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We propose a test of the null hypothesis that an observable series is stationary around a 
deterministic trend. The series is expressed as the sum of deterministic trend, random walk, and 
stationary error, and the test is the LM test of the hypothesis that the random walk has zero 
variance. The asymptotic distribution of the statistic is derived under the null and under the 
alternative that the series is difference-stationary. Finite sample size and power are considered 
in a Monte Carlo experiment. The test is applied to the Nelson-Plosser data, and for many of 
these series the hypothesis of trend stationarity cannot be rejected. 

1. Introduction 

It is a well-established empirical fact that standard unit root tests fail to 
reject the null hypothesis of a unit root for many economic time series. This 
was first argued systematically in the influential article of Nelson and Plosser 
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(1982), who applied Dickey-Fuller type tests [Dickey (19761, Fuller (19761, 
Dickey and Fuller (197911 to 14 annual U.S. time series and failed to reject 
the hypothesis of a unit root in all but one of the series. These results are not 
changed by allowing for error autocorrelation using the augmented tests of 
Said and Dickey (1984) or the test statistics of Phillips (1987) and Phillips and 
Perron (1988). [We do note, however, that recent work of Choi (1990) that 
deals with error autocorrelation using feasible GLS methods leads to rather 
different conclusions.] Similar results are obtained for many other macroeco- 
nomic time series. A partial listing of empirical studies yielding these findings 
can be found in DeJong et al. (1989). 

The standard conclusion that is drawn from this empirical evidence is that 
many or most aggregate economic time series contain a unit root. However, it 
is important to note that in this empirical work the unit root is the null 
hypothesis to be tested, and the way in which classical hypothesis testing is 
carried out ensures that the null hypothesis is accepted unless there is strong 
evidence against it. Therefore, an alternative explanation for the common 
failure to reject a unit root is simply that most economic time series are not 
very informative about whether or not there is a unit root, or equivalently, 
that standard unit root tests are not very powerful against relevant alterna- 
tives. Several more recent studies have argued that this is indeed the case. 
For example, DeJong et al. (1989) provide evidence that the Dickey-Fuller 
tests have low power against stable autoregressive alternatives with roots 
near unity, and Diebold and Rudebusch (1990) show that they also have low 
power against fractionally integrated alternatives. 

Bayesian analysis offers an alternative means of evaluating how informative 
the data are regarding the presence of a unit root, by providing direct 
posterior evidence in support of stationarity and nonstationarity. Working 
from flat priors, DeJong and Whiteman (1991) found only two of the 
Nelson-Plosser series to have stochastic trends using this approach. Phillips 
(1991) used objective ignorance priors in extracting posteriors and found 
support for stochastic trends in five of the series. 

These studies suggest that, in trying to decide by classical methods whether 
economic data are stationary or integrated, it would be useful to perform 
tests of the null hypothesis of stationarity as well as tests of the null 
hypothesis of a unit root. This paper provides a straightforward test of the 
null hypothesis of stationarity against the alternative of a unit root. There 
have been surprisingly few previous attempts to test the null hypothesis of 
stationarity. Park and Choi (1988) consider a test statistic which is essentially 
the F statistic for ‘superfluous’ deterministic trend variables; this statistic 
should be close to zero under the stationary null but not under the alterna- 
tive of a unit root. Rudebusch (1990) considers the Dickey-Fuller test 
statistics, but estimates both trend-stationary and difference-stationary mod- 
els and then uses the bootstrap to evaluate the distribution of these statistics 
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under each model. Using the Nelson-Plosser data, he often cannot reject 
either the trend-stationary model or the difference-stationary model. DeJong 
et al. (1989) consider the Dickey-Fuller regression 

y,=a+6t+py,_,+.q, (1) 

in which the unit root corresponds to p = 1, but they also test the sfationary 
null hypothesis p = 0.85. For most of the series used by Nelson and Plosser, 
they can reject neither p = 1 nor p = 0.85. Furthermore, this failure to reject 
both hypotheses is shown to be reasonable in terms of the powers of the 
tests, which they explore through Monte Carlo experimentation. 

These are reasonable first attempts to test stationarity, but they all suffer 
from the lack of a plausible model in which the null of stationarity is 
naturally framed as a parametric restriction. Only DeJong et al. test a 
parametric restriction that implies stationarity, and their choice of p = 0.85 
to represent stationarity (as opposed to p = 0.70 or 0.95 or whatever) is 
obviously arbitrary. Clearly stationarity is a composite null hypothesis in 
models like (1) above. 

In this paper we use a parameterization which provides a plausible 
representation of both stationary and nonstationary variables and which leads 
naturally to a test of the hypothesis of stationarity. Specifically, we choose a 
components representation in which the time series under study is written as 
the sum of a deterministic trend, a random walk, and a stationary error. The 
null hypothesis of trend stationarity corresponds to the hypothesis that the 
variance of the random walk equals zero. Under the additional assumptions 
that the random walk is normal and that the stationary error is normal white 
noise, the one-sided LM statistic for the trend stationarity hypothesis is the 
same as the locally best invariant (LB11 test statistic and follows from Nabeya 
and Tanaka (1988). However, the assumption that the error is white noise is 
not credible in many applications, since it implies that under the null 
hypothesis the variable should have iid deviations from trend. We therefore 
proceed in the spirit of Phillips (1987) and Phillips and Perron (1988) by 
deriving the asymptotic distribution of the statistics under general conditions 
on the stationary error, and we propose a modified version of the LM statistic 
that is valid asymptotically under these general conditions. The asymptotic 
distribution is nonstandard, involving higher-order Brownian bridges. 

When we apply this test to the Nelson-Plosser data, our results depend on 
the way that the deterministic trend is accommodated. For almost all series 
we can reject the hypothesis of level stationarity, but for many of the series 
we cannot reject the hypothesis of trend stationarity. The latter result is in 
broad agreement with the results of DeJong et al. (1989) and Rudebusch 
(1990), and with the aforementioned Bayesian analyses of DeJong and 
Whiteman (1991) and Phillips (19911. It suggests that for many series the 
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existence of a unit root is in doubt, despite the failure of Dickey-Fuller tests 
(and other unit root tests) to reject the unit root hypothesis. 

2. The LM statistic for the stationarity hypothesis 

Let y,, t=1,2 ,..., T, be the observed series for which we wish to test 
stationarity. We assume that we can decompose the series into the sum of a 
deterministic trend, a random walk, and a stationary error: 

yt = c$t + rt + & I’ (2) 

Here T, is a random walk: 

r,=r,_, +u,, (3) 

where the U, are iid (0, aU2>. The initial value r. is treated as fixed and serves 
the role of an intercept. The stationarity hypothesis is simply uU2 = 0. Since &r 
is assumed to be stationary, under the null hypothesis y, is trend-stationary. 
We will also consider the special case of the model (2) in which we set 5 = 0, 
in which case under the null hypothesis yt is stationary around a level (rO) 
rather than around a trend. 

The statistic we will use is both the one-sided LM statistic and the LB1 test 
statistic for the hypothesis Us, 2 = 0 under the stronger assumptions that the U, 
are normal and that the E, are iid N(O,U,~). [Because the parameter value 
specified by the null hypothesis is on the boundary of the parameter space, 
we are interested in a one-sided LM test rather than a two-sided test; see, 
e.g., Rogers (19861.1 Nyblom and Makelainen (1983) give the LB1 statistic for 
the level-stationary case (5 = 0) of our model. Nyblom (1986) considers a 
model equivalent to our model and gives the LB1 test statistic, but a more 
convenient expression follows from deriving the statistic as a special case of 
the statistic developed by Nabeya and Tanaka (1988) to test for random 
coefficients. [Other relevant references include Tanaka (1983), Franzini and 
Harvey (19831, and Leybourne and McCabe (19891, and a general discussion 
can be found in Harvey (19891.1 Nabeya and Tanaka consider the regression 
model 

Y,=x,P,+z:Y+E I, (4) 

in which the scalar /?, is a normal random walk (/3, = p,_, + u,, with the U, 
iid) and the errors E, are iid N(0, aF2>. They test the hypothesis uU2 = 0, so 
that they test the null hypothesis of constancy of regression coefficients 
against the alternative of random walk coefficients. Our model (2) is obvi- 
ously the special case of their model in which X, = 1 for all t, z, = t, and their 
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p, is our T,. If we set 5 = 0 in (21, so as to test the hypothesis of level 
stationarity, this corresponds to eliminating z, from their model, in which 
case we have the simpler model of Nyblom and Makelainen (1986) and 
Tanaka (1983). 

The appendix gives the details of the Nabeya and Tanaka statistic for our 
model. The end result is very simple. Let e,, t = 1,2,. . . , T, be the residuals 
from the regression of y on an intercept and time trend. Let 3,’ be the 
estimate of the error variance from this regression (the sum of squared 
residuals, divided by T). Define the partial sum process of the residuals: 

s, = f: ei, t=1,2 ,..., T. (5) 
i=l 

Then the LM (and LBI) statistic is 

LA4 = 5 Sf/G,“. (6) 
t=1 

Furthermore, in the event that we wish to test the null hypothesis of level 
stationarity instead of trend stationarity, we simply define e, as the residual 
from the regression of y on an intercept only (that is, e, = yl - j) instead of 
as above, and the rest of the construction of the test statistic is unaltered. 

The test is an upper tail test. Critical values that are valid asymptotically 
will be supplied in the next section. 

The statistic (6) also may arise in other contexts. Saikkonen and 
Luukkonen (1990) derive a statistic of the same form as (6) as the locally best 
unbiased invariant test of the hypothesis 0 = - 1 in the model Ay, = u, + 

Out_ 1, with E( y,) unknown and playing the role of intercept in our model, 
and with the U, iid normal. [See also Tanaka (1990bXl Note that our model 
(2) implies that Ay, = 5 + u, + As,. Define W, = U, + As, as the error in this 
expression for Ay,. If U, and E, are iid and mutually independent, W, has a 
nonzero one-period autocorrelation, with all other autocorrelations equal to 
zero, and accordingly it can be expressed as an MA(l) process: W, = U, + Bu,_ i. 
Thus our model and the model of Saikkonen and Luukkonen are equivalent 
to the ARIMA model: 

Yt=t+PY,-‘+w,, w,=u,+eu,_‘, p = 1. (7) 

Let A = a:/~~‘. Then the connection between 8 and A is straightforward 
[see, e.g., Harvey (1989, p. 68)l: 

8= ++2)-[h(A+4)]“*}/2, A = -(1+0)*/t’, (8) 

A>O, lel <l. 
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Thus A = 0 corresponds to 0 = - 1 (stationarity), while A = ~0 corresponds to 
0 = 0 (so y is a pure random walk). 

Eq. (7) shows an interesting connection between our tests and the usual 
Dickey-Fuller tests. The Dickey-Fuller tests test /3 = 1 assuming 8 = 0; 0 is 
a nuisance parameter. We effectively test f3 = - 1 assuming /? = 0; now p is 
the nuisance parameter. 

3. Asymptotic theory 

In this section we consider the asymptotic distribution of the LM statistic 
given in (6) above. The LM statistic was derived under the assumption that 
the errors F~ are iid N(0,aE2). However, in this section we will consider the 
asymptotic distribution of the statistic under weaker assumptions about the 
errors. As argued in the Introduction, this is important because the series to 
which the stationarity test will be applied are typically highly dependent over 
time, and so the iid error assumption under the null is unrealistic. To allow 
for quite general forms of temporal dependence we may assume that the F, 
satisfy the (strong mixing) regularity conditions of Phillips and Perron (1988, 
p. 336) or the linear process conditions of Phillips and Solo (1989, theorems 
3.3,3.14). The Phillips-Perron regularity conditions have been used exten- 
sively by subsequent authors, including Leybourne and McCabe (1989). The 
Phillips-Solo conditions are especially useful because they conveniently allow 
for all ARMA processes, with either homogeneous or heterogeneous innova- 
tions. 

Nabeya and Tanaka provide the asymptotic distribution of our test statis- 
tics for the case where the F process is iid, and our results are therefore an 
extension of theirs. Some of our results are a special case of results in 
McCabe and Leybourne (1988). [See also Leybourne and McCabe (1989).] 

We define the ‘long-run variance’ as 

a*= lim T-i E(S:), 
T+m (9) 

which will enter into the asymptotic distribution of the test statistic. A 
consistent estimator of g2, say ~~(0, can be constructed from the residuals 
e,, as in Phillips (1987) or Phillips and Perron (1988); specifically, we will use 
an estimator of the form 

32(Z) = T-’ ; e; + 2T-’ f: w(s, I) i e,e,_,. (IO) 
t=1 s=l t=.T+ 1 

Here w(s, I) is an optional weighting function that corresponds to the choice 
of a spectral window. We will use the Bartlett window w(s, I) = 1 - s/(1 + 1) 
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as in Newey and West (19871, which guarantees the nonnegativity of s*(1). 
For consistency of s’(Z), it is necessary that the lag truncation parameter 
1 + CC as T + a. The rate I = o(T’j2) will usually be satisfactory under both 
the null [e.g., Andrews (199111 and the alternative [see section 4 below]. 

For the tests of both the level-stationary and trend-stationary hypotheses, 
the denominator of the LM statistic in (6) is G,‘, which converges in 
probability to v,~. However, when the errors are not iid, the appropriate 
denominator of the test statistic is an estimate of a2 instead of aE2. To 
establish this, consider the numerator of the test statistic, normalized by T-*: 

77 = T-*ES;. (11) 

We will show that 77 has an asymptotic distribution equal to a2 times a 
functional of a Brownian bridge, so that division by s’(Z) (or by any other 
consistent estimate of (~~1 gives an asymptotic distribution free of nuisance 
parameters. 

We consider first the level-stationary case. The model is as in eq. (2) with 5 
set to zero, so that the residuals e, are from a regression of y on intercept 
only; that is, e, = yI - j. S, is then the partial sum process of the residuals e, 
as in eq. (5). Let nc, be as defined in (111, with the subscript k indicating that 
we have extracted a mean but not a trend from y. It is well known that the 

partial sums of deviations from means of a process satisfying the assumptions 
of Phillips and Perron (1988) converge to a Brownian bridge, and this implies 
that 

qL+a2 / ‘I’(r)’ dr. 
0 

(12) 

Here V(r) is a standard Brownian bridge: V(r) = W(r) - rW(l), where W(r) 
is a Wiener process (Brownian motion). The symbol + in (12) signifies weak 
convergence of the associated probability measures. The limit (121 is a special 
case of a result obtained previously by McCabe and Leybourne (1988) in the 
context of tests for random walk regression coefficients. 

As noted above, we now divide 77LL by a consistent estimate of u2 to get the 
test statistic that we will actually use. We will indicate this division with a hat 
(^), so that the test statistic is 

+j, = T/,/s~( f) = T-2 ~S;/s*( 1). (13) 
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Table 1 

Upper tail critical values for $, and 4,. 

TV: Upper tail percentiles of the distribution of / ‘V(r)‘dr 
0 

Critical level: 0.10 0.05 0.025 0.01 
Critical value: 0.347 0.463 0.574 0.739 

qT: Upper tail percentiles of the distribution of _/j’VL(~)z dr 

Critical level: 0.10 0.05 0.025 0.01 
Critical value: 0.119 0.146 0.176 0.216 

It follows immediately from (12) and from the consistency of s2(1> that 

7j, + / ‘V(r)’ dr. 
0 

(14) 

Table 1 gives upper tail critical values of /I’(r12 dr, calculated via a direct 
simulation, using a sample size of 2000, 50,000 replications, and the random 
number generator GASDEV/RAN3 of Press, Flannery, Teukolsky, and 
Vetterling (1986). These critical values agree closely with those given by 
MacNeill (1978, table 2, p. 4311, Nyblom and Makelainen (1983, table 1, 
p. 859), McCabe and Leybourne (1988, table 3), and Nabeya and Tanaka 
(1988, table 1, p. 232). 

A feasible alternative to simulation is to use numerical integration to invert 
the characteristic function of the quadratic functional of Brownian motion. 
This approach is taken by Nabeya and Tanaka (1988) and Tanaka (1990a). It 
involves some complexity of expression (e.g., the use of Fredholm determi- 
nants) but is in principle exact, apart from numerical errors in evaluation of 
the required integrals. 

The analysis of the trend-stationary case is very similar to that of the 
level-stationary case. The model is now exactly as in eq. (2). Let e, be the 
residuals from a regression of yr on intercept and trend, and let S, be 
the partial sum process of the e, as in (5). Furthermore let 7, be as defined 
in (111, where the subscript T indicates that we have extracted a mean and a 
trend from y, and serves to distinguish the trend-stationary case from the 
level-stationary case. 

The partial sum process of residuals from a regression of a process 
satisfying the assumptions of Phillips and Perron (1988) on intercept and 
trend converges to a so-called second-level Brownian bridge, as given by 
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MacNeill (1978) or Schmidt and Phillips (1989, app. 3). Thus we have 

77, -+ u 2 
/ 
‘V2( r)’ dr, 

0 
(15) 

where the second-level Brownian bridge L’,(r) is given by 

V,(r)=W(r)+(2r-3r*)W(l)+(-6r+brZ)&’W(s)ds. (16) 

[Our V, is MacNeill’s B, (1978, p. 426j.l As previously, we use a hat (^I to 
indicate that the test statistic has been divided by a consistent estimate of o*, 
and in this notation the test statistic is 

$,=~,/s2(f) = T-2CS‘?/.s2(f). 

Its asymptotic distribution is given by 

ij+ ‘V,(r)‘dr. 
/ 0 

(17) 

(18) 

The upper tail critical values of /Vz(rj2 dr are also given in table 1. They 
agree closely with the critical values given by MacNeill (1974, table 2, p. 431) 
and Nabeya and Tanaka (1988, table 2, p. 233). 

4. Consistency of the test 

In this section we consider the asymptotic distributions of the <,, and ;i, 
tests under the alternative hypothesis that a,* # 0. Our interest is in showing 
that the tests are consistent. This is nontrivial because, under the alternative 
hypothesis, both the numerator and the denominator of the test statistics 
diverge. We show that the numerator is OJT2) while the denominator is 
OJIT), so that the test statistic is O,(T/I). Since T/l --) ~4 as T + 00, the tests 
are consistent. 

We establish this result first for the level-stationary case. We start with the 
numerator of the statistic, and we first observe that, since the U, are iid, 

[bTI 
= T-‘12 C uj + U,W( b), 

j=l 

(19) 
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where b E [O, 11 and [bT] is the integer part of bT. Then 

CuTI CuTI 
~-3/2~~,,~ = ~-312 c (r, - ‘) + Tp3’2 c (E, - F) 

j=l j=l 

[UT] 
=T-3’2 c (r,+)+o,(l) 

j=l 

[aTI 
=T-1 c T-‘/2 rj - ( [uT]/T)T~‘/~~: 

j=l 

where _w<.s> is the demeaned Wiener process 

_W( S) = W(S) - /‘W(b) db. 
0 

(21) 

Therefore 

Tp4 ; Sf = T-’ 5 (T-3/2Sr)2 -c$/‘( j?J’(s) dsj2 da, 
t=1 I=1 0 0 

(22) 

so that Te2cS: is indeed 0,(T2> as claimed in the preceding paragraph. 
The argument for the denominator of the test statistic, s2(1>, is more 

straightforward. From Phillips (1991, unnumbered equation between (AlO) 
and (All)) we have that 

(lT)p1s2(l) +Ku;Z@‘(s)‘ds, (23) 

provided T-‘/2l + 0 as T -+ ~0. The constant K is defined by 

K= 
/ 

’ k(s) ds, (24) 
-1 

where k(s) represents the weighting function used in s(l); in our case, 
w(s,l) = k(s/l) in the notation of eq. (10) above. For the Newey-West 
estimator, k(s) = 1 - IsI and therefore K = 1. Obviously (23) implies that 
~~(1) is 0,(/T). 
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Since T-‘CS,? is 0p(T2) and ~~(1) is 0,(/T), we deduce that ?j,, is 
O,(T/l). Given that 1 grows less quickly than T, the test is consistent. 
However, we have in fact established more than just the order in probability 
of the test statistic. Under the alternative hypothesis, (22) and (23) imply that 

2 da/K@l’( s)’ ds. (25) 

Note that this limit is free of nuisance parameters because the scale effect 
from the variance au2 # 0 in the numerator and denominator of the limit 
cancels. 

The analysis for the trend-stationary case (i.e., for the statistic i),) is only 
slightly more complicated. We just need to replace the demeaned Wiener 
process _W((s) above with the demeaned and detrended Wiener process 
w*(s): 

This is given by Park and Phillips (1988, eq. (16), p. 474), who prove the 
equivalent of our (20) above, when S, is the partial sum process of the 
residuals of an integrated process on intercept and time trend. The rest of 
our analysis then follows without further change. 

5. Size and power in finite samples 

In this section we provide some evidence on the size and power of the fi, 
and ;I, tests, in finite samples. Most of this evidence is based on simulations, 
using the same random number generator as in section 3 and using 20,000 
replications. 

We first consider the size of the tests in the presence of iid errors. The null 
hypothesis specifies au2 = 0. Furthermore, it is easy to see that the distribu- 
tions of the statistics under the null do not depend on the parameters ra, 5, 
and aE2, since the residuals upon which the tests are based do not depend on 
r0 or 5, and the scale factor a, appears in both numerator and denominator 
and therefore cancels. Thus, the sizes of the tests depend only on sample size 
CT) and on the number of lags (I) used to calculate ~~(1). Table 2 gives size as 
a function of T and 1. We consider T from 30 to 500, with special emphasis 
on the relevant range for the Nelson-Plosser data, and we consider three 
values of 1 as a function of T: IO = 0, 14 = integer[4(T/100)1/4], and 112 = 
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Table 2 

Size of +jh and 7jT, 5% level, iid errors. 

1 
q& TI, 

T --10 14 112 10 14 112 

~~ 30 0.049 0.038 0.004 0.054 0.041 0.248 
50 0.050 0.039 0.012 0.052 0.043 0.035 
60 0.050 0.040 0.02 1 0.052 0.043 0.035 
70 0.048 0.042 0.025 0.05 I 0.042 0.033 
80 0.049 0.045 0.029 0.049 0.042 0.032 
90 0.048 0.043 0.030 0.051 0.045 0.034 

100 0.049 0.043 0.029 0.049 0.044 0.033 
110 0.050 0.044 0.033 0.05 1 0.045 0.035 
120 0.051 0.045 0.034 0.052 0.046 0.038 
200 0.05 1 0.049 0.041 0.052 0.048 0.040 
500 0.050 0.048 0.046 0.052 0.05 1 0.049 

integer[12(T/100)‘/4]. These choices of f follow Schwert (19891 and other 
recent simulations. 

We can see in table 2 that the tests have approximately correct size except 
when T is small and 1 is large. For I= 0, the tests have correct size even for 
T = 30, so that the asymptotic validity of the tests holds even for fairly small 
samples. Using 1 = 14, the tests are slightly less accurate, and the improve- 
ment as T increases is slow. For 1 = 112, there are considerable size distor- 
tions for T = 30 and moderate distortions (too few rejections) even for 
T = 100 or 200, though the tests are quite accurate for T = 500. Unsurpris- 
ingly, the larger 1, the larger is the sample size required for the asymptotic 
results to be relevant. 

We next consider the size of the tests in the presence of autocorrelated 
errors. In particular, we will consider AR(l) errors, of the form E, = PE,_, + 
y,, with the y, iid. The AR(l) parameter p is a convenient nuisance 
parameter to consider, since it naturally measures the distance of the null 
from the alternative. In particular, under the null that a,,* = 0, yt becomes a 
random walk as p --f 1. As a result, we expect a problem of overrejection for 
p > 0, with its severity depending on how close p is to unity. 

Table 3 presents our simulation results giving the size of the tests for p = 0, 
+0.2, kO.5, and f0.8, and for T between 30 and 500. As expected, the tests 
reject too often for p > 0 and too seldom for p < 0. The overrejection 
problem is very severe for I = 0, which is not surprising since the test is not 
valid even asymptotically in this case. However, the 14 and 112 versions of the 
tests do not improve very rapidly with sample size. The 14 tests have 
moderate size distortions for p = 0.5 and considerable distortions for p = 0.8, 
while the 112 tests are fairly good for T 2 30 and p s 0.5, but not so good for 
p = 0.8. Unfortunately, p = 0.8 is a plausible parameter value since, if we 
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- 

P 

ii 

0.s 

0.2 

T 10 

A 

?P 
14 112 

7, 

10 14 112 

30 0.654 0.301 0.007 0.769 0.317 0.124 
50 0.725 0.264 0.039 0.886 0.319 0.057 
80 0.779 0.300 0.080 0.936 0.401 0.084 

100 0.796 0.250 0.081 0.952 0.337 0.092 
120 0.807 0.256 0.091 0.960 0.354 0.104 
200 0.833 0.271 0.094 0.977 0.396 0.108 
500 0.852 0.239 0.092 0.989 0.361 0.111 

30 0.321 0.114 0.005 
50 0.331 0.098 0.021 
80 0.350 0.108 0.042 

100 0.352 0.090 0.043 
120 0.359 0.092 0.047 
200 0.367 0.099 0.053 
500 0.370 0.090 0.058 

0.425 0.129 0.178 
0.486 0.113 0.047 
0.521 0.124 0.046 
0.538 0.107 0.047 
0.542 0.114 0.054 
0.559 0.121 0.054 
0.586 0.110 0.062 

30 0.118 0.055 0.004 
50 0.118 0.053 0.015 
80 0.122 0.060 0.033 

100 0.123 0.054 0.033 
120 0.125 0.057 0.038 
200 0.128 0.061 0.045 
500 0.129 0.059 0.049 

0.147 0.062 0.227 
0.156 0.059 0.045 
0.157 0.060 0.036 
0.159 0.057 0.038 
0.166 0.064 0.042 
0.168 0.065 0.043 
0.170 0.065 0.052 

- 0.2 30 
50 
80 

100 
120 
200 
500 

- 0.5 30 
50 
80 

100 
120 
200 
500 

- 0.8 30 
50 
80 

100 
120 
200 
500 

Table 3 

Size of 6, and 7j,, 5% level, AR(l) errors. 

0.017 
0.015 
0.014 
0.014 
0.014 
0.014 
0.014 

0.002 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.025 0.003 0.016 0.027 0.268 
0.029 0.011 0.012 0.029 0.039 
0.034 0.024 0.011 0.031 0.028 
0.033 0.026 0.010 0.031 0.029 
0.036 0.029 0.013 0.035 0.034 
0.038 0.037 0.011 0.036 0.036 
0.013 0.042 0.010 0.039 0.042 

0.010 0.002 
0.015 0.007 
0.018 0.017 
0.019 0.020 
0.020 0.023 
0.021 0.030 
0.026 0.036 

0.002 0.001 
0.007 0.002 
0.008 0.007 
0.007 0.007 
0.003 0.010 
0.008 0.015 
0.010 0.022 

0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.010 0.301 
0.016 0.032 
0.015 0.021 
0.016 0.021 
0.019 0.025 
0.020 0.029 
0.024 0.036 

0.001 0.319 
0.013 0.028 
0.008 0.013 
0.002 0.009 
0.002 0.011 
0.002 0.015 
0.008 0.020 
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T 

30 

50 

100 

200 

500 

A 

0.0001 
0.001 
0.01 
0.1 
1 

100 
10000 

0.0001 
0.001 
0.01 
0.1 
1 

100 
10000 

0.0001 
0.001 
0.01 
0.1 
1 

100 
10000 

0.0001 
0.001 
0.01 
0.1 
1 

100 
10000 

0.0001 
0.001 
0.01 
0.1 
1 

100 
10000 

Table 4 

Power of 6, and Q,, 5% level, iid errors. 

10 

0.050 
0.058 
0.146 
0.514 
0.806 
0.883 
0.887 

0.051 
0.075 
0.287 
0.721 
0.924 
0.958 
0.959 

0.063 
0.168 
0.587 
0.927 
0.989 
0.994 
0.998 

0.097 
0.399 
0.846 
0.990 
0.999 
1.00 
1.00 

0.307 
0.788 
0.997 
1.00 
1.00 
1.00 
1.00 

- 
14 112 10 14 112 

0.038 0.004 0.053 0.040 0.243 
0.046 0.004 0.054 0.042 0.244 
0.110 0.009 0.080 0.056 0.240 
0.403 0.034 0.287 0.189 0.200 
0.600 0.053 0.725 0.431 0.152 
0.639 0.059 0.875 0.485 0.147 
0.641 0.059 0.888 0.508 0.141 

0.041 0.013 0.054 0.041 0.045 
0.060 0.020 0.060 0.047 0.048 
0.232 0.089 0.129 0.096 0.065 
0.566 0.267 0.547 0.357 0.129 
0.683 0.332 0.914 0.579 0.171 
0.703 0.342 0.947 0.608 0.174 
0.704 0.343 0.974 0.627 0.176 

0.055 0.038 0.054 0.047 0.036 
0.147 0.100 0.084 0.070 0.053 
0.508 0.376 0.352 0.278 0.172 
0.762 0.55 1 0.878 0.675 0.357 
0.818 0.579 0.993 0.810 0.41 I 
0.826 0.584 0.999 0.825 0.417 
0.827 0.582 0.999 0.820 0.410 

0.092 0.078 0.065 0.060 0.051 
0.372 0.314 0.193 0.174 0.132 
0.776 0.626 0.729 0.645 0.448 
0.924 0.713 0.990 0.922 0.637 
0.943 0.725 1.00 0.956 (1.667 
0.945 0.726 1.00 0.961 0.672 
0.947 0.725 1 .oo 0.966 0.675 

0.295 0.275 0.137 0.132 0.118 
0.757 0.682 0.621 0.583 0.503 
0.962 0.865 0.983 0.957 0.843 
0.989 0.897 1.00 0.996 0.903 
0.992 0.901 1 .oo 0.998 0.911 
0.992 0.901 1 .oo 0.998 0.911 
0.992 0.901 1.00 0.998 0.91 1 

take most series to be stationary, their first-order autocorrelations will often 
be in this range. 

Finally, we consider the power of the tests. Table 4 presents simulation 
results giving the powers of the tests in the presence of iid errors, as a 
function of the only two relevant parameters, T and A, where as before 
A = aU2/uE2. This is done for T between 30 and 500 and A between 0.0001 
and 10,000. 
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For a given T, power increases with A (except for the 112 version of 5, at 
T = 301, as expected. However, as A -+ ~4 power approaches a limit that is not 
necessarily unity. Since A = 03 corresponds to 0 = 0 in the ARIMA represen- 
tation (7), this is reasonable. The limiting powers as A + m are well predicted 
by our asymptotics under the alternative, as given by eq. (2.5) of section 4. 
(Recall that the presence of stationary error does not affect the asymptotic 
distribution of the statistics under the alternative. In that sense these asymp- 
totics correspond to at.2 = 0, or A = m.> For example, for 6, with I = 0 and 
T = 30, the actual (simulation) power of 0.888 (for A = 10,000) compares to 
0.880 predicted by (25). Similarly, for T = 100 and 1 = 12, the actual power of 
0.410 compares to 0.417 predicted by (25). 

Conversely, the power of the 6, test for I = 0 and for small A is well 
predicted by the asymptotics of Tanaka (1990b), who considers asymptotic 
behavior as T -+ m, with 0 = - 1 + c/T and c fixed. Thus as T + 00 he has 
0 - - 1, or A + 0. For example, for T = 30 and A = 0.1, the actual (simula- 
tion) power of 0.514 compares to the predicted power of 0.505, and for 
T = 200 and A = 0.001 the actual power of 0.399 compares to predicted 
power of 0.400. 

Power also increases as T increases for fixed A (again, except for small T 
and 1 = 1121, which is presumably a reflection of the consistency of the tests. 
The rate at which this happens depends strongly on 1. Again, this is as 
predicted by our asymptotics under the alternative. It should be stressed that 
the distribution of our tests under the alternative depends on I (i.e., on I/T) 
even asymptotically, so that there is a clear supposition that choosing I larger 
will cost power, as indeed it does in our simulations. For the $, test with 
T I 100, for example, power with 1= 112 is never larger than 0.42 no matter 
how large A is. With 1= 14, on the other hand, there is reasonable power for 
T in the empirically relevant range of 50 to 100 if A is larger than, say, 0.1. 
Thus for T in this range there is a clear, if unattractive, trade-off between 
correct size and power: choosing I large enough to avoid size distortions in 
the presence of realistic amounts of autocorrelation will make the tests have 
very little power. Only for T 2 200 do we find appreciable power without the 
risk of very substantial size distortions. 

6. Application to the Nelson-Plosser data 

In this section we apply our tests for stationarity to the data analyzed by 
Nelson and Plosser (1982). These are U.S. annual data covering from 62 to 
111 years and ending in 1970. These data have been analyzed subsequently 
by many others, including Perron (1988) and DeJong et al. (1989). A rough 
assessment of their findings is as follows. For 12 of the 14 series, we clearly 
cannot reject the null hypothesis of a unit root. The unit root hypothesis is 
generally rejected for the unemployment rate series and the industrial 
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Table 5 

$, and $, tests for trend stationarity applied to Nelson-Plosser data. 

Lag truncation parameter (I) 

Series 

Real GNP 
Nominal GNP 
Real per capital GNP 
Industrial production 
Employment 
Unemployment rate 
GNP deflator 
Consumer prices 
Wages 
Real wages 
Money 
Velocity 
Interest rate 
Stock prices 

Real GNP 
Nominal GNP 
Real per capital GNP 
Industrial production 
Employment 
Unemployment rate 
GNP deflator 
Consumer prices 
Wages 
Real wages 
Money 
Velocity 
Interest rate 
Stock prices 

0 1 2 3 4 5 6 7 8 

7,: 5% critical value is 0.463 

5.96 3.06 2.08 1.59 1.30 1.11 0.97 0.86 0.78 
5.81 2.98 2.04 1.56 1.28 1.09 0.95 0.85 0.77 
5.54 2.84 1.94 1.50 1.22 1.05 0.92 0.82 0.75 

10.79 5.48 3.70 2.81 2.27 1.92 1.66 1.47 I .32 
7.57 3.87 2.63 2.01 1.64 1.39 1.21 1.08 0.98 
0.31 0.18 0.14 0.11 0.10 0.10 0.09 0.09 0.09 
7.51 3.82 2.59 1.97 1.60 1.35 1.18 I .04 0.94 
7.90 4.02 2.73 2.08 1.69 1.43 1.24 1.10 0.99 
6.72 3.43 2.33 1.78 1.45 1.23 1.07 0.95 0.86 
6.96 3.55 2.40 1.83 1.48 1.26 1.09 0.97 0.88 
8.01 4.08 2.76 2.10 1.70 1.44 1.25 1.11 1.00 
8.40 4.29 2.90 2.21 1.80 1.52 1.32 1.17 1.05 
0.78 0.42 0.30 0.24 0.20 0.17 0.16 0.14 0.13 
8.01 4.10 2.79 2.13 1.74 1.48 1.29 1.15 1.04 

6,: 5% critical value is 0.146 

0.630 0.337 0.242 0.198 0.173 0.158 0.148 0.141 0.137 
0.755 0.392 0.273 0.215 0.181 0.159 0.143 0.132 0.124 
0.528 0.283 0.204 0.167 0.147 0.134 0.126 0.121 0.118 
0.822 0.446 0.320 0.257 0.220 0.196 0.179 0.166 0.155 
0.526 0.278 0.198 0.158 0.136 0.122 0.112 0.105 0.101 
0.216 0.124 0.094 0.079 0.071 0.066 0.063 0.061 0.061 
0.492 0.256 0.178 0.140 0.117 0.103 0.093 0.086 0.081 
1.85 0.943 0.641 0.491 0.401 0.342 0.301 0.270 0.246 
0.612 0.317 0.220 0.173 0.145 0.128 0.115 0.107 0.101 
0.956 0.511 0.365 0.293 0.252 0.226 0.208 0.194 0.184 
0.445 0.228 0.158 0.124 0.104 0.092 0.084 0.079 0.075 
1.78 0.932 0.647 0.504 0.418 0.360 0.319 0.287 0.262 
0.845 0.457 0.323 0.255 0.214 0.186 0.166 0.151 0.140 
1.23 0.646 0.454 0.359 0.302 0.264 0.237 0.216 0.199 

production series. The conventional wisdom is that these results indicate the 
presence of a unit root in most of the Nelson-Plosser series. We wish to 
check whether our approach to testing stationarity corroborates this reading 
of the data. 

In table 5 we first present the $, test statistic for the null hypothesis of 
stationarity around a level. We consider values of the lag truncation parame- 
ter 1 (used in the estimation of the long-run variance) from zero to eight. The 
choice of eight as the maximal value of 1 is based on two considerations. 
First, for most of the series the value of the long-run variance estimate has 
settled down reasonably by the time we reach 1 = 8, and so the value of the 
test statistic has also settled down. Second, based on the simulations of the 
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previous section, I= 8 is a compromise between the large size distortions 
under the null that we would expect for 1 = 4 and the very low power under 
the alternative that we would expect for 1 = 12. Unfortunately, the values of 
the test statistics are fairly sensitive to the choice of 1, and in fact for every 
series the value of the test statistic decreases as 1 increases. This occurs 
because ~~(1) increases as 1 increases, and is a reflection of large and 
persistent positive autocorrelations in the series. Nevertheless, the outcome 
of the tests is not in very much doubt: for all series except the unemployment 
rate and the interest rate, we can reject the hypothesis of level stationarity. 

The ability to reject the hypothesis of level stationarity is not very surpris- 
ing in light of the obvious deterministic trends present in these series. We 
therefore proceed to test the null hypothesis of stationarity around a deter- 
ministic linear trend, for which 5, is the appropriate statistic. Once again the 
test statistics decline monotonically as 1 increases, and in this case the choice 
of 1 is important to the conclusions. If we did not correct for error autocorre- 
lation at all, which corresponds to picking I= 0, we would reject the null 
hypothesis of trend stationarity for every series. As argued above, for tempo- 
rally dependent series such as the ones under consideration, iid errors are 
not plausible under the null hypothesis, and failing to allow for autocorrela- 
tion is not recommended. Using the results for I= 8, we find that we can 
reject the hypothesis of trend stationarity at the 5% level for five series: 
industrial production, consumer prices, real wages, velocity, and stock prices. 
For three other series (real GNP, nominal GNP, and interest rate) we can 
reject the hypothesis of trend stationarity at the 10% level. We cannot reject 
the null hypothesis of trend stationarity at usual critical levels for six series: 
real per capita GNP, employment, unemployment rate, GNP deflator, wages, 
and money. These empirical results seem to be very much in accord with the 
Bayesian posterior analysis in Phillips (1991). 

Combining the results of our tests of the trend stationarity hypothesis with 
the results of the Dickey-Fuller tests, the following picture emerges. The 
unemployment series appears to be stationary, since we can reject the unit 
root hypothesis and cannot reject the trend stationarity hypothesis. Four 
series (consumer prices, real wages, velocity, and stock prices) appear to have 
unit roots, since we can reject the trend stationarity hypothesis and cannot 
reject the unit root hypothesis. Three more series (real GNP, nominal GNP, 
and the interest rate) probably have unit roots, though the evidence against 
the trend stationarity hypothesis is only marginally significant. For six series 
(real per capita GNP, employment, unemployment rate, GNP deflator, 
wages, and money) we cannot reject either the unit root hypothesis or the 
trend stationarity hypothesis, and the appropriate conclusion is that the data 
are not sufficiently informative to distinguish between these hypotheses. 
Finally, for the industrial production series, there is evidence against both 
hypotheses, and thus it is not clear what to conclude. Presumably other 
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alternatives, such as explosive roots, fractional integration, or stationarity 
around a nonlinear trend, could be considered. 

7. Concluding remarks 

We have presented statistical tests of the hypothesis of stationarity, either 
around a level or around a linear trend. These tests could be extended to 
allow for nonlinear trends, along the same lines as in Schmidt and Phillips 
(1989, sect. 5). The tests are intended to complement unit root tests, such as 
the Dickey-Fuller tests. By testing both the unit root hypothesis and the 
stationarity hypothesis, we can distinguish series that appear to be stationary, 
series that appear to have a unit root, and series for which the data (or the 
tests) are not sufficiently informative to be sure whether they are stationary 
or integrated. 

The main technical innovation of this paper is the allowance made for 
error autocorrelation. Correspondingly, the main practical difficulty in per- 
forming the tests is the estimation of the long-run variance. Our autocorrela- 
tion correction is similar to the Phillips-Perron corrections for unit root 
tests. In the unit root literature, the main alternatives to Phillips-Perron 
corrections are augmentation, instrumental variables estimation, and GLS 
based on either parametric (e.g., ARMA) or nonparametric models. These 
alternatives are worth investigating in the context of stationarity testing. 
Saikkonen and Luukkonen (1990) allow for autocorrelation by fitting an 
ARMA error structure, for example. A comparison of different methods of 
allowing for autocorrelation would appear to be an important topic for future 
research. 

Appendix: Derivation of the LM statistic 

Eq. (4) of the main text is eq. (1.1) of Nabeya and Tanaka (1988, p. 218) 
and uses their notation. For this model the LM statistic for the hypothesis 
u2 = 0 is given by their eq. (2.3 p. 219, as LM = y'MD, ATDxA4y/y’My. 
H”ere M is the projection matrix onto the space orthogonal to (x, 2). In our 
model (21, (x, 2) corresponds to intercept and time trend, so e = My is the 
vector of residuals from a regression of y on intercept and time trend. The 
denominator of the statistic, y’My, is just the sum of squared residuals from 
this regression, and equals Tc?,* in the notation of the text. Apart from a 
factor of T, which is inessential, this is the same as the denominator of the 
statistic in eq. (6). 

The matrix D, equals identity when x corresponds to intercept and can 
therefore be ignored. The matrix A, has (t, s)th element equal to min(t, s), 
so that it creates reverse partial sums. That is, the numerator of the test 
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statistic equals 

T 

e'A,e = c Rf , R, = 5ei. 
[=I i=t 

This appears to differ from the numerator of the 
main text, which relies on the forward partial 
However, the two expressions are in fact equal. 
residuals is zero, we have R, = S, = 0, S, = -R,, 

(A.1) 

statistic in eq. (6) of the 
sums S, defined in (5). 
Because the sum of the 
, (I = 1,2,. . ., T - 0, and 

the sum of squares of the S, equals the sum of squares of the R,. 
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