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Synopsis 

This review discusses theoretical, behavioral, and physiological studies of motion 

mechanisms.  The three main schemes for motion detection (space-time correlation, 

orientation, and gradients) are contrasted using experimental data from insects, rabbits, 

cats, monkeys, and humans.  These schemes provide a basic understanding of the 

organization of many neural motion detection systems. However, few neural systems are 

pure implementations of any of these three detection schemes. It is suggested that using a 

mixture of motion detection mechanisms may be advantageous to a neural system faced 

with the difficult, but important task of detecting motion under widely varying 

conditions. 
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Like beauty and color, motion is in the eye of the beholder. 

 

1 INTRODUCTION 

The physical phenomenon ‘motion’ can easily be defined as an object’s change in 

position over time.  An animal that can detect moving predators, prey, and mates, has a 

clear survival advantage and this evolutionary pressure has presumably led to the 

development of neural mechanisms sensitive to motion. However, the combined effect of 

evolutionary circumstance, conflicting demands on the perceptual apparatus, and 

limitations of biological hardware, have led to motion detection mechanisms that are far 

from perfect.  A neural motion detection mechanism may not respond appropriately to all 

kinds of changes in position, and it may respond to some inputs that are not changes in 

position at all.  It is in this sense that I subscribe to the quote from Watson and Ahumada 

(1985) at the start of this chapter; (the percept of) motion is constructed by the beholder’s 

imperfect mechanisms for the detection of (physical) motion. The goal of this chapter is 

first to elucidate the principles that the brain relies on to detect motion. But second, to 

point out that strict adherence to those principles is quite rare, and that imperfect 

implementations are the rule, rather than the exception.  

 

Research into motion detection mechanisms is strongly model-driven. Many studies are 

guided by particular views of the computations that are needed to detect motion; they aim 

to uncover the algorithms used by the brain, and describe the details of the neural 

implementations (Marr, 1982).  Before delving into the details of motion detection 

mechanisms, I will give a brief bird’s eye view of motion detection along these lines. 
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Computations. Three views of the computations required for motion detection have 

emerged (Figure 2). The first states that to detect motion one needs to compute whether 

the presence of light at one position is later followed by light at another position.   To 

detect motion, light has to be detected at both positions and times, and then compared. In 

the second view of motion, it is a continuous process of change. This view states that a 

moving object traces out an oriented light distribution in space-time (see Figure 1).  To 

detect motion, one needs to measure this orientation. The third view starts from the 

observation that motion can only be observed when there is both a temporal and a spatial 

change in light intensity.  To detect motion, both need to be measured and compared. 

Each of these views suggests a different emphasis on algorithms that are relevant to 

compute motion.   

 

Figure 1  Motion as space-time orientation.  A) When a bar moves smoothly rightward over time, it 

traces out an oriented trapezoid in a space-time plot.  B) When that same bar jumps from one place 

to the next (apparent motion), the space-time orientation is still clearly visible. 

 

Algorithms. The computations required by the first view can be performed by detecting 

light in the first position, delaying the signal, and multiplying it with the signal arising 

from the (undelayed) signal arising from the detector in the second position.  This 

algorithm essentially performs a space-time auto-correlation. The computations of the 

second view require an estimate of space-time slant.  This can be done by convolving the 

image with filters that are oriented in space-time. The computations of the third view 

require the estimation of both the spatial and temporal gradients in light intensity of an 

image.  In abstract terms, such gradients can be determined by convolving the image with 
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appropriate (differentiating) filters. The motion signal is then given by the ratio of the 

temporal and spatial gradients. Each of these algorithms requires different neural 

hardware for its implementation. 

 

Figure 2 Three views of motion detection. A) The Reichardt detector makes use of sensors that are 

displaced in space and time with respect to each other. By multiplying their outputs (indicated by the 

arrows), one can create a rightward (R) or leftward (L) selective detector.  B) The motion energy 

detector uses overlapping sensors that are sensitive to rightward (R) or leftward (L) space-time slant. 

C) The gradient detector uses overlapping detectors, sensitive to either spatial (S) or temporal (T) 

change. Adapted from (Johnston and Clifford, 1995b). 

 

Implementations. In the space-time correlation view, temporal delays and multiplication 

are the essential ingredients to detect motion. While temporal delays are part and parcel 

of neural responses, multiplication of two signals is not as straightforward. Much of the 

research at the implementation level is therefore devoted to understanding if and how 

neurons can perform a multiplication. In the space-time orientation view, neurons space 

time response maps must be slanted. Research in this tradition therefore concentrates on 

measuring detailed properties of space time response maps. In the space-time gradient 

view, neuron’s space time response maps should match those of differentiating filters. 

Research in this tradition looks for such properties in visual neurons. 

 

I will use these three views of motion detection (Correlation, Orientation, and Gradients) 

as the skeleton to organize this chapter. It should be noted, however, that they are not 

mutually exclusive or even entirely independent. In fact, under some assumptions about 

the visual input, the detectors based on the three views become formally identical at their 
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output levels (van Santen and Sperling, 1985, Adelson and Bergen, 1985, Bruce et al., 

2003).  On the other hand, these formal proofs should not be misconstrued to imply that 

the three computations, algorithms and implementations are “all the same”.  Behavioral 

methods may be hard-pushed to distinguish among some of the models because they only 

have access to the output of the motion detection mechanisms.  But, as we will see, 

neurophysiological methods can gain access to intermediate steps in the computations 

which are distinct.  

 

My goal is to present some of the salient evidence in favor of the Correlation, 

Orientation, or Gradient models. At the same time, however, I believe it is important to 

realize that the brain may not perform any of these computations perfectly. Such 

imperfections may have arisen from competing constraints in the evolution of the visual 

system, or the limitations of biological hardware. As such, imperfections may be a 

nuisance in a model of motion detection, but in fact, they can be instructive in the larger 

view of the organization of the brain.  

 

Sections 3, 4, and 5 review the literature on correlation, orientation, and gradient models 

respectively. Before delving into the literature, however, I first discuss some of the 

methods and terminology that have proven useful in the study of motion detection. 

2 RESEARCH IN MOTION 

Motion mechanisms can be studied by comparing the (behavioral or neural) response to a 

stimulus moving in one direction with that same stimulus moving in another direction. 

For direction selective neurons, this is often reduced to responses to a stimulus moving in 

the preferred and the opposite, anti-preferred direction. Many studies use sinusoidal 
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gratings as the stimulus. The reason for using gratings is that, as long as a neuron (or 

mechanism) is well described as a linear system, the response to sinusoidal gratings can 

be used to predict the response to an arbitrary stimulus (Movshon et al., 1978b, Movshon 

et al., 1978a). This Fourier analysis is only truly applicable to linear systems, which 

neurons in general and direction selective neurons in particular are not. Nevertheless, the 

Fourier method has proven to be useful and much of the terminology in the field is 

derived from it. 

 

To study the internal mechanisms of a motion detector, a sinusoidal grating, may not 

always be the best choice. Although somewhat counterintuitive at first, even moving 

stimuli may not be the optimal stimuli to study motion mechanisms.  The reason for this 

is that any motion mechanism worth considering would predict that motion in the 

preferred direction evokes a larger response than motion in the anti-preferred direction. 

Hence, finding such responses does not tell us much about the internal mechanisms of the 

detector.   

 

Many studies use flashed stimuli to characterize the response of motion detection 

mechanisms.  A single flash by definition does not contain a motion signal, but 

nevertheless, it often activates motion detectors (and therefore may even appear to move). 

The minimal true motion signal is generated by two successive flashes. Thus, by 

comparing the response of a motion detector to two successive flashes with the response 

evoked by those same flashes presented in isolation, one can extract motion-specific 

response properties.  
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A further elaboration of this technique leads to the white noise analysis of nonlinear 

systems identification (Marmarelis and Marmarelis, 1978). In this approach, the stimulus 

is a noisy pattern whose intensity varies rapidly and randomly. One can view this as a 

stimulus with multiple flashes occurring at the same time. Given enough time, all 

possible patterns will be presented to the detector, the responses to all possible patterns 

will be recorded, and the complete input-output relationship can be determined. In the 

finite time available for an experiment one can of course only approximate this situation. 

Typically these approximations take into account the first order response (response to a 

flash at a particular position) and the second order response (interaction between two 

flashes separated in space and time).  

 

With these methods it is possible to measure the properties that have proven to be useful 

to describe motion detection mechanism and that will recur throughout this chapter: 

• Direction Selectivity: a comparison between the responses to two stimuli moving 

in opposite directions.  

• Space-time response map (RF): the response to a flash at some position in the 

cells receptive field, presented at time zero, measured at time t. Because I will 

only consider one-dimensional motion, the space-time response map is two-

dimensional.  

• Space-time interaction map: the response enhancement observed for a stimulus 

presented at (t1,x1), when another stimulus has already been presented at (t2,x2). 

This is a four dimensional map. Often, however, the relative, not the absolute time 

and position of the flashes matter. In such cases, the interaction map becomes two 
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dimensional and represents the enhancement in the response to a flash due to the 

presentation of another flash dt earlier and at a distance of dx.   

In the sections that follow, these measures of the internal properties of a motion detector 

will be used extensively to characterize experimental data, and to distinguish between 

models. 

 

3 SPACE-TIME CORRELATION 

The study of the neural mechanisms of motion detection started in earnest with work on 

insects by Hassenstein, Reichardt and Varju, in the early 1950’s.  Considering the faceted 

eyes of insects, it is natural to view motion as the detection of successive activation of 

neighboring ommatidia.   

3.1 THE REICHARDT DETECTOR 

Hassenstein and Reichardt (1956) proposed the first formal model of motion detection on 

the basis of careful observations of the behavior of the beetle (Chlorophanus Viridis).   

When placed in a moving environment, this beetle has the instinctive reaction to turn 

with the motion of the environment. Presumably it does this to keep moving in a direction 

that is constant with respect to the environment.  Later studies have made use of similar 

optomotor responses in houseflies, blow flies, and locusts to gain access to their percept 

of motion.  

 

Figure 3 A beetle on a Spangenglobus.  The beetle is glued to the black pole which holds it stationary 

in space. When it is lowered onto the y-maze globe, it instinctively grabs it and starts “walking” along 

the ridges.  When it comes to a y-junction, it must make a decision to go right or left. This decision 

can be influenced by presenting motion in the environment.  (© Freiburger Universitaetsblaetter). 
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By putting the beetle on a Y-globe (or ‘Spangenglobus’, in German), and surrounding it 

by a cylinder marked with vertical patterns, Hassenstein and Reichardt were able to 

quantify the beetle’s motion percept (Figure 3). For instance, when they first presented a 

bright (+1) bar such that its light hit a specific ommatidium and then another bright bar to 

stimulate the nearest ommatidium to the left, the beetle turned towards the left.  When a 

dark (-1) bar was followed by a dark bar on the left, the beetle also turned to the left. But, 

when a bright (+1) bar followed a dark (-1) bar on the left, the beetle turned to the right. 

From these key observations, they concluded that a simple algebraic multiplication of the 

contrasts of the visual patterns could underlie the motion response. Additionally, they 

found that, for any given two-bar sequence, the optomotor response was strongest when 

there was about 250 ms between the two stimuli.  A simple model that captures both 

these properties is shown in Figure 4 .  

 

 

Figure 4 The (Hassenstein-) Reichardt detector. The light sensors represent the beetle’s ommatidia. 

Signals from two neighboring ommatidia (I) are multiplied at stage III. One of the two input signals, 

however, is first delayed (II). The output of the multiplication stage in black is selective for rightward 

motion. This selectivity is enhanced in the last stage (IV) by subtracting the output of a leftward 

selective subunit (in gray) from that of the rightward selective subunit. 

 

The first stage represents the input from two neighboring ommatidia. At the second stage, 

the input from one location is delayed. The third stage implements the multiplication that 

Hassenstein and Reichardt observed to underlie the beetle’s behavior. This is an essential 

nonlinear operation, without which no direction selectivity could be generated in the 
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time-averaged signal (Poggio and Reichardt, 1973, Poggio and Reichardt, 1981). To 

create a signal whose average value indicates the direction of motion, his stage can also 

average the signal over time. Finally, the output of a leftward selective motion detector is 

subtracted from that of a rightward detector in the fourth stage. This subtraction greatly 

improves the selectivity of the detector (Borst and Egelhaaf, 1990). The result is a single 

valued output that is positive for rightward motion and negative for leftward motion. One 

could imagine such a number being fed straight into a motor control system to generate 

the beetle’s following response. Formally, one can show that the output of this stage is 

the autocorrelation of the input signal (Reichardt, 1961).  In other words, the detector 

determines how much a signal in one location is like the signal at a later time at a position 

to the right. If this autocorrelation is positive, motion is to the right; if it is negative 

motion is to the left.  

3.2 BEHAVIORAL EVIDENCE 

The Reichardt detector makes some very specific and sometimes counterintuitive 

predictions about motion perception that have been tested in detail. I will highlight a few 

of these here.  

3.2.1 Facilitation  

When a stimulus jumps from one position to the next and increases its contrast at the 

same time, the Reichardt model predicts that the motion signal is proportional to the 

product of the pre-jump and post-jump contrast. As long as stimulus contrast is small 

enough, this is indeed the case in many insects (Reichardt, 1961, McCann and 

MacGinitie, 1965, Buchner, 1984). For higher contrasts, however, further increases in 
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contrast no longer strengthen the motion signal. Hence, a complete model should 

incorporate some kind of saturation or normalization of the response for high contrast.  

 

Van Santen and Sperling (1984) investigated this issue in humans and showed that, at 

least at low contrast, the motion signal indeed increased as the product of pre- and post-

jump contrasts. This clearly argues in favor of facilitation and even suggests that this 

facilitation takes the form of a multiplication. More recent experiments, however, show 

that perception is affected differently depending on whether the pre-jump or post-jump 

stimulus contrast is increased (Morgan and Chubb, 1999).  Neither of these effects would 

be expected in a pure Reichardt detector, but may be explained by adding noise sources 

and contrast normalization mechanisms to the motion detector (Solomon et al., 2005). 

3.2.2 Reverse-phi 

The multiplication in the Reichardt model ensures that motion detection does not depend 

on the polarity of the contrast of a moving object (dark objects lead to the same motion 

signals as bright objects).  At the same time, however, the multiplication causes a reversal 

of motion direction for stimuli whose contrast changes polarity. This inversion of motion 

direction with an inversion of contrast polarity during a motion step is called reverse-phi 

and has been observed behaviorally in insects (Buchner, 1984, Reichardt, 1961), non-

human primates (Krekelberg and Albright, 2005), as well as humans (Anstis, 1970, 

Anstis and Rogers, 1975). This behavioral evidence suggests that the pathways detecting 

bright (ON) and dark (OFF) onsets interact within the motion system and that this 

interaction has the signature of a multiplication. 
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Behavioral evidence in humans, however, suggests that the ON and OFF systems are not 

treated as symmetrically as envisaged in the Reichardt model. For instance, the direction 

of motion in a sequence of dark and bright flashes requires a much longer delay to be 

detectable  than a sequence of flashes of the same polarity (Wehrhahn and Rapf, 1992).  

Moreover, the reverse-phi phenomenon is found for eccentric presentations, but is much 

reduced near the fovea or when the distance between the observer and the stimulus is 

increased (Lu and Sperling, 1999).  

3.2.3 Phase invariance 

The Reichardt detector determines the autocorrelation of an input signal. Because the 

autocorrelation does not depend on the starting phase of the signal, this implies that for 

any arbitrary pattern (that can be described as the sum of sinusoidal gratings), replacing 

one of the component gratings by a phase-shifted grating does not change the output of 

the detector.  This prediction has been confirmed at the behavioral level in the beetle. 

Reichardt took two (essentially arbitrary) spatial patterns and constructed a first visual 

stimulus by simple addition of the patterns, and a second visual stimulus by adding the 

patterns with a spatial phase shift. When a beetle was confronted with these two visual 

stimuli, its walking behavior on the Spangenglobus was identical. (Reichardt, 1961). 

 

3.2.4 Pattern dependence 

While the phase of gratings does not affect the output of the detector, other properties, 

such as the spatial frequency, do. This shows that the Reichardt detector is not ideal; its 

output is not the same for every visual stimulus with the same velocity. While suboptimal 

from the viewpoint of an ideal motion detector, this does provide another counterintuitive 
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prediction of the Reichardt model. To be precise, the model predicts that for every speed 

the detector responds only weakly to the lowest spatial frequencies, climbs to a maximum 

and then declines for higher spatial frequencies.  Optomotor responses in many insects 

are consistent with this prediction (Buchner, 1984).  

 

A more extreme case of mistaken velocity arises from spatial aliasing for high spatial 

frequencies. When a rightward Reichardt detector is stimulated with a rightward moving 

grating whose spatial period is smaller than twice the distance between the input channels 

it will evoke a negative (i.e. leftward) response. While this is clearly an undesirable 

property for a motion detector, the behavior of the blowfly actually matches this 

(Zaagman et al., 1976). In other insects, the relationship between the behavioral inversion 

and receptor spacing is not as clean, although this may be understood by assuming that 

the detector receives input from more than one neighboring ommatidium (Thorson, 

1966b, McCann and MacGinitie, 1965).   

 

Human visual motion perception is also spatial frequency dependent in a manner that is 

consistent with the Reichardt model (Burr and Ross, 1982, Smith and Edgar, 1990).  The 

inversion of the perceived direction of motion that is observed at high spatial frequencies 

in insects, however, is not observed in human behavior (van Santen and Sperling, 1984).  

The simplest way to modify the Reichardt model such that the spatial aliasing no longer 

occurs, is to remove the affected high spatial frequencies from the input at an early stage. 

Van Santen and Sperling (1984) proposed the Extended Reichardt model, which has such 

pre-filters and removes the spatial aliasing behavior. Its flow-chart is shown in Figure 5. 
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The pre-filters essentially state that the elementary light sensors that provide input to the 

motion detectors, are not point sensors, but have an (overlapping) spatial extent.   

 

 

Figure 5 The extended Reichardt model. Light falling on the retina is spatially (II) and temporally 

filtered (III). The outputs of the four filters are then pairwise multiplied (Stage IV). As in the 

standard Reichardt detector, the rightward selective subunit (black) is combined with a mirror 

symmetric leftward selective subunit (gray), at stage V. 

 

Interestingly, the pattern dependence in the Reichardt detector arises only at the last 

subtraction stage. The so-called half-detectors respond to a moving pattern regardless of 

its spatial frequency. In other words, they are velocity tuned and not spatio-temporal 

frequency tuned (Zanker et al., 1999). But, as pointed out above, the motion selectivity of 

such half-detectors is weak (Borst and Egelhaaf, 1990). In a biological system, it seems 

likely that the subtraction of a leftward and rightward half-detector may not be perfect. 

This would have the effect of creating detectors that trade-off motion selectivity (fully 

symmetric subtraction at stage IV) against pattern invariance (No subtraction of opposite 

motion detectors). 

3.3 PHYSIOLOGICAL EVIDENCE 

Many physiological studies have looked for and found neural response properties 

consistent with the Reichardt detector. Figure 6 shows what the model predicts for 

experiments that measure the space time response map by presenting single flashes at 

various positions in a neuron’s receptive field. The first four space time response maps 

represent recordings from neurons at stage III of the extended Reichardt model (Indicated 
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by A,B,A’, and B’ in Figure 5 and Figure 6). The defining property of these space-time 

RFs is that they are not oriented in space time; they are well-described as the product of a 

spatial and a temporal profile. This separability is also observed at stage IV; here both the 

left and the rightward subunit are predicted to have the same response to flashed stimuli. 

As a result, the complete detector, which subtracts the outputs of Left and Right 

detectors, gives no response at all to single flashes.  

 

Figure 6 One flash space-time response maps of the Reichardt model.  Each of these plots shows the 

response of a stage in the extended Reichardt model to the presentation of a single bright flashed 

stimulus. Time after the stimulus runs down the vertical axis, the position of the stimulus relative to 

the receptive field center, is on the horizontal axis.  Pixels brighter than the gray zero level (see 

colorbar on the right), represent an increase in the activity, dark pixels represent a decrease in 

activity. Within the linear model, such a decrease in firing after the presentation of a bright bar is 

equivalent to an increase in firing after the presentation of a dark bar.  The labels in the lower left 

corner of each space-time response map refer to the labels in Figure 5. 

3.3.1 Facilitation and suppression 

As can be seen from Figure 6, an ideal Reichardt detector should not respond at all to a 

single flashed bar.  With an ingenious device that allowed them to flash a light on 

individual photoreceptors of the fly’s eye while recording extracellularly from the H1 

neuron, Franceschini et al. (1989) provided evidence for this property. Single flashes, 

whether dark or bright, did not evoke a response in the H1 neuron. Such clean Reichardt 

behavior is rare; typically, motion detectors will respond vigorously to a single flash 

(Borst and Egelhaaf, 1990). No major modification of the model is required to explain 

this. For instance, some level of spontaneous activity in the multiplication stage would 

suffice to allow a strong input to always evoke a significant response. Alternatively, the 



  16 

 

subtraction of the left and right subunit outputs may not be perfect. For instance, instead 

of calculating R-L, the detector may calculate R-βL, where 0< β<1 (Borst and Egelhaaf, 

1990).  

 

The essential prediction of the Reichardt is that the response to two successive flashes – 

displaced in the preferred direction – is larger than that to two successive flashes 

displaced in the anti-preferred direction. In other words, by comparing two-flash apparent 

motion in the preferred and anti-preferred direction, one should observe facilitation and 

suppression of the neural response, respectively. Model calculations for this facilitation 

(bright) and suppression (dark) are shown for a rightward Reichardt motion detector in 

Figure 7. 

 

Franceschini et al. tested this in the H1 neuron of the fly. When two successive flashes to 

separate photoreceptors simulated forward motion, the second flash evoked a strong 

response (Franceschini et al., 1989). Presenting these flashes in the opposite order, 

simulating anti-preferred motion, however, evoked no response or, in a cell with a large 

spontaneous firing rate, a suppression of the firing rate.  This is consistent with the 

presence of the white (facilitation) and black (suppression) patches around the origin of 

the interaction map in Figure 7. This was confirmed by Borst and Egelhaaf (1990) who 

recorded interaction maps for the fly H1 neuron. At low contrast, the preferred direction 

flashes showed clear facilitation, while the anti-preferred direction flashes showed 

suppression.  The suppression was evident also at high contrast, but the facilitation 

disappeared. The latter may be explained by a saturation process: if the individual flashes 

evoke a strong response, their combination in the preferred direction may not lead to any 
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further enhancements because the response is already near the maximum and saturates.  

This, again, shows an imperfection in the neural motion detector. While the Reichardt 

detector predicts a quadratic increase of the response with contrast, real neurons do not 

have an infinite range and will saturate at some contrast level. This is not a difficult 

property to incorporate into the model, but uncertainty about the shape of the contrast 

response function provides additional obstacles to the creation of a quantitative model. 

 

Figure 7 Two-flash space-time interaction maps of the extended Reichardt model.  These interaction 

maps show which part of the response to two successive flashes is not expected based on the linear 

summation of the response to the two flashes presented in isolation.  The time between the two 

flashes is on the vertical axis, the distance between the flashes on the horizontal axis.  Bright pixels 

show a facilitating interaction, dark pixels a suppressive interaction. 

 

In the rabbit retina, the main effect underlying direction selectivity appears to be a 

suppression for the anti-preferred direction (Barlow and Hill, 1963, Barlow et al., 1964, 

Amthor and Grzywacz, 1993, Fried et al., 2002), with a smaller contribution from 

facilitation for two flashes presented in the preferred direction (Grzywacz and Amthor, 

1993, Taylor and Vaney, 2002, Fried et al., 2005). This has led to the so-called veto 

model. In this model, the activity of a second flash, presented in the anti-preferred 

direction, is inhibited (‘vetoed’) by the presentation of the first flash.  The requirements 

for this model are very similar to those of the Reichardt model. Notably, the first flash 

must be able to evoke suppression at a later time (i.e. a delay is needed).  Later work has 

shown that a multiplicative nonlinearity may implement this veto mechanism (Torre and 

Poggio, 1978), see Section 3.3.3. 
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3.3.2 Reverse-phi 

The Reichardt model predicts that an inversion of the contrast of a two-flash stimulus 

leads to an inversion of directional preference.  

 

Franceschini et al. (1989) investigated this by stimulating individual photoreceptors and 

found that there is more facilitation between flashes of the same contrast polarity than 

between flashes of opposite polarity. Thus they argue for some level of separation 

between the ON and OFF pathways. A later study, however, showed clear evidence of 

reverse-phi in the fly H1 cell: suppression is observed when a bright-dark two-flash 

stimulus is presented in the preferred direction, and facilitation is seen for a bright-dark 

two-flash stimulus presented in the anti-preferred direction (Egelhaaf and Borst, 1992). 

While not entirely resolved, this discrepancy may have been due to response saturation at 

the high contrasts used in the earlier studies. Alternatively, this could be a reflection of 

the small sample size of the earlier studies (Franceschini et al., 1989, Horridge and 

Marcelja, 1991) and the fact that there is considerable inter-fly variability in the H1 

neuron responses (Egelhaaf and Borst, 1992).  

 

In vertebrates a segregation of pathways processing brightness increments (ON) and 

brightness decrements (OFF) is already found at the first synapse; between 

photoreceptors and bipolar cells (Kuffler, 1953). The behavioral reverse-phi 

phenomenon, however, shows that the motion system must recombine these pathways at 

some stage. Indeed, the reverse-phi property has been observed in primary visual cortex 

(Cat: (Emerson et al., 1987), Monkey (Livingstone and Conway, 2003)), the nucleus of 
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the optic tract of the wallaby (Ibbotson and Clifford, 2001), and the middle temporal area 

in the monkey (Livingstone et al., 2001, Krekelberg and Albright, 2005). 

 

3.3.3 Nonlinear interactions  

The multiplication of two signals is the essential nonlinearity that creates direction 

selectivity in the Reichardt detector (Poggio and Reichardt, 1973, Poggio and Reichardt, 

1981). Such a quadratic nonlinearity predicts that a sinusoidal input signal will lead to 

output signals that vary at the fundamental as well as the second harmonic frequency.  To 

be specific, for a moving grating sliding over the detector, one can split the response of 

the detector into three terms. The first is time independent and changes sign with the 

direction of motion, the second term modulates at the temporal frequency of the stimulus, 

and the third term modulates at twice the frequency of the stimulus (Egelhaaf et al., 

1989).   

 

In an ideal Reichardt detector the oscillations in one subunit precisely cancel those in the 

other subunit. But, of course, precise cancellation is a mathematical abstraction that is not 

truly expected in biological hardware. When stimulated with a moving grating, horizontal 

cells (HS) in the blowfly do show oscillations. Nearly 90% of the signal was found at or 

below the second harmonic frequency. This shows that the nonlinearity in the HS motion 

detector is indeed close to second-order.  Moreover, as predicted by the Reichardt model, 

the oscillations at the fundamental (stimulus) frequency depended strongly on the 

direction of the stimulus, but the frequency-doubled responses did not (Egelhaaf et al., 

1989). This confirms that the Reichardt model is a good description of the HS neuron, 

with the addition that the subtraction of the subunit outputs is not perfect. Typically, the 
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gain of the anti-preferred subunit is on the order of 0.9. This makes the motion detector 

suboptimal, because the equal subtraction of the two subunits maximizes direction 

selectivity (Borst and Egelhaaf, 1990). Moreover, this imbalance will also cause vigorous 

responses to flickering patterns that do not move, but whose luminance is modulated over 

time.  This is found for many motion sensitive neurons both in invertebrate (Egelhaaf et 

al., 1989) and vertebrate systems (Churan and Ilg, 2002).  

 

Interestingly, however, such imperfectly balanced and therefore suboptimal motion 

detection units have a reduced dependence on the spatial frequency of the stimulus. In 

fact, the response of a single subunit is tuned for velocity, and not temporal frequency 

(Zanker et al., 1999).  This suggests that some visual systems could use imperfect subunit 

subtraction (Stage V, Figure 5) to trade-off optimal direction selectivity against spatial 

frequency dependence.  

  

3.3.4 Shunting inhibition 

The Reichardt detector makes use of multiplication. This is a decidedly nonlinear 

mechanism and does not fit easily with the standard integrate and fire view of a neuron.  

When one takes a closer look at the biophysics of realistic neurons, however, 

multiplicative nonlinearities appear to be possible by a mechanism called shunting 

inhibition (Thorson, 1966b, Thorson, 1966a, Torre and Poggio, 1978).   

 

Consider a model neuron with an excitatory channel and inhibitory channel. The reversal 

potential for the excitatory channel is typically much larger than the resting potential, 

which provides the depolarizing current flow of an excitatory input.  The reversal 
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potential of the inhibitory channel, however, is assumed to be slightly above the resting 

potential.  The two channels are organized such that preferred motion leads to temporally 

non-overlapping activation of the channels. For a two-flash preferred direction stimulus 

this arrangement will lead to a depolarizing current from the excitatory channel as well as 

a depolarizing current from the inhibitory channel. In other words, the response to a two-

flash sequence is somewhat higher than that to a one flash sequence. Note, however, that 

this effect is a simple linear summation, and no difference is expected between the sum of 

the response to two single flashes and the response to two flashes. I.e. there is no 

nonlinear facilitation in this shunting inhibition model. While this may account for the 

limited facilitation found in direction selective cells in the rabbit retina (Barlow and Hill, 

1963, Barlow et al., 1964), it is not a good model of the nonlinear facilitation observed in 

insects (Borst and Egelhaaf, 1990). 

 

When motion in the anti-preferred direction is presented to the model neuron, the 

excitatory and inhibitory conductances are activated at the same time. Under these 

circumstances the inhibitory channel essentially creates a large hole in the membrane. 

Any current flow caused by the simultaneous activation of excitatory channels will 

simply seep out through this hole. In other words, this so-called shunting inhibitory 

channel can veto nearby excitatory currents. While this example uses a simplified model 

neuron, Koch et al.(1983) developed a model that incorporates the spatial extent of the 

dendritic tree and the relative positioning of excitatory and shunting inhibition channels. 

They confirmed that shunting inhibition can lead to the desired veto-effect, but found that 

it will only veto excitatory input if the shunt is between the excitatory input and the soma.   

A formal analysis shows that the efficacy of the veto is proportional to the product of the 



  22 

 

excitatory and inhibitory conductance (Torre and Poggio, 1978). Hence, the inhibitory 

part of the mechanism is similar to the multiplicative nonlinear element in Reichardt’s 

original model. It should be noted, however, that a true quadratic nonlinearity is difficult 

to implement with shunting inhibition under biophysically realistic assumptions 

(Grzywacz and Koch, 1987). 

 

The shunting inhibition model provides a possible mechanism to implement a 

multiplicative nonlinearity, but what is the evidence that shunting inhibition is actually 

used in neural systems? Many direction selective neurons contain GABA (γ-aminobutyric 

acid) activated chlorine channels whose reversal potential is close to the resting potential. 

In other words, the gabaergic synapse could function as a shunt. Indeed, shunting 

inhibition has been demonstrated directly in cat visual cortex (Borg-Graham et al., 1998, 

Hirsch et al., 1998). Moreover, when gabaergic synapses are inactivated 

pharmacologically, direction selectivity in many systems is greatly reduced (Fly: (Schmid 

and Bülthoff, 1988) Rabbit:(Ariel and Daw, 1982), Cat: . (Sillito, 1977)).  However, one 

should be cautious in interpreting this as evidence in favor of the shunting inhibition 

model. There are many stages in the Reichardt model that require some kind of 

inhibition. For instance, the subtraction stage (IV in Figure 4, V in Figure 5), subtracts 

the outputs of the two subunits. This subtraction removes non-direction selective 

components from the subunits and helps create a strongly direction selective motion 

detector (Borst and Egelhaaf, 1990). If gabaergic synapses underlie this subtraction, then 

GABA antagonists would be expected to decreases direction selectivity, no matter how 

the multiplicative interaction were implemented.  
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In the fly, a clever experiment was done to distinguish such linear GABA-dependent 

contributions from nonlinear GABA-dependent contributions to direction selectivity. The 

crucial idea behind this experiment is that the multiplicative nonlinearity introduces 

higher harmonics in the output signal of the detector.  The subtraction of the two subunits 

of the Reichardt detector, however, removes those components.  In other words, by 

determining whether GABA agonists decrease or increase the higher harmonics, one can 

determine whether they affect the multiplicative or subtractive element of the Reichardt 

detector. Egelhaaf et al. (1990) showed that while GABA application decreased the 

overall direction selectivity of the H1 cell, the power of the second harmonic frequency 

increased nearly ten-fold. This clearly shows that, if the H1 cell is indeed well-described 

by the Reichardt model, its multiplicative stage in the fly H1 cell is unlikely to be 

implemented with gabaergic shunting inhibition. 

 

4 SPACE-TIME ORIENTATION  

The view of motion as the successive activation of two detectors by the same feature may 

work well as the basis for the study of insect vision, and some artificial motion detection 

systems.  But, for vertebrates- and humans in particular- the distribution of detectors is 

nearly continuous and it is unclear which features need to be matched across which 

periods of time and between which detectors. Adelson and Bergen (1985) formulated a 

view of motion that deals with such problems and side-steps the correspondence 

problems associated with feature matching. They noted that a single bar, moving along a 

horizontal trajectory, can be represented as a slanted pattern in a space-time diagram 

(Figure 1). Rightward slant implies rightward motion, and leftward slant leftward motion. 

Moreover, the slant angle in the pattern corresponds to the speed of the motion.  The slant 
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does not depend on the shape or features of the moving object; hence the correspondence 

problem essentially vanishes. 

 

Moreover, in this view of motion, there is no fundamental difference between continuous 

motion and apparent motion. Figure 1B shows the space-time diagram that corresponds 

to the apparent motion that a bar in a modern neurophysiological experiment would 

typically trace out on a computer screen. A detector that detects the space-time slant 

corresponding to continuous motion would also respond to the apparent motion.  This is 

an appealing property of this view of motion; not only does it provide an intuitive 

explanation why movies generate a sense of motion; it also validates the use of (apparent) 

motion on computer screens to study motion detection (Watson et al., 1986).  

4.1 THE MOTION ENERGY MODEL 

Adelson and Bergen developed a multi-stage spatiotemporal filtering model that could 

detect space-time slant with neurophsyiologically realistic building blocks. The flow 

diagram of this so-called energy model is shown in Figure 8. 

 

Figure 8 The motion energy model. A) A chart of the signal flow in the model. In black are the 

components of the rightward selective subunit, in gray the mirror symmetric leftward selective unit. 

The diamonds at level II indicate spatial filtering with the filters shown in panel B.  Similarly, the 

temporal filtering of stage III uses the filters of panel C.  B) Even (solid line) and odd (dashed line) 

spatial filters. C) Fast (solid line)  and delayed (dashed line) temporal filters.  

 

Each stage in this filtering model serves a specific purpose. The first stage collects light; 

it represents the retinal input. The second stage filters the image spatially, with one of 
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two spatial filters, shown in the panel B.  In this particular example, the spatial filters are 

odd and even Gabor functions. The third stage filters the image temporally, using the 

filters shown in panel C. One filter’s response is slower than the other, thus allowing the 

comparison of images at different times.  

 

At the fourth stage, inputs from two separate pathways are summed linearly. In this 

particular example, the spatial and temporal filters were carefully chosen such that the 

fourth stage of the model would lead to slanted filters. These particular filters are said to 

be in quadrature relationship (one filter reaches its peak when the other goes through 

zero) (Watson and Ahumada, 1985). While this relationship leads to the best sensitivity 

to motion, the only features that are essential to create space-time slant are the presence 

of a fast and a slow temporal filter, and spatial filters that prefer flashes in slightly 

different positions. Neurons at this stage modulate their response in a direction selective 

manner, but their time averaged response is independent of direction. This is a very 

general finding; a linear model cannot generate a time-averaged direction selective output 

(Poggio and Reichardt, 1973, Poggio and Reichardt, 1981). Stage V represents the only 

nonlinear element in the motion energy model; it creates a signal whose time average is 

direction selective. At this point in the model the average response is direction selective, 

but the response of the neurons still depends on the position of the moving stimulus in the 

cell’s receptive field. This so-called phase dependence is removed in stage VI by adding 

two detectors with slightly different spatial properties. Based on psychophysical data 

obtained in humans, Adelson and Bergen added the VII-th stage to the model. At this 

stage, the rightward motion energy is subtracted from the leftward motion energy to 
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provide a single valued output that represents the perceived direction. Positive values 

correspond to rightward motion, negative values to leftward motion.  

 

The name motion energy arises from a consideration of the model in Fourier terms. In a 

Fourier spectrogram of the luminance distribution, opposite quadrants represent motion 

in the same directions. Hence, to create a detector that responds to rightward motion 

(quadrants I and III), one first has to remove the DC components along the spatial and 

temporal frequency axes. Stage II and III do this. Stage IV then selectively removes 

signal components from quadrant II and IV. Finally, the squaring operation of stage V 

measures the power or energy present in the remaining signal.  

4.2 BEHAVIORAL EVIDENCE 

Given the different components in the model, it may be somewhat surprising that - at the 

output level - the (extended) Reichardt detector and the motion energy model are in fact 

identical (van Santen and Sperling, 1985, Adelson and Bergen, 1985). As only the output 

of the whole detector is typically observable behaviorally, psychophysical experiments 

cannot distinguish between these two models. This implies that the evidence cited in 

favor of the Reichardt detector in Section 3.2 equally supports the Motion Energy 

detector.  

 

The internal algorithms of the detectors – how they reach their conclusion – however, are 

fundamentally different. Physiological methods can probe that internal implementation of 

motion detection mechanisms; they are discussed in the next section. 
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4.3 PHYSIOLOGICAL EVIDENCE 

Simulations of the motion energy model make specific predictions about the properties of 

cells at various stages in the model. Figure 9 shows the predicted space time response 

maps as assessed with one-flash stimuli. First, note that the structure of the motion-

energy model at stage III (Figure 5) is identical to that of the Reichardt detector at stage 

III (Figure 8). Hence, the motion energy model also predicts the existence of cells with 

space time response maps as shown for A, B, A’, and B’ in Figure 6. At stage IV, 

however, the models diverge. Figure 9 shows the characteristic slanted response maps 

expected at stages IV and VI of the motion energy model.  

 

Figure 9 One-flash space-time response maps of the motion energy model.  This figure follows the 

conventions of Figure 6. The space-time response maps of stage III of the motion energy model 

(A,B,A’, B’ ), are identical to those of the Reichardt model shown in Figure 6. 

 

The various stages of the motion energy model can be mapped quite naturally onto the 

visual system of cats and primates. I will review the evidence for the various stages in 

sequence. 

4.3.1 Input from the LGN  

In cats and primates, few retinal or LGN cells are direction selective, but many cells in 

primary visual cortex are (Hubel and Wiesel, 1959, Hubel and Wiesel, 1962). Hence, 

much of the research guided by the motion energy model has been devoted to 

determining whether a linear summation of the output of appropriate LGN cells can lead 

to a direction selective response in the cortex.  
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Cai et al. (1997) probed cat LGN receptive fields with single flashes. They showed that 

the space-time RFs were typically not slanted. The space time response maps resembled 

the outputs at stage III (A, B) shown in Figure 6. Note, however, that even though these 

LGN space time response maps were not slanted, they were are also not separable. That 

is, their space time response map could not be written as the product of a spatial impulse 

response function and a temporal impulse response function. For the discussion of motion 

detection, however, I will ignore this and approximate them by separable functions. 

Qualitatively this is a good approximation.  

 

Stage IV of the motion energy model requires inputs that are delayed with respect to each 

other. In the LGN of the cat, the lagged and non-lagged cell classes seem to fulfill this 

prediction quite well (Mastronarde, 1987b, Mastronarde, 1987a, Saul and Humphrey, 

1990, Cai et al., 1997). Primate LGN also has classes of cells that are delayed with 

respect to each other; the magnocellular cells typically give fast, transient responses, 

while parvocellular cells respond with a later sustained firing rate (Marrocco, 1976, 

Schiller and Malpeli, 1978).  

 

In the spatial domain, the inputs to the motion detector also need to be shifted; either in 

phase, or in space.  A shift in phase, combining an odd and an even symmetric cell whose 

spatial receptive fields are in so-called quadrature, would be optimal (Figure 8B). Most 

cells in the LGN, however, have even symmetric spatial receptive fields; hence it will be 

difficult to construct an optimal motion detector from combining LGN cells. The motion 

energy detector, however, can also function with two receptive fields that are shifted 

spatially. Clearly, such cells are abundant in the LGN.   
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Given that appropriate input neurons exist in both cat and primate LGN, what is the 

evidence that these actually provide the input to the direction selective cells of primary 

visual cortex?  Certainly, both lagged and non-lagged cells project to the cortex, and 

simple cells- especially those in layer 4B - contain subregions of the receptive field in 

which response properties mimic those of LGN lagged cells and other subregions that 

match properties of non-lagged cells (Saul and Humphrey, 1992).  Moreover, some DS 

simple cells have been shown to receive monosynaptic inputs from lagged LGN cells 

(Alonso et al., 2001). However, this does not necessarily mean that all DS cells must 

receive their input directly from the LGN. The alternative hypothesis is that the LGN 

projects to non-DS simple cells and these provide the input to DS simple cells.   

 

There is evidence that at least some DS cells follow this indirect route. Peterson et al. 

(2004) recorded from pairs of monosynaptically connected simple cells; one was DS, the 

other was not. For each cell in such a pair, they determined the space time response map 

and then subtracted the RF of the non-DS cell from the RF of the DS cell. Given the 

linearity assumptions of the motion energy model, this should result in the RF of the 

missing second input neuron. Peterson et al. show examples of DS simple cells in which 

the non-DS simple cell provides the late input component. Because such a DS simple cell 

receives its delayed input from another simple cell, it does not have to rely on a lagged 

LGN cell. This shows that a direct input from lagged LGN cells is not necessary for 

direction selectivity.   
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Using these same methods, Peterson et al. also showed that there is a range of time delays 

between the two inputs of DS cells, and most are much smaller than predicted by the 

original motion energy model. In the original model, the inputs were in temporal 

quadrature (Figure 8C).  While this relationship produces an optimal detector (Watson 

and Ahumada, 1985), it is not necessary to create a moderate direction selectivity. In cat 

DS simple cells, strong direction selectivity is restored by the spike threshold 

nonlinearity. Taken together the evidence from the cat suggests that DS simple cells 

receive both direct lagged and non-lagged LGN input as well as input from other (non-

DS) simple cells. The temporal delay between these inputs varies considerably across 

cells.  

 

In monkey V1, De Valois et al. (1998, , 2000) investigated the source of  the input signals 

of DS simple cells by determining the temporal profile of the response in V1 simple cells. 

According to the motion energy model, this temporal profile should consist of the sum of 

two components; one delayed with respect to the other (Figure 8C). To extract these 

components, De Valois et al. used principal components analysis. First, they looked at 

non-DS cells. These cells typically had only a single significant component and there 

were two clearly distinct subsets. One set of cells had a profile with a short latency and a 

biphasic temporal profile; the other set had a longer latency and a monophasic profile.  

Then, they determined the response profiles of direction selective cells. These cells had 

two significant input components, one matched the early biphasic profile, and the other 

matched the late monophasic profile of the non-DS cells. This strongly suggests that DS 

cells become direction selective by linear summation of the output of cells from the two 

distinct classes of non-DS simple cells (or their LGN inputs). Interestingly, the delay 
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between the temporal profiles of the two profiles corresponds closely to temporal 

quadrature, which suggests that these motion detectors are closer to being optimal than 

those in the cat (Peterson et al., 2004).  In the spatial domain, the relationship between the 

inputs was more varied and the optimal spatial quadrature relationship between the two 

inputs is expected to be rare.  

 

The two temporal profiles observed in the V1 simple cells correspond quite closely to the 

response properties of two anatomically identifiable subclasses of LGN cells.    

Magnocellular cells have short latencies and transient biphasic responses. Parvocellular 

cells have longer latencies and typically a monophasic sustained response.  Hence, the 

view that arises from this work is that magnocellular and parvocellular LGN cells each 

have their own non-DS simple cell targets in V1. Other simple cells then sum the input 

from these non-DS simple cells to generate direction selectivity in the linear manner 

envisaged by the motion energy model.  

 

This is controversial because anatomical, lesion, and psychophysical studies have all 

been used to argue that motion is processed by the magnocellular stream.  Anatomical 

evidence shows that layer IVcα of V1– in which many DS cells are found – mainly 

receives magnocellular input (Blasdel and Fitzpatrick, 1984). The counter argument is 

that there is also evidence that shows strong vertical interactions within a column; hence 

even if the parvocellular properties cannot reach DS cells after crossing one synapse, they 

can after two. Second, lesion studies have been interpreted as showing a selective 

involvement of the magnocellular pathway in motion perception (Merigan and Maunsell, 

1993), but here too there are counterexamples. Two studies have recorded from V1 cells 
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while reversibly inactivating magnocellular and/or parvocellular layers in the LGN 

(Malpeli et al., 1981, Nealey and Maunsell, 1994). These studies showed that many DS 

simple cells receive input from both classes of LGN neurons and that direction selectivity 

is often only abolished when both magnocellular and parvocellular inputs have been 

silenced. While this shows that a contribution of parvocellular cells to motion detection is 

certainly likely, it is unlikely that the roles of the magnocellular and parvocellular cells in 

motion detection are as symmetric as in the de Valois model. For instance, lesions of the 

magnocellular layers of the LGN have a greater influence on the responses of direction 

selective cells in the middle temporal area (Maunsell et al., 1990).  

4.3.2 Linear summation 

The previous section shows that signals with appropriate temporal and spatial shifts find 

their way into V1 simple cells. The next question is how these non-direction selective 

inputs are combined. The motion energy model predicts linear summation of inputs. 

  

Many studies using extracellular recordings from cat simple cells support this view. In a 

typical experiment, the receptive field of a neuron is mapped with one kind of stimulus 

(single flashes, stationary gratings) and then the response to another kind of stimulus 

(drifting sine wave gratings, or two successive flashes) is predicted based on the 

assumption of linear response properties. Qualitatively this was already done in the first 

studies of simple cells in the cat visual cortex (Hubel and Wiesel, 1959) and found to 

account for the direction preference of some, but certainly not all cells. In later studies 

these statements have become more precise.  It was found that the receptive field 

determined with flashes could predict quite well when a moving bar would elicit the 

largest response (i.e. when moving from an OFF to an ON region). Other features, in 
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particular the small response for motion in the anti-preferred direction could not be 

predicted from linear superposition and various schemes of nonlinear lateral facilitation 

and inhibition were proposed (Goodwin et al., 1975, Emerson and Gerstein, 1977b, 

Emerson and Gerstein, 1977a, Ganz and Felder, 1984). All of these studies, however, 

used extracellular recordings and they could not distinguish between nonlinear synaptic 

integration and nonlinear spike generation. Hence, these results left the possibility that all 

observed nonlinearities were in fact due to spike generation nonlinearities (Movshon et 

al., 1978b).  

 

A new wave of studies in the late eighties tested the linear model. Although the authors 

sometimes differed in their conclusions, with the benefit of hindsight their datasets 

actually appear quite similar. Most measured space time response maps were slanted and 

corresponded with the motion energy model (Figure 9), not with the separable response 

maps predicted by the Reichardt detector (Figure 6). These slanted space-time RF maps 

could usually predict the preferred direction of a cell, but underestimated the magnitude 

of the directional preference (McLean and Palmer, 1989, Tolhurst and Dean, 1991, Reid 

et al., 1987, Reid et al., 1991). Albrecht and Geisler (1991) resolved this discrepancy by 

realizing that nonlinearities unrelated to direction selectivity itself, could nevertheless 

affect the predictions of the linear model. One nonlinearity they had recently measured 

was the contrast dependence of the neural response. They proposed a neuron model in 

which linear summation of the inputs is followed by half-wave rectification and an 

exponential nonlinearity. The exponent of this nonlinearity could be derived from the 

contrast response function of the neuron. With this model, they could explain nearly 80% 

of the magnitude of the direction selectivity of simple cells and later studies have 
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confirmed this (DeAngelis et al., 1993). While this model still leaves ~20% to be 

explained, this does not necessarily mean that these 20% are due to nonlinearities that are 

essential to the generation of direction selectivity. Instead this could be due to other 

contrast-related nonlinearities such as gain control (Heeger, 1992). 

 

To really answer the question whether direction selectivity is based on linear summation, 

one needs to bypass the spike generation nonlinearity. Jagadeesh et al. (1993, , 1997) did 

this by recording intracellularly from cat simple cells. Their data provide clear evidence 

for three aspects of the motion energy model. First, DS simple cells sum their non-DS 

inputs linearly. This was shown by predicting the membrane potentials evoked by 

moving gratings from the linear superposition of the potentials evoked by stationary 

contrast modulated gratings. This prediction was highly accurate. Second, Jagadeesh et 

al. showed that the direction selectivity of the spike record (i.e. what would have been 

measured in extracellular recordings) was about three times larger than that observed in 

the intracellular recordings. This directly confirms the role of the spike-generation 

nonlinearity as an amplifier of direction selectivity (Albrecht and Geisler, 1991, McLean 

et al., 1994). Third, they showed that nearly all of the membrane potential could be 

explained by the summation of inputs from only two subunits. These subunits had non-

oriented space time response maps (Kontsevich, 1995, Jagadeesh et al., 1997).  

 

In a further test of the linear model, Priebe and Ferster (2005) measured separate space-

time response map of excitatory and inhibitory conductances in DS simple cells for bright 

and dark bars.  First, all four response maps were clearly slanted; showing that both 

excitation and inhibition were direction selective for both dark and bright bars. Second, 
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the slant in the excitatory and inhibitory maps was the same. Hence excitation and 

inhibition preferred the same direction of motion. This argues strongly against a veto-like 

mechanism for direction selectivity in these cells, because such a model would predict an 

opposite direction preference for the inhibition. Third, when and wherever the excitation 

was maximal, inhibition was minimal. This suggests that direction selectivity is derived 

in a push-pull fashion; a bright bar in an ON region of the receptive field evokes a 

depolarization (push) and a dark bar at the same position evokes a hyperpolarization 

(pull). Given the differences in timing of the push and the pull, moving stimuli receive a 

succession of pushes and pulls that sum linearly. Finally, a nonlinear spike generation 

mechanism removes subthreshold modulations and amplifies the relatively weak 

direction selectivity in the membrane potential (by a factor of 2-3; just above the squaring 

nonlinearity of the motion energy model). Together this creates a spike signal whose 

time-average is strongly direction selective (Priebe and Ferster, 2005).  

 

In the monkey, tests of the motion energy model have followed a similar path. 

Extracellular recordings showed slanted space time response maps for DS simple cells 

(De Valois and Cottaris, 1998, De Valois et al., 2000, Livingstone, 1998, Conway and 

Livingstone, 2003). As explained above for cat simple cells, this is evidence against a 

Reichardt model.  As was the case for cat simple cells, the space time response map could 

predict the preferred direction of a cell, but it underestimated the magnitude of the 

direction selectivity (Conway and Livingstone, 2003). To date, no intracellular recordings 

have been performed to determine whether the spike generation nonlinearity underlies the 

enhancement of direction selectivity as it does in the cat (Jagadeesh et al., 1993). 
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4.3.3 Motion opponency 

In the final step of the motion energy model, the output of a leftward motion selective 

unit is subtracted from that of a rightward motion selective unit. Behavioral evidence 

shows that such an opponent stage must be present in the brain (Stromeyer et al., 1984). 

Given the description of DS simple cells in the previous section, it seems naturally to ask 

whether complex cells, which are thought to combine input from multiple simple cells, 

implement this opponent stage of motion processing.  

 

To test this hypothesis, Emerson et al. (1992) measured space-time interaction maps in 

cat complex cells. These maps show the nonlinear facilitation or suppression that one 

flash causes in the response of a second flash. Up until the squaring stage of the motion 

energy model, no nonlinear interactions are predicted, but at stage VI, simulations show 

that the interaction maps should be slanted (Figure 10). At the opponent stage of the 

detector, on the other hand, the interaction maps should be separable (Remember that the 

opponent stage is formally identical to the Reichardt model, which has separable 

interaction maps at all stages).  Cat complex cells have slanted spatio-temporal 

interaction maps (Emerson et al., 1992, Touryan et al., 2002), which is incompatible with 

the motion-opponent stage. Moreover, in a direct test of motion opponency, van Wezel et 

al.(1996) demonstrated that complex cells responses are suppressed by a stimulus moving 

in the anti-preferred direction, but this suppression is far from complete (~50%). In fact, 

the response to a stimulus consisting of two directions of motion is often well described 

by the average of the responses to the two directions of motion presented separately. 

These data suggest that complex cells are best described by stage VI of the motion energy 

model. 
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Figure 10 Two-flash space-time interaction maps in the motion energy model. This figure follows the 

conventions of Figure 7.  

 

Macaque complex cells also have slanted interaction maps and, when combined with a 

squaring nonlinearity, account reasonably well for the direction selectivity to grating 

stimuli (Gaska et al., 1994, Livingstone, 1998, Conway and Livingstone, 2003).  As in 

the cat, this shows that they are well described by stage VI of the motion energy model 

but not the opponent stage.  In agreement with this, macaque V1 cells also show 

incomplete suppression for stimuli containing two opposing directions (Qian and 

Andersen, 1994). Somewhat surprisingly, macaque complex cells not only have slanted 

interaction maps, but also slanted space time response maps (Conway and Livingstone, 

2003). This is not expected in the motion energy model (Figure 9), but an imbalance 

between the subunits could cause this kind of response.   

 

Finally, Livingstone (1998) showed that many macaque V1 complex cells had a spatially 

offset inhibitory zone on the null side of the receptive field. Such a zone is not expected 

in the motion energy model, but is reminiscent of the veto model of direction selectivity 

in the retina (Barlow et al., 1964). To recap, in the latter view a stimulus moving into the 

receptive field from the null side, produces a delayed inhibition that removes the fast 

excitation produced when the stimulus is in the center of the receptive field.  Livingstone 

and Conway (1998, , 2003) speculated that such delayed asymmetric inhibition could 

arise from an asymmetric dendritic tree. If such a tree has slow inhibitory inputs near the 

soma, and fast excitatory inputs on the asymmetric dendritic tree, then a stimulus moving 

in the anti-preferred direction (from soma to dendrites) would evoke overlapping 
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excitation and inhibition and lead to little activation. For a stimulus moving from the 

dendrites towards the soma, on the other hand, the excitatory input would reach the soma 

and evoke spikes before the somatic inhibition could stop it.  Anderson et al.  (1999) 

investigated this hypothesis by a combination of physiology, anatomical reconstruction of 

single neurons, and modeling.  First, they showed that the asymmetry of a dendritic tree 

did not predict the cells preferred direction. Second, their compartmental model showed 

that the delays that can be generated within a typical single dendritic tree were too short 

to explain sensitivity to slow motion.  This suggests that the contribution of asymmetric 

inhibition to direction selectivity in the monkey is small.  

 

The main projection area of DS complex cells in the macaque is the middle temporal 

area. Many of these cells reduce their response below the spontaneous firing rate when 

stimulated in the anti-preferred direction (Maunsell and Van Essen, 1983, Albright, 

1984).  While this shows the presence of some opponent mechanisms, there is no clear 

evidence for an opponent stage as predicted by the motion energy model. First, space-

time interaction maps in MT are slanted, and not space-time separable (Livingstone et al., 

2001, Pack et al., 2006). The similarity between the interaction maps of MT cells and V1 

complex cells suggests that the former simply sum the output of the latter (Pack et al., 

2006). Second, even in MT the suppression of the response to a preferred stimulus by an 

anti-preferred stimulus is far from complete (Snowden et al., 1991, Qian and Andersen, 

1994). Rather than a linear subtraction of opponent responses, the interaction of multiple 

directions of motion may be described more accurately as a (non-linear) competition 

among multiple spatial and temporal frequency components (Krekelberg and Albright, 

2005).   
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5 SPACE-TIME GRADIENTS  

Models building on the principle of space-time gradients start from the observation that 

spatial and temporal change must coincide in an image to produce motion. This insight 

leads to a measure of velocity in an image (I) that is defined as the ratio of the temporal 

and spatial change: 
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Mathematically, this measure defines the true velocity at every point in space and time.  

This is quite different from the outputs of the Reichardt and Motion Energy detector, 

which do not signal the same velocity for every spatial pattern (See 3.2.4). Moreover, 

because a contrast change will affect both the numerator and the denominator of the 

gradient model, the velocity estimate does not depend on the contrast of the image.  In 

other models, such contrast-invariance is commonly built-in after motion estimation by 

processes of normalization and gain control (Heeger, 1992). Mathematically, therefore, 

this model truly is a better estimator of velocity. The question is, however, whether this 

estimate is used by the brain. 

 

The biggest challenge for the model is that velocity becomes ill-defined in regions where 

the spatial gradient is zero. A number of solutions have been proposed to circumvent this 

problem. First, one can find regions with spatial change (edges) and only then determine 

the ratio in a second processing stage (Marr and Ullman, 1981). Other alternatives are to 

include higher-order spatio-temporal derivatives - one of which will likely be non-zero- 
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(Johnston et al., 1992), or to pool velocity estimates over space -the estimate will be well-

defined for at least some positions (Heeger and Simoncelli, 1994). 

 

The elementary computation required in this model is differentiation. While at first 

somewhat difficult to imagine, differentiation is easy to implement with simple neural 

elements. Consider a standard ON center neuron. Its output can be described as the 

weighted sum of its inputs. If we assume the receptive field is a bell-shaped function (for 

instance a Gaussian), we can write its output as G*I, the weighted sum of the image with 

the receptive field. The gradient model requires outputs that are related to dI/dx, for 

instance G*dI/dx. Because this neuron’s output is linear, the order of the weighted sum 

and differentiation operations does not matter: G*dI/dx = dG/dx*I. In other words an 

output proportional to the derivative of the image can be obtained from a simple linear 

neuron whose receptive field is shaped like the derivative of a bell-shaped function. 

Higher order derivatives can be computed using increasingly complex receptive field 

structures (Koenderink and van Doorn, 1987).  Looking at the spatial filters in the motion 

energy model (Figure 8) they are reasonably well described as each other’s derivatives. 

The same is true for the temporal filters.  In other words, the motion energy model 

implicitly relies on spatial and temporal derivatives. By reformulating the models, it can 

actually be shown that some variants of the gradient models are formally equivalent to 

motion energy models (Heeger and Simoncelli, 1994, Bruce et al., 2003).   

5.1 BEHAVIORAL EVIDENCE 

Given that some gradient schemes are formally equivalent to correlation and energy 

schemes for restricted classes of stimuli, it is difficult to distinguish among these schemes 

using behavioral methods.  In line with this, Johnston et al. have demonstrated that many 
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motion phenomena that have been interpreted in favor of the space-time correlation or 

orientation schemes, such as reverse-phi, are also found in their variant of the gradient 

scheme (Johnston et al., 1992).  

 

An attractive property of the gradient model, which is not found in the other schemes, is 

that it accounts quite naturally for some second-order motion percepts (Johnston and 

Clifford, 1995a, Johnston et al., 1999, Benton et al., 2001). Correlation or energy based 

schemes need to hypothesize a separate rectification stage for the processing of second-

order motion. (Chubb and Sperling, 1988, Chubb and Sperling, 1989, Cavanagh and 

Mather, 1989) [See also Chapter XX by Sperling].  

 

In a perfect gradient model, the velocity estimate does not depend on the (spatial 

frequency of the) visual pattern. As discussed in 3.2.4, however, both insect and human 

motion perception shows signs of pattern dependence. It is not clear whether an imperfect 

implementation of the gradient scheme could account for this. 

5.2 PHYSIOLOGICAL EVIDENCE  

The gradient model has not received as much physiological attention as the other models. 

The reason for this may be that the behavioral evidence suggests that motion perception 

is not as perfect as the gradient model could be.  In a few studies in the fly, however, the 

gradient model was explicitly compared to the Reichardt detector and the data clearly 

speak in favor of the latter. To wit, both the spike output (Egelhaaf et al., 1989) and 

dendritic calcium concentrations (Haag et al., 2004) of the direction selective H1 neuron 

show clear (non-direction selective) modulations that follow the intensity modulations of 

the input. Moreover, both response measures are tuned for a particular temporal 
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frequency and not a true velocity (Pattern dependence; see Section 3.2.4). These 

imperfections in the H1 neuron indicate that it does not use the gradient scheme to detect 

motion. 

  

Johnston (1992) has proposed a biologically plausible way to implement the gradient 

scheme in the biological hardware of primary visual cortex.  Johnston’s solution to the 

problem of ill-defined velocities in image regions without luminance change is to 

determine a series expansion of the image. The best least-squares estimate of the velocity 

is then given by:  
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Each term in T and S can be implemented with differentiating filters of 2nd and higher 

order. Figure 11 shows a few representative examples of the space time response maps 

that this gradient model would require.  Just as the response maps of the Reichardt 

detector, none of these are oriented in space-time. Clearly, there is no lack of such simple 

cells in primary visual cortex (Livingstone, 1998, Conway and Livingstone, 2003) and 

they could provide the input to a gradient motion detector. Hence, in principle, the 

required filters seem to be present in visual cortex. However, as discussed in section 

4.3.2, many direction selective simple and even complex cells have space-time oriented 

response maps; those cells match the components of the motion-energy model, not those 

of this particular implementation of the gradient model.  
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Figure 11 One-flash space-time response maps of the gradient model. This figure shows some of the 

differentiating filters that are required in the gradient model of Johnston et al. (1992). Conventions 

as in Figure 6. 

 

6 CONCLUSION 

While motion itself is not a complicated phenomenon, motion detection by neural 

systems certainly is. The reason for this is that motion can be detected in so many 

different ways.  Many of those detection mechanisms will not be perfect, but they may 

just be good enough for a particular purpose. For instance, while the gradient model may 

balk at the imperfections of a motion energy detector, such details may not be important 

when deciding whether to stay put or flee an approaching predator.  This view of motion 

detection – as a problem with many good but suboptimal solutions – suggests a less 

absolutist approach to the study of motion mechanisms.  

 

Simulations of a perfect Reichardt, motion energy, or gradient based model may appear 

to make strict and testable predictions, but small deviations from the ideal model can lead 

to significant changes in those predictions. The first factor to consider here is noise. 

Estimating receptive field properties such as space-time response maps and interaction 

maps with extracellular recordings is time consuming and even then results in relatively 

noisy estimates.  For instance, a significant amount of noise could make the separable 

space-time response map of a Reichardt detector look like the slanted space-time 

response map of the motion energy detector. Figure 2 illustrates the basic space-time 

filtering properties of the three models in a similar format. Without much difficulty, the 

motion energy filters can be seen as a blurred version of the Reichardt filters. Similarly, 

with enough measurement noise, the filters of the gradient scheme would be 
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indistinguishable from those of the motion energy model. This shows that extracellular 

recordings- with their low signal to noise and the confounding influence of the unknown 

spike-generation nonlinearity – may be hard pushed to really distinguish between these 

models. At the very least it shows that a small number of positive examples for a given 

model will not be enough to accept it. 

 

Apart from measurement noise, the possibility of an imperfect implementation of a 

motion detection scheme should also be taken into account. These imperfections 

sometimes lead to testable predictions (Borst and Egelhaaf, 1990), but they can also blur 

the lines between the models. For Figure 12, I simulated an (extended) Reichardt detector 

that receives its input not from odd and even Gabor spatial filters (as in Figure 7), but 

from two even Gabor functions with a small spatial shift. The interaction map at the level 

of the leftward subunit shows elements that are oriented in space-time, one of the 

supposedly identifying markers of the motion energy model. Certainly, the space-time 

slant of this simulated imperfect Reichardt detector is much less clear than that of Figure 

9, as well as that measured in detail in a complex cell in the cat (Emerson et al., 1992), 

but it shows that the lines between the models are not as clear as one would like. 

 

Figure 12 An imperfect Reichardt model.  This space-time interaction map was calculated from an 

extended Reichardt detector in which the two spatial inputs are both even symmetric, but they are 

shifted such that the spatial receptive fields still have significant overlap.  This overlap creates space-

time slant in the area indicated by the dashed rectangle.  Conventions as in Figure 7. 

 

One can look at this issue from a quite different point of view. For the neuroscientist, 

models that are difficult to distinguish are a problem; they make the scientific story 
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harder to follow and the conclusion less forceful. From the point of view of the brain, 

however, multiple models with similar prerequisites may be advantageous. Consider 

Figure 2 again; it shows that once the essential filters for a Reichardt detector are in 

place, building a motion energy detector should be relatively easy. Similarly, a slightly 

different combination of the same filters used for the motion energy detector could 

function as a gradient model. This suggests that the brain may not use motion detection 

mechanisms based exclusively on correlation, orientation, or gradients. Instead, multiple 

mechanisms could contribute at the same time and side-by-side. Although such mixing of 

multiple mechanisms does not appeal to the modeler with a keen eye for mathematical 

beauty, it may be the ugly reality of the perception of motion.  

 

7 FIGURE LEGENDS 

Figure 1  Motion as space-time orientation.  A) When a bar moves smoothly rightward 

over time, it traces out an oriented trapezoid in a space-time plot.  B) When that same bar 

jumps from one place to the next (apparent motion), the space-time orientation is still 

clearly visible. ..................................................................................................................... 3 

Figure 2 Three views of motion detection. A) The Reichardt detector makes use of 

sensors that are displaced in space and time with respect to each other. By multiplying 

their outputs (indicated by the arrows), one can create a rightward (R) or leftward (L) 

selective detector.  B) The motion energy detector uses overlapping sensors that are 

sensitive to rightward (R) or leftward (L) space-time slant. C) The gradient detector uses 

overlapping detectors, sensitive to either spatial (S) or temporal (T) change. Adapted 

from (Johnston and Clifford, 1995b). ................................................................................. 4 
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Figure 3 A beetle on a Spangenglobus.  The beetle is glued to the black pole which holds 

it stationary in space. When it is lowered onto the y-maze globe, it instinctively grabs it 

and starts “walking” along the ridges.  When it comes to a y-junction, it must make a 

decision to go right or left. This decision can be influenced by presenting motion in the 

environment.  (© Freiburger Universitaetsblaetter)............................................................ 8 

Figure 4 The (Hassenstein-) Reichardt detector. The light sensors represent the beetle’s 

ommatidia. Signals from two neighboring ommatidia (I) are multiplied at stage III. One 

of the two input signals, however, is first delayed (II). The output of the multiplication 

stage in black is selective for rightward motion. This selectivity is enhanced in the last 

stage (IV) by subtracting the output of a leftward selective subunit (in gray) from that of 

the rightward selective subunit. .......................................................................................... 9 

Figure 5 The extended Reichardt model. Light falling on the retina is spatially (II) and 

temporally filtered (III). The outputs of the four filters are then pairwise multiplied (Stage 

IV). As in the standard Reichardt detector, the rightward selective subunit (black) is 

combined with a mirror symmetric leftward selective subunit (gray), at stage V............ 14 

Figure 6 One flash space-time response maps of the Reichardt model.  Each of these plots 

shows the response of a stage in the extended Reichardt model to the presentation of a 

single bright flashed stimulus. Time after the stimulus runs down the vertical axis, the 

position of the stimulus relative to the receptive field center, is on the horizontal axis.  

Pixels brighter than the gray zero level (see colorbar on the right), represent an increase 

in the activity, dark pixels represent a decrease in activity. Within the linear model, such 

a decrease in firing after the presentation of a bright bar is equivalent to an increase in 

firing after the presentation of a dark bar.  The labels in the lower left corner of each 

space-time response map refer to the labels in Figure 5................................................... 15 



  47 

 

Figure 7 Two-flash space-time interaction maps of the extended Reichardt model.  These 

interaction maps show which part of the response to two successive flashes is not 

expected based on the linear summation of the response to the two flashes presented in 

isolation.  The time between the two flashes is on the vertical axis, the distance between 

the flashes on the horizontal axis.  Bright pixels show a facilitating interaction, dark 

pixels a suppressive interaction. ....................................................................................... 17 

Figure 8 The motion energy model. A) A chart of the signal flow in the model. In black 

are the components of the rightward selective subunit, in gray the mirror symmetric 

leftward selective unit. The diamonds at level II indicate spatial filtering with the filters 

shown in panel B.  Similarly, the temporal filtering of stage III uses the filters of panel C.  

B) Even (solid line) and odd (dashed line) spatial filters. C) Fast (solid line)  and delayed 

(dashed line) temporal filters. ........................................................................................... 24 

Figure 9 One-flash space-time response maps of the motion energy model.  This figure 

follows the conventions of Figure 6. The space-time response maps of stage III of the 

motion energy model (A,B,A’, B’ ), are identical to those of the Reichardt model shown 

in Figure 6. ........................................................................................................................ 27 

Figure 10 Two-flash space-time interaction maps in the motion energy model. This figure 

follows the conventions of Figure 7.................................................................................. 37 

Figure 11 One-flash space-time response maps of the gradient model. This figure shows 

some of the differentiating filters that are required in the gradient model of Johnston et al. 

(1992). Conventions as in Figure 6................................................................................... 43 

Figure 12 An imperfect Reichardt model.  This space-time interaction map was 

calculated from an extended Reichardt detector in which the two spatial inputs are both 

even symmetric, but they are shifted such that the spatial receptive fields still have 



  48 

 

significant overlap.  This overlap creates space-time slant in the area indicated by the 

dashed rectangle.  Conventions as in Figure 7.................................................................. 44 

 

 
8 SUGGESTIONS FOR CROSS-REFERENCES 

Are in the text as [See Chapter XXX by YYY]. 
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