and 
the probability that f2(t) wins the race can be obtained by integrating 
the second term on the right-hand side of  A6, that is, f2( t ) [ l  - Ft ( t)] .  
The results for exponential distributions can be obtained by integrating 
the two terms on the right-hand side of  the top line of  Equation A7. The 
probability that f~ (t)  finishes first is 

P( l  first) = Xlexp[-Xl t ]exp[-X2t ld t  

Xi (A8) 
~l + X2' 

and the probability thatf2(t)  finishes first is 

P(2 first) = fo ~ X2exp[- X2t]exp[- Xit]dt 

X2 (A9) 
X 1 + X 2 

These results can be generalized by recursion to samples from n 
different exponential distributions. In general, the probability that the 
sample from one distribution finishes first is simply the ratio of  the rate 
parameter for that distribution to the sum of  the rate parameters for all 
o f  the distributions in the race. Substituting v(x ,  i) for X~ yields the 
following general equations: The probability that item x finishes first 
( i.e., that x is the first item categorized as i) is 

P(xf irs t)  v(x ,  i) (AI0)  
v( z, i) ' 

ZES 

and the probability that categorization i finishes first (i.e., that i is the 
first categorization made of  x)  is 

P(ifirst)  v(x ,  i) . (AI 1) 
v ( x , j )  

jeR 

Equations A I0 and A l I can be used to generate predictions about ac- 
curacy, if x is the correct item to select and the other items in S are 
incorrect (Equation Al0)  or if i is the correct categorization and the 
other categorizations in R are incorrect. 

Appendix B 

Pigeonholing and Filtering in TVA 

There are two selection mechanisms in TVA, pigeonholing and filter- 
ing. Following Broadbent ( 1971 ), pigeonholing involves selecting a cat- 
egorization for a display item whereas filtering involves selecting a dis- 
play item to be processed. Pigeonholing and filtering are separable se- 
lection mechanisms in that increasing the likelihood of  a particular 
categorization (pigeonholing) should not affect the likelihood that a 
particular item is the first object of  the categorization (filtering), and 
increasing the likelihood that a particular item is selected (filtering) 
should not affect the likelihood that the item is categorized in a partic- 
ular way (pigeonholing). 

In TVA, pigeonholing is accomplished by manipulating/3i and filter- 
ing is accomplished by manipulating wx. The manipulations seem sim- 
ilar because/3~ has is computed by multiplying the o(x, i) value (see 
Equation 5 ), and wx has is computed by multiplying the n(x, i) value 
by a pertinence parameter, 7r t (see Equation 6). Many people ( including 
me) have difficulty understanding how pigeonholing and filtering could 
be separable given the similarity in the way their manipulations are 
effected. The purpose of  this appendix is to make clear the reasons why 
the mechanisms are separable. 

/3 and Pigeonholing 

Bundesen (1990) argued that manipulating the bias to catetorize an 
item as i,/3~, affected the probability of  categorizing every item in the 
visual field as i without affecting the probability that any particular item 
would be the first one categorized as i. This effect, known as pigeonhol- 
ing (Broadbent, 1971 ), can be seen by expanding the v(x,  i) terms in 
Equation A l 1 so that they represent the product o fn(x ,  i) and/3i. 

The probability that i is the first categorization made o f x  is: 

P( i first) v(x ,  i) 
v(x,j) 

jER 

~(X, i)~ 
~, ~l(x,j)~j " (BI)  

jER 

Increasing/3 t will increase the numerator of  Equation BI and therefore 
increase the probability that i is the first categorization to finish forx .  

The probability that x is the first item categorized as i is given by 
Equation A 10: 

P(xf irs t)  v(x ,  i) 
v(z ,  i) 

z~S 

~(x, i)Wx 
- Z n ( z , i ) w ~ "  (B2) 

z,s 

This probability is independent ofBj. In other words, increasing/3t will 
not increase the probability that any particular item, x,  will finish first 
(i.e., be the first to be categorized as i) because/3t increases the proba- 
bility that every item will finish first by the same amount, lf/3~ = 0.9, 
then every rt(x, i) value is multiplied by 0.9, whether 71 is large or small 
for that particular x.  Thus, increasing/3~ has the effect o f  shrinking the 
time scale of  the race between the different items. However, shrinking 
the time scale does not affect the order in which the items finish. Conse- 
quently, manipulating/~, affects the probability of  categorizing an item 
as i without affecting which item will be the first one to be categorized as 
i. This is the biasing effect o f  pigeonholing, as envisioned by Broadbent 
(1971). 

(Appendixes continue on next page) 
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Put differently, Equations B 1 and B2 show that the effect o f  increasing 
¢~i is spread over every item in the display-- i t  increases the probability 
that every item will be categorized as i. Again, this is the biasing effect 
of  pigeonholing, envisioned by Broadbent ( 1971 ) and incorporated into 
TVA by Bundesen (1990).  

F i l t e r ing  a n d  Wx 

Bundesen (1990) argued that manipulat ing the attentional weight on 
an item x ,  Wx, affected the probability that i tem x would be selected 
without affecting the probability that x would be categorized in any 
particular way. Increasing w~ will increase the numerator  of  Equation 
B2 and therefore increase the probability that i tem x is selected first. 
Increasing wx will not  increase the likelihood that item x will be catego- 
rized in any particular way, because wx affects all categorizations o f x  to 
the same extent. This follows from Equation B 1. The attentional weight, 
w~, drops out of  the equation and therefore has no effect on the proba- 
bility that x will be categorized as i. Thus,  if wx/~,w~ was 0.9, the n 
values for each categorization o f x  would be multiplied by 0.9, shrinking 

the t ime scale with which the categorizations finished but  not  affecting 
which categorization finished first. 

The logic seems clear when wx is the focus of  the argument.  However, 
the person does not  manipulate  Wx directly, but  instead, manipulates  
7r~, which determines Wx. The effect is shown in Equation 6, which is 
reproduced here: 

Wx = ~ ~(x,  i ) r i .  

The potential for confusion s tems from the fact that r~ and/3 t both have 
their effects by multiplying the r~(x, i) values. How can 7r and/3 have 
separate effects when they both multiply n? 

The answer lies in the scope of  the effects. Changes in ~ are affect all 
i tems equally (see Equation 5 ). Changes in r cause changes in atten- 
tional weights (see Equation 6 ), and a change in the attentional weight 
of  an item affects all categorizations o f  the item equally (see Equation 
5 ). Thus,  the effects of/3~ are spread over all the i tems in the display and 
consequently change the likelihood that every item is categorized as i, 
whereas the effects of  r~ are spread over all categorizations of  item x 
and consequently change the likelihood of  all possible categorizations 
of  item x.  

A p p e n d i x  C 

D e t a i l s  o f  t h e  C T V A  F i t s  

This section is intended to describe the fits of  the CTVA model in 
enough detail to allow interested readers to replicate them for them- 
selves, in order to make analytically tractable fits, I made a number  of  
simplifying assumptions.  The most  important  one was to fit all of  the 
data with I-D CODE surfaces, for which the boundaries  o f  the above- 
threshold regions were defined as points that could be found by com- 
puting local min ima  on the CODE surface. The boundaries  o f  above- 
threshold regions on more realistic 2-D CODE surfaces were lines that 
would not be easy to compute  analytically. Fortunately, many  of  the 
data sets I fitted displayed items in linear arrays, so the I-D CODE 
surfaces were appropriate. 

The fits were calculated deterministically using the equations in the 
text of  the article. One  of  the virtues of  CTVA is that predictions can 
be derived analytically without stochastic simulation. In principle, the 
CTVA predictions can be calculated with pencil and paper using the 
equations in the text and the procedures described here. In practice, I 
used Pascal programs to generate predictions, to make it easier to ex- 
plore the effects of  varying parameters and to find parameter  values that 
produced good fits to the data. 

P r i n z m e t a l  ( 1981 ) 

The first step in fitting Prinzmetal 's  ( 1981 ) data was to define the 
feature catch. I used two 1-D CODE surfaces to define the feature catch, 
one for objects within groups and one for objects between groups. The 
within-group surface was constructed, essentially, by drawing a hori- 
zontal line through the rows of  circles in Figure 3 and positioning the 
centers of  the feature distributions in the centers of  the circles. Objects 
within groups were 125 units  apart, and objects between groups were 
250 units apart. I chose a high and tow threshold along that CODE 
surface, based on the local m i n i ma  between the centers of  the circles. 
For the high threshold, 1 set the limits o f  integration one unit  more than 
the local m i n i m u m  to create separate above-threshold regions for each 
circle with two units o f  distance separating them. For the low threshold, 
I set the limits of  integration one unit  less than the local m i n i m u m  so 
that the above-threshold regions centered on each circle would overlap 

and form one large region. The within-group feature catch was calcu- 
lated by integrating a l -D Laplace distribution (see Equations l and 3 ) 
between the limits o f  the above-threshold regions. 

When the distractor was in the same group (left panels of  Figure 7 ) 
and the threshold was low, the feature catches for the target and distrac- 
tor features were equal, since they all fell within the same above-thresh- 
old region. When the threshold was set high, the feature catch for the 
target included the area under its distribution within the above-thresh- 
old region centered on the target and the area under the distractor dis- 
tribution that fell within the above-threshold region centered on the 
target. ( Recall that  the center of  the distractor distribution was 250 units 
away from the center of  the target distribution.) The high-threshold fea- 
ture catch for the distractor included the area of  the distractor distribu- 
tion that fell within the above-threshold region centered on the distrac- 
tot and the area of  the target distribution that fell within the above- 
threshold region centered on the distractor. 

The between-group CODE surface was constructed in a similar man-  
ner to the within-group surface, by drawing a vertical line between ver- 
tically aligned circles in Figure 7 and positioning the centers of  the fea- 
ture distributions on the centers of  the circles. I used the limits o f  inte- 
gration defined for the within-group high and low thresholds to 
compute  the between-group feature catch. When the distractor was in a 
different group and the threshold was low, the feature catch for the target 
included the area o f  the target distribution that  fell within the above- 
threshold region centered on the target plus the area of  the distractor 
distribution that  fell within the above-threshold region centered on the 
target. The feature catch for the distractor was defined similarly, com- 
puting the areas o f  the target and distractor distributions that fell within 
the above-threshold region centered on the distractor. When the thresh- 
old was high, the calculation was essentially the same except that the 
above-threshold regions were slightly smaller. 

The second step in fitting CTVA to the data was to calculate response 
probabilities. The feature catches defined in the first step were plugged 
into Equation 12 to compute  v ( x ,  i) values, and the v ( x ,  i) values were 
plugged into Equation 7 to compute  response probabilities. In order to 
report target presence, the two target fea tures- -a  horizontal and aver -  
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tical linemhad to finish the race. Evidence for each feature raced 
against evidence for its absence. Thus, horizontalpresent raced against 
horizontal not present. I set the n values for absent features equal to 1 
minus the n values for present features. The probability of correctly 
detecting a target was set equal to the product of the probability of cor- 
rectly detecting the horizontal feature and the probability of correctly 
detecting the vertical feature. Attention weights (based on ~r values) 
were fixed at 1. The fits in Table 1 were obtained by manipulating three 
parameters--the standard deviation of the feature distributions, the bi- 
ases (/3 values) for target presence and absence (which were constrained 
to sum to 1.0), and the n values for horizontal and vertical features 
(which were constrained to be equal). I did not try to optimize the fit 
formally (i.e., with a curve-fitting program that searches for parameter 
values that minimize least squares, etc.), but I did try to find parameters 
that approximated the observed data. The fits in Table 1 are based on a 
feature-distribution standard deviation of 50,/3 of 0.9 and 0.1 for fea- 
ture presence and absence, respectively, and ~ of 0.99 and 0.01 for fea- 
ture presence and absence, respectively. 

Cohen and lvry (1989)  

Experiments  I and 2 

The fits to Cohen and Ivry's (1989) data involved computing the 
feature catches and the!a the response probabilities. To compute the fea- 
ture catch, a I-D CODE surface was created with the centers of the 
feature distributions 50 units apart in the near condition and 250 units 
apart in the far condition. The threshold was set just above the local 
minimum between the two objects (i.e., almost midway between the 
objects). The feature catch for the target was computed by integrating a 
1-D Laplace distribution within the limits of the above-threshold region 
centered on the target. The feature catch for the target also included the 
area of the distractor distribution that fell within the above-threshold 
region centered on the target. 

Once the feature catches were computed, response probabilities were 
computed using Equations 12 and 7. The attention weights and biases 
were set equal to 1.0 for each color and letter categorization. Eta values 
were set for each of the four colors and for each of the two letters. Eta 
values for colors that were present in the display ranged between 0 and 
1 ; n values for colors that were not present in the display were set to 1 
minus the eta values for colors that were present. Similarly, the n value 
for the target letter ranged between 0 and 1 and the rt value for the un- 
presented letter was set to 1 minus the value for the target. So, for exam- 
ple, if the target was a pink Fand the distractor was a green O, and the 
rt values for pink and green were set to 0.9 and the n values for yellow 
and blue would be set to 0.1; if the n value for F were set to 0.9 and the 
n value for X would be set to 0.1. The different colors raced against each 
other, following Equation 7, as did the letters. The probabilities of the 
various combinations of outcomes listed in Table 2 were computed by 
multiplying and adding the probabilities computed from Equation 7. 

The fits in Table 2 depended on two free parameters: the standard 
deviation of the feature distributions, which was set at 50, and the n 
values for color and letter presence, which were set equal to each other 
at 0.9. The n values for absent colors and letters were constrained to 
equal 1 minus the n values for present colors and letters. 

Experiments 3 and 4 

The fits to Experiments 3 and 4 involved computing I-D CODE sur- 
faces for each of the 12 conditions listed in Table 3, calculating the fea- 

ture catches, feeding the feature catches into Equations 12 and 7, and 
combining the different outcomes to produce the predicted response 
probabilities. The 12 conditions differed in terms of the placement of 
the two letters for the conjunction task and in terms of the placement of 
the two digits for the primary task. The closest spacing was between 
letters and digits (e.g., between w and Xin Condition Small CD in Table 
3). It was set equal to 25 units. The closest spacing between letters was 
twice as large (e.g., between X and Y in Condition Small CD in Table 
3 ). It was set equal to 50 units. All other distances were multiples of 25 
or 50. 

The thresholds were set just above the local minimum on the CODE 
surface between each of the letters from its nearest neighbor, Thus, in 
Condition Small CD in Table 3, thresholds were set at the local minima 
between w and X and between Yand z. In Condition Far CD, thresholds 
were set at the local minimum between X and Y. The feature catches 
were computed by integrating the area of the distribution for the target 
letter and the distractor letter that fell within the above-threshold region 
surrounding the target letter, by integrating the area of the distribution 
for target and distractor letters that fell within the above-threshold re- 
gion surrounding the distractor letter, and then averaging the two values. 
I did this because Cohen and lvry (1989) did not report data separately 
for targets and distractors in the alternative positions (i.e., targets could 
appear in the positions occupied by the Xs  or the Ys in Table 3; Cohen 
and Ivry averaged over positions in each of the 12 conditions, so I did 
the same). 

The feature catches were plugged into Equations 12 and 7 in the same 
manner as in the analysis of Experiments 1 and 2. I calculated the prob- 
ability of detecting each color and the probability of detecting each let- 
ter, and l combined them by multiplying and adding to create the six 
categories listed in Table 2. I computed illusory conjunction rates in 
the same way Cohen and Ivry (1989) did, by subtracting half of the 
probability of a color feature error from the probability of a color con- 
junction error (correct target letter; correct distractor color ). Those val- 
ues appear in Table 3 and Figure 9. 

The fits in Table 3 and Figure 9 depend on two free parameters: the 
standard deviation of the feature distributions (set at 100) and the n 
values for color and letter presence (set at 0.825), which were con- 
strained to be equal. The n values for color and letter absence were set 
at 1 minus the n values for color and letter presence. Altogether, there 
were 72 data points to be predicted in each experiment--six response 
categories in 12 conditions. The correlation between the CTVA predic- 
tions and the data was 0.955 in Experiment 3 and 0.942 in Experiment 
4. The data from the two experiments correlated 0.976 with each other, 
so CTVA captured a large proportion of the reliable variance. 

Banks and Prinzmetal  (1976)  

The fits to Banks and Prinzmetal's (1976) data were difficult because 
the displays were 2-D rather than linear arrays ofcharacter~ Neverthe- 
less, I approximated the spatial distribution of items with I-D CODE 
surfaces. I constructed three I-D CODE surfaces to represent near, mid- 
dle, and far neighbors. Each surface had two feature distributions, one 
representing a potential target and another representing the distractor. 
The distances between the centers of the distributions were 100, 141, 
and 200 units for near, middle, and far distractors, respectively. The 
standard deviation of the feature distributions was set to 50. 

The CTVA fits set the threshold in two different ways. The same 
threshold fits assumed that there was only one threshold applied to the 
whole display. It was set just above the local minimum between the 
target and the near distractor 100 units away. This threshold overesti- 
mated the minimum threshold in the isolated target condition and un- 

(Appendixes continue on next page) 
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derestimated it (slightly) in the camouflaged target condition, where 
other near neighbors would raise the local m i n i m u m  on the 2-D CODE 
surface and move it toward the target. I calculated feature catches for 
near, middle, and far distractors using this threshold by integrating the 
feature distributions for the distractors within the limits o f  the above- 
threshold region surrounding the potential target. 

The different threshold fits set the threshold just  above the local min-  
imum between a target and its nearest neighbor, so the threshold varied 
between conditions. In the isolated target conditions, for example, the 
nearest neighbor was 141 (Conditions A and C) and 200 (Condition B) 
units away; in the camouflaged target condition, tlae nearest neighbor 
was 100 units away. These thresholds underest imated the local mini-  
m u m  in each display because they ignored the contribution of  the other 
feature distributions to the 2-D CODE surface. Nevertheless, they were 
a reasonable approximation that  could be computed  analytically. 

The feature catches computed in these two ways were used to com- 
pute v(x, i) values, and the v(x, i) values were used to compute  re- 
sponse probabilities and processing t imes for the parallel and serial 
models described in the text of  the article. Those computat ions  should 
be sufficiently clear, so I will not  describe them further here. 

C o h e n  a n d  Iv ry  ( 1991 ) 

The fits to Cohen and Ivry's ( 1991 ) conjunction search experiments  
were relatively straightforward. I used I-D CODE surfaces to compute  
the feature catches and considered only two feature distributions in each 
CODE surface, one representing the target and one representing the 
distractor in target-present displays and one representing each of  two 
distractors in target-absent displays. 1 set the feature distributions 100 
units apart  in the c lumped condition and 200 units apart  in the spread 

condition. In order to increase accuracy, I set the threshold halfway be- 
tween the local m i n i m u m  between the feature distributions and the 
peak of  one of  the feature distributions. The standard deviation of  the 
feature distributions was set to 50. These feature catches were used to 
generate v(x, i) values, and the v(x, i) values were used to generate 
accuracies and processing t imes for individual comparisons,  using the 
equations developed in Appendix D. I interpreted these accuracies and 
processing t imes in terms of  a serial search model, following c o m m o n  
practice in the search literature (e.g., Cave & Wolfe, 1990; Treisman & 
Gelade, 1980; Treisman & Sato, 1990; Wolfe, 1994), but  they could be 
interpreted in terms of  a parallel processing model in which several 
i tems were processed in parallel (cf. Pashler, 1987; Pylyshyn, 1989 ). 

E r i k s e n  a n d  E r i k s e n  ( 1 9 7 4 )  

The fits to Eriksen and Eriksen's (1974) data were straightforward. 1 
generated a 1-D CODE surface from three i t e m s - - a  central target and 
two flanking distractors. There were three distances between the target 
and the distractors, which I set to 50, 100, and 150 units. I set the stan- 
dard deviation of  the feature distributions to 50 units. The thresholds 
were set just  above the local m i n i m u m  between the target and the dis- 
tractors, and the feature catch for targets and distractors was computed 
by integrating their respective distributions within the above-threshold 
region. 

The feature catches were used to modify the v(x, i) values, and the 
v(x, i) values were used in Equations 9 and 10 to predict accuracy and 
reaction time. There were three free parameters. The n value for Hgiven 
H and S given S was fixed at 1.0, and the r/values for S given H and H 
given S and those for S given a neutral distractor and H given a neutral 
distractor were allowed to vary. The third parameter  was the counter  
criteria, Kn and Ks, which were constrained to be equal to each other. 

A p p e n d i x  D 

T V A  a n d  C o n j u n c t i o n  S e a r c h  

S t a n d a r d  C o n j u n c t i o n  S e a r c h  

Conjunct ion search requires discr iminat ing perceptual objects that  
contain all of  the target features from objects that  do not  contain all of  
them. The standard conjunct ion search task involves two features. For 
example,  if the target is a red T, the discr iminat ion is between red Ts 
on the one hand, and not-red Ts, red not-Ts, and not-red not- Ts on the 
other (see e.g., Treisman & Gelade, 1980). The TVA analysis assumes  
there is a v(x, i) value for each o f  these alternatives, where x is the 
perceptual object and i is red, T, not-red, or not -T.  The TVA analysis 
assumes  further that  the categorizations race against each other and 
decisions about  whether an object is a target depend on the outcome of  
the race. If the item is not  a target, the race is straightforward: red, T, 
not-red, and not- Trace  against  each other and the object is not  a target 
if not-red or no t -T  finish before red and T. If the i tem is a target, the 
race is more complicated. Both red and T mus t  finish before not-red 
or not-T.  This  complicates the formal analysis o f  the race. In essence, 
the slower of  red and T race against  the faster o f  not-red and not -T.  
Thus ,  

Outcome = m i n [ m a x ( r ,  T ) ,  min(F,  T)] .  

The probability density function for max( red, T) is 

L, adX) 

v~exp [ -v~x] (  1 - exp [--VTX]) + vTexp [--VTX]( 1 -- exp [--v ,x]) ,  

a n d  its d i s t r i b u t i o n  f u n c t i o n  is 

Fmax(X) = ( 1 - exp  [ - v r x ] )  + ( 1 - e x p  [ - v r x ] )  

- (1 - e x p [ - ( v r  + v r ) x ] ) .  

The probability density function for min(notred, notT) is 

Jmin(X) = (V~+ v ~ ) e x p [ - ( v T +  v~)x], 

and its distribution function is 

Fmi,(x) = 1 - e x p [ - ( v ~ +  vT)x]. 

The probability density function for the m i n i m u m  of these random 
variables is 

f ( x )  = fmin(X)( 1 - Fmax(X)) +f,.a.(X)( 1 - F~.i.(X)). 

Substituting the density and distribution functions into this expres- 
sion yields 

f ( x )  = {(1)reX p [--l)rX])( 1 -- exp[--VTX]) 

+ (vrexp[--VrX])( 1 - exp[-v,x])](exp[-(vv+ vT)x]) 

+ [(v~+ v~)exp[ - - (vv+ v~)x] } { e x p [ - v , x ]  

+ exp[-vrx] - e x p [ - ( v ,  + vr)x] }, 

which is the distribution o f  finishing times for the race. The mean of  
this distribution is 
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1 1 1 
F T =  - -  Jr 

l)r "}- l)F 3c l)~ l)T ~- l)F-I- l )~ l)r-}- l)T-~- l )F-}  l )~"  

This  mean finishing t ime is not  conditionalized on the outcome of  the 
race. It includes cases in which max(red,  T)  wins as well as cases in 
which rain( notred, notT)  wins. In order to model conjunction search, 
we need the mean finishing t imes conditional on each runner  winning 
the race and we need the probabilities that each runner  will win. The 
probabilities can be derived from two additive te rms  on the right-hand 
side of  the unconditional probability density function. Thus ,  the prob- 
ability P(P)  that  max(red,  T )  will win the race (i.e., the probability 
that a target is judged to be present) is 

P(P)  = [( l ) ,exp[- l ) ,x]) (  1 - exp[ - l ) r x l )  

+ (v~exp[ - l ) rx l ) (  1 - e x p [ - l ) , x l ) l ( e x p [ - ( l ) ~ +  l ) f ) x l )dx  

l)r l)T ~)r + l)T 

l)r -F l)F ~- l )~ l )T -~- l)F-~- l) ~- l)r + l )T -I- l)F-}- l )~ ' 

and the mean  conditional finishing t ime for max(  red, T )  is 

F T e = ~ ( ( V r +  v, l)F.. }_ l )~)2 

l)T l)r -1- l)T ) (VT+V~+V~)  ( V , + V T + V ~ + V ~ )  ~ " 

The probability P(A ) that rain( notred, notT)  will win the race (i.e., 
the probability that  a target is not  present) is 

P(A)  = ((v~+ vf)  exp [ - ( v ~ +  v~)x])  

(exp[- l )~x]  + e x p [ - l ) r x ]  - e x p [ - ( v ~ +  l)~)x])dx 

l)~+ l)~ VF+ v~ l)~+ v~ - ÷ 
l) r ~- l) F -4- l )~ l) T -1- l) F -1- l )~ l) r q- l) T ~- l) F ~- l )~ ' 

and the mean  conditional finishing t ime for min(notred, nolT) is 

1 ( v ~ + v ~  v ~ + v ~  v ~ + w ?  

F T~ = p - ~  \ (l), + -~v + re)  ~ + ( vr + vz + vt)  ~ (vr + vr + vz + vt)  ~ ]" 

The TVA analysis assumes that  people search through the perceptual 
objects in the display in a self-terminating fashion. Under  that assump-  
tion, the mean conditional finishing t imes determine reaction t ime and 
the slope of  the function relating reaction t ime to the number  of  i tems 
in the display. The expressions for mean  reaction t ime and accuracy as 
a function of  display size are given in the main  body of  the article. 

Tr ip le  C o n j u n c t i o n  S e a r c h  

Wolfe, Cave, and Franzel (1989) tested people in a triple conjunction 
task, in which targets were conjunctions o f  three features (e.g., small 
red Ts) and distractors contained only one of  the target features (e.g., 
small green Xs ,  large red Xs ,  or large green Ts). The TVA analysis can 
be extended to triple conjunction search as well by including a l)(x, i) 
value for each o f  the three features and their absence (i.e., not  small, not  
red, and not  T) .  As with double conjunctions,  decisions about target 
presence are determined by the outcome of  a race between the presence 
and absence o f  the target features: 

Outcome3 = m i n [ m a x ( r ,  T, s) ,  min(F,  :F, s~]. 

Notice that there are three runners  in the race for target absence, 

which is more than the two that raced for target absence in standard 
conjunction search. This  is important  because the fastest of  three run-  
ners will finish before the faster of  two runners  (see, e.g., Logan, 1988, 
1992), and this will reduce the slope o f  the function relating reaction 
t ime to display size because the slope is determined by the rate at which 
target absence is decided. Thus,  the TVA analysis predicts shallower 
slopes in triple conjunction search than in standard, double conjunction 
search. This  is an important  conclusion because the difference is attrib- 
uted to the comparison process, whereas Wolfe et al. ( 1989 ) and others 
(e.g., Grossberg, Mingolla, & Ross, 1994; Treisman & Sato, 1990) at- 
tributed it to preattentive processes that  precede the comparison 
process. 

The mean  finishing t imes and response probabilities for triple con- 
junct ion search can be determined in the same way as for double con- 
junct ion search. For target-present decisions, the probability of  a cor- 
rect decision is 

p(  p)  v, -~ vr + Vs 

Ur -l- ~)F-]- l)~ -[- l) ~ l )T -~- l)F-]- l )~ -Ic l).~ l)s -4- l)F ~- t )~ -}- l) ~- 

Dr + l)T l)r -~- l)s 

l) r + V T + VF + l) ~ + l)~ l) r + l) s + l)F + l) ~ @ l) ~ 

l )T "~- l)s l)r ~- l )T -~- l)s - + 
l) T "}- l)s + l)V-[- l) ~ -}- l) ~ l)r -~- l) T ~- l)s d- l)V ac l) ~ d- l)~ ' 

and mean finishing t ime is 

F T p = ~ [  l), vr  
( l )  r -1- l)F-~- l)~ -F l)~) 2 "F ( l )T -F l)F-l- l)~ + l)~) 2 

l)s l)r -]- l)T + 
(l)~+l)~+l)~+v~) 2 ( v r + l ) r + l ) 7 + l ) f + v ~ )  2 

l) r + l) s l )T + l) s 

( l)r+l)s+l)~+v~+l)~) 2 ( v r + v , + l ) ~ + l ) ~ + v ~ )  2 

l) r + 1) T + l) s ] 

+ <Vr + l)r + vx + + + v )2J 

For target-absent decisions, the probability of  a correct decision is 

vT+ l)~+ l)y v~+ l)~+ l)~ l)F+ l)~+ v~ 
P ( A )  + + 

l)r -}- l)F 3t- il)~-]- l)~ - V T  -~- VF-~c V~---.}- l)~ I)s -~- l)F-[- l)~. -}- l) ~ 

v~+ v~ + l)~ v~+ v~ + v~ 

+ 
l) T-~- Ds -I- l)F Ji- l) ~ ' ÷  l)~ l)r-~- l) T ' l -  l)s-~- l)~ ~- l) ~'-3L D~'  

and mean finishing t ime is 

= ~ [ v_z.+ v¢ + vy vz + v7 + vy 
FTA P(A)  [(Vr + V~+ V~+ Vy) 2 + (VT+ VF+ VT+ Vy) 2 

+ 
( v s + v ~ + v T + v ~ )  2 ( V r + V r + V T + V ~ + V ~ )  2 

v~+ v T+ v~ vF+ vT+ l)~ 

(Vr+V ,+V~+V~+V~)  2 ( V T + V , + V ~ + V T + V ~ )  2 

~- (l)r ~- l)T -~ l)s "~ l)F J/- l)T'~ l)~_)2 J ° 
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