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B Abstract We perceive the shapes and material properties of objects quickly and
reliably despite the complexity and objective ambiguities of natural images. Typical im-
ages are highly complex because they consist of many objects embedded in background
clutter. Moreover, the image features of an object are extremely variable and ambiguous
owing to the effects of projection, occlusion, background clutter, and illumination. The
very success of everyday vision implies neural mechanisms, yet to be understood, that
discount irrelevant information and organize ambiguous or noisy local image features
into objects and surfaces. Recent work in Bayesian theories of visual perception has
shown how complexity may be managed and ambiguity resolved through the task-
dependent, probabilistic integration of prior object knowledge with image features.
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OBJECT PERCEPTION: GEOMETRY AND MATERIAL

Object perception is important for the everyday activities of recognition, planning,
and motor action. These tasks require the visual system to obtain geometrical
information about the shapes of objects, their spatial layout, and their material
properties.

The human visual system is extraordinarily competent at extracting necessary
geometrical information. Navigation, judgments of collision, and reaching rely
on knowledge of spatial relationships between objects and between the viewer
and object surfaces. Shape-based recognition and actions such as grasping require
information about the internal shapes and boundaries of objects.

Extracting information about the material that objects are made of is also im-
portant for daily visual function. Image features such as color, texture, and shading
depend on the material reflectivity and roughness of a surface. Distinguishing dif-
ferent materials is useful for object detection (e.g., texture differences are cues for
separating figure from ground) as well as for judging affordances such as edibility
(e.g., ripe fruit or not) and graspability (e.g., slippery or not).

Understanding how the brain translates retinal image intensities to useful infor-
mation about objects is a tough problem on theoretical grounds alone. The difficulty
of object perception arises because natural images are both complex and objec-
tively ambiguous. The images received by the eye are complex high-dimensional
functions of scene information (Figure 1, see color insert). The complexity of the
problem is evident in the primate visual system in which approximately ten million
retinal measurements are sent to the brain each second, where they are processed
by some billion cortical neurons. The ambiguity of image intensities also poses
a major computational challenge to extracting object information. Similar three-
dimensional (3-D) geometrical shapes can result in different images, and different
shapes can result in very similar images (Figure 1A,B). Similarly, the same mate-
rial (e.g., polished silver) can give rise to drastically different images depending
on the environment, and the same image can be due to quite different materials
(Figure 1C.D).

This review treats object perception as a visual inference problem (Helmholtz
1867) and, more specifically, as statistical inference (Knill & Richards 1996,
Kersten 1999, Rao et al. 2002a). This approach is particularly attractive because
it has been used in computer vision to develop theories and algorithms to ex-
tract information from natural images useful for recognition and robot actions.
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Computer vision has shown how the problems of complexity and ambiguity can
be handled using Bayesian inference, which provides a common framework for
modeling artificial and biological vision. In addition, studies of natural images have
shown statistical regularities that can be used for designing theories of Bayesian
inference. The goal of understanding biological vision also requires using the tools
of psychophysics and neurophysiology to investigate how the visual pathways of
the brain transform image information into percepts and actions.

In the next section, we provide an overview of object perception as Bayesian
inference. In subsequent sections, we review psychophysical (Psychophysical,
below), computational, (Theoretical and Computational Advances, below) and
neurophysiological (Neural Implications, below) results on the nature of the com-
putations and mechanisms that support visual inference. Psychophysically, a major
challenge for vision research is to obtain quantitative models of human perceptual
performance given natural image input for the various functional tasks of vision.
These models should be extensible in the sense that one should be able to build on
simple models, rather than having a different model for each set of psychophysical
results. Meeting this challenge will require further theoretical advances and Theo-
retical and Computational Advances (below) highlights recent progress in learning
classifiers, probability distributions, and in visual inference. Psychophysics con-
strains neural models but can only go so far, and neural experiments are required
to further determine theories of object perception. Neural Implications (below)
describes some of the neural implications of Bayesian theories.

INTRODUCTION TO BAYES

How to Resolve Ambiguity in Object Perception?

The Bayesian framework has its origins in Helmholtz’s idea of perception as un-
conscious inference. Helmholtz realized that retinal images are ambiguous and
that prior knowledge was required to account for perception. For example, dif-
ferently curved cylinders can produce exactly the same retinal image if viewed
from the appropriate angles, and the same cylinder can produce very different
images if viewed at different angles. Thus, the ambiguous stimulus in Figure 2A
could be interpreted as a highly curved cylinder from a high angle of view, a flat-
ter cylinder from a low angle of view, or as a concave cylinder from yet another
viewpoint. Helmholtz proposed that the visual system resolves ambiguity through
built-in knowledge of the scene and how retinal images are formed and uses this
knowledge to automatically and unconsciously infer the properties of objects.
Bayesian statistical decision theory formalizes Helmholtz’s idea of perception
as inference!. Theoretical observers that use Bayesian inference to make optimal

'Recent reviews include Knill et al. (1996), Yuille & Biilthoff (1996), Kersten & Schrater
2002, Kersten & Yuille 2003, Maloney (2001), Pizlo (2001), and Mamassian et al. (2002).



30 Sep 2003  16:7 AR AR207-PS55-10.tex AR207-PS55-10.sgm LaTeX2e(2002/01/18) Pl: GCE
AR REVIEWS IN ADVANCEI10.1146/annurev.psych.55.090902.142005

104 KERSTEN ®m MAMASSIAN ® YUILLE

Likelihood Function

image

7
F
a

0
Q
<
2
g
,
/..//ﬂq

I
Surface Slant
o

N
- + 7 4 /4 \§
+ é"ﬂ/ . B
cVX i 2cc\f -1/R 0 1/R cvx
A Surface Curvature
CVX
Prior Probability Posterior Probability
/2 /2
g4 E 4 ‘
7] 7]
g 0 B 3 o
[&] [&]
£ £
o -T/4 C W -n/4 D
_mfzccv -1/R 0 1/R cvx -m{2c:cv -1/R 0 1/R cvx
Surface Curvature Surface Curvature
Utility Function Expected Utility
/2 /2
§ /4 E /4 .
= W
L
z O { » o
] ©
D /4 E @ /4 F
e -1/R 0 1/R T2oov R 0 IR ovx

Curvature Error Surface Curvature



30 Sep 2003  16:7 AR AR207-PS55-10.tex AR207-PS55-10.sgm LaTeX2e(2002/01/18) Pl: GCE
AR REVIEWS IN ADVANCEI10.1146/annurev.psych.55.090902.142005

OBJECT PERCEPTION AS BAYESIAN INFERENCE 10.5

interpretations are called ideal observers. We first consider one type of ideal ob-
server that computes the most probable interpretation given the retinal image stim-
ulus. Technically, this observer is called a maximum a posteriori (MAP) observer.
The ideal observer bases its decision on the posterior probability distribution—
the probability of each possible true state of the scene given the retinal stimulus.
According to Bayes’ theorem, the posterior probability is proportional to the prod-
uct of the prior probability—the probability of each possible state of the scene
prior to receiving the stimulus—and the likelihood—the probability of the stimu-
lus given each possible state of the scene. In many applications, prior probability
distributions represent knowledge of the regularities of possible object shapes, ma-
terials, and illumination, and likelihood distributions represent knowledge of how
images are formed through projection onto the retina. Figure 2 illustrates how a
symmetric likelihood [a function of the stimulus representing the curvature of the
two-dimensional (2-D) line] can lead to an asymmetric posterior owing to a prior
toward convex objects. The ideal (MAP) observer then picks the most probable
interpretation for that stimulus—i.e., the state of the scene (3-D surface curvature
and viewpoint slant) for which the posterior distribution peaks in panel D of Fig-
ure 2. An ideal observer does not necessarily get the right answer for each input
stimulus, but it does make the best guesses so it gets the best performance averaged
over all the stimuli. In this sense, an ideal observer may “see” illusions.

We now take a closer look at three key aspects to Bayesian modeling: the
generative model, the task specification, and the inference solution.

THE GENERATIVE MODEL The generative model, S — I, specifies how an image
description I (e.g., the image intensity values or features extracted from them)
is determined by the scene description S (e.g., vector with variables representing
surface shape, material reflectivity, illumination direction, and viewpoint). The

Figure 2 The ideal observer. (A) The image of a cylinder is consistent with multiple
objects and viewpoints, including convex cylinders viewed from above and concave
cylinders viewed from below. Therefore, different scene interpretations for this image
vary in the estimated surface curvature and slant (the viewing angle). (B) The likelihood
represents the compatibility of different scene interpretations with the image (1/R is
the curvature in the image). The hatched region represents those surface curvatures
that are never compatible with the image, indicating that, for instance, a plane will
never project as a curved patch in the image. (C) The prior probability describes an
observer preference for convex objects viewed from above. (D) A Bayesian observer
then combines likelihood and prior to estimate a posterior probability for each inter-
pretation given the original image. The maximum a posteriori (MAP) is the set of scene
parameters for which the posterior is the largest. (E) The utility function represents
the costs associated to errors in the estimation of the surface slant and curvature and
is dependent on the task. (F) Finally, the posterior probability is convolved with the
utility function to give the expected utility associated with each interpretation.
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likelihood of the image features, p(/|S), and the prior probability of the scene
description, p(S), determine an external generative model. As illustrated later in
Figure 5, a strong generative model allows one to draw image samples—the high-
dimensional equivalent to throwing a loaded die. The product of the likelihood
and prior specifies an ensemble distribution p(S, I) = p(I|S)p(S), which gives
a distribution over problem instances (Theoretical and Computational Advances,
below). In Bayesian networks, a generative model specifies the causal relation-
ships between random variables (e.g., objects, lighting, and viewpoint) that de-
termine the observable data (e.g., image intensities)Z. Below, we describe how
Bayesian networks can be used to cope with the complexity of problems of visual
inference.

THE TASK SPECIFICATION There is a limitation with the MAP ideal observer de-
scribed above. Finding the most probable interpretation of the scene does not allow
for the fact that some tasks may require more accurate estimates of some aspects of
the scene than others. For example, it may be critical to get the exact object shape,
but not the exact viewpoint (represented in the utility function in Figure 2E). The
task specifies the costs and benefits associated with the different possible errors in
the perceptual decision. Generally, an optimal perceptual decision is a function of
the task as well as the posterior.

Often, we can simplify the task requirements by splitting S into components
(81, $») that specify which scene properties are important to estimate (S, e.g.,
surface shape) and which confound the measurements and are not worth estimating
(8>, e.g., viewpoint, illumination).

THE INFERENCE SOLUTION Bayesian perception is an inverse solution, I — i,
to the generative model, which estimates the variables S; given the image / and
discounts the confounding variables. Decisions are based on the posterior distri-
bution p(S|I), which is specified by Bayes as p(1|S)p(S)/p(I). The decision may
be designed, for example, to choose the scene description for which the posterior
is biggest (MAP). But we’ve noted that other tasks are possible, such as only es-
timating components of S. In general, an ideal observer convolves the posterior
distribution with a utility function (or negative loss function). The result is the
expected utility (or the negative of the expected loss) associated with each possible
interpretation of the stimulus. The Bayes ideal observer picks the interpretation
that has the maximum expected utility (Figure 2F).

2When not qualified, we use the term generative model to mean an external model that
describes the causal relationship in terms of variables in the scene. Models of inference may
also use an internal generative model to test perceptual hypotheses against the incoming data
(e.g., image features). We use the term strong generative model to mean one that produces
consistent image samples in terms of intensities.

3Optimists maximize the utility or gain, whereas pessimists minimize their loss.
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How Does Vision Deal with the Complexity of Images?

Recent work (Freeman et al. 2000, Schrater & Kersten 2000, Kersten & Yuille
2003) has shown how specifying generative models in terms of influence graphs
(or Bayesian networks) (Pearl 1988), together with a description of visual tasks,
allow us to break problems down into categories (see the example in Figure 3A).
The idea is to decompose the description of a scene S into n components Sj, ...

’

S,; the image into m features Iy, ..., I,,; and express the ensemble distribution
as p(Sy, ..., Sy 11, ..., I,). We represent this distribution by a graph where the
nodes correspond to the variables Sy, ..., S, and I, ..., I,,, and links are drawn

between nodes that directly influence each other. There is a direct correspondence
between graphical structure and the factorization (and thus simplification) of the
joint probability. In the most complex case, every random variable influences every

A Scene@ B Scene .
. \Ob_jecl class . \Ob_iecl class

Environment Ob-i(‘?d. Object Environment Ob_ic_ctl / Object
reflectivity shape reflectivity shape

AN 9
O O O A A YV

Global  Local image papic Global Local image py,pic
features features features features
Accurate scene . Rough scene ' Image V Auxiliary
estimate needed estimate sufficient measurement measurement

Figure 3 Infuence graphs and the visual task. (A) An example of an influence graph.
Arrows indicate causal links between nodes that represent random variables. The scene class
(indoor or outdoor) influences the kind of illumination and background that determine the
environment. The scene also determines the kinds of objects one may find (artifactual or
not). Object reflectivity (paint or pigment) and shape are influenced by the object class.
The model of lighting specified by the environment interacts with reflectivity and shape to
determine the image measurements or features. The environment can determine large-scale
global features (e.g., overall contrast and color, spatial frequency spectrum) that may be
relatively unaffected by smaller-scale objects of interest. Global features can serve to set a
context. (B) The inference problem depends on the task. The task specifies which variables
are important to estimate accurately (disks) and which are not (hexagons). Triangles represent
image measurements or features. For the purpose of later illustration of explaining away, we
also distinguish auxiliary features (upside-down triangles) that are available or actively sought
and which can modulate the probability of object variables that do not directly influence the
auxiliary variable. Note that perceptual inference goes against the arrows.
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other one, and the joint probability cannot be factored into simpler parts. In order
to build models for inference, it is useful to first build quantitative models of image
formation—external generative models based on real-world statistics. As we have
noted above, the requirements of the task split S into variables that are important
to estimate accurately for the task (disks) and those which are not (hexagons)
(Figure 3B). The consequences of task specification are described in more detail
in Discounting and Task Dependence (below).

In the next section, Psychophysics, we review psychophysical results supporting
the Bayesian approach to object perception. The discussion is organized around
the four simple influence graphs of Figure 4 (see color insert).

PSYCHOPHYSICS

Psychophysical experiments test Bayesian theories of human object perception
at several levels. Ideal observers (below) provide the strongest tests because they
optimally discount and integrate information to achieve a well-defined goal. But
even without an ideal observer model, one can assess the quality of vision’s built-in
knowledge of regularities in the world.

In Basic Bayes: The Trade-Off Between Feature Reliability and Priors (below),
we review the perceptual consequences of knowledge specified by the prior p(S),
the likelihood p(7|S), and the trade-off between them. Psychophysical experiments
can test theories regarding knowledge specified by p(S). For example, the percep-
tion of whether a shape is convex or concave is biased by the assumption that the
light source (part of the scene description §) is above the object. Psychophysics
can test theories regarding knowledge specified by the likelihood, p(Z|S). The
likelihood characterizes regularities in the image given object properties S, which
include effects of projecting a 3-D object onto a 2-D image. For example, straight
lines in three dimensions project to straight lines in the image. Additional image
regularities can be obtained by summing over S to get p(I) = Y ¢ p(I|S)p(S).
These regularities are expected to hold independently of the specific objects in the
scene. Image regularities can be divided into geometric (e.g., bounding contours
in the image of an object) and photometric descriptions (e.g., image texture in a
region).

As illustrated in the examples of Figure 4, vision problems have more structure
than basic Bayes. In subsequent sections (Discounting and Task Dependence, In-
tegration of Image Measurements and Cues, and Perceptual Explaining Away), we
review psychophysical results pertaining to three additional graph categories, each
of which is important for resolving ambiguity: discounting variations to achieve
object constancy, integration of image measurements for increased reliability, and
perceptual explaining away given competing perceptual hypotheses.

Ideal Observers

Ideal observers provide the strongest psychophysical tests because they are com-
plete models of visual performance based on both the posterior and the task.



30 Sep 2003  16:7 AR AR207-PS55-10.tex AR207-PS55-10.sgm LaTeX2e(2002/01/18) Pl: GCE
AR REVIEWS IN ADVANCEI10.1146/annurev.psych.55.090902.142005

OBJECT PERCEPTION AS BAYESIAN INFERENCE 10.9

A Bayesian ideal observer is designed to maximize a performance measure for a
visual task (e.g., proportion of correct decisions) and, as a result, serves as a bench-
mark with which to compare human performance for the same task (Barlow 1962,
Green & Swets 1974, Parish & Sperling 1991, Tjan et al. 1995, Pelli et al. 2003).
Characterizing the visual information for a task can be critical for proper interpre-
tation of psychophysical results (Eckstein et al. 2000) as well as for the analysis
of neural information transmission (Geisler & Albrecht 1995, Oram et al. 1998).

For example, when deciding whether human object recognition uses 3-D shape
cues, it is necessary to characterize whether these cues add objectively useful
information for the recognition task (independent of whether the task is being
peformed by a person or by a computer). Liu & Kersten (2003) show that human
thresholds for discriminating 3-D asymmetric objects is less than for symmetric
objects (the image projections were not symmetric); however, when one compares
human performance to the ideal observer for the task, which takes into account
the redundancy in symmetric objects, human discrimination is more efficient for
symmetric objects.

Because human vision is limited by both the nature of the computations and its
physiological hardware, we might expect significant departures from optimality.
Nevertheless, Bayesian ideal observer models provide a first approximation to
human performance that has been surprisingly effective (cf. Knill 1998, Schrater
& Kersten 2002, Legge et al. 2002, Ernst & Banks 2002, Schrater et al. 2000).

A major theoretical challenge for ideal observer analysis of human vision is
the requirement for strong generative models so that human observers can be
tested with image samples I drawn from p(7|S). We discuss (below) results from
statistical models of natural image features that constrain, but are not sufficient
to specify the likelihood distribution. In Theoretical and Computational Advances
(below), we discuss relevant work on machine learning of probability distributions.
But we first present a preview of one aspect of the problem.

The need for strong generative models is an extensibility requirement that rules
out classes of models for which the samples are image features. The distinction is
sometimes subtle. The key point is that images features may either be insufficient to
uniquely determine an image or they may sometimes overconstrain it. For example,
suppose that a system has learned probability models for airplane parts. Then
sampling from these models is highly unlikely to produce an airplane—the samples
will be images, but additional constraints are needed to make sure they correspond
to airplanes (see Figure 5A). M.C. Escher’s pictures and other impossible figures,
such as the impossible trident, give examples of images that are not globally
consistent. In addition, local feature responses can sometimes overconstrain the
image locally. For example, consider the binary image in Figure 5B and suppose
our features A L are defined to be the difference in image intensity L at neighboring
pixels. The nature of binary images puts restrictions on the values that AL can
take at neighboring pixels. It is impossible, for example, that neighboring A Ls can
both take the value + 1. So, sampling from these features will not give a consistent
image unless we impose additional constraints. Additional consistency conditions
are also needed in 2-D images (see Figure 5C) where the local image differences
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in the horizontal, AL, AL3, and vertical, AL,, ALy, directions must satisfy the
constraint AL, + ALy = ALy + ALy (this is related to the surface integrability
condition that must be imposed on the surface normals of an object to ensure that
the surface is consistent).

It is important to realize that strong generative models can be learned from
measurements of the statistics of feature responses (discussed more in Theoretical
and Computational Advances, below). Work by Zhu, Wu, and Mumford (Zhu
et al. 1997, Zhu 1999) shows how statistics on image, or shape, features can be
used to obtain strong generative models. Samples from these models are shown in
Figure 5D.,E.

Basic Bayes: The Trade-Off Between Feature Reliability
and Priors

The objective ambiguity of images arises if several different objects could have
produced the same image description or image features. In this case, the visual
system is forced to guess, but it can make intelligent guesses by biasing its guesses
toward typical objects or interpretations (Sinha & Adelson 1993, Mamassian &
Goutcher 2001, Weiss et al. 2002) (see Figure 4A). Bayes formula implies that
these guesses, and hence perception, are a trade-off between image feature relia-
bility, as embodied by the likelihood p(/|S) and the prior probability p(S). Some
perceptions may be more prior driven, and others more data driven. The less re-
liable the image features (e.g., the more ambiguous), the more the perception is
influenced by the prior. This trade-off has been illustrated for a variety of visual
phenomena (Biilthoff & Yuille 1991, Mamassian & Landy 2001).

In particular, Weiss et al. (2002) addressed the aperture problem of motion
perception: How to combine locally ambiguous motion measurements into a single
global velocity for an object. The authors constructed a Bayesian model whose
prior is that motions tend to be slow and which integrates local measurements
according to their reliabilities (see Yuille & Grzywacz 1988 for the same prior
applied to other motion stimuli). With this model (using a single free parameter),
the authors showed that a wide range of motion results in human perception could
be accounted for in terms of the trade-off between the prior and the likelihood.
The Bayesian models give a simple unified explanation for phenomena that had
previously been used to argue for a bag of tricks theory requiring many different
mechanisms (Ramachandran 1985).

PRIOR REGULARITIES p(S): OBJECT SHAPE, MATERIAL, AND LIGHTING Psychophy-
sics can test hypotheses regarding built-in visual knowledge of the prior p(S)
independent of projection and rendering. This can be done at a qualitative or quan-
titative level.

Geometry and shape Some prior regularities refer to the geometry of objects that
humans interact with. For instance, the perception of a solid shape is consistently
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biased toward convexity rather than concavity (Kanizsa & Gerbino 1976, Hill &
Bruce 1993, Mamassian & Landy 1998, Bertamini 2001, Langer & Biilthoff 2001).
This convexity prior is robust over a range of object shapes, sizes, and tasks.

More specific tests and ideal observer models will necessitate developing proba-
bility models for the high-dimensional spaces of realistic objects. Some of the most
highly developed work is on human facial surfaces (cf. Vetter & Troje 1997). Relat-
ing image intensity to such measured surface depth statistics has yielded computer
vision solutions for face recognition (Atick et al. 1996) and has provided objec-
tive prior models for face recognition experiments, suggesting that human vision
may represent facial characteristics along principal component dimensions in an
opponent fashion (Leopold et al. 2001).

Material The classical problems of color and lightness constancy are directly
tied to the nature of the materials of objects and environmental lighting. However,
most past work has implicitly or explicitly assumed a special case: that surfaces are
Lambertian (matte). Here, the computer graphics communities have been instru-
mental in going beyond the Lambertian model by measuring and characterizing
the reflectivities of natural smooth homogeneous surfaces in terms of the bidirec-
tional reflectance distribution function (BRDF) (cf. Marschner et al. 2000), with
important extensions to more complicated textured surfaces (Dana et al. 1999),
including human skin (Jensen et al. 2001). Real images are, of course, intimately
tied to the structure of illumination, and below we review psychophysical results
on realistic material perception.

Lighting Studies of human object perception (as well as computer vision) have
traditionally assumed simple lighting models, such as a single-point light source
with a directionally nonspecific ambient term. One of the best-known examples
of a prior is the assumption that light is coming from above. This assumption
is particularly useful to disambiguate convex from concave shapes from shading
information. The light from above prior is natural when one considers that the
sun and most artificial light sources are located above our heads. However, two
different studies have now shown that humans prefer the light source to be lo-
cated above-left rather than straight above (Sun & Perona 1998, Mamassian &
Goutcher 2001). A convincing explanation for this leftward bias remains to be
advanced.

Apparent motion in depth of an object is strongly influenced by the movement
of its cast shadow (Kersten et al. 1997, Mamassian et al. 1998). This result can be
interpreted in terms of a stationary light source prior—the visual system is more
likely to interpret change in the image as being due to a movement of the object
or a change in viewpoint, rather than a movement of the light source.

Do we need more complex lighting models? The answer is surely yes, especially
in the context of recent results on the perception of specular surfaces (Fleming
et al. 2003) and color given indirect lighting (Bloj et al. 1999), both discussed in
Discounting and Task Dependence (below). Dror et al. (2001) have shown that
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spatial maps of natural illumination (Debevec 1998) show statistical regularities
similar to those found in natural images (cf. Simoncelli et al. 2001).

IMAGE REGULARITIES p(I) =Y ¢ p(I|S)p(S) Image regularities arise from the sim-
ilarity between natural scenes. They cover geometric properties, such as the statis-
tics of edges, and photometric properties, such as the distribution of contrast as a
function of spatial frequency in the image.

Geometric regularities Geisler et al. (2001) used spatial filtering to extract local
edge fragments from natural images. They measured statistics on the distance
between the element centers, the orientation difference between the elements, and
the direction of the second element relative to the orientation of first (reference)
element. A model derived from the measured statistics and from a simple rule
that integrated local contours together could quantitatively predict human contour
detection performance. More detailed rules to perceptually organize a chain of dot
elements into a subjective curve with a corner or not, or to be split into one versus
two groups, have also been given a Bayesian interpretation (Feldman 2001).

Elder & Goldberg (2002) measured statistics of contours from images hand
segmented into sets of local tangents. These statistics were used to put probability
distributions on three Gestalt principles of perceptual organization: proximity, con-
tinuation, and luminance similarity. The authors found that these three grouping
cues were independent and that the proximity cue was by far the most powerful.
Moreover, the contour likelihood distribution (the probability of a gap length be-
tween two tangents of a contour) follows a power law with an exponent very close
to that determined psychophysically on dot lattice experiments.

The work of Geisler et al. deals with distributions on image features, namely
edge pairs. To devise a distribution p(/) from which one can draw true contour
samples, one needs to also take into account the consistency condition that edge
pairs have to lie in an image (see Figure 5A for an airplane analogy). Zhu (1999)
describes a procedure that learns a distribution on the image itself, and thus samples
drawn from it produce contours (see Figure SE; Elder & Goldberg 2002).

Photometric regularities It is now well established that natural scenes have a
particular signature in their contrast spatial frequency spectrum in which low
spatial frequencies are over-represented relative to high spatial frequencies. This
regularity is characterized by a 1/f# spectrum, where f is spatial frequency and 8
is a parameter that can be fit from image measurements (Field 1987, Simoncelli &
Olshausen 2001). Human observers are better at discriminating changes in 8 for
Gaussian and natural images when the values of 8 are near (Knill et al. 1990) or
at the value measured from natural images (Parraga et al. 2000), suggesting that
the visual system is in some sense tuned to the second-order statistics (i.e., spatial
frequency spectrum) of natural images.

The histograms of spatial filter responses (e.g., the simplest filter being
differences between neighboring pixel intensities) of natural images also show
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consistent regularities (Olshausen & Field 2000, Simoncelli & Olshausen 2001).
The histograms are non-Gaussian, having a high kurtosis (see first panel in Figure
5C). Zhu & Mumford (1997) have derived a strong generative model they call a
generic image prior based on filter histogram statistics.

IMAGE LIKELIHOOD p(1]S) The likelihood characterizes how image regularities
result from projection and rendering of objects as a function of view and lighting,
and it is related to what is sometimes called the forward optics or computer graphics
problem.

Geometrical descriptions Object perception shows biases consistent with pre-
ferred views. Mamassian & Landy (1998) show how the interpretation of a simple
line drawing figure changed with rotations of the figure about the line of sight.
They modeled their result with a simple Bayesian model that had a prior probabil-
ity for surface normals pointing upward (Figure 2). This prior can be interpreted
as a preference for a viewpoint situated above the scene, which is reasonable when
we consider that most of the objects we interact with are below the line of sight.

Why does a vertical line appear longer than the same line when horizontal?
Although there have been a number of recent studies of the statistics of image
intensities and contours, Howe & Purves (2002) directly compare statistics on the
separation between two points in the image with measurements of the causes in the
originating 3-D scene. The authors found that the average ratio of the 3-D physical
interval to the projected image interval from real-world measurements shows the
same pattern as perceived length.

Photometric descriptions The global spatial frequency amplitude spectrum is
an inadequate statistic to capture the structure of specific texture classes. Recent
work has shown that wavelet representations provide richer models for category-
specific modeling of spatially homogeneous texture regions, such as text, fur,
grass, etc. (Portilla & Simoncelli 2000, Zhu et al. 1997). As with the contour case,
a future challenge is to develop strong generative models from which one can
draw samples of images from p(7|S) (Theoretical and Computational Advances,
below). Promising work along these lines is illustrated in Figure 5D (Zhu et al.
1997).

WHERE DO THE PRIORS COME FROM? Without direct input, how does image-
independent knowledge of the world get built into the visual system? One pat
answer is that the priors are in the genes. Observations of stereotyped periods in
the development of human depth perception do in fact suggest a genetic compo-
nent (Yonas 2003). In another domain, the strikingly rapid development of object
concepts in children is still a major mystery that suggests predispositions to cer-
tain kinds of grouping rules. Adults, too, are quick to accurately generalize from
a relatively small set of positive examples (in many domains, including objects)
to a whole category. Tenenbaum (2000; Tenenbaum & Xu 2000, Tenenbaum &
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Griffiths 2001) provides a Bayesian synthesis of two theories of generalization
(similarity-like and rule-like) and provides a computational framework that helps
to explain rapid category generalization.

The accurate segmentation of objects such as the kayaks in Figure 1 likely
requires high-level prior knowledge regarding the nature of the forms of possi-
ble object classes. Certain kinds of priors, such as learning the shapes of specific
objects, may develop through what Brady & Kersten (2003) have called oppor-
tunistic learning and bootstrapped learning. In opportunistic learning, the visual
system seizes the opportunity to learn object structure during those relatively rare
occasions when an object is seen under conditions of low ambiguity, such as when
motion breaks camouflage of an object in plain view. Bootstrapped learning op-
erates under intermediate or high conditions of ambiguity (e.g., in which none of
the training images provide a clear view of an object’s boundaries). Then later, the
visual system can apply the prior knowledge gained to high (objective) ambigu-
ity situations more typical of everyday vision. The mechanisms of bootstrapped
learning are not well understood, although there has been some computer vision
work (Weber et al. 2000) (see Theoretical and Computational Advances, below).

General purpose cortical learning mechanisms have been proposed (Dayan
et al. 1995, Hinton & Ghahramani 1997); however, it is not clear whether these are
workable with complex natural image input. We discuss computer vision methods
for learning priors in Theoretical and Computational Advances (below).

Discounting and Task Dependence

How does the visual system enable us to infer the same object despite considerable
image variation owing to confounding variables such as viewpoint, illumination,
occlusion, and background changes? This is the well-known problem of invariance
or object constancy. Objective ambiguity results when variations in a scene prop-
erty change the image description of an object. As we have seen, both viewpoint
and 3-D shape influence the 2-D image.

Suppose the visual task is to determine object shape, but the presence of un-
known variables (e.g., viewpoint) confounds the inference. Confounding variables
are analogous to noise in classical signal detection theory, but they are more com-
plicated to model and they affect image formation in a highly nonlinear manner.
For example, a standard noise model has I = § + n, where n is Gaussian noise.
Realistic vision noise is better captured by p(/|S), as illustrated in Figure 6B.
Here, the problem is making a good guess independent of (or invariant to) the true
value of the confounding variable. The task itself can serve to reduce ambiguity by
discounting the confounding variable (Freeman 1994, Kersten 1999, Schrater &
Kersten 2000, Geisler & Kersten 2002). Discounting irrelevant scene variations
(or accounting for object invariance) has received recent attention in the func-
tional madnetic resonance imaging (fMRI) literature, where certain cortical areas
show more or less degrees of invariance to size, translation, rotation in depth, or
illumination (cf. Grill-Spector et al. 2003).
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From the Bayesian perspective, we can model problems with confounding vari-
ables by the graph in Figure 4B. We define an ensemble distribution p(Sy, S», 1),
where S is the target (e.g., keys), S, is the confounding variable (e.g., pose), and
I is the image. Then we discount the confounding variables by integrating them
out (or summing over them),

p(Si, 1) =" p(S1, 8, 1)
N

This is equivalent to spreading out the loss function completely in one of the
directions (e.g., extending the utility function vertically in Figure 2E). As noted
above, the choice of which variables to discount will depend on the task. Viewpoint
is aconfounding variable that can be discounted if the task is to discriminate objects
independent of viewpoint. Illumination is a confounding variable if the task is to
recognize or determine the depth of an object, but it is not if the task is to determine
the light-source direction. This can be related to notions of utility*; discounting a
variable is equivalent to treating it as having such low utility that it is not worth
estimating (Yuille & Biilthoff 1996) (see Theoretical and Computational Advances,
below).

Viewpoint variation When interpreting 2-D projections of 3-D shapes, the hu-
man visual system favors interpretations that assume that the object is being
viewed from a general (or generic), rather than accidental, viewpoint (Nakayama &
Shimojo 1992, Albert 2000). Freeman (1994) showed that a Bayesian observer that
integrates out viewpoint can account for the generic view assumption.

How does human vision recognize 3-D objects as the same despite changes in
viewpoint? Shape-based object recognition models range between two extremes—
those that predict a strong dependence of recognition performance on viewpoint
(e.g., as a function of familiarity with particular views) and those that, as a result

“Bayesian decision theory (see Theoretical and Computational Advances, below) provides a
precise language to model the costs of errors determined by the choice of visual task (Yuille
& Biilthoff 1996). The cost or risk R(w; 1) of guessing o when the image measurement is
1 is defined as the expected loss (or negative utility):

Rl D)= L, $)p(SII),
S

with respect to the posterior probability, p(S|I). The best interpretation of the image can
then be made by finding the « that minimizes the risk function. The loss function L(«, S)
specifies the cost of guessing o when the scene variable is S. One possible loss function is
—38(a — §). In this case, the risk becomes R(«; I) = — p(«|I), and then the best strategy is
to pick the most likely interpretation. This is MAP estimation and is the optimal strategy for
the task requiring an observer to maximize the proportion of correct decisions. A second
kind of loss function assumes that costs are constant over all guesses of a variable. This is
equivalent to integrating out, summing over, or marginalization of the posterior with respect
to that variable.
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of using view-invariant features together with structural descriptions of objects,
do not (Poggio & Edelman 1990, Ullman & Basri 1991, Tarr & Biilthoff 1995,
Ullman 1996, Biederman 2000, Riesenhuber & Poggio 2002). By comparing hu-
man performance to several types of ideal observers that integrate out viewpoint
variations, Liu et al. (1995) showed that models that allow rigid rotations in the
image plane of independent 2-D templates could not account for human perfor-
mance in discriminating novel object views. More recent work by Liu & Kersten
(1998) showed that the performance of human observers relative to Bayesian affine
models (which allow stretching, translations, rotations, and shears in the image)
is better for the novel views than for the template views, suggesting that humans
have a better means to generalize to novel views than could be accomplished with
affine warps. Other related work describes the role of structural knowledge (Liu
et al. 1999), the importance of view-frequency (Troje & Kersten 1999), and shape
constancy under perspective (Pizlo 1994).

Bayesian task dependence may account for studies where different operational-
izations for measuring perceived depth lead to inconsistent, though related, esti-
mates. For instance, the information provided by a single image of an object is
insufficient for an observer to infer a unique shape (see Figure 1B). Not surprisingly,
these ambiguities will lead different observers to report different depth percepts
for the same picture, and the same observer to report different percepts when using
different depth probes. Koenderink et al. (2001) show that most of this variability
could be accounted for by affine transformations of the perceived depth, in par-
ticular, scalings and shears. These affine transformations correspond to looking at
the picture from a different viewpoint. The authors call the perceived depth of a
surface once the viewpoint has been discounted pictorial relief.

Figure 6 Traditional visual noise versus illumination variation. Example of face
recognition given confounding variables. The first row and second rows of the top and
bottom panels show images of faces s; and s;, respectively. (A) Face recognition is con-
founded by additive Gaussian contrast noise. Bayesian ideal discriminators for this task
are well understood. However, the Gaussian assumption leads to a least squares metric
for measuring the similarities between faces. But the similarity between two images
of the same face under different lighting can be bigger than the least squares distance
between two faces. (B) Face recognition is confounded by illumination variation. This
type of uncertainty is more typical of the type of variation encountered during natural
visual tasks. The human visual system seems competent at discounting illumination,
but Bayesian theories for general illumination variation are more difficult to formulate
(cf. Yuille et al. 2001). The columns show different illumination conditions of the two
faces. Light direction gradually varies from right (left-most column) to left (right-most
column). In this example, illumination changes are relatively large compared to the
illumination-invariant features corresponding to facial identity. The illumination di-
rection changes are ordered for clarity. In actual samples, the illumination direction
may not be predictable.
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Illumination variation Discounting illumination by integrating it out can reduce
ambiguity regarding the shape or depth of an object (Freeman 1994, Yuille et al.
2003, Kersten 1999). Integrating out illumination level or direction has also been
used to account for apparent surface color (Brainard & Freeman 1997, Bloj et al.
1999).

Work so far has been for extremely simple lighting, such as a single-point light
source. One of the future challenges will be to understand how the visual system
discounts the large spatial variations in natural illumination that are particularly
apparent in many surfaces typically encountered, such as metal, plastic, and pa-
per (see Figure 1C). Fleming et al. (2003) showed that human observers could
match surface reflectance properties more reliably and accurately for more real-
istic patterns of illumination. They manipulated pixel and wavelet properties of
illumination patterns to show that the visual system’s built-in assumptions about il-
lumination are of intermediate complexity (e.g., presence of edges and bright light
sources) rather than depending on high-level knowledge, such as recognizable
objects.

Integration of Image Measurements and Cues

The visual system likely achieves much of its inferential power through sophisti-
cated integration of ambiguous local features. This can be modeled from a Bayesian
perspective (Clark & Yuille 1990). For example, a depth discontinuity typically
causes more than one type of cue (stereo disparity and motion parallax), and visual
inference can exploit this to improve the reliability and accuracy of the depth es-
timate. Given two conflicting cues to depth, the visual system might get by with a
simple averaging of each estimate, even though inaccurate. Or in cases of substan-
tial conflict, it may determine that one measurement is an outlier and should not
be integrated with the other measurement (Landy et al. 1995, Biilthoff & Mallot
1988). Ruling out outliers is possible within a single modality (e.g., when inte-
grating disparity and texture gradients in vision) but may not be possible between
modalities (e.g., between vision and touch) because in the latter case, single cue
information appears to be preserved (Hillis et al. 2002). The visual system is of-
ten more sophisticated and combines image measurements weighted according to
their reliability (Jacobs 2002, Weiss et al. 2002), which we discuss next.

Figure 4C illustrates the influence graph for cue integration with an example
of illumination direction estimation. From a Bayes net perspective, the two cues
are conditionally independent given the shared explanation. An important case is
when the nodes represent Gaussian variables that are independent when condi-
tioned on the common cause and we have estimates for each cue alone (i.e., S’i
is the best estimate of S; from p(S|I;)). Then optimal integration (i.e., the most
probable value) of the two estimates takes into account the uncertainty owing to
measurement noise (the variance) and is given by the weighted average,

r A r

§=§1 + 2 )
rp+n ry+nr
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where r;, the reliability, is the reciprocal of the variance. This model has been used
to study whether the human visual system combines cues optimally (cf. Jacobs
2002 for areview and a discussion of integration in the context of Kalman filtering,
which is a special case of Bayesian estimation).

For instance, visual and haptic information about object size are combined and
weighted according to the reliability of the source (Ernst & Banks 2002, Gepshtein
& Banks 2003). Object size can be perceived both visually and by touch. When
the information from vision and touch disagree, vision usually dominates. The
authors showed that when one takes into account the reliability of the sensory
measurements, information from vision and touch are integrated optimally. Visual
dominance occurs when the reliability of the visual estimation is greater than that
of the haptic one.

Integration is also important for grouping local image elements likely to be-
long to the same surface. The human visual system combines spatial frequency
and orientation information optimally when detecting the boundary between two
regions (Landy & Kojima 2001). Human observers also behave like an optimal
observer when integrating information from skew-symmetry and disparity in per-
ceiving the orientation of a planar object (Saunders & Knill 2001). The projection
of a symmetric flat object has a distorted or skewed symmetry that provides partial
information about the object’s orientation in depth. Saunders & Knill show that hu-
man observers integrate symmetry information with stereo information weighted
according to the reliability of the source.

Prior probabilities can also combine like-weighted cues. We discussed above
that human observers interpret the shape of an object assuming that both the view-
point and the light source are above the object (Mamassian et al. 1998, Mamassian
& Goutcher 2001). Mamassian & Landy (2001) manipulated the reliability of each
of the two constraints by changing the contrast of different parts of the stimuli.
For instance, increasing the shading contrast increased the reliability of the light-
source prior and biased the observers’ percept toward the shape most consistent
with the light-source prior alone. Their interpretation of the results was that ob-
servers modulated the strength of their priors based on the stimulus contrast. As a
consequence, prior constraints behaved just like depth cue integration: Cues with
more reliable information have higher weight attributed to their corresponding
prior constraint.

Not all kinds of cue integrating are consistent with the simple graph of Figure 4C.
Yuille & Biilthoff (1996) have argued that strong coupling of visual cues (Clark &
Yuille 1990) is required to model a range of visual phenomena (Biilthoff & Mallot
1988). The graph for explaining away (Figure 4D) provides one useful simple
extension to the graphs discussed so far, and we discuss this next.

Perceptual Explaining Away

The key idea behind explaining away is that two alternative perceptual hypotheses
can compete to explain the image. From a Bayesian perspective, the competition
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results from the two (otherwise independent) hypotheses becoming conditionally
dependent given the image.

Pearl (1988) was one of the first to emphasize that, in contrast to traditional
artificial intelligence expert systems, human reasoning is particularly good at ex-
plaining away the effects of alternative hypotheses. In a now classic example,
imagine that you emerge from your house in the morning and notice that the grass
is wet. Prior probabilities might tell you that it was unlikely due to rain (e.g., you
live in Los Angeles), and thus you have probably left the sprinkler on overnight.
But then you check the neighbor’s lawn and notice that it too is wet. This auxiliary
piece of evidence now undercuts the earlier explanation and lowers the probabil-
ity that you left the sprinkler on. The more probable explanation is that it rained
last night, explaining why both lawns are wet. Both the sprinkler and the rain
hypothesis directly influence the observation “your lawn is wet,” but only the rain
hypothesis affects both lawns’ being wet.

Human perception is also good at explaining away, but automatically and with-
out conscious thought>. In perception, the essential idea is that if two (or more)
hypotheses about an object property can explain the same image measurements,
then lowering the probability of one of the explanations increases the probability
of the other. One can observe explaining away in both material (e.g., lightness and
color) and shape perception.

Material In the Land & McCann (1971) version of the classic Craik-O’Brien
Cornsweet illusion, two abutting regions that have the same gradual change of
luminance appear to have different reflectances. Knill & Kersten (1991) found
that the illusion is weakened when a curved occluding contour (auxiliary evidence)
bounding the regions above and below suggests that the variation of luminance
is due to a change in surface orientation (Figure 4D). The lightness gradients are
explained away by the gradual surface curvature. Buckley et al. (1994) extended
this result when binocular disparities were used to suggest a 3-D surface. These
results indicate that some scene attributes (in this case surface curvature) influence
the inference of the major scene attributes (material reflectance) that are set by the
task.

Another study asked whether human vision could discount the effects of the
color of indirect lighting (Bloj et al. 1999). Imagine a concave folded card con-
sisting of a red half facing a white half. With white direct illumination, pinkish
light radiates from the white card because of the indirect additional illumination
from the red card. Does vision use shape knowledge to discount the red illuminant
in order to perceive the true material color, which is white? A change in retinal
disparities (an auxiliary measurement) can cause the concave card to appear as
convex, without any change in the chromatic content of the stimulus. When the
card appears convex, the white card appears more pinkish, as if perception has lost

>Some related perceptual phenomena Rock described as “perceptual interactions” (Rock
1983).
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its original explanation for the pinkish tinge in the image and now attributes it to
reddish pigment rather than reddish light.

Geometry and shape Explaining away occurs in discounting the effects of oc-
clusion, and when simple high-level object descriptions overide more complex
interpretations of line arrangements or moving dots (Lorenceau & Shiffrar 1992,
McDermott et al. 2001, Murray et al. 2002). We describe this in more detail in
Neural Implications (below).

Explaining away is closely related to previous work on competitive models,
where two alternative models compete to explain the same data. It has been argued
that this accounts for a range of visual phenomena (Yuille & Biilthoff 1996),
including the estimation of material properties (Blake & Biilthoff 1990). This
approach has been used successfully in computer vision systems by Tu & Zhu
(2002), including recent work (Tu et al. 2003) in which a whole class of generative
models, including faces, text, generic shading, and texture models compete and
cooperate to explain the entire image (Theoretical and Computational Advances,
below). In particular, the generic shading models help detect faces by explaining
away shadows and glasses.

Failures to explain away Visual perception can also unexpectedly fail to explain
away. In one simple demonstration, an ambiguous Mach folded card can be inter-
preted as a concave horizontal edge or a convex vertical edge. A shadow cast over
the edge by an object (e.g., pencil) placed in front provides enough information to
disambiguate the percept, and yet humans fail to use this information (Mamassian
et al. 1998). There has yet to be a good explanation for this failure.

THEORETICAL AND COMPUTATIONAL ADVANCES

Psychophysical and neurophysiological studies of vision necessarily rely on sim-
plifications of both stimuli and tasks. This simplification, however, must be exten-
sible to the visual input experienced during natural perceptual functioning. In the
previous sections, several psychophysical studies used models of natural image
statistics, as well as models of prior object structure, such as shape. Future advances
in understanding perception will increasingly depend on the efficient characteri-
zation (and simulation) of realistic images to identify informative image statistics,
models of scene properties, and a theoretical understanding of inference for natural
perceptual functions. In this section, we discuss relating Bayesian decision the-
ory to current theories of machine learning, learning the probability distributions
relevant for vision, and determining algorithms for Bayesian inference.

Bayes Decision Theory and Machine Learning

The Bayesian approach seems completely different from the type of feedforward
models required to recognize objects in 150 ms (VanRullen & Thorpe 2001). How
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does the Bayesian approach relate to alternative models based on neural networks,
radial basis functions, or other techniques?

This subsection shows the relationships using concepts from Bayes decision
theory (Berger 1985, Yuille & Biilthoff 1996) and machine learning (Vapnik 1998,
Evgeniou et al. 2000, Scholkopf & Smola 2002). This relationship also gives a
justification for Bayes rule and the intuitions behind it.

We first introduce additional concepts from decision theory: (a) a decision rule
S* = «a(l) and (b) a loss function (or negative utility) L(«(l), S), which is the
penalty for making the decision «(/) when the true state is S (e.g., a fixed penalty for
amisclassification). Suppose we have a set of examples {I;, S;:i = 1, ..., N}, then
the empirical risk (Vapnik 1998, Schoélkopf & Smola 2002) (e.g., the proportions
of misclassifications) of the rule «(/) is defined to be

N
Remp(et) = (1/N) Y~ L(a(L;), $:). (1
i=I

The best decision rule a*(.) is selected to minimize R.,,(c). For example,
the decision rule is chosen to minimize the number of misclassifications. Neural
networks and machine learning models select rules to minimize R, () (Vapnik
1998, Evgeniou et al. 2000, Scholkopf & Smola 2002).

Now suppose that the samples {S;, I;} come from a distribution p(S, I) over
the set of problem instances. Then, if we have a sufficient number of samplesﬁ, we
can replace the empirical risk by the true risk:

R(@) =) L), $)p(S, D). 2)
I N

Minimizing R(«) leads to a decision rule that depends on the posterior distri-
bution p(S|I) obtained by Bayes rule p(S|1) = p(I|S)p(S)/p(I). To see this, we
rewrite Equation 2 as R(a) = ), p(D{D_s p(SII)L(x(1), S)}, where we have
expressed p(S, I) = p(S|I)p(I). So the best decision «(I) for a specify image /
is given by

a’(l) = argrrgHZP(SII)L(Ot(I), S)., 3)
S

and depends on the posterior distribution p(S|/). Hence, Bayes arises naturally
when you start from the risk function specified by Equation 2.

There are two points to be made here. First, the use of the Bayes posterior
p(S|T) follows logically from trying to minimize the number of misclassifications
in the empirical risk (provided there are a sufficient number of samples). Second,
it is possible to have an algorithm, or a network, that computes «(.) and minimizes
the Bayes risk but that does not explicitly represent the probability distributions
p(I]S) and p(S). For example, Liu et al. (1995) compared the performance of

%The number of samples required is a complicated issue (Vapnik 1998, Scholkopf & Smola
2002).
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ideal observers for object recognition with networks using radial basis functions
(Poggio & Girosi 1990). It is possible that the radial basis networks, given sufficient
examples and having sufficient degrees of freedom, are effectively doing Bayesian
inference.

Learning Probability Distributions

Recent studies show considerable statistical regularities in natural images and
scene properties that help tame the problems of complexity and ambiguity in ways
that can be exploited by biological and artificial visual systems. The theoretical
difficulties of the Bayesian approach reduce to two issues. First, can we learn
the probability distributions p(I|S) and p(S) from real data? Second, can we
find algorithms that can compute the best estimators a*(.)? We briefly review the
advances in learning distributions p(11|S), p(S), p(I), p(S|I), and decision rules
a(l).

The Minimax Entropy theory (Zhu et al. 1997) gives a method for learning
probability models for textures p(7|S), where S labels the texture (e.g., cheetah
fur). These models are realistic in the sense that stochastic samples from the models
appear visually similar to the texture examples that the models were trained on
(see Figure 5D). Learning these models is, in principle, similar to determining the
mean and variance of a Gaussian distribution from empirical samples (e.g., setting
the mean of the Gaussian to be the average of the samples from the Gaussian). The
inputs to Minimax Entropy learning are the same histograms of filter responses that
other authors have shown as useful for describing textures (Portilla & Simoncelli
2000). The distributions learned by Minimax Entropy are typically non-Gaussian,
but lie in a more general class of distributions called exponential models. More
advanced models of this type can learn distributions with parameters representing
hidden states (Weber et al. 2000).

For certain problems it is also possible to learn the posterior distribution p(S|7)
directly, which relates to directly learning a classifier «(/). For example, the
AdaBoost learning algorithm (Freund & Schapire 1999) has been applied very
successfully to build a decision rule «(/) for classfiying between faces (seen
from front-on) and nonfaces (Viola & Jones 2001). But the AdaBoost theory
shows that the algorithm can also learn the posterior distributions p(face|l) and
p(non face|l) (Hastie et al. 2001, Tu et al. 2003). Other workers have learned
posterior probabilities p(edge|¢p(l)) and p(not-edge|p(I)), where ¢(I) are lo-
cal image features (Konishi et al. 2003). Similarly, Oliva and colleagues have
learned a decision rule (/) to determine the type of scene (urban, mountain,
etc.) from feature measurements (Oliva & Schyns 2000, Oliva & Torralba 2001).
Fine & Macleod (2003) used the statistics of the spatio-chromatic structure of
natural scenes to segment natural images into regions likely to be part of the
same surface. They computed the probability of whether or not two points within
an image fall on the same surface given measurements of luminance and color
differences.
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Visual Inference

It is necessary to have algorithms to perform Bayesian inference after the prob-
ability distributions have been learned. The complexity of vision makes it very
unlikely that we can directly learn a classifier «(7) to solve all visual tasks. (The
brain may be able to do this but we don’t know how to). Recently, however,
there has been some promising new algorithms for Bayesian inference. Particle
filters have been shown to be very useful for tracking objects over time (Isard &
Blake 1998). Message passing algorithms, such as belief propagation, have had
some success (Freeman et al. 2000). Tu & Zhu (2002) have developed a general
purpose algorithm for Bayesian inference known as the Data Driven Markov Chain
Monte Carlo (DDMCMC). This algorithm has been very successful at segmenting
images when evaluated on datasets with specified ground truth. It works, loosely
speaking, by using low level cues to propose high-level models (scene descrip-
tions), which are validated or rejected by generative models. It therefore combines
bottom-up and top-down processing in a way suggestive of the feedforward and
feedback pathways in the brain, described in the next section. The algorithm has
been extended to combine segmentation with the detection and recognition of faces
and text (Tu et al. 2003).

NEURAL IMPLICATIONS

What are the neural implications of Bayesian models? The graphical structure
of these models often makes it straightforward to map them onto networks and
suggests neural implementations. The notion of incorporating prior probabilities
in visual inference is frequently associated with top-down biases on decisions.
However, some prior probabilities are likely built into the feedforward processes
through lateral connections. More dramatically, some types of inverse inference
(e.g., to deal with ambiguities of occlusion, rotation in depth, or background clutter)
may require an internal generative process that in some sense mirrors aspects of
the external generative model used for inference (Grenander 1996, Mumford 1992,
Rao & Ballard 1999, Tu & Zhu 2002a, Tu et al. 2003) or for learning (Dayan et al.
1995, Hinton & Ghahramani 1997). There is evidence that descending pathways
in cortex may be involved in computations that implement model-based inference
using bottom-up and top-down interactions of the sort suggested by the phenomena
of perceptual explaining away. In the next two sections, we discuss Bayesian
computations in networks with lateral connections and in larger-scale cortical
models that combine bottom-up with top-down information.

Network Models with Lateral Connections

One class of Bayesian models can be implemented by parallel networks with local
interactions. These include a temporal motion model (Burgi et al. 2000), which
was designed to be consistent with neural mechanisms. In this model, the priors
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and likelihood functions are implemented by synaptic weights. Another promising
approach is to model the lateral connections within area MT/V5 to account for the
integration and segmentation of image motion (Koechlin et al. 1999).

Anatomical constraints will sometimes bias the processing of information in a
way that can be interpreted in terms of prior constraints. For instance, the specific
connections of binocular sensitive cells in primary visual cortex will dictate the
way the visual system solves the correspondence problem for stereopsis. Some
recent psychophysical work suggests that the connections between simple and
complex binocular cells implement a preference for small disparities (Read 2002).

There are also proposed neural mechanisms for representing uncertainty in
neural populations and thereby give a mechanism for weighted cue combination.
The most plausible candidate is population encoding (Pouget et al. 2000, Oram
et al. 1998, Sanger 1996).

Combining Bottom-Up and Top-Down Processing

There is a long history to theories of perception and cognition involving top-
down feedback or analysis by synthesis (MacKay 1956). The generative aspect
of Bayesian models is suggestive of the ascending and descending pathways that
connect the visual areas in primates (Bullier 2001, Lamme & Roelfsema 2000, Lee
& Mumford 2003, Zipser et al. 1996, Albright & Stoner 2002). The key Bayesian
aspect is model-based fitting in which models need to compare their predictions
to the image information represented earlier, such as in V1.

A possible role for higher-level visual areas may be to represent hypotheses
regarding object properties, represented, for example, in the lateral occipital com-
plex (Lerner et al. 2001, Grill-Spector et al. 2001), which could be used to resolve
ambiguities in the incoming retinal image measurements represented in V1. These
hypotheses could predict incoming data through feedback and be tested by com-
puting a difference signal or residual at the earlier level (Mumford 1992, Rao &
Ballard 1999). Thus, low activity at an early level would mean a good fit or ex-
planation of the image measurements. Experimental support for this possibility
comes from fMRI data (Murray et al. 2002, Humphrey et al. 1997). Earlier fMRI
work by a number of groups has shown that the human lateral occipital complex
(LOC) has increased activity during object perception. Murray et al. use fMRI to
show that when local visual information is perceptually organized into whole ob-
jects, activity in human primary visual cortex (V1) decreases over the same period
that activity in higher, lateral occipital areas (LOC) increases. The authors inter-
pret the activity changes in terms of high-level hypotheses that compete to explain
away the incoming sensory data.

There are two alternative theoretical possibilities for why early visual activity
is reduced. High-level areas may explain away the image and cause the early
areas to be completely suppressed—high-level areas tell lower levels to “shut up.”
Such a mechanism would be consistent with the high metabolic cost of neuronal
spikes (Lennie 2003). Alternatively, high-level areas might sharpen the responses
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of the early areas by reducing activity that is inconsistent with the high level
interpretation—high-level areas tell lower levels to “stop gossiping.” The second
possibility seems more consistent with some single-unit recording experiments
(Lee et al. 2002). Lee et al. have shown that cells in V1 and V2 of macaque
monkeys respond to the apparently high-level task of detecting stimuli that pop-
out owing to shape-from-shading. These responses changed with the animal’s
behavioral adaptation to contingencies, suggesting dependence on experience and
utility.

Lee & Mumford (2003) review a number of neurophysiological studies consis-
tent with a model of the interactions between cortical areas based on particle filter
methods, which are non-Gaussian extensions of Kalman filters that use Monte
Carlo methods. Their model is consistent with the “stop gossiping” idea. In other
work, Yu & Dayan (2002) raise the intriguing possibility that acetylcholine levels
may be associated with the certainty of top-down information in visual inference.

Implementation of the Decision Rule

One critical component of the Bayesian model is the consideration of the util-
ity (gain or negative loss in decision theory terminology) associated with each
decision. Where and how is this utility encoded? Platt & Glimcher (1999) system-
atically varied the expectation and utility (juice reward) linked to an eye movement
performed by a monkey. The activity of cells in one area of the parietal cortex was
modulated by the expected reward and the probability that the eye movement will
result in a reward. It will be interesting to see whether similar activity modulations
occur within the ventral stream for object recognition decisions.

Gold & Shadlen (Gold & Shadlen 2001) propose neural computations that can
account for categorical decisions about sensory stimuli (e.g., whether a field of
random dots is moving one way or the other) by accumulating information over
time represented by a single quantity representing the logarithm of the likelihood
ratio favoring one alternative over another.

CONCLUSIONS

The Bayesian perspective yields a uniform framework for studying object percep-
tion. We have reviewed work that highlights several advantages of this perspective.
First, Bayesian theories explicitly model uncertainty. This is important in account-
ing for how the visual system combines large amounts of objectively ambiguous
information to yield percepts that are rarely ambiguous. Second, in the context
of specific experiments, Bayesian theories are optimal, and thus define ideal ob-
servers. Ideal observers characterize visual information for a task and can thus be
critical for interpreting psychophysical and neural results. Third, Bayesian methods
allow the development of quantitative theories at the information processing level,
avoiding premature commitment to specific neural mechanisms. This is closely
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related to the importance of extensibility in theories. Bayesian models provide
for extensions to more complicated problems involving natural images and func-
tional tasks as illustrated in recent advances in computer vision. Fourth, Bayesian
theories emphasize the role of the generative model and thus tie naturally to the
growing body of work on graphical models and Bayesian networks in other areas,
such as language, speech, concepts, and reasoning. The generative models also
suggest top-down feedback models of information processing in the cortex.
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Figure 1 Visual complexity and ambiguity. (A). The same object, a kayak, can produce
different images. The plots below the images show surface plots of the intensity as a func-
tion of position, illustrating the complex variations typical of natural image data that result
from a change in view and environment. (B). Different shapes (three-quarter views of two
different facial surfaces in the fop panel) can produce the same image (frontal view of the
two faces in the bottom panel) with an appropriate change of illumination direction.
(C). The same material can produce different images. A shiny silver pot reflects complete-
ly different patterns depending on its illumination environment. (D). Different materials
can produce the same images. The image of a silver pot could be the result of paint (right-
most panel). The silver pot renderings were produced by Bruce Hartung using illumination
maps made available at: http://www.debevec.org/Probes/ (Debevec 1998).
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Figure 4 Four simple categories of influence graphs. (A) Basic Bayes. The four curved
line segments are consistent with a spherical and saddle-shaped surface patch (and an infi-
nite family of other 3-D interpretations). Human observers prefer the convex spherical
interpretation (Mamassian & Landy 1998). (B) Discounting. A given object or object class
can give rise to an infinite variety of images because of variations introduced by con-
founding variables, such as pose, viewpoint, illumination, and background clutter. Robust
object recognition requires some degree of object invariance or constancy requiring vision
to discount confounding variables, such as pose, illustrated here. There is a one-to-one rela-
tionship between graph structure and factorizing the joint probability. If /; and S; indicate
the i image and j/ object variables, respectively, then p(..., S j- - 1j,....) is the joint prob-
ability. For this graph, p(S;, S,, I) = p(I1S}, S2)p(S1)p(S,). (C) Cue integration. A single
cause in a scene can give rise to more than one effect in the image. Illumination position
affects both the shading on the ball and the relationship between the ball and shadow posi-
tions in the image. Both kinds of image measurement can, in principle, be combined to
yield a more reliable estimate of illumination direction than either alone, and it is an empir-
ical question to find out if human vision combines such cues, and if so, how optimally. For
this graph, p(Sy, Iy, 1) = p([;1S))pLLIS))p(S;). (D) Explaining away. An image measure-
ment (ambiguous horizontal shading gradients) can be caused by a change in reflectance
or a change in 3-D shape. A change in the probability of one of them being the true cause
of the shading (from an auxiliary contour measurement) can change the probability of the
putative cause (from different to same apparent reflectance). For this graph, p(S;, Sy, I}, 1)

= p(LlS)p 1S}, Spp(S1p(Sy).



