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ABSTRACT 

We show that given certain plausible assumptions the existence of persistent states 
in a neural network can occur only if a certain transfer matrix has degenerate maximum 
eigenvalues. The existence of such states of persistent order is directly analogous to the 
existence of long range order in an Ising spin system; while the transition to the state 
of persistent order is analogous to the transition to the ordered phase of the spin system. 
It is shown that the persistent state is also characterized by correlations between neurons 
throughout the brain. It is suggested that these persistent states are associated with 
short term memory while the eigenvectors of the transfer matrix are a representation 
of long term memory. A numerical example is given that illustrates certain of these 
features. 

1. INTRODUCTION 

In this paper we examine the long term behavior of a neuronal network 
such as the human brain. We will start from the assumption that the state 
of the brain at any time may be described by a configuration defined by the 
set of neurons that have fired within a certain specified recent interval of 
time and those that have not. We shall examine under what conditions 
a correlation can exist between states so defined, which are separated by 
a long period of time. In this context a long period of time is considered 
to be a time long compared to the refractory period of a neuron. The 
underlying reason for studying this problem is the belief that the states 
or configurations defined above are in some way related to the thought 
processes or experiences sensed by the individual and that in our own 
experience a long term correlation appears to exist in the latter. If our 
belief should prove to be valid it would imply a long term correlation 
between the neuronal configurations. We do not offer any proof that the 
thought processes and the neuronal configurations are representations of 
the same thing but suggest that this is a reasonable working hypothesis. 
Its proof or disproof lie beyond the scope of this paper. 
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Starting from the state defined above and by using the known behavior 
of the neuron and the interneuronal connections, we will show how the 
state of the brain evolves with time. We find that a close analogy exists 
between this problem and the problem of an interacting spin system which 
has been studied extensively in statistical mechanics and in solid state 
physics. The existence of persistent states in the neuronal network cor- 
responds to the occurrence of long range order in the spin problem and 
both are related to the existence of a degeneracy of the maximum eigen- 
value of a certain matrix. This matrix in the neuronal system is determined 
by the topology of the neuronal network, the size and nature of the syn- 
aptic junctions and the various electrochemical potentials in the brain. 
While the problem of determining the detailed behavior of this matrix is 
formidable, certain general conclusions can be drawn from this analysis 
which are interesting. We find that while the number of possible states 
in the brain as defined above is enormous-of the order of 2N where N is 
the number of neurons (of the order of 1O’O in the human brain)-the 
number of states which determine the long term behavior is a very much 
smaller number. This represents a tremendous simplification. If these 
states could be identified it would provide great insight into the operation 

of the brain. A second feature that follows from this is that these persistent 
states are distinguished by the property that a coherence or correlation 
exists between the neurons throughout the entire brain or large portions 
of it. These states are thus a property of the brain as a whole rather than 
a localizable entity. Thirdly, one finds that the transformation from the 
uncorrelated to the correlated state in a portion of, or in the whole brain 
can occur by the variation of the mean biochemical concentrations in 
these regions, and that this transformation occurs in a manner closely 
similar to the phase transition in the analogous spin system. Our results 
suggest how items of memory stored, in our model, in the topology of 
the interneuronal connection and the properties of the synaptic junctions, 

may be recalled to active use as a pattern of firing neurons. 
Our results are not exact but have been reached only after making 

certain simplifying assumptions. While the assumptions themselves appear 
to be somewhat innocuous we have not been able to dispense with them 
and, whether our conclusions would remain if we could, has still to be 
proven, This work should thus be viewed as suggestive rather than 

definitive. 

2. SIGNIFICANCE OF PERSISTENT STATES 

Our thesis is based on the argument that the existence of states or 
behavior in which a correlation exists for long periods of time, are of 
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prime importance to an understanding of the brain. There are many 
levels at which the significance of these persistent states can be appreciated. 
Clearly the ability of an animal to entertain one concept such as “flight 
from a predator” over a period of several minutes has high survival value. 
Likewise the capability of retaining the details of a recent attack over a 
longer period so as to analyze and review possible alternative defensive 
tactics in the future is similarly of survival value. In general, the ability 
to retain a theme or leit-motif while examining its many consequences 
over a period of time is of broader value at a more sophisticated level. 
The ability to meditate over long periods of time withcut external stimuli 
is another example of the existence of a long time correlated state of mind. 
At a much deeper level the conviction each of us has of our own existence 
is based to some extent on a certain internal continuity and coherence 
of behavior of ourselves over a long period of time. 

On these admittedly imprecise, but suggestive grounds we argue that 
long term correlations exist within the brain. Assuming that these cor- 
relations imply correlations in the neuronal configurations, we ask what 
the conditions are in order for the latter to occur. 

3. PHYSIOLOGICAL CONSIDERATIONS 

The basic physiological structure of the brain has been studied ex- 
tensively [I]. The important building blocks are the neurons which are 
bulbous nerve fibers illustrated in Fig. 1. Each neuron can be activated by 

Dendrites 

Neuron 
FIG. 1. Schematic view of typical neuron. 
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the flow of an activating chemical across the synaptic junctions from the 

axon of one neuron either onto the surface or onto the dendrites of another 
neuron. Alternately, the neuron may be inhibited by inhibitory synapses 
at which an inhibiting chemical is transmitted across the synaptic gap to 
the neuron. The transmission of these chemicals causes a change in the 
ionic concentration within the neuron and this results in a change of its 
electrochemical potential. These electrical effects are referred to as 
excitatory postsynaptic potentials, or inhibitory postsynaptic potentials, 
respectively. If the net potential at the axon hillock resulting from all the 
excitatory and inhibitory post synaptic potentials exceeds a certain 
threshold level the neuron “fires” and an action potential propagates 
down the elongated tail of the neuron termed the axon and normally 
terminates on the synaptic junction of another neuron. The arrival of the 
action potential at this synapse triggers the release of the activating or 
inhibiting chemical, thus activating or inhibiting the next neuron and so 

the process continues. 
The potential of the neuron is determined by the integrated effect 

of all the excitatory and inhibitory post synaptic potentials delivered to it 
over an integrating period of several msec. This is the period of latent 
summation. If the threshold is reached and it fires, a sharp positive pulse 
appears followed by a negative going excursion [2]. The potential then 
returns to the resting potential after a few msec. During this latter re- 
fractory period the neuron is recovering and cannot fire again. 

We note also that the velocity of propagation of the action potential 
along the axon is about a lo2 cmjsec in the axons within the brain and the 
mean length of axon from one neuron to the synaptic junction of another 
is no more than about IO-’ cm. Thus the flight time of a signal from one 
neuron to the next (Z 10-l msec) is appreciably less than the refractory 
period of a neuron. 

Our model is based on using in simplified form these various facts in 
order to determine how the state of the brain evolves with time. 

4. MODEL SYSTEM 

First, let us consider a neural network in which there are no connections 
to nerve cells which lie outside the network itself. Thus we consider the 
network as isolated from external stimuli. Alternately, one may consider 
the network as part of the brain but situated in a deprived environment 
receiving no external stimuli. Later we shall consider how this restriction 
can be removed or relaxed. 

Second, we shall suppose that the neurons are not permitted to fire at 
any random time but rather that they are synchronized such that they 
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can only fire at some integral multiple of a period 7 which is of the order 

of the refractory period of the neuron. We suppose that the net neuron 
potential at the end of this period is determined by the sum of all the 
excitatory and inhibitory post synaptic potentials that occur during the 
period. The value of this potential at the end of the period then determines 
whether the neuron will fire or will not fire. Further we suppose that the 
influence of these potentials decays to a negligible value by the time the 

following opportunity to fire occurs. Thus within each period we may 
consider each neuron as starting with a clean slate, or in other words 
that these processes are Markoffian. Later we wi!l consider how this 
limitation may be relaxed. 

Third, we will assume that the connections between the neurons via 

the axons; and the properties of the synaptic junctions themselves are 
all fixed and do not change with time. We are not concerned here with 
learning behavior in which changes might be expected to occur in some 
one or other of these connections but rather we are interested in the 
behavior of the network in which these properties are assumed fixed. 
We believe and later will give arguments to bolster this belief that these 
given properties represent hereditary information or long term memory 
while the pattern of firing neurons defined by our “states” are related to 
short term memory involving the active state of the mind. 

These assumptions appear to impose some rather artificial constraints 

upon the system. They are imposed for reasons of mathematical con- 
venience. By so doing we are able to calculate certain properties of the 
system. However, we will argue on physical grounds by analogy with other 
related systems that the properties, which we calculate with these con- 
straints, can be expected to remain even when certain of the constraints 

are relaxed. 
With the above constraints we can define the “state of the brain” by 

the configuration determined by the set of neurons that have fired most 
recently and those that have not. It is convenient to write this using 
terminology borrowed from quantum mechanics [3]. We define that state 
of the brain at time t as the configuration 

$(t> = Is19 s2, . . .> s,>, (1) 

where si = + 1 if the ith neuron has just fired and si = -1 if the ith 
neuron has not fired, and N is the total number of neurons. There are 
thus 2N states defined. 

The neurons which have fired will then send a signal down their axons 
to their terminating synaptic junctions. These signals will trigger the 
release of the excitatory or inhibitory chemicals which in turn will raise or 
lower the potential of the neurons to which they are attached. Let us 
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define Vii as the resulting change in potential of the ith neuron due to an 
activating signal arriving from the jth neuron at the synaptic junction 
connecting the axon ofj to the neuron i. This incremental potential Vij 
may be positive (excitatory), negative (inhibitory), or may be zero if no 
synaptic connection exists between j and i. It will also depend upon the 
size and structure of the synaptic junction and the size or volume of the 
neuron to which it is attached. We will assume further that the Vij are 

fixed and do not change with time. 
We make use of the fact that the various postsynaptic potentials sum 

within a period so that the net change of potential of the ith neuron will be 
given by the sum of the various contributions from the activated synapses. 
If the existing state of the brain is given by (1) then the sum of the post 
synaptic potentials of the ith neuron may be written as 

We see that if Sj = + 1 we get a contribution, Vij to the sum but if sj = - 1 
we get no contribution. If the total potential exceeds some threshold value 
V,, the neuron will probably fire. It is convenient to express this mathe- 

matically as follows. Let p( + 1) be the probability that the ith neuron will 
fire then p( + 1) may be written as 

LJ(+l) = 
(2) exp - p {[j l,(+)]-VO}+l . IV.. - 

The behavior of this function is shown in Fig. 3. If the sum is appreciably 
less than V, the exponential is large and p( + 1) is small, i.e. the probability 
of firing is small. On the other hand if this sum is appreciably greater than 
V, then the exponential becomes small and p( + 1) approaches unity, 
i.e. the neuron almost certainly fires. The factor fi gives a measure of the 
uncertainty in the width of the threshold region, 

456 7 
millisecs 

FIG. 2. Axon potential showing positive going signal and refractory period [2]. 
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P(S1) 

FIG. 3. Probability of neuron firing p(+ 1) or not firing, p(- 1) as a function of the 
sum of the post-synaptic potentials Vrelative to the threshold, V,,. 

The probability of not firing, p( - 1) is given by 1 - p( + 1) and thus 
can be simplified to give 

PC-11 = 
exp i- /I {[7 ,,(+)]-VO~+lS (3) YV.. - 

Notice that both (2) and (3) may be expressed as 

P(SI) = 

exp - psi fj ,,(::‘ll-vo}+l~ (4) C V.. - 

Strictly speaking /I and V, should also be considered as dependent on 
i but to simplify the problem we will treat them as constants throughout 
the network. 

We may use these expressions to compute the probability of obtaining 

a state Is;, s;, . . ., s,&) given a state Isr, s2, . . ., sN) immediately preceding 
it. Using the usual bra and ket notation of quantum mechanics [3] and 
defining an operator P which yields this probability, Eq. (4) then gives us 
the result that: 

(4, . . ., sl,lPis,, . . ., sN? 

This then defines a 2N x 2N matrix whose elements give the probability 
of a particular state jsr, s?, . . ., sN) yielding after one cycle the new state 

Isi, si, . . ., si). The primed set refer to the row, (s;, s;, . . ., s;] and the 
unprimed set to the column Isr, s2, . . ., sN) of the element of the matrix. 
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5. ANALOGY WITH A SPIN SYSTEM 

W. A. LITTLE 

Having expressed the problem in this form one can see immediately the 
close similarity between it and the problem of an Ising system. Kramers 
and Wannier [4] in their classic paper on the Ising problem showed how 
the partition function for that spin problem could be expressed in terms of a 
matrix. The similarity is made more apparent by rewriting (5) in the form: 

This should be compared with Eq. 3.5 of the review of Ferromagnetism 
by Newell and Montroll [5]. 

The methods for handling this type of Ising problem have been dis- 

cussed at length in many papers and texts. We refer the reader to the 
review of Newell and Montroll [5], Huang’s text on Statistical Mechanics 
[6] and, for what follows, the paper by Ashkin and Lamb [7]. In the latter 
the question of the propagation of order in a crystal lattice is discussed. 
We shall study the analogous problem to this in the neural network. 
In the crystal problem one considers the configuration of atomic spins 
on a row of atoms with each atom having a spin of one half. One such 
configuration can be described by a state analogous to Eq. (1) i.e. 

1% sz, ’ . ., s,), where si = + 1 means spin i is “up” and si = - 1 that 
spin i is “down.” The total, N refers to the number of atoms in the row. 
Due to their interaction with the spins on the next row the probability 
of a configuration Isi, s;, . . ., si) occurring in the next row can be 
calculated. An expression somewhat similar to (6) is then obtained. By 
using the same process again and again one can calculate the probability 
of obtaining a particular configuration in the mth row. In that problem 
a question of great importance is whether or not a correlation can exist 
between a configuration in row q, say, and row r where the distance between 
q and r becomes very large. When such a correlation does occur we say 
that long range order exists in the lattice. For a spin system which becomes 
ferromagnetic it is found that long range order sets in at the Curie point 
and exists at all temperatures below that. As shown by Lassettre and 
Howe [8] and discussed further by Ashkin and Lamb the onset of this 
long range order is intimately associated with the occurrence of a degener- 
acy of the maximum eigenvalue of the matrix analogous to (6). 

In our problem a configuration determines the state of the brain at 
a particular instant of time. This corresponds to the configuration of spins 
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in one row of the lattice in the crystal problem. The configuration which 
describes the state of the brain after the next cycle corresponds to the spin 
configuration in the next row. Thus the existence of a correlation between 
two states of the brain which are separated by a long period of time is 
directly analogous to the occurrence of long range order in the correspond- 
ing spin problem. We will show that the occurrence of these persistent 
states is also related to the occurrence of a degeneracy of the maximum 
eigenvalue of the matrix P given in (5). 

We draw the analogy between the neural network and the two di- 

mensional Ising problem. The configuration of N spins in one row 
corresponding to the configuration of N neurons at one particular instant 
of time. An analogy could equally well be drawn between a three di- 
mensional Ising problem and the neural network. To do this one would 
associate the N spins in one layer of the crystal with N neurons at one 
instant of time; the next layer being associated with the next instant of 
time. Either analogy is equally good, for we note that in the neural problem 
we have no interaction terms Vii such that i and j are both in the primed 
set or both in the unprimed set of s:s. This would correspond in the 2-D 
spin problem to an interaction between spins on adjacent rows only, 
with no interaction between spins on the same row. Thus the geometric 
arrangements of the spins in a row (as in the 2-D analogy) or a layer 
(as in the 3-D analogy) is irrelevant and we may thus use either. 

A nontrivial difference between our problem and the spin problem is 

that in the spin problem the matrix corresponding to P is symmetric. 
It is thus diagonalizable. In our case we have no guarantee that the matrix 
P will be diagonalizable without knowing the neuron connections. More- 
over, it is reasonably certain that the matrix P will not be symmetric 
because the signals very clearly propagate from one neuron down its 
axon to the synaptic junction of the next neuron and not in the reverse 
direction. Only by accident would one have an identical path also running 
in the reverse direction. However, we will make the assumption here that 
P is diagonalizable. Later we will show how our argument may be extended 
to the situation in which P is not diagonalizable. 

The occurrence of persistent states in the neural network will now be 

examined using a similar approach to that used for the study of long range 
order in the spin systems. 

6. LONG RANGE ORDER AND PERSISTENT STATES 

First, it is useful to note that the probability of obtaining a configuration 

Isi, . . *, si;) after two cycles is 

1 (s;, . . .) s;\pg, . . .) s;;)(s;I, * . ., $lPis,, . . .) s,), (7) 
s;,...,c 
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or in matrix notation 

<s;, . . ., s~lP21s,, * f *, s,>, (8) 

and thus after m cycles 

(s;, . . .) SpyS1, . . .) spf). (9) 

To contract our notation let us use $(a) to represent the state ls1,. . ., sN> 
and $(a’) for Is;, . . ., ~1;). Then it is useful to represent these in terms of 

the eigen vectors cpI of the operator P. There 
each of which has 2N components q,.(a), one 
Thus we have 

and assuming, we normalize q,(a) to unity, so 

; ~,(~)~S(~) = L 

we obtain 

are 2N such eigen vectors 
for each configuration CC. 

(10) 

(11) 

(s;, . . .) SEyIPlS,, . . .) sN) = T ‘%h(a’>+r(a)~ (12) 

where I,, is the rth eigenvalue. 

We wish to find now the probability of obtaining a particular con- 
figuration Co. In general we do not know the initial conditions so we will 
set up the problem in such a way that the initial conditions play no role. 
One way to do this is to allow the system to run for a total of M cycles 
where M is very large and ask for the probability of obtaining a configura- 
tion c( after m cycles, and then average over all initial configurations and 
sum over all final configurations. A simpler procedure which gives the 
same result is to assume that after M cycles the system returns to the 
initial configuration and we average over all initial configurations. This 
corresponds to cyclic boundary conditions in the spin problem. Using (9) 
we obtain the probability I(a,) of obtaining the configuration c(i after 

m cycles. 

r(a,) = c (~IP”-“‘IX1xC(, IP”l~) c <‘eMId 
i 01 II 

which from (12) gives 

I(a,) = c 1 cp,(a)nf:-“Ip,,(~l)g,(G(I)i~~~(r)l~ A:. 
II r,u 

Using (11) 

(13) 

(14) 
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We notice that this is independent of rn and hence gives the probability 
at any time of obtaining c~i, assuming no constraints or knowledge of the 
system at an earlier time. 

Next we ask what the probability is of obtaining a configuration c[~ 
after I cycles given that we know we have configuration rxl after m cycles. 
This joint probability T(cc,, CZJ is given by 

I(a,, q) = 1 (cc~P”-‘I~~)(a2/Pi-“‘lcci)(rlI~mj~)~~ (c4~“iCo, (16) 

= 1 C ;~-‘~“~~)$,(~,)ni”‘~,,~~*~~~~~~~~t~~~~~~~~~~~~~~ A,“, WI 
Ix r,u,v 

which again, through the use of (1 I), gives 

I(a,, Q) = 1 /q-i+m1;-m ch,(%)~,(44U(~ &o, )/ ; 1.7. ( 18) 
r,u 

If M and I - m are large numbers then the only significant contribution 
to (18) will come from the maximum eigenvalues. Let us assume first that 
these eigenvalues are nondegenerate then (18) gives 

I(u, > 4 = 9~,,(~,>4~,,(~, 1, (19) 

while the probability of obtaining (pi is obtained from (15) giving 

I(%) = 4:&i). (20) 

Thus we have 

I-(x1, 4 = It%,) . w,). (21) 

In this situation we see that the joint probability is just the product of 
the probabilities of obtaining the two configurations independently. In 
this case the influence of configuration c(i, does not affect the probability 

of obtaining the configuration Q. The network then does not have any 

persistent states. 
On the other hand if the maximum eigenvalue of P is degenerate then 

the degenerate eigenvalues contribute in the sum of (18). Consider the 
simplest case when A,,, is doubly degenerate having eigen functions 
‘pr and (pZ, then (18) becomes 

l-(u,, x(2) = 1?4:(M4%) + ZQ,:(M4%) 
+q-rimjL;-” 

91(~2)~2(~2)~2(~1)~1(al) 

+*2 *“-““n:-‘n~2(~2)~l(~~)~~(~~)~~(~~)}/(~~ + X7, (22) 

and 

rycr,) = (n:Q:(a,) + ;Ly&(~l~))j(i;f + ;iF). (23) 

In this case r(zi, CQ) no longer factorizes as in (21). This result also holds 
even if A, and 1, are not strictly degenerate but are sufficiently close 
in value for ]A?/ z 1Ay 1. This is of some importance because of a 
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theorem of Frobenius [7] which shows that the maximum eigenvalue of 
a matrix whose elements are all positive is nondegenerate. P is such a 

matrix as can be seen from Eq. (6). However, if the elements are suficientZy 
small then a practical degeneracy such that I,$ 1 z /@I can still occur 
and I(cc,, CY~) will no longer factorize. The probability of obtaining a 
configuration ‘xz is then dependent upon the configuration c~i, and thus 
the influence of a1 persists for an arbitrarily long time. This influence 
results from the two last terms in Eq. (22) and these involve the two eigen- 
vectors associated with the degenerate maximum eigenvalues. We thus 
have the possibility of states occurring within the brain which are correlated 
over arbitrarily long periods of time. It is worth noting too that the 
characteristics of the states which so persist are describable in terms of the 
eigenvectors associated only with the degenerate maximum eigenvalues. 
In this sense these persistent states are very much simpler to describe 
than an arbitrary state of the brain for they involve only that small set pf 
eigenvectors associated with the degenerate maximum eigenvalues, 
whereas other states of the brain are describably, in general, in terms of 
the full set of 2N eigenvectors. This represents in principle, a very beautiful 
simplification of the behavior of the brain. 

We have assumed that the cycle time, z is of the order of a few msec. 
A time period t then corresponds to t/.r cycles or powers to which we raise 
the operator P. A few seconds thus corresponds to about a thousand 
cycles. For a correlation to exist for even a few seconds then the maximum 
eigenvalues must be degenerate to within a small fraction of a percent. 

Another consequence of a degeneracy of the maximum eigenvalue is 
that under these circumstances and only under these can a correlation 
exist between neurons that are widely separated in the brain. To show 
this we define the topological “distance” between two neurons as the 
integer nij equal to the smallest number of synaptic junctions one need 
cross to get from the one neuron i to the other,j moving always from axon 
to neuron and not vice-versa. In general we expect this integer to be large 
for neurons which are widely separated and nij + nji. In order for the 
firing of i to influence the state ofj, at least nij cycles must occur, so in 
order for neurons i and j to be correlated we need to have a state which 
persists for a period of time at least as long as nijT. The condition then 
for large spatial correlations is identical to the condition for persistent 
states, i.e. a degeneracy of the maximum eigenvalue of P. We see thus 
that the persistent states are characterized by a coherent or correlated 
behavior of the neurons throughout the brain or at least within large 
portions of it. By analogy with the spin system the long range order 
exists not only from row to row (i.e. in time) but also down the rows 

themselves (i.e. in space). 
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Finally we note that whether or not persistent order exists is determined 
by the properties of the matrix P, which in turn are dependent upon the 
parameters p, I/,,, and V, given in (6). In the analogous spin system p 
would be equal to l/kT where k is Boltzmann’s constant and T, the 
temperature; Vjj the interaction energy of the ith and ,jth spin and 
(Cj(Vij/2) - V,} = H, the interaction energy of a spin with a static 
magnetic field. (This can be seen by comparing (6) with Eq. (3.5) of 
Ref. [S].) The transition to the state of long range order occurs at the 
Curie point which, in the absence of a magnetic field, is determined by 
the ratio of Vij/kT. The presence of the field, H = {Cj(Vij/2) - V,,) 

causes a shift of the Curie point and one finds a phase boundary in the 
T, H plane separating the ordered phase from the disordered phase. 

We expect therefore that the transition to the persistent state in the neural 
network would likewise be determined by the relative magnitudes of 
Vi,, H, and l/p. In our choice of the simple expression (4) we have lumped 
all the spread in the uncertainty of firing of the neuron in the parameter p. 
In the actual system we would expect an uncertainty in the size of Vij 
and some fluctuation in the magnitude of H, both of which would be 
dependent on the local physiochemical conditions at the neuron. In our 
model these are the sources of the fluctuations which give rise to the finite 
width of the threshold curve. In our approximation we represent it by the 

single parameter /3. By analogy to the spin system we would expect that 
for fixed values of the set of { Vij} a phase boundary could be defined in 

the H,,, l/p plane. Or, more generally, a surface separating the ordered 
from the disordered state could be defined in the H, l//3, {Vij} space. 
In the simplest model we may assume that the set of { Vij} are scaled by 
the same factor y and that the phase boundary is thus described by a 
surface in the three dimensional space, H, l//l, y. We expect therefore 
that a change in the general physiochemical environment of the neurons 
which give rise to a shift in H or y, could thus drive the network or a 
portion of the network across the phase boundary, transforming that 
portion from the coherently ordered, persistent state to the disordered 
state, or vice versa. In the Appendix we illustrate this with a numerical 
example. Our analogy suggests that such a transition cannot occur 
continuously but must occur discontinuously just as for other phase 
transitions in the solid state or for the liquid-gas transition. 

One additional point worth stressing is that the expression C,(a(P”(a), 
is directly analogous to the partition function for a lattice of M rows of N 

atoms in the spin problem so that all the corresponding behavior of the 
neuronal network can be deduced from it. This describes the time averaged 
behavior of the network because it involves the sum over configurations 
during a period of time, t = MT. 
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7. DISCUSSIONS OF ASSUMPTIONS OF THE MODEL 

Our results have been derived on the basis of five principal assumptions 
or approximations. These are first, that the network has no external 
stimuli, second, that the probability of the neurons firing is a Markov 
process, third, that the neurons are synchronized, fourth, that the transfer 
matrix, P is diagonalizable, and fifth, that the properties of the synaptic 
junctions are fixed in time. We will discuss these in turn. 

ROLE OF EXTERNAL STIMULI 

There are two obvious ways in which one can take into account the 
presence of external stimuli. If the number of synapses from external 
sensors is small compared to the number of synapses connected to neurons 
within the network one could use perturbation theory to calculate the 
changes in the eigenvectors and eigenvalues of the matrix due to external 
stimuli. The sum over CjVij((sj + 1)/2) in (4) would be replaced by 

where Wi, is the postsynaptic potential of the ith neuron arising from a 
signal at the synapse from the kth external source, and ek = f 1 depending 
whether such a signal is present or not. If we treat the sum over Wi, as a 
perturbation when we can show from standard perturbation theory [3] 
that to first order these terms cause a shift in the eigenvalues, with the 
eigenvectors remaining unchanged. For larger Wi, changes will occur in 
the eigenvectors as well. Thus, in principle, one could take these effects 
into account in this way, however, this procedure does not cast much 
light on the role the sensory inputs would play and we propose a second 
way of looking at this aspect of the problem. 

We suggest that the input signals play a somewhat different role from 
the interneuronal signals. We know that a strong external signal results 
in a rapid series of nerve pulses at the synaptic junction. The effect of 
such a barrage of signals would be to generate a fairly constant average 
value for the term (Zk Wik((ek + 1)/2)). Adding this average to V, transforms 
the effective threshold V, to a new threshold ( V0 - Xc, W,,((e, + 1)/2)) 
where the bar represents a time average. We suggest that this shift could 
drive the network or parts of the network across the phase boundary 
from the ordered to the disordered state or vice versa. Thus the external 
stimuli could play the role of initiating the onset of this persistent state and 
similarly other stimuli could terminate this state. If this view is correct 
our model suggests that the persistent state is a representation of long 
term memory. Which particular memory trace is uppermost would be 



PERSISTENT STATES IN THE BRAIN 115 

determined by the eigenvalues which become the degenerate maximum 
eigenvalues under a particular form of the external stimuli given by 

the set of {ek}. 
We suggest that the different eigenvectors of the matrix P represent 

certain memories. Under external stimulus or stimulus from some other 
portion of the brain the eigenvalues are perturbed so two or more become 
degenerate and larger than any others. A new persistent state will then 

evolve dominated .by the structure of the eigenvectors corresponding to 
these maximum eigenvalues and with initial conditions determined’by the 
external stimuli, and thus the active state of the brain carry the information 
contained in the eigenvectors of P. As we pointed out earlier these eigen- 
vectors are determined by the interneuronal connections and the strength 
of the synaptic junctions as given by the set of Vij’s. Changes in these 
would change the properties of the eigenvectors. So in this model the 
process of learning would be any process which resulted in changes in 
Vii and thus in the eigenvectors of P. 

The above model of memory would then require that the sites where 
information is stored would be highly delocalized. This follows because 
the eigenfunctions of P are built up of contributions from neurons through- 
out the entire network. This can be seen from the inverse relationship 

to (1% 
6 = c $l(M>> (24) 

a 

where, in general, contributions to qpr come from all configurations, CL 

MARK0 V ASSUMPTION 

We have made the assumption that only the most recent signals which 
reach a particular neuron determine whether it is to fire or not. We may 

relax this at the cost of greater mathematical complexity. This may be 
done as follows. Instead of describing the state of the brain by the con- 
figuration of neurons which have fired on the last cycle only we can 
describe it by the combination of the last two or more cycles. The transfer 
matrix then becomes correspondingly larger but can be handled in exactly 

the same way so that all our arguments go through as before. This 
generalization in the spin problem corresponds to including both near 
neighbors and next nearest neighbors, next next neighbors, etc. This can 
be handled in the standard way [5] using an expanded transfer matrix. 

SYNCHRONIZATION OF THE NEURONS 

Our third principal assumption was that the neurons could fire only 
at certain prescribed times. Clearly the method we have used hangs 
heavily upon this assumption requiring as it does an evolution of the 
neuronal configuration in a discontinuous manner. Our method cannot 
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simply be modified to take into account a continuous evolution with time. 
To do this some other method would need to be devised to determine the 
nature of the long term correlations between the neuronal configurations. 
This is a formidable task. However, we suggest that the essential feature 
derived above, i.e. that a sharp distinction can be drawn between states 
of persistent order and those without this characteristic, will remain in 
a model in which the neurons are permitted to fire at arbitrary times. 
We base this conjecture on the following argument. 

We have repeatedly invoked the analogy between the neural network 
and a two dimensional spin system. The model spin system in turn gives 
a remarkably good description of the phase transition from the para- 
magnetic to the ferromagnetic phase and of the liquid-gas phase transition. 
The two dimensional Ising system has been solved exactly using the matrix 
method. For its solution by this method one requires a strictly regular 
array of spins. The problem of a disordered lattice of spins cannot be 
solved by the matrix method because the interaction of one row of spins 
with the next cannot be uniquely defined where the concept of the row 
itself is lost as a result of the disorder. Yet we know from physical measure- 
ments that the occurrence of a ferromagnetic phase transition is not 
strongly dependent upon a high degree of order in the crystalline lattice. 
Indeed in an amorphous material such transition can still occur. Likewise 
the actual thermodynamic behavior of the liquid-gas transition is quite 
well described by the behavior of the analogous transition of the lattice 
gas [9]. In the lattice gas model the particles are only allowed to occupy 
mesh points on a regular lattice while in the real gas a particle can, of 
course, occupy any position. In spite of this difference the phase transition 
of the lattice gas is remarkably similar to that of a real gas [lo]. This 
shows that the regularity of the lattice is not essential for the occurrence 
of the phase transition, it merely provides a mathematically convenient 

way of handling the problem. 
In our model our assumption of the strictly regular synchronism of the 

firing of the neurons corresponds to a strictly regular crystalline array. 
By analogy with the above we suggest that just as the regularity of the 
lattice is not essential for the occurrence of the phase transition of the 
spin system or of the lattice gas, so the regularity in the firing is not an 
essential requirement for the occurrence of a transition to an ordered 
persistent state in the neural network. We believe therefore that our 
conclusions should remain even in a more realistic model. 

DIAGONALIZABILITY OF THE CHARACTERISTIC MATRIX 

Our fourth principal assumption is that the matrix P is diagonalizable. 
Without a knowledge of the topology and strength of the various terms 
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in P we cannot tell a priori whether or not P can be diagonalized. We can 
show, however, that our results can be generalized to an arbitrary matrix, 
for while a general matrix cannot always be diagonalized it can be 
reduced to, so called, Jordan Canonical form [ll]. In this form eigen- 
values occur along the main diagonal with ones or zeros on the diagonal 
immediately below it. For example 

Ai 0 0 0 0 . liO 0 0 0 * 
0 A, 0 0 0 . * AiO 0 0. 

where Ai = 

0 0 0 0 A5 .I 
. . . . . . . 

where * = 0 or 1. 

0 0 0 * ;li . 
. . . . . 

A representation of $(M) can now no longer be made in terms of 
eigenvectors alone but must be made in terms of principal vectors [Ill, 

p(m) which satisfy the matrix equation : 

(P - wgP,(4 = 0, (26) 
where P is the matrix, g, an integer, is the grade of the principal vector, 
A an eigenvalue, and Z the identity matrix. If g = 1, p,(a) is simply an 
eigenvector. For g > 1, this equation defines the principal vectors. An 
eigenvector $(z) can be derived from (26) as follows: 

*(a) = &,(P - ~Z)g-‘P,(~). (27) 

It can be shown [12] that for large m the asymptotic form of 

P”p(ct) = mg-‘~m$(cx) + rem), (28) 
where the remainder, r(“‘) is of order mgp2 [Al”. For the particular case of 
g = 1, r(“‘) is zero. Then we obtain the results used in (12) and (14). 
For the general case we must use the above asymptotic form to evaluate 
Eq. (13) and (16). This gives us 

(a’jP”]cc) 2: C M g- ‘KY,,g(~‘)~,,g(~) 
r,Ll 

where $r,g(~) is the eigenvector of eigenvalue, 1, for the principal vector 
p,(a) defined in (27). The conditions for persistent order then are that the 
maximum eigenvalues must be degenerate (A? z ny), and that their 
principal vectors must be of the same grade. 

TIME-INDEPENDENCE OF MODEL PARAMETERS 

We have assumed that Vij, j3, and V, are parameters which are fixed 
in time. It is reasonable to suppose that Vii, in particular, might be 
influenced by learning. We might suppose that repeated firing of a given 
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synaptic junction might result in a permanent change in its physical and 
chemical properties and thus in the corresponding value of Vij. Our model 
has neglected this, however, it appears as if one could extend without great 
difficulty the model to include such nonlinearities. The basis of this hope 
is that in humans at least, in order to learn something new so that it 
becomes part of long term memory one needs to concentrate for at least 
several seconds. We expect therefore that changes in Vij take a time of 
this order to occur. On the other hand we have shown that this corresponds 
to something of the order of a thousand operations of the matrix. So we 
see that the changes in Vij are likely to be small between each operation 
of the matrix operator and thus the nonlinear behavior might be approxi- 
mated by the time-averaged quantities determined in the linear approxima- 

tion. 

8. CONCLUSION 

We have argued that in a neural network the occurrence of states in 
which a correlation persists between neuronal configurations separated 
by long periods of time can occur if and only if the maximum eigenvalues 
of a certain transfer matrix are degenerate. By analogy with other systems 
which show long range order we show that a transition to such a persistent 
ordered state is analogous to a phase transition. We also show that in the 
ordered state a correlation occurs between neurons widely separated in 

the network. 
If such persistent states can be identified in the brain, their presence 

must surely be of considerable significance, for their presence would 
dominate the average values of any quantity determined by the neuronal 
configuration just as the crystalline order dominates the average properties 
of a crystalline solid. It is of some interest to note too that, in general, 
the degeneracy of the eigenvalues of a matrix reflect some symmetry in 
the system which it represents, in fact, this is illustrated by a numerical 
example in the Appendix. This suggests that the capability of having 
persistent states in a neural network should be shown by some symmetry 
of the interneuronal network and the properties of the synaptic junctions. 
It would be interesting to know if this could be seen in the general anatomy 

of the brain. 

APPENDIX 

A better appreciation of some of the features of the model can be 
obtained by a numerical analysis of a simple network. We have considered 
just four neurons connected in various ways, have computed the 16 x 16 
P-matrix for various values of p, Vjj, and V,, and studied the asymptotic 
behavior of PM for large M. 
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As a simple example we let Vij = 1.0 for all i and j and considered 

powers of the matrix up to P 32. For /3 = 0.2 and I’, = 2.0 we find that 
the matrix PM, for large M, is such as to have identical columns, a 
characteristic feature of a matrix normalized as P is, with a nondegenerate 
maximum eigenvalue. On the other hand, for /I = 5.0 and V,, = 2.0 this 
feature is lost making it possible for PM to transfer information of the 
structure of the initial state to the final state. This is the condition for the 
existence of the persistent state. For these values of Vii and I’, the transi- 
tion to the persistent state appears to occur at about /I E 1.0. A sharp 
transition is not expected, however, because the number of neurons is so 

small. 
For an arbitrary choice of the Vii’s and V,, we find that we do not always 

obtain a persistent state even at j? = 5.0. This suggested that in order to 
obtain a degeneracy in the maximum eigenvalue the matrix P must have 
some special symmetry. Upon examination of (5) we notice that for the 
particular choice of conditions such that Cj(Vij/2) - V0 = 0, the matrix 
P would be invariant under the operation which changes the sign of all 
s; and all sj. The choice of parameters of our first example satisfied this 
symmetry condition. On the other hand we find that for either I’, = 4.0 
or V, = 0.0, both of which violate this condition, no persistent state was 
found for /3 = 5.0. In the vicinity of V,, = 2.0, however, the persistent 

state is found. The phase boundary in the /I, V, plane can thus be located. 
Having recognized this symmetry principle we examined a more 

complicated situation with both inhibitory and excitatory synapses 
described by the values of the Vii given in Table 1. These values of Vii 
were chosen again to satisfy the above symmetry principle. Again we 
found a persistent state for p = 5.0 and V, = 2.0 but with a structure 
different from that of our earlier choice of Vii. For V, = 4.0 and 0.0 at 
j3 = 5.0 the nonpersistent state was found. 

TABLE 1 

i 

i 1 2 3 4 

1 -1.0 -1.0 +1.0 +1.0 
2 -1.0 -11.0 +1.0 +1.0 
3 +4.0 +2.0 +1.0 +1.0 
4 t2.0 +2.0 +1.0 +1.0 

These results illustrate some of the essential features of the model: 
first, the existence of the persistent state, second, the existence of a phase 
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boundary in the /?, V, plane, and third, the existence of a symmetry 
principle for determining regions in which degenerate eigenvalues occur. 
One might expect the matrix to be invariant under certain other operations 
for other choices of Vij and V,,. We expect that these would give rise to 
other types of persistent states. 
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