
Cumulative cultural evolution in the laboratory:
An experimental approach to the origins
of structure in human language
Simon Kirby*†, Hannah Cornish*, and Kenny Smith‡

*School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh EH8 9LL, United Kingdom; and ‡Division of Psychology,
Northumbria University, Newcastle-upon-Tyne NE1 8ST, United Kingdom

Edited by Dale Purves, Duke University Medical Center, Durham, NC, and approved June 6, 2008 (received for review August 20, 2007)

We introduce an experimental paradigm for studying the cumu-
lative cultural evolution of language. In doing so we provide the
first experimental validation for the idea that cultural transmission
can lead to the appearance of design without a designer. Our
experiments involve the iterated learning of artificial languages by
human participants. We show that languages transmitted cultur-
ally evolve in such a way as to maximize their own transmissibility:
over time, the languages in our experiments become easier to learn
and increasingly structured. Furthermore, this structure emerges
purely as a consequence of the transmission of language over
generations, without any intentional design on the part of indi-
vidual language learners. Previous computational and mathemat-
ical models suggest that iterated learning provides an explanation
for the structure of human language and link particular aspects of
linguistic structure with particular constraints acting on language
during its transmission. The experimental work presented here
shows that the predictions of these models, and models of cultural
evolution more generally, can be tested in the laboratory.

cultural transmission � iterated learning � language evolution

The emergence of human language has been cited by Maynard
Smith and Szathmary (1) as the most recent of a small number

of highly significant evolutionary transitions in the history of life on
earth. The reason they give for including language in this list is that
language enables an entirely new system for information transmis-
sion: human culture. Language is unique in being a system that
supports unlimited heredity of cultural information, allowing our
species to develop a unique kind of open-ended adaptability.

Although this feature of language as a carrier of cultural infor-
mation obviously is important, we have argued that there is a second
sense in which language is an evolutionary milestone: each utter-
ance has a dual purpose, carrying semantic content but also
conveying information about its own construction (2–5). Upon
hearing a sentence, a language learner uses the structure of that
sentence to make new inferences about the language that produced
it. This process allows learners to reverse-engineer the language of
their speech community from the utterances they hear. Language
thus is both a conveyer of cultural information (in Maynard Smith
and Szathmary’s sense) and is itself culturally transmitted. This
cultural transmission makes language an evolutionary system in its
own right (2–3), suggesting another approach to the explanation of
linguistic structure. Crucially, language also represents an excellent
test domain for theories of cultural evolution in general, because the
acquisition and processing of language are relatively well under-
stood, and because language has an interesting, nontrivial, but well
documented structure.§

During the past 10 years a wide range of computational and
mathematical models have looked at a particular kind of cultural
evolution termed ‘‘iterated learning’’ (4–13).

Iterated Learning. Iterated learning is a process in which an indi-
vidual acquires a behavior by observing a similar behavior in
another individual who acquired it in the same way.

Spoken (or signed) language is an outcome of iterated learning.
Although in some circumstances aspects of language may be
explicitly taught, acquired from a written form, or arise from
deliberate invention, almost all the features of the languages we
speak are the result of iterated learning. Models of this process
(4–13) demonstrate that, over repeated episodes of transmission,
behaviors transmitted by iterated learning tend to become 1) easier
to learn, and 2) increasingly structured. Note that this process is
cumulative and is not considered to arise from the explicit inten-
tions of the individuals involved. Rather, this type of cultural
evolution is an ‘‘invisible hand’’ process leading to phenomena that
are the result of human action but are not intentional artifacts (14).

Although these models are indicative of the power of cultural
evolution in explaining language structure, skepticism remains as to
how well computational models of learning match the abilities and
biases of real human learners. For example, responding to a
growing body of computational models of the emergence of mul-
tiword utterances from unstructured randomness (5, 8, 10, 11, 15),
Bickerton notes, ‘‘Powerful and potentially interesting although this
approach is, its failure to incorporate more realistic conditions
(perhaps because these would be more difficult to simulate) sharply
reduces any contribution it might make toward unraveling language
evolution. So far, it is a classic case of looking for your car-keys
where the street-lamps are’’ (16, p. 522).

What is needed, therefore, is an experimental paradigm for
studying the evolution of complex cultural adaptations using real
human participants. Ideally, this paradigm should mirror previous
computational and mathematical models and provide a test for the
claim that iterated learning leads to adaptively structured lan-
guages. It should demonstrate whether cumulative adaptive evolu-
tion without intention is possible purely by virtue of cultural
transmission.

In this paper, we implement such a paradigm and demonstrate
cumulative, adaptive, nonintentional cultural evolution of an arti-
ficial language in a laboratory population of human participants.

Diffusion Chains. Diffusion-chain studies provide the best example
of experimental treatments of iterated learning. In these experi-
ments a participant observes some target behavior (provided by the
experimenter) and then is required to replicate that behavior in
some way that can be observed by a second participant. This second
participant in turn attempts to replicate the first participant’s
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behavior for a third participant, and so on. (We refer to each
iteration of this cycle as ‘‘1 generation.’’) Using this procedure, we
can observe the diffusion of behavior through a chain of cultural
transmission. The first reported use of this methodology was by
Bartlett in 1932 (17), but only recently did researchers begin to apply
this approach systematically (18–24).

The most recent, and arguably the most significant, instance of
a diffusion-chain experiment is the work of Horner et al., which
explores the cultural transmission of tool-use strategies in popula-
tions of chimpanzees and children (24). Diffusion chains are set up
in which an experimenter demonstrates 1 of 2 possible techniques
for opening a puzzle box (‘‘artificial fruit’’) to a participant. Sub-
sequent participants observe their predecessor’s box-opening be-
havior and then in turn become the model for the next generation.
These experiments demonstrate clearly that both chimpanzees and
children are capable of high-fidelity cultural transmission: the
box-opening technique used by the last participant in the chains (of
up to 10 individuals) is the same as that demonstrated to the first
participant, with a chain of faithful transmission between the first
and last participants.

Although these experiments show that cultural transmission can
be studied empirically even in nonhumans, they do not support our
claim that culture leads to cumulative nonintentional adaptation
because the behavioral information that is being transmitted is
drawn from a limited set of possibilities. For example, in the
puzzle-box study, there are essentially 2 different strategies for
opening the box. The task is not complex enough to demonstrate
adaptation, let alone cumulative adaptation. In any case, both the
strategies seem to be equivalently ‘‘adaptive’’ in cultural and
environmental terms, in that both open the box and both are
transmittable.

To get around these problems and to allow us to make a direct
comparison with human language, we replicate the basic diffusion-
chain design with a more complex artificial-language learning task
of labeling visual stimuli with strings of written syllables (25, 26). To
make this task tractable, we use adult human participants and
observe the cultural evolution of the artificial language for 10
cultural generations.

This work bears some resemblance to a recent body of experi-
mental work on the shared construction of communication systems
(27–30). Of particular relevance is a recent paper by Selten and
Warglien (30) that demonstrates that pairs of participants some-
times can create structured and efficient communication systems
over the course of repeated interactions. The major difference
between the experiments described here and the work of Selten and
Warglien is the role of intentional design. In Selten and Warglien’s
experiments, as in those of Galantucci (27) and Garrod et al. (28,
29), participants interact repeatedly with the explicit goal of arriving
at a shared system for communication. Therefore the systems they
construct are the outcome of conscious design. Our diffusion-chain
experiment allows us to explore whether structured languages can
emerge without intentional design, as has been argued to be the
case for language (14).

Design of Experiment 1. Participants are asked to learn an ‘‘alien’’
language made up of written labels for visual stimuli. The stimuli are
pictures of colored objects in motion, and the labels are sequences
of lowercase letters (see Fig. 1 for an example and the Methods
section for more details).

For training purposes, the language to be learned (a set of
string–picture pairs) is divided randomly into 2 sets of approx-
imately equal size: the SEEN set and the UNSEEN set. A
participant is trained on the SEEN set, being presented repeat-
edly with each string–picture pair in random order (see Methods
for details). During subsequent testing, participants are pre-
sented with a picture and asked to produce the string they think
the alien would give for that picture. Participants are tested on
both the SEEN and UNSEEN sets in their entirety.

The initial set of labels in the language is generated and assigned
randomly, and the first participant in the experiment is trained on
this random language. Subsequent participants are trained on the
output of the final testing of the previous participant, which is
re-divided into new SEEN and UNSEEN sets. Note that the
experimental procedure is equivalent for all participants, despite
the different sources of training data: at no stage are participants
told that they are being trained on the output of another person, nor
did any participants guess that the transmission of an acquired
language was part of the experiment. Crucially, participants believe
they are copying the input language as best they can; a posttest
questionnaire revealed that many participants did not even realize
that they were being tested on stimuli they had not seen in training,
so that intentional design on the part of the participants is unlikely.
To put it another way, the participants’ goal is to reproduce the
language, not improve to it in some way. (We return to this point
in the Discussion section).

Our hypothesis is that we will observe cumulative adaptive
evolution of the language being transmitted in this experiment; that
is, we should see the emergence of adaptive structure in response
to the pressure on the language to be transmitted faithfully from
generation to generation. If this hypothesis is correct, we should see
2 things: 1) an increase in the learnability of the language over
generations (i.e., a decrease in transmission error), and 2) the
evolution of linguistic structure (i.e., an increase in predictability in
the mapping between meanings and signals).

We devised 2 measures to test this hypothesis. First, we used a
measure of string similarity to compare words in the languages of
participants at adjacent generations (see Methods). The Levensh-
tein edit distance (31) between pairs of words (i.e., the smallest
number of character insertions, replacements, and deletions re-
quired to transform 1 word into the other) provides a reasonable
theory-neutral measure of distance. We normalized the edit dis-
tance for length of words so that identical strings have a distance of
0 and maximally distinct ones have a distance of 1. The mean
distance between all of the words in a participant’s output and the
corresponding words in the previous generation’s output gives a
straightforward measure of the error in transmission of the
language.

Second, we constructed a measure of linguistic structure based
on measures of compositionality used in some computational
models (12). Our aim was to quantify the degree to which the
mapping between meanings (visual scenes) and signals (character
strings) is systematic, an obvious hallmark of structure in human
language. A language is systematic if patterns of similarity and
dissimilarity in signals provide information about the relationship
between the meanings those signals map on to. Accordingly, we
calculated the correlation between all pairs of edit-distances in the
set of signals and the corresponding distances between meanings
(i.e., whether they differed in shape, color, and/or movement). By
using Monte-Carlo techniques, we can calculate the extent to which
this alignment between meaning and signal differs from the align-
ment we would expect to see by a random, unstructured assignment
of signals to meanings (see Methods for details).

kihemiwi

Fig. 1. An example string–picture pair.
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Results of Experiment 1. The results of our first experiment, involv-
ing 4 separate diffusion chains of 10 participants each, are shown in
Fig. 2. Each of these chains was initialized with a different random
language. There is a clear and statistically significant decrease in
transmission error between the initial and final generations (mean
decrease 0.748, SD � 0.147; t (3) � 8.656; P � 0.002). This decrease
confirms the first of our predictions: the language is adapting to
become increasingly transmissible from generation to generation.
Indeed, toward the end of some chains the language is transmitted
perfectly: these participants produced exactly the same strings for
every meaning as their predecessor, although they had not been
exposed to the strings associated with half of those meanings.

How is this adaptation possible? Is any structural evolution of the
language taking place as in the second of our 2 predictions? As
Table 1 shows, the number of distinct strings in each language
decreases rapidly. The initial random languages are completely
unambiguous: every meaning is expressed by a distinct signal. The
transmission process cumulatively introduces ambiguity as single
strings are re-used to express more and more meanings. In other
words, the languages gradually introduce underspecification of
meanings. Clearly, the reduction in the number of strings must
make a language easier for participants to learn, but the reduction
alone cannot account for the results we see. For example, the
reduction does not explain how, in some chains, participants are
able to produce the correct signal for every meaning, including
meanings drawn from the UNSEEN set.

The answer to this puzzle lies in the structure of the languages.
The initial random language is, by definition, unstructured: nothing
in the set of signals gives any systematic clue to the meanings being
conveyed. The only way to learn this language is by rote. Equally,
if a language is randomly underspecified, then rote learning is the
only way it can be acquired. For example, if the same signal is used
for a black spiraling triangle and a red bouncing square, then a
learner must see this signal used for both of these meanings to learn

it. Because we deliberately hold items back from the SEEN set, rote
learning for all meanings is impossible. For learners to be able to
generalize to unseen meanings successfully, there must be system-
atic underspecification.

We can observe exactly this kind of structure evolving by
examining a language as it develops in the experiment. For example,
by generation 4 in 1 of the diffusion chains, the string tuge is used
exclusively for all pictures with an object moving horizontally. The
distribution of the other strings in the language is more idiosyncratic
and unpredictable at this stage. By generation 6, poi is used to refer
to most spiraling pictures, but there are exceptions for triangles and
squares. Blue spiraling triangles or squares are referred to as tupin,
and red spiraling triangles or squares are tupim. In the following
generation, these exceptional cases are reduced to the blue spiraling
triangle and the red spiraling square. By generation 8 (shown in Fig.
3), and also for generations 9 and 10, the language has settled on
a simple system of regularities whereby everything that moves
horizontally is tuge, all spiraling objects are poi, and bouncing
objects are divided according to shape.

It is precisely because the language can be described by using this
simple set of generalizations that participants are able to label
correctly pictures that they have never previously seen. This gen-
eralization directly ensures the stable cultural transmission of the
language from generation to generation, even though each learner
of the language is exposed to incomplete training data.
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Fig. 2. Transmission error and a measure of structure by generation in 4 chains. a shows the increase in learnability (decrease in error) of languages over time. b shows
structure in the languages increasing. The dotted line in b gives the 95% confidence interval so that any result above this line demonstrates that there is a nonrandom
alignment of signals and meanings. In other words, structure in the set of signals reflects structure in the set of meanings. In 2 cases, this measure is not defined and
therefore is not plotted (see Methods). The language discussed in the paper is circled.

Table 1. Number of distinct words by generation in the
first experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

� Chain 1 27 17 9 6 5 4 4 2 2 2 2
� Chain 2 27 17 15 8 7 6 6 6 5 5 4
‚ Chain 3 27 24 8 6 6 5 6 5 5 5 5
� Chain 4 27 23 9 10 9 11 7 5 5 4 4

Symbols correspond to those in Fig. 2.

tuge tuge tuge
tuge tuge tuge
tuge tuge tuge

tupim tupim tupim
miniku miniku miniku
tupin tupin tupin

poi poi poi
poi poi poi
poi poi poi

Fig. 3. An example evolved language in the first experiment. This language
exhibits systematic underspecification, enabling learners to reproduce the whole
language from a fragment.
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Our structure measure confirms that the languages evolve to
become more structured. As can be seen in Fig. 2b, significantly
nonrandom structure in the mapping from meanings to signals
emerges rapidly. Furthermore, the languages produced by the final
generation are significantly more structured than the initial lan-
guages (mean increase 5.578, SD � 2.968, t (3) � 3.7575, P � 0.02).

Languages in this experiment are evolving to be learnable, and
they are doing so by becoming structured. This development of
structure confirms our hypothesis regarding the cultural evolution
of language. However, we are interested in whether it would be
possible for a language to evolve that is learnable and structured but
also expressive, i.e., a language that would be able to label meanings
unambiguously. Such a language cannot rely on systematic under-
specification of meanings but instead must find some other means
of gaining structure.

Design of Experiment 2. Accordingly, in the second experiment we
made a single minor modification: we ‘‘filtered’’ the SEEN set
before each participant’s training. If any strings were assigned to
more than 1 meaning, all but 1 of those meanings (chosen at
random) was removed from the training data. This filtering effec-
tively removes the possibility of the language adapting to be
learnable by introducing underspecification: filtering ensures that
underspecification is an evolutionary dead-end. This process, al-
though artificial, is an analogue of a pressure to be expressive that
would come from communicative need in the case of real language
transmission.

Results of Experiment 2. As expected, under the modified regimen,
the overall number of words in participants’ output remains com-
paratively high throughout the experiment, as shown in Table 2. Fig.
4a shows how transmission error changes as the language evolves.
Once again, it is clear that the languages are becoming more
learnable over time (mean decrease 0.427, SD � 0.106, t (3) �
8.0557, P � 0.002) although it is not possible to introduce the kind

of underspecification seen in Experiment 1. Furthermore, it is clear
from Fig. 4b that, as in Experiment 1, the languages are becoming
increasingly structured over time (mean increase, 6.805, SD �
5.390, t (3) � 2.525, P � 0.05). Because filtering rules out the
generalizations that emerged in the previous experiment, a differ-
ent kind of structure that does not rely on underspecification must
be emerging.

If we examine the languages at particular stages in their cultural
evolution, we can see exactly what this structure is. For example,
Fig. 5 shows the language output by a participant at generation 9 in
1 of the diffusion chains. When one looks at this language, it
immediately becomes clear that there is structure within the signals.
We can analyze each signal as 3 morphemes expressing color, shape,
and movement, respectively, with 1 exceptional irregularity (renana
for a bouncing red circle). It turns out that this general structure
emerges by at least generation 6 and persists to the end of the
experiment, although the details change as some morphemes are
lost or are reanalyzed from generation to generation [see support-
ing information (SI) Tables S1–S8 for the complete set of
languages].

Discussion
What we have observed here under laboratory conditions is cu-
mulative cultural adaptation without intentional design. Just as

Table 2. Number of distinct words by generation in the
second experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

� Chain 1 27 23 22 17 21 21 17 21 25 13 16
� Chain 2 27 26 13 10 10 16 16 12 12 13 12
‚ Chain 3 27 11 16 14 12 17 14 16 20 19 12
�Chain 4 27 19 19 17 19 17 22 23 21 27 23

Symbols correspond to those in Fig. 4.
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Fig. 4. Transmission error and structure by generation in the experiment in which ambiguous data were removed from the training set at each generation. a gives
error for the whole language; b gives structure. These results show that, despite the blocking of underspecification, structure still evolves that enables the languages
to become increasingly learnable. The language discussed in the paper is circled.

n-ere-ki l-ere-ki renana
n-ehe-ki l-aho-ki r-ene-ki
n-eke-ki l-ake-ki r-ahe-ki

n-ere-plo l-ane-plo r-e-plo
n-eho-plo l-aho-plo r-eho-plo
n-eki-plo l-aki-plo r-aho-plo

n-e-pilu l-ane-pilu r-e-pilu
n-eho-pilu l-aho-pilu r-eho-pilu
n-eki-pilu l-aki-pilu r-aho-pilu

Fig. 5. An example evolved language in the second experiment. The language
is structured: the string associated with a picture consists of substrings expressing
color, shape, and motion, respectively. The hyphens represent 1 way of analyzing
the substructure of these strings and are added purely for clarity; participants in
theexperimentalwaysproducedstringsofcharacterswithoutspacesoranyother
means of indicating substructure.
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previous computational models have predicted (4–13), the cultur-
ally evolving language has adapted in a way that ensures its
successful transmission from generation to generation, despite the
existence of a bottleneck on transmission imposed by the incom-
plete exposure of each participant to the language. Cultural adap-
tation results in languages that circumvent this transmission prob-
lem by exploiting structure in the set of meanings to be conveyed.
Note that this adaptation is cumulative with respect to learnability
and structure but not with respect to expressivity: cumulative
adaptation does not suggest that the languages necessarily become
more functional with respect to communication.

In all our experiments we have shown that languages, by virtue
of being culturally transmitted, become increasingly learnable and
increasingly structured. An obvious question is: to what extent does
the structure we see emerging resemble structures found in real
human languages?

In the first experiment, we saw underspecification introduced
into the language. This underspecification was not random but was
systematic, in that similar meanings were given the same label. The
form of the language reflected regularities in the visual scenes,
namely that they consisted of shape, color, and motion. Of course,
in the experiment this process ran unchecked and in some cases led
to languages in which almost every meaning was expressed by a
single signal.

The languages in our first experiment therefore could be seen as
being counter-functionally ambiguous. However, there is another
way of thinking about our results. Rather than seeing the emerging
language as ambiguous, some participants thought it revealed
something about the way the aliens saw the world. For example, in
posttest discussions, 1 participant noted that ‘‘color is not important
to these aliens.’’ This observation suggests that the participants did
not consider the language to be ambiguous, but instead thought that
it reflected the distinctions in meaning that the aliens were inter-
ested in communicating. The collapse of distinctions based on color
(which eventually occurred in all 4 replications of the first experi-
ment) in favor of distinctions based on shape and movement is
compatible with the literature on a shape bias, an expectation that
words will refer to shapes of objects rather than to properties such
as color or texture (32). It may be that, while adapting to become
more learnable by eliminating semantic distinctions, the languages
in the experiment retain the distinctions that seem most salient
and/or likely to be labeled linguistically.

Systematic underspecification similar to that found in the exper-
iments is an important feature of natural language. For example, in
the class of nouns only proper names refer to specific entities. Other
nouns are underspecified and typically correspond to natural
classes. However, systematic underspecification is not the only way
in which the structure of the set of meanings makes itself felt in
linguistic expressions. Most obviously, natural languages exhibit the
species-unique property of compositionality in syntax and morphol-
ogy.¶ The meaning of an expression normally is a function of the
meanings of subparts of that expression and of the way the subparts
are put together. It is precisely this property that we hypothesize
allows language to be both learnable and expressive.

Expressivity in human language is assumed to be a consequence
of the use of language for communication and also may be
attributable to predispositions of child language learners (33, 34).
In 1 computational model of iterated learning (8), an expressivity
requirement is enforced simply by filtering out ambiguous meaning-
strings from the data given to the learner, leaving a training set with
a unique 1-to-1 mapping between meanings and strings. Although
learners still are free to infer ambiguous strings, such ambiguity
would not be transmitted to the following generation.

We implemented exactly this filtering process in the second
experiment, to dramatic effect, even though for the participants the
conditions in this experiment were essentially identical to those in
the previous experiment. As in Experiment 1, after being presented
with string–picture pairs, the participants had to recall these pairs
and generalize to unseen pictures. Nevertheless, unlike in the
previous experiment, systematic compositional structure emerged.
Rules evolved for constructing signals out of a combination of
meaningful substrings, and these rules tended to be transmitted
from generation to generation once they had emerged (see Tables
S1–S8 for the full set of languages). The difference between these
2 experimental settings is simply that the second introduces a new
adaptive challenge for the evolving language. To be transmitted
faithfully from generation to generation, a language in this exper-
iment must be both learnable and unambiguous. The learnability
constraint is imposed by the participants in the experiment, and the
ambiguity constraint is imposed by our additional filter.

The result is the evolution of exactly the type of structure that
optimizes both these competing constraints: compositionality. The
evolution of this structure reveals a key feature of cultural trans-
mission: it gives rise to adaptive systems that respond to the
pressures imposed by the transmission bottleneck that exists be-
tween the producer and learner of behavior. Crucially, this adap-
tation by the language maximizes its own transmissibility, and the
adaptation can take place without intentional design on the part of
the individuals involved. Participants in the second experiment
could not be aware that ambiguous signals were being filtered, and
yet a completely different sort of structure emerged. This finding
demonstrates that adaptation can be independent of the intentions
of individuals.

Finally, the difference between the 2 experiments also shows that
the languages that emerge are not simply a reflection of the native
language of the participants. A participant’s first language may
influence the learnability of a particular artificial language and
therefore play a role in shaping the cultural evolution of those
languages in our experiments. However, this explanation cannot be
the whole story: if participants were merely stamping their own
linguistic knowledge onto the data that they were seeing, there
would be no reason we would find rampant structured underspeci-
fication in the first experiment and a system of morphological
concatenation in the second.

Conclusions
We have shown that it is possible to study cumulative cultural
adaptation in the laboratory. Using a diffusion-chain paradigm with
an artificial-language learning task, we provide empirical support
for computational and mathematical models of iterated learning
that show language to be an adaptive system in its own right. We
demonstrate the cumulative evolution of an adaptive structure
without intentional design on the part of the participants in the
experiment.

We can understand the linguistic structure emerging in these
experiments as an adaptive response by language to the problem of
being transmitted from generation to generation. In particular,
language faces the problem of being reproducible from a sub-
sample. In the first experiment, the language solves this problem by
introducing systematic underspecification in the meaning-signal
mapping. In the second experiment, the language faces the addi-
tional challenge of being transmitted despite filtering for ambiguity.
Compositional structure is a potential solution to this particular
transmission problem, and this structure emerges. It is important to
reiterate that participants in the experiment did not intentionally
design this solution; indeed, they were not even aware of the
problem. Participants believed they were reproducing as best they
could the language to which they were exposed. Just as biological
evolution can deliver the appearance of design without the exis-
tence of a designer, so too can cultural evolution.

¶Arguably, the dance of honey bees (35) and the calls of Campbell’s monkeys (36) are both
minimally compositional. However, there is no evidence (as yet) for culturally transmitted or
open-ended compositional communication outside our species.
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Methods
Eighty participants were recruited to participate in an ‘‘alien language’’ learning
study. Each had to learn a language made up of written labels for visual stimuli.
Participants were university students with no background in linguistics. The
female:male ratio was 46:34, the mean age was 22.5 years, the minimum age was
18 years, and the maximum age was 40 years. The experiment was conducted in
accordance with the ethics procedures of the Department of Linguistics and
English Language at the University of Edinburgh. Participants carried out the
experiment at a computer terminal and received written and verbal instructions
(see SI Text). During training, participants were presented with string–picture
pairs on the computer monitor. During testing, participants were presented with
pictures on the monitor and were prompted to enter strings using the keyboard,
with any sequence of alphanumeric characters being permissible.

Visual Stimuli. There were 27 possible stimuli to be labeled. Each was a colored
object with an arrow indicating motion. Each object feature (shape, color, mo-
tion) varied over 3 possible values: square, circle, or triangle; black, blue, or red;
horizontal motion, bouncing, or spiraling motion.

Labels. The set of labels in the initial language was generated and assigned
randomly and was constructed by concatenating between 2 and 4 syllables
(without spaces between) taken from a set of 9 simple consonant–vowel pairs.
Because participants were free to enter any sequence of characters they chose
during testing, subsequent labels were unconstrained.

Training and Testing Regimen. Each language (a set of 27 string–picture pairs, 1
string for each of 27 possible pictures) was divided randomly into 2 sets: the SEEN
set (14 string–picture pairs) and the UNSEEN set (13 string–picture pairs). Each
participant acquired the language in a single session comprising of 3 rounds of
training with an optional 2-minute break between rounds. A single round of
training consisted of 2 randomized exposures to the SEEN set, followed by a test.
In the first 2 rounds this test phase contained only half the SEEN and half the
UNSEEN items; the final test at the end of the third round (which was the only
source for the next generation’s language) consisted of all 27 pictures.

During each training pass through the SEEN set, participants were presented
with each pair in a random order, with the string being displayed for 1 second
followed by both string and picture being displayed for a further 5 seconds.
During testing, participants were presented with a picture and prompted to type
in the string they thought the alien would produce for that picture.

In the second experiment, the SEEN set was filtered before presentation to
participants. Specifically, if any string labeled more than 1 picture, all but 1 of
those string–picture pairs (chosen at random) was moved into the UNSEEN set. As

a result, the trainingdata seenbyparticipants in thesecondexperimentconsisted
of a purely 1-to-1 mapping from strings to pictures, even if the language of the
previous generation included 1-to-many mappings.

Diffusion-Chain Design. The first participant in the experiment was trained on a
language with randomly constructed labels. Subsequent participants were
trainedontheoutputof thefinal testingof thepreviousparticipant: theprevious
participant’s final testing output was randomly redivided into a new SEEN and
UNSEEN set.

Measure of Transmission Error. The mean distance between all the signals in a
participant’s output and the corresponding signals in the previous generation’s
output gives a measure of intergeneration transmission error, and is given by
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and the sum is over a set of meanings M of magnitude  M .

Measure of Structure. For a particular language, a measure of structure is
computed as follows. The distances between all pairs of strings in the language
are calculated using normalized Levenshtein distance. In addition, the distances
between all pairs of meanings also are calculated using a simple hamming
distance (so that meanings differing in 1 feature have a distance of 1, meanings
differing in 2 features have a distance of 2, and so forth). The Pearson’s product-
moment correlation between these 2 sets of distances then is calculated, giving
an indication of the extent to which similar meanings are expressed using similar
strings. To compare across different languages and to measure significance, it is
necessary to compute a Monte Carlo sample of this measure under permutations
of the strings over meanings. The graphs shown in the paper give the z score for
the veridical correlation based on 1,000 randomizations. The dotted line on the
graph therefore shows the 95% confidence interval that the observed mapping
could be obtained by random assignment of signals to meanings. This measure is
undefined when there is no variation in the Monte Carlo sample, for example
whenthe languagehasonly thesamestringforallmeaningsor forallbut1of the
meanings. In these cases, all possible reorderings are equally structured.
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