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How do space and time relate in rhythmical tasks that require the mbs to move singly or together
1n various modes of coordination? And what kind of minumal theoretical model could account for
the observed data” Earlier findings for human cyclical movements were consistent with a nonhinear,
lim1t cyele oscillator model (Kelso, Holt, Rubin, & Kugler, 198 1) although no detailed medeling was
performed at that time 1n the present study, kinematic data were sampled at 200 samples/second,
and a detailed analysis of movement amplitude, frequency, peak velocity, and relative phase (for the
bimanual modes, 1n phase and antiphase) was performed As frequency was scaled from i to 6 Hz
(in steps of 1 Hz) using a pacing metronome, amphitude dropped inversely and peak velocity in-
creased Within a frequency condition, the movement’s amplitude scaled directly with its peak veloc-
1ty These diverse kinematic behaviors were modeled explicitly 1n terms of low-dimensional (nonlin-
ear) dissipative dynamics, with linear stiffness as the only control parameter Data and medel are
shown to compare favorably The abstract, dynamical model offers a unified treatment of a number
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of fundamental aspects of movemnent coordination and control

How do space and time relate in rhythmical tasks that require
the hands to move singly or together in various modes of coordi-
nation? And what kind of minimal theoretical model could ac-
count for the observed data? The present article addresses these
fundamental questions that are of longstanding interest to ex-
pernumental psychology and movement science (e g, von Holst,
1937/1973; Scripture, 1899; Stetson & Bouman, 1935) It 1s
well known, for example, that discrete and repetitive move-
ments of different amplitude vary systematically in movement
duration (provided accuracy requirements are held constant,
e g, Craik, 1947a, 1947b) Thus and related facts were later for-
mahized into Fitts’s Law (1954), a relation among movement
time, movement amplitude, and target accuracy, whose under-
pimings have been extensively studied (and debated upon)
quite recently (e g., Meyer, Smith, & Wnight, 1982; Schrmdt,
Zelaznik, Hawkins, Frank, & Quinn, 1979)

In the present study, the accuracy of movement is neither
fixed nor manipulated as in many investigations of Fitts’s Law
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Only frequency 15 scaled systematically and amplitude allowed
to vary 1n a natural way Surprisingly, there has been Ihttle re-
search on movements performed under these particular expen-
mental conditions (see Freund, 1983) Feldman (1980) reported
data from a subject who attempted to keep a maximurm amph-
tude (elbow angular displacement) as frequency was gradually
increased to a hmiting value (7 1 Hz) An observed inverse rela-
tion was accompanied by an increasing tonic coactivation of
antagonistic muscles. In addition, the slope of the so-called *“1n-
variant characteristic™ {see also Asatryan & Feldman, 1965,
Davis & Kelso, 1982)—a plot of joint torque versus joint an-
gle—increased with rhythmical rate, suggesting that natural
frequency (or its dynamic equivalent, stiffness) was a controlla-
ble parameter. Other studies have scaled frequency but fixed
movement amplitude Their conclusions were similar to Feld-
man’s. Frequency changes over a range were accounted for by
an increase 1n system stiffness (e g, Viviani, Soechting, & Ter-
zuolo, 1976}

Brooks and colleagues (e g, Conrad & Brooks, 1974, see
Brooks, 1979, for review) used a rather different paradigm for
exploring spatiotemporal relations 1n cyclic movement pat-
terns In several studies, monkeys produced rapid elbow
flexions/extensions as they slammed a mampulandum back
and forth between mechanical stops (thus allowing no variation
1n amplitude) After a traiming period, the movement amph-
tudes were shortened artificially by bringing the stops closer to-
gether The monkeys, however, continued to exert muscular
control for the “same” length of time, pressing the handle
against the stops when they would normally have produced
larger amplitude movements. Because the original rhythm of
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rapid alterations estabhshed during training was maintained in
the ¢loser-stop condition, *the rhythm . or some correlate of
1it” (Brooks, 1979, p. 23) was deemed to be centrally pro-
grammed However, 1t 15 not at all clear how these findings or
conclusions relate to situations 1n which subjects are not pre-
vented from adjusting movement amplitude veluntarily in re-
sponse to scalar increases 1o rate (see Schmudt, 1985).

With regard to less confined experimental paradigms 1n
which speech and handwriting have been studied, several inter-
esting results have come to hight. As speaking rate is increased,
for example, the displacement of observed articulator move-
ments 15 reduced (e.g., Kelso, Vatikiotis-Bateson, Saltzman, &
Kay, 1985; Kent & Moll, 1972, Ostry & Munhall, 1985). The
precise nature of the function relating these variables, however,
15 not known because only a few speaking rates have been em-
ployed 1n such experiments In handwriting, 1t 15 well known
that when the amplitude of the produced letter 1s increased,
movement duration remains approximately constant (e.g., Hol-
lerbach, 1981; Katz, 1948; Viviam & Terzuolo, 1980). This
handwriting result 1s theoretically interesting 1n at least two re-
spects First, many interacting degrees of freedom are involved
1n writing a letter, be 1t large or small, yet quite simple kinematic
relations are reproducibly observed at the end effector Second,
because the anatomy and biomechanics are entirely different
between writing on notepaper and on a blackboard, a rather
abstract control structure 1s imphcated.

In the present article we offer a dynamical model that 1s en-
tirely consistent with such an abstract control structure and that
1s shown to reproduce observed space—time relations of mbs
operating singly or together (in two specific modes of coordina-
tion) quite nicely Moreover, exactly the same model can be ap-
phed to transitzons among coordinative modes of hand move-
ment (see below). The present dynamical model 1s not tied lo-
cally and concretely to the biomechanics of the musculoskeletal
periphery Rather, the approach 1s consistent with an older view
of dynamics, namely, that 1t 1s the simplest and most abstract
description of the meotion of a system (Maxwell, 1877/1952,
p 1). It 15 possible to use such abstract dynamics 1n complex
multidegree of freedom systems when structure or patterned
forms of motion arise (¢.g., Haken, 1975, 1983). Such patterned
regularities 1n space and time are characterized by low-dimen-
sional dynamics whose variables are called order parameters
One can mmagine, for example, the high dimensionality 1n-
volved 1n a simple finger movement were one to include a de-
scription of participating neurons, muscles, vascular processes,
and so forth, along with their interconnections. Yet 1n tasks
such as pointing a finger, the whole ensemble cooperates 1n such
a way that 1t can be described by a simple, damped mass-spring
dynamucs for the end effector position. Thus, under the particu-
lar boundary conditions set by the pointing task, end position
and velocity are the order parameters that fully specify the coop-
erative behavior of the ensemble Such “compression,” from a
microscopic bass of hupe dimensionality to a macroscopic,
low-dimensional structure, 1s a general and predominant fea-
ture of nonequilibrium, open systems (e.g., Haken, 1983). In
the context of movement, this reduction of degrees of freedom
18 characteristic of a coordinative structure, namely, a func-
nonal grouping of many neuromuscular components that are

flexibly assembled as a single, functional unit (e g, Kelso,
Taller, Vatikiotis-Bateson, & Fowler, 1984),

In earher work (e g., Kelso, Holt, Kugler, & Turvey, 1980;
Kugler, Kelso, & Turvey, 1980), we have 1dentified such umtary
ensembles—following Feldman (1966)—with the quahtative
behavior of a damped mass—spring system Such systems pos-
sess a point attractor, that s, all trajectories converge to an as-
ymptotic, static equhibrium state Thus, the property of egu:-
Sinality 1s exhibited, namely, a tendency to achieve an equihb-
rium state regardless of itmitial conditions The control structure
for such motion can be characterized by a set of time-indepen-
dent dynamic parameters (e g , stiffness, damping, equahbrium
position), with kinematic variations (e g., posttion, velocity, ac-
celeration over time) emerging as a consequence This dynami-
cal medel has recerved a broad base of empirical support from
studies of single, discrete head movement (Bizzi, Polit, & Mo-
rasso, 1976), hmb movement (e g., Cooke, 1980, Polit & Bizz1,
1978; Schmidt & McGown, 1980) and finger-movement target-
ng tasks (Kelso, 1977; Kelso & Holt, 1980) In addition, point
attractor dynamics can be shown to apply not only to the mus-
cle-joint level but also to the abstract, task level of description
as well (see Saltzman & Kelso, 1987). That 1s, a dynamical de-
scription 1s appropriate at more than one “level.” Striking sup-
port for this notion has been recently accumulated by Hogan
and colleagues (see Hogan, 1985} In their work on postural
maintenance of the upper extremity, the well known “spring-
hike” behavior of a single muscle was shown to be a property of
the entire neuromuscular system As Hogan (1985) notes, “
despite the evident complexity of the neuromuscular system,
coordinative structures . . go to some length to preserve the
simple ‘spring-like’ behavior of the single muscle at the level of
the complete neuromuscular system”™ (p 166)

It 1s important to emphasize that point attractor dynamics
provide a single account of both posture and targeting move-
ments Hence, a shift in the equilibrium position (correspond-
g to a given postural configuration) gives rise to movement
(seee.g., Feldman, 1986). What, then, of rhythmical movement,
our major concern here? It 1s easy to see, 1n principle, how a
dynamical description maght be elaborated to include this case
For example, a single movement to a target may be under-
damped, overdamped, or critically damped, depending on the
system’s parameter values {for example, see Kelso & Holt,
1980). A simple way 10 make the system oscillate would be to
change the sign of the damping coefficient to a negative value.
This amounts to inserting “energy””' into the system. However,
for the moticn to be bounded, an additional dissipative mecha-
msm must be present 1n order to balance the energy input and
produce stable hmit cycle motion. This combination of linear
negative damping and nonlinear dissipative components com-
prises an escapemeni function for the system that 15 autono-
mous in the conventional mathematical sense of a time-inde-
pendent fercing function.

In the present research we adopt this autonomous description
of rhythmical movement, though we do not exclude—on em-

! It 1s important to emphasize here that we use terms like erergy and
dissipationin the abstract sense of dynamcal systems theory (¢f Jordan
& Smith, 1977, Minorsky, 1962) These need not correspond to any
observable biomechanical quantities
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prrical grounds alone-—the possibility that forcing may occur in
a time-dependent fashuon  Oscillator theory tells us that nonlin-
ear autonomous systems can possess a so-called pertodic attrac-
tor or Iimit cycle; that 15, all trajectories converge to a single
cychic orbit 1n the phase plane (x, x) Thus, a nontrivial feature
of both periodic attractor dynamucs and rhythmcal movement
{entirely analogous to the foregoing discussion of point atirac-
1or dynamics and discrete movement) 1s stability 1n spite of per-
turbations and different initial conditions.

In a set of experiments several years ago, we demonstrated
such orbital stability (along with other behaviors such as mutual
and subharmonic entrainment) 1 studies of human cyclical
movements (Kelso, Holt, Rubin, & Kugler, 1981) Although our
data were consistent wath a nonlinear hmit cycle oscillator
model for both single and coupled rhythmic behavior, no ex-
plicit attempt to model the results was made at that time. More
recently, however, Haken, Kelso, and Bunz (1985} have success-
fully modeled the circumstances under which observed transi-
tions occur between two modes of coupling the hands—namely,
antiphase motion of relative phase ~ 180°, which involves non-
homologous muscle groups, and 1n-phase motion of relative
phase = 0°, in which homologous muscles are used The Haken
etal (1985) nonhnearly coupled nonhnear oscillator model was
able to reproduce the phase transition, that 1s, the change 1n
quahtative behavior from antiphase to mn-phase coordimation
that occurs at a criticat driving frequency, as the dniving fre-
quency (w) was continuously scaled (see Kelso, 1981, 1984,
MacKenzie & Patla, 1983). This model has been further ex-
tended 1n a quantitative fashion to reveal the crucial role of rela-
tive phase fluctuations in provoking observed changes in behav-
1oral pattern between the hands and to further wdentsfy the phe-
nomenon as a nonequilibriurmn phase transition {Schoner,
Haken, & Kelso, 1986). Remarkably good agreement between
Schoner et al.’s (1986) stochastic theory and experiments con-
ducted by Kelso and Scholz (1985) and Kelso, Scholz, and
Schoner {1986) has been found

In the present work we provide quantitative experimental re-
sults pertinent to the foregoing modeling work of Haken et al.
(1985} and Schoner et al. (1986) For example, although the
Haken et al. {1985) model provided a qualitative account of
decreases in hand movement amplitudes with increasing fre-
quency, the actual function relating these variabies was not em-
pirically measured in earher experiments nor was any fit of pa-
rametlers performed. A goal of this research 15 10 show how a
rather simple dvnarmcal model (or control structure}—requir-
ng vanations in only one system parameter—can account for
the spatiotemporal behavior of the limbs acting singly and to-
gether The experimental strategy was to have subjects perform
cychcal movements in response to a metronome whose fre-
quency was mampulated (1in 1-Hz steps) between 1 Hz and 6
Hz The data reveal a stable and reproducible reciprocal rela-
tion between cyching frequency and amplitude for both single
and bimanual movements. This constraint between the spatial
and temporal aspects of movement patterns invokes 1mmedi-
ately a nonlinear dynamical model (inear systems exhibit no
such constraint), the particular parameters of which can be
spectfied accordmg to kinematic observables {e.g., frequency,
amplitude, and maximum velocity). Though we make no
claims for the uruqueness of the present model, we do show that

other madels can be excluded by the data, and we suggest ex-
phicit ways 1n which unigueness may be sought

Method
Subjects

The subjects were 4 right-handed male volunteers, none of whom
were paud for their services They individually participated in two exper-
mental sessions, which were separated by a week Each session con-
sisted of approximately 1 hr of actual data collection

Apparatus

The apparatus was a modification of on¢ described 1n detail on previ-
ous occasions (Kelso & Holt, 1980, Kelso et al, 1981) Essentally, 1t
consisted of two freely rotating hand mampulanda that allowed flexion
and extension about the wrist {radiocarpal) joiunt in the horizontal
plane Angular displacement of the hands was measured by two DC
potentiometers riding the shafts of the wrist positioners  The outputs of
the potentiometers and a pacing metronome (see below) were recorded
with a 16-track FM tape recorder (EMI SE-7000)

Procedure

Subgects were placed 1n a dentist’s chair, their forearms nigudly placed
in the wrist-posiioning device, so that the wrist joint axes were directly
1n hine with the posttioners’ vertical axes Motion of the two hands was
thus solely in the horizontal plane Vision of the hands was not ex-
cluded

Each experimental session was divided into two subsessions In the
first session, single-handed movements were recorded, followed by two-
handed movements, this was reversed for the second session Within
each subsession, preferred movements were recorded, followed by met-
ronome-paced movements For the preferred tnals, subjects were told
to move their wrists cychcally “at a comfortable rate™ On the paced
trials, subyects were told to follow the “beeps’™ of an audio metronome
te produce one full cycle of motion for each beep. Pacing was provided
for six differeat frequencies—1, 2, 3, 4, 5, and 6 Hz—presented 1n ran-
dom order For both the preferred and paced conditions, subjects were
not msiructed exphicitly concerming the amphtude of movement; for
example, they were not told to move their wnists maximally

For the single-hand subsession there were, therefore, 14 conditions,
one preferred and six paced data sets bemng coliected for each hand For
the two-handed tnals, there were also 14 condtions, one preferred and
six paced data sets being collected for each of two different movement
patterns These bimannal patterns consisted of a mirror, symmetric
mode, which involved the simultaneous activation of homologous mus-
cles and a parallel, asymmetric mode, which mvolved simultaneous ac-
fivatton of nenhomoelogous muscle groups (see, € g., Kelso, 1984) Twe
trials of data were collected for each condition 1n each session For the
preferred tnals, 30 s of data were collected, while 20 s were collected at
the pacing frequencies of 1-4 Hz, and 6 s-8 s at 5 Hz and 6 Hz, to
mrnimuze fatgue effects

Data Reduction and Dependent Measures

Following the experimental sessions, the movement signals were digi-
tized at 200 samples/second and smoothed with a 35-ms triangular win-
dow Instantaneous angular veloaity was computed from the smoothed
displacement data by means of the two-pomt central difference algo-
rithm and smoothed with the same tnangular window (see Kay, Mun-
hall, Vatikiotis-Bateson, & Kelso, 1985, for detauls of the signal process-
1ng steps imvolved) A cycle was defined by the occurrence of two (ad)a-
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Table 1
Mean Frequency, Amplitude, and Peak Velocity for Single-Handed Trials
Frequency (Hz) Amplitude (degrees) Peak velocity (degrees/second)
Left Raght Left Raght Left Rught
Condition M % M % M % M % M % M %
Preferred 204 38 204 33 46 87 72 46 88 64 31191 65 307 08 61
Paced
1 Hz 100 69 1 00 49 5117 58 5354 70 194 04 85 187 40 87
2Hz 200 17 200 i3 43 11 76 46 01 77 29119 82 208 62 78
3Hz 300 47 300 40 3774 107 40 50 81 35817 94 380 45 70
4 Hz 402 6.5 404 4.8 38 64 107 33 54 107 463 31 90 416 85 86
SHz 519 78 514 49 3282 137 3335 96 540 37 98 522 10 76
6 Hz 633 69 601 66 26 81 218 27 83 129 516 89 109 499 33 107

Note Means are collapsed across trials, sessions, and subjects Percentages represent average within-trial cross-cycle coefficients of varation

cent) peak extension events, which, along with peak flexions, were Coeflicients of variation (CVs) were used as varability measures for
1dentified by a peak-peaking algorithm, Peak velocity was measured frequency, amplitude, and peak velocity to remove the effects of the
using the same peak picker on the velocity data, the values reported here frequency scaling on the mean data and thus to validly compare vari-
are summaries across both positive and negative velocaity peaks Cycle ability data across the observed frequency range The standard devia-
frequency (1n Hz) was defined as the inverse of the ime between two tion was used as the phase vaniability measure, because coeflicients of
peak extensions, and cycle amplitude (peak-to-peak, 1n degrees) as the variation would be clearly inappropriate in comparing the two patterns
average of the extension-flexion, flexion-extension half-cycle excur- of movement, whose mean phase differences were always around 0° and
sions For the two-handed tnals, the relative phase (or phase difference) 180° In the followmg Results section are reported these within-trial
between the two hands was also computed con a cycle-by-cycle basis, summary data, because of the large number of cycles collected In under
using Yamanishi, Kawato, and Suzuki’s (1979) defintion This 1s a 1% of the trials, a trial was lost because of experimenter error Thus,
purely temporal measure and 1s not computed from a motion’s phase for statistical purposes, means across trials within each experimental
plane trajectory (Kelso & Tuller, 1985) The measurement 15 based on condition were used
the temporal location of a left peak extension within a cycle of right-

hand movement as defined above In our convention, for the murror Results

mode, phase differences of less than 0° indicate that the left hand leads The means and variability measures of frequency (in Hz),
the right, and vice versa for positive values For the parallel, asymmetnic amplitude (1n degrees), peak velocity (in degrees/second) and
mode, values of less than 180° mean that the left hand leads the nght relative phase (for the two-handed conditions) are presented 1n
{1 ¢, the left peak extension event 1s reached prior to exactly 180°), val- Tables 1 to 4, collapsed across trials, sessions, and subjects.

ues greater than 180° mean that the right hand leads For gualitative
comparisons between model-generated simulations and data, phase Both preferred and paced data are included in these tables

plane trajectories were also examined These were created by simulta- Pre_férred Conditions
Iy plotting transduced -
:1:::05“}; Ee cl} ocllrzg ransduced angular position against the derived mstan. Frequency, Amp htude, and Peak Veloct 1y
After obtaining these measures for each cycle, we obtained measures For both single and bimanual preferred movements, repeated
of central tendency (means) and variability across all cycles of each trial measures analyses of variance (ANOVAs) were performed on the

Table 2
Mean Frequency, Amplitude, and Peak Velocity for Homologous (Mirror) Two-Handed Trials
Frequency (Hz) Amplitude (degrees) Peak velocity (degrees/second)
Left Right Left Right Left Rught
Condition M % M % M % M % M % M %
Preferred 190 73 190 66 41 49 40 4705 17 25293 73 28072 66
Paced
1Hz 1 00 39 100 4,0 5271 62 56 85 60 188 30 86 196 60 82
2Hz 200 35 200 13 38 80 96 42 20 81 260 85 94 28091 75
3Hz 301 51 300 4.0 3315 110 3585 96 31845 94 345 51 81
4 Hz 408 81 4.08 57 3050 141 3295 e 38718 95 415 44 9¢
SHz 529 97 525 55 26 12 176 29 64 135 430 64 124 474 90 112

Note Means are collapsed across trials, sessions, and subjects only for the stable data Percentages show average within-trial, cross-cycle coefficients
of vaniation
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Table 3

KAY, KELSO, SALTZMAN, AND SCHONER

Mean Frequency. Amplitude, and Peak Velocuy for Nonhomologous (Parallel) Two-Handed Trials

Frequency (Hz) Amplitude (degrees) Peak velocity (degrees/second)

Left Raght Left Raght Left Right
Condrtion M % M % M % M % M % M %
Preferred 156 38 156 41 5230 57 5750 47 288 57 68 314 39 49
Pa‘l:egz . 101 42 101 39 5322 65 5479 57 196 21 3 201 %6 77
2Hz 202 44 200 38 46 41 93 48 21 77 316 15 78 32546 73

Note Means are collapsed across trials, sessions, and subjects only for the stable data Percentages represent average within-trial, cross-cycle coeffi-

clents of vanation

within-trial means, and variability measures were obtained for
frequency, amphtude, and peak velocity The design wasa 2 X
3 % 2 factoral, with hand (left, right), movement condition {Sin-
gle, mirror, and parallel), and session as factors,

Mean data  Lookng first at frequency means, the only effect
fournxd was for movement condition, F(2,6) = 9 14, p < .05. Post
hoc Scheffé tests show that in the single (2.04 Hz) and mirror
(1 90 Hz) mode the preferred frequencies were similar to each
other but higher than in the paratlel mode frequency (.56 Hz).
The two hands did not differ 1n preferred frequency in any of
the three movement conditions With regard to amplitude
means, a main effect for hand, F(1, 3) = 14.16, p < .05, and a
Hand X Mode interaction, £(2, 6) = 3.81, p < .05, occurred.
There was no signtficant movement condition effect, suggesting
that the three movement conditions assumed the same amph-
tude 1n the preferred case. However, the interaction indicated
that the amplitude means for the single conditions were 1denti-
cal for the two hands but differed 1n both bimanual conditions,
the left hand assuming a lower amphtude than the right in each
case No significant main effects or interactions were found for
the preferred peak velocity data.

Vanability dara  ANOVAs performed on the frequency and
peak velocity within-trial coefficients of variation revealed no

Table 4
Mean Relative Phase for Homologous (Murror) and
Nonhomologous (Parallel) Two-Handed Trials

Relative phase {degrees}
Homologous Nonhomologous

Condition M SD M SD
Preferred 546 11 36 18528 1109
Paced

{Hz 360 575 17775 954

2Hz 10 44 10 84 18599 16 65

3Hz 619 18 00 188 82 5249

4 Hz 400 26 36 193 64 93 46

SHz -5 81 4253 181 68 104 02

6Hz 5133 5191 168 88 1IG38

Note Means (M) are collapsed across trials, sessions, and subjects Stan-
dard deviations (SD) are average within-trial, cross-cycle SDs

effects. For the amplitude CVs, however, there was a significant
effect for movement condition, F(2, 6) = 5 17, p < .05. Post hoc
tests showed that single-hand amplitudes were more variable
than parallel amplitudes, which were more variable than those
for mirror movements.

Relanve Phase

For the bimanual movement conditions, repeated measures
ANOvas were performed on the within-triat means and stan-
dard deviations of the relative phase between the two hands
The design was a 2 X 2 factorial, Coordinative Moxde (mirror
and parallel) X Session. The only effect observed for phase was
mode, F(1, 3} = 13756.6, p < .0001, showing that the subjects
were mdeed performing the task properly, producing two dis-
tinct phase relations between the hands The 95% confidence
interval for the murror mode was 6.56° + 11.34°, and for the
parallel mode, 185.28"° + 9,93% the intervals overlap with the
“pure” modes of 0° and 180°, respectively (although 1n both
maodes the right hand tends to lead the left). There were no
effects or interactions for phase variability 1n the preferred con-
ditions.

Metronome-FPaced Conditions

As can be seen 1 Tables 1-4, the mampulation of movement
frequency had a profound effect on almost all the measured
abservables With increasing frequency, amplitude decreased,
whereas peak velocity and all variability measures appeared to
increase. There were some appareant differences among the
three movement conditions as well, although the two hands be-
haved quite stmularly. Valid comparisons among the experimen-
tal condihons on the kinematic vanables of frequency, ampl-
tude, and peak velocity can be made, however, only when it 1s
astablished that subjects are actually performing the bimanual
tasks 1n a stable fashion. Looking at Table 4, one can see that
the phase vanability of the two modes increased quite rapidly
with increasing frequency.

In a 6 X 2 > 2 factorral design, wath pacing frequency (1-6
Hz 1n 1-Hz steps), coordmative mode (muzrror and paraliel), and
session as factors, the only effect observed on the mean relatve
phase data was mode, £(1, 3) = 233.01, p < .001, and the means
observed across all pacing frequencies were 4 21° and 182 93°
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pacing frequencies, and means within each frequency Left panel single-handed movements Raght panel

mITTor-mode movements

n the mirror and parallel modes, respectively Apparently the
two criterion phase angles are approximated, on the average,
within trials However, effects for pacing frequency, F(5, 15) =
124.91, p < 0001, mode, F(1, 3) = 265 75, p < .001, and their
mteraction, F(5, 15) = 18.24, p < .001, were found on the with-
m-trial relative phase standard deviations. The interaction was
consistent with both main effects: Vaniahility in phase increased
with increasing frequency for both modes, but the parallel
mode’s variabiity ncreased much faster than the mrror
mede’s Note, in Table 4, the order of magnitude 1ncrease 1n
phase variability 1n the parallel mode between 2 Hz and 3 Hz
A comparable degree of phase variabihity 1n the murror mode
15 not evident until the 6-Hz pacing condition Thus result 1s
consistent with other findings (e.g., Kelso, 1984; Kelso &
Scholz, 1985) that the parallel mode 1s highly unstable between
2 Hz and 3 Hz for similar movements, and a transition to the
murror mode 1s frequently observed above that frequency.

The foregoing pattern of phase variability suggests, therefore,
that we perform two separate analyses on the remainder of the
paced data 1n order to make comparisons only within the stable
regions of behavior. A reasonable criterion for phase stability 15
+45° Thus, we now report (a) the analyses comparing mirror
mode and single-hand behavior from | Hz to 5 Hz and (b) the
analyses on all three movement conditions for 1 Hz and 2 Hz.

Single-Hand Versus Mirror-Mode Movements, 1-5 Hz

For single-hand and mirror-mode paced movements, re-
peated measures ANOVAs were performed on the within-tnal
means, and vanability measures were obtained for frequency,
amplitude, and peak velocity. The design wasa S X2 X2 x 2

factonal, with pacing frequency (1-5 Hz in 1-Hz steps), hand
(left, right), movement condition (single and mirror) and ses-
s10n as factors

Mean data With regard to the observed frequency means,
the pacing frequency was, as expected, a highly sigmificant
effect, F(4,12) = 1117 76, p< 0001 The only other effect pres-
ent was a weak three-way interaction, Session X Hand X Pacing
Frequency F{4, 12) = 4 51, p < 03, indicating some very minor
fluctuations in observed frequency. The main feature of thus in-
teracticn 1s a simple effect for mode at the 3-Hz pacing fre-
quency, F(2, 6) = 9.02, p < 02, which was observed for none
of the other pacing frequencies

For the amplitude means, the main effect of pacing frequency,
F(4,12) = 9.51, p < 0035, shows that amplhitude decreased with
increasing frequency Three aof the 4 subjects’ hinear corre-
lations between amplitude and frequency were significant,
(Pearson rs = —.50, — 86, and — 87, ps < 001), while the 4th
subject’s amplitude trend, although decreasing, failed to reach
significance (r = — 18, p = .12) The only other effect on ampli-
tude was a weak three-way interaction, Mode X Hand X Pacing
Frequency, F(4, 12) = 3 30, p < 05, chiefly the result of the left-
hand amphtude 1n the single case at 5 Hz being shghtly higher
than the rest of the data at that frequency Otherwise, no differ-
ences were found, the two movement conditions exhibiuing
much the same amplitude across the entire frequency range
Pacing frequency, F(4, 12) = 8.26, p < .005, was the only sig-
nificant effect on the peak veloaity means; the latter increased
with increasing frequency for both movement conditions

The main effect of pacing frequency found for both amph-
tude and peak velocity indicates that each covaries with fre-
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guency of movement, but an interesting relation exasts between
the two With respect to the means across each pacing fre-
quency, amplitude and peak velocity exhibited an nverse rela-
tion (see Figure 1) for both the single-hand and mirror move-
ments (r = — 986 for the single hands, r = — 958 for the mirror
movements, on the overall means, N = 5 and p < .01 for both
correlations) At first, this result seems to contradict a wealth
of findings on this relation which reveal that peak velocity scales
drrectly with movement amplitude (see Kelso & Kay, 1n press,
for a review) However, an analysis of the individual tnial data
within a given pacing frequency condition indicates that peak
velocity and amplitude do 1ndeed scale directly with each other
(see Figure 1) Pearson’s r correlations for each of the movement
frequencies are listed 1n Table 5, and range from 772 to 997
(p < 01 1 all cases) Slopes of the lhines of best fit for peak
velocity as a function of amphitude are also reported, none of
the intercepts were significantly different from zero.

Variability data  The within-tnal coefficients of variation
(CVs) for abserved frequency showed significant effects of pac-
tng frequency, F(4, 12) = 13.68, p < .0005, hand, F(1, 3) =
12 539, p < 05, and the Pacing Frequency X Mode 1interaction,
F(4, 12) = 592, p < .01 Overall, the left hand was more van-
able in frequency than the right (CVs of 6 0% and 4 4%, respec-
tively) Analysis of simple main effects showed that pacing fre-
guency was a significant effect for both single-hand and mirror
movements, F(4, 12) = 3.989, p < 05, and F(4, 12) = 33 24,
p < 0001, respectively, but that the only difference between the
two movement conditions occurred at 3 Hz, F(1, 3) = 20.18,
p < .05. At that pacing frequency, the mirror mode was shightly
more variable than the single-hand movements.

The only significant effect on amplitude CVs was pacing fre-
quency, £(4, 12) = 29.10, p < 0001 Amphtude vaniability in-
creased very consistently with increasing movement frequency
(see also Figure 1, which shows the cross-trial variability in
amphtude as well as in peak velocity). For the peak velocity
CVs, session, F(1, 3) = 13 10, p < 085, and pacing frequency,
F(4, 12) = 3.51, p < .05, were significant effects; vanability 1n
the second session was lower than that in the first (the only clear-
cut practice effect 1in the experiment), and higher frequency
movements were consistently more variable on thus measure

Comparison of All Three Movement Conditions at | Hz
and 2 Hz

For all three movement conditions, repeated measures AN-
Ovas were performed on the within-trial means, and variability
measures were obtained for frequency, amplitude, and peak ve-
locity The design was a 2 X 2 X 3 X 2 factorial, with pacing
frequency (1 Hz and 2 Hz), hand (left, rght), movement condi-
tion (single, mrror, parallel), and session as factors.

Mean data For the observed frequency, pacing frequency,
(1, 3) = 32708.6, p < 0001, and mode, {1, 3) =664, p <
05, were significant effects, with the parallel mode being
shightly faster than the other two movement conditions overall.
The difference, however, was less than 1% of the pacing fre-
quency For amplitude, no main effects or interactions were
found: the three movement conditions assumed a single overall
amplitude, and amphtude differences were not apparent across
the two observed frequencies For peak velocity, pacing fre-

quency, F(1, 3) = 19 32, p < 03, and 1ts interactions with move-
ment condition, F(2, 6) = 592, p < 05, and hand, K1, 3) =
15.18, p < 05, were sigmficant A simple main effects analysis
for the first of these interactions indicated that the pacing fre-
quency effect was significant for the single and parallel move-
ments but not for the marror mode. In addition, the movement
conditions differed at 2 Hz (order from least to greatest peak
velocity murror, single, parallel) but not at 1 Hz The second
interaction was consistent with the associated main effects—the
pacing frequency effect was sigmificant for both hands, and no
sumple effects for hand appeared However, at 2 Hz the right
hand showed shghtly greater peak velocities than the left. As
observed for single-hand and mirror movements (see above),
amphtude and peak velocity covaried directly in the parallel
movements, within each pacing frequency (see Table 5).

Variability data For observed frequency, no main effects or
iteractions were found for the within-trial CVs. For amplitude
CVs, the Movement Condition X Hand interaction was signifi-
cant, F(2, 6) = 13 51, p < 03, yet no stmple main effects were
found at any level of the two independent variables However,
for the left hand, both bimanual conditions were more vaniable
than single-hand movements, whereas the reverse was true for
the right. For peak velocity CVs, the only effect was a weak
three-way 1nteraction of movement condition, hand, and fre-
quency, F(2,6) = 7.87, p < .05

Qualitative Results—Examples of Phase Portratis

The shapes of the limat cycle trajectories can be very informa-
tive about the underlying dynamacs. Figure 2 shows typical
phase plane trajectories for single-hand movements; a section
of ane tnal 1s displayed for each of the pacing frequencies from
1 Hz to 6 Hz, along with the trajectories of the model (see next
section on hmut cycle maodels) at the same frequencies. As
shown 1n the figure, trajectory shape vanes with movement fre-
quency: Higher frequency movements appear to be somewhat
more sinusoidal (1.e., more elliptical on the phase plane) than
lower frequency ones This was especially apparent 1n going
from 1 Hz to 2 Hz. Some subjects showed this tendency less
than others, but the shapes of the trajectones did not appear to
ciffer among the three movement conchhions, Note also that the
velocity profiles are umimodal 1n these rhythmical movements,
a result also observed 1n recent speech (Kelso et al., 1985) and
discrete arm movements (e.g., Bizzi & Abend, 1983; Cooke,
1980; Viviani1 & McCollum, 1983).

Limiut Cycle Modeling

In this section we first present a limit cycle model that ac-
counts for a number of observed kinematic charactenistics of
rhythmical hand movements, including the observed ampli-
tude—frequency and peak velocity—frequency relations across
conditions, as well as the peak velocity-amplitude relation
within a given pacing condition. In addition, an adequate gener-
alization of the limit cycle medel to coordinated rhythmic hand
movements 1s presented (Haken et al., 1985), and conclusions
are drawn from comparisons with the experimental data. A dis-
cussion of the assumptions that are implicit 1n our modeling
strategy 1s deferred to the General Discussion
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Table 5
Correfations of Amplitude and Peak Velocity, Within Each Pacing Frequency, for Stable Frequencies
Condition
Single Mirror Parallel
Frequency r " N r m N r m N
1Hz 772 344 32 503 398 0 733 462 26
2Hz 970 608 32 972 619 32 967 6 58 32
3Hz 995 909 32 992 915 32
4 Hz 997 1177 33 596 1282 36
SHz 991 1594 34 975 i6 86 28

Note r=Pearson’s r, m = slope of the hne of best fit (peak velocity as a function of amphtude), N = number of trials for each correlation

As noted earhier by Haken et al. (1985}, a combination of two
well-known limit cycle oscillators 1s a strong candidate to model
the observed monotonous decrease of amplhitude as a function
of frequency. These two oscillators are the van der Pol (van der
Pol, 1922) and the Rayleigh osciliator (Rayleigh, 1877/1945)
The first 15 described by an equation of motion of the following
form:

X+ ax + yxix + wix =0, n

where a, v, and «”® are constants. For & < 0 and v > 0, this
equation has a lumit cyele attractor. In a phase portrait in the
{x, x)-plane this means that there 1s a closed curve on which the
system rotates (the himit cycle) and to which all trayectores are
attracted after a sufficiently long transient time. For |al <€ w the
frequency of oscillation on and near the limst cycle 1s, to a good
apoproximation, just o {(see Minorsky, 1962, Section 10.6). Fig-
ure 3 illustrates this situation schematically.

An analytic description of the hmt cycle can be given 1if the
slowly varying amplitude and rotating wave approximations are
used (Haken et al , 1985, see Appendix A for a brief summary
of the methods and the results) The amplitude of the hmat cy-
cle, whach 1n this approximation 15 a harmenic oscillation, 1s

found to be
A=2WVally (2)

and 15 independent of the frequency w. Thus the van der Pol
oscillator can account for the intercept of the amphtude—fre-
quency relaton but not for 1ts monotonic decrease. The Ray-
leigh oscillator has the equation of motion,

x+ax+fxi+ wix=0, 3)

and possesses a limmt cycle attractor for a < 0, § > 0, agam with
an oscillabon frequency o as long as || € w. Using again the
iwo above-mentioned approximations, we obtain the amplitude
of this hmit cycle as

A= Qlw)V|al/38 {4

(see Haken et al., [985).

The decrease of amplitude with frequency observed in the
data 1s captured by this expression, although the divergence of
Equation 4 at small frequency is clearly nonphysical.

H 15 easy to imagine that a combination of both types of oscil-
lators may provide a more accurate account of the experimental
results Therefore, let us consider the following model.

X+ ax+ 83+ vxix + o’x =0, (3)

which we refer to from now on as the “hybrid” oscllator For
B, v > 0, & < 0 this yields again a himat cycle attractor of fre-
quency « {for o} < w) with amplitude (again in the approxima-
tions of Appendix A)

4 =2V|al/(38w* + ¥) {6)

Ths function exhibits both a hyperbolic decrease 1n amplitude
aswell asa finite intercept at zero frequency and accounts quah-
tatively for the experimental data. In Figure 4 we have plotted
the amphtude A of the hybrid model together with the experi-
mental data as a function of frequency The two parameters, §
and v, were fitted {using a least squares fit, see Footnote 2} wiale
o was chosen 85 o = —0.05 X wyee (= 041 Hz) without a further
attempt to mumimize deviations from the data {The values for
f and v were g = .0070935 Hz?, v = 12 457 Hz, where A was
taken to be of the same scale as the experimental degree values.)
The choice of « 1s consistent with the slowly varying amplitude
approximation {for which we need la] € w; see Appendix A)
and amounts to assuming that the nonlinearity is weak (see Ap-
pendix B and General Discussion below). For dlustrative
purposes, the corresponding least squares fits for the van der Pol
and the Rayieigh oscillators are also shown in Figure 4 Note
that only one fit parameter, 8 or v respectively, was used for
these fits. It s obvious how each of the two foregoing models
accounts for only one aspect of the experimental aobservations,
and the hybrid model accounts for both. In summary, the model
parameters were determuned by (a) identifying the pacing fre-
quency with o (which 1 a good approxamation for la| < w}; (b)
choosing & = —0 05 X wpeert and (c) finding 8 and v by a least
squares fit of the amphtude-frequency relation. A more strin-
gent evaluation of the parameters 1s possible if more experimen-
tal information 15 available (see the discussion of the assump-

2 The parameters § and v were found by means of a pseudo-Gauss-
Newton search for the parameters, using the single-hand observed fre-
quency and amplitude trial data (N = 192) The least squares criterion
was the minimization of squared residuals from the model amphitude-
frequency funchion stated in Equation & The overall fit was found to be
signsficant, F{2, 190) = 35 314, p < 0001, and the overall R? was 2748,
standard deviations for 8 and v were 001025 Hz® and 1 0129 Hz, re-
spectively
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tions 1n General Discussion below) Note, however, that even
on this level of sophistication the model accommodates several
further features of the data For example the peak velocity-am-
plhitude relation grven by the limat cycle model 1s the simple rela-
tion

V, = wA. (7

This relation holds whenever the trajectory is close to the limt
cycle Thus if trajectories fluctuate around the limit cycle (due
to ever-present small perturbations), we expect the scatter of the
peak velocity-amplitude data to lie on a straight line of slope w.
Moreover, this same relation 1s shown to hold 1n the situation

Velocity Limit

1 / Cycle

¢ * Position

+
Figure 3 Examples of phase plane trajectories for a limit cycle

where amphitude varies across trals (see Figure 1 and Table 5).
Note that peak-to-peak amplitude equals 24 so that the slopes
reported 1n Table 5 are w/2 = = X Frequency. An additional
piece of experimental information concerns the peak velocity—
frequency relation (see Table 1 and Figure 5), the theoretical
prediction for which results 1f we insert Equation 6 into Equa-
tion 7 as follows:

V,= 2wVlal/(3Bs’ + ¥) (8)

This theoretscal curve 1s also included 1n Figure 5 It 1s 1mpor-
tant to emphasize that all parameters have been fixed pre-
viously. Clearly, the match between model and experiment 1s
quite close.

We now turn to the modeling of the two-handed movements.
The essential 1dea 1s to couple two single-hand oscillators of
type expressed in Equation 5. Assuming symmetry of the two
hands, Haken et al., (1985) have estabhished the most simple

v erved
< ~Hybrid osc
| Lo = .
60‘ t‘ Rayleigh
Y
50 1 !
()
3 _ 40 1 | \0\
.
=
S g 30
< - -.u..-.'q.u.......
: .
0

ot 2 3 4 5 6 7
Frequency (Hz)

Figure 4 Frequency (in Hz) versus amplitude (1in degrees) for the single-
handed data and the curves of best fit for the van der Pol, the Rayleigh,
and the hybnid oscillators (The observed data are the mean values at
each pacing frequency )



SINGLE AND BIMANUAL RHYTHMIC MOVEMENTS 187

600 1
500 + .
> A
= — 4007 o
o 8 A
8 e
© 3 300t
S g 3 /°
x @ 2 -
< Q 004 74 ¢ - Observed
a. o ° - Hybrid Model
100 ¢
0 + + + + + +
0 1 2 3 4 5 6

Frequency (Hz)

Figure 5 Frequency (1n Hz) versus peak velocity (in degrees/second)
for the single-handed data and the corresponding function for the hy-
brid model (see Equation 8), as derived from the amphtude—frequency
data (The observed data are the mean values at each pacing frequency )

coupling structure that accounts for both the in-phase (sym-
metric/mirror) and the antiphase (asymmetric/parallel) coor-
dinative maodes as well as the transition from an asymmetric to
symmetric organization as frequency 1s scaled (see introduc-
tion} This coupling structure has the following explicit form

X+ g0a, x1) = (x1 = xa)la + bx, — x)] )]
X2+ g0z, X2) = (62 — x)a + b(x2 — x,)*], (10)

where
2(x, X} = ax + 8x* + vx*x + W’x, an

and a and b are couphing constants, Using again the approxima-
tions of Appendix A (see Haken et al., 1985, for the calcula-
tions), one obtains the amphtudes

A= ds=2 lee| + a1 — cose)
! z 38w + v — 3b + 4bcosp — bcos2e

In this expression ¢ = ¢» — ¢, 15 the relative phase of the two
oscillators, which 1s ¢ = +180° for the asymmetric motion and
¢ = 0° for the symmetric motion. Note that fora = b = (0 we
recover the amplitude of the single hybnd oscillator (see Equa-
tion 6) Indeed, the experimental observation that the amphi-
tudes of the two-handed modes of movement did not differ sig-
nificantly from the single-hand amplitudes leads us to the con-
clusion that the coupling 1s weak 1n the sense that ¢ €« w and b <
v This 15 an interesting result in that it shows that even when
the couplhing 1s much weaker than the corresponding dissipative
terms of the single-hand oscillators (which guarantee a stable
amplitude-frequency relation), phase locking and transitions
within phase locking can occur This may rationalize, to some
degree, the ubiquity of phase locking in the rhythmical move-
ments of animals and people and 1s worthy of much more inves-
tigation.

A final remark concerns the preferred frequencies chosen by
subjects in the single-hand condition compared with the two

(12)

coordinative modes The observation was that the preferred fre-
quency was always lower 1n the asymmetric mode than in erther
the symmetric mode or the singie-hand movement conditions,
which were roughly equal. As mentioned before, a transition
takes place from the asymmetric mode to the symmetric mode
as frequency is scaled beyond a certain critical value. The cou-
pled oscillator model accounts for that transition 1n the sense
that the stationary state ¢ ~ +180° for the relative phase be-
comes unstable (Haken et al., 1985). In fact, the stability of that
state decreases when frequency increases, as exhibited by the
relaxation rate of this state {see Schoner et al , 1986, and Gen-
eral Discussion). A simple analysis reveals that the preferred
frequency 1n the asymmetric mode 15 shifted 1n such a way that
the stabihty of the relative phase 1s larger than 1t would be 1f the
preferred frequency of the single-hand oscillation were main-
tamed This observation may well be important for a fuller un-
derstanding of the preferred frequencies, 1n terms, perhaps, of
variational principles such as mimimization of energy (see Hoyt
& Taylor, 1981; Kelso, 1984)

General Discussion

In this article we have shown how a low-dimensional descrip-
tion in terms of dissipative dynamics can account—in a unified
manner—for a number of observed facts. First, the present “hy-
brid” model includes the well-known mass-spring charactens-
tic of postural tasks (see mmtroduction). That 15, when the linear
damping coefficient, «, 1s positive, the model exhibits a stable
equilibrrum position 1n the resting state (x = 0, x = 015 a point
attractor). Second, when the sign of the linear damping coeffi-
cient 1s negative, this equilibrium point 1s unstable, and an os-
cillatery solution with a frequency determined by the linear re-
storing force, w?x, is stable and attracting The persistence of the
oscillation and its stability 1s guaranteed by a balance between
excitation (via ax with negative damping coefficient, o < 0),
and dissipation (as indexed by the nonlinear dissipative terms,
6x> and yx2x). Ths balance determines the limit cycle, a peri-
odic attractor to which all paths 1n the phase plane (x, x} con-
verge from both the 1nside and the outside. For example, if x or
x are large, corresponding to a condition outside the hmmit cycle,
the dissipative terms dominate and amplitude will decrease. If
on the other hand, x and x are small, the hinear excitation term
dominates and amplitude will increase (see Figure 3) Third,
oscillatory behavior 1s systematically modified by specific pa-
rameterizations, such as those created by a pacing manipula-
tion. The model accounts for the amphtude-frequency and
peak velocity—frequency relations with a simple change in one
parameter, the linear stiffness w® (for umit mass). Further sup-
port for the latter control parameter comes from the direct scal-
g relation (observed within a pacing condition} of peak veloc-
1ty and amplitude—a relation that 1s now well established 1n
a variety of tasks (e.g , Cooke, 1980; Jeannerod, 1984; Kelso,
Southard, & Goodman, 1979; Kelso et al., 1985; Ostry & Mun-
hall, 1985; Viviam & McCollum, 1983), Thus, a number of ki-
nematic charactenstics and their relations emerge from the
model’s dynamic structure and parameterization. Fourth, and
we believe importantly, the same oscillator model for the indi-
widual b behavior can be generalized to the case of coordi-
nated rhythmic action A suitable coupling of limut cycle (hy-
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brid} oscillators gives rise to transitions among modes of coordi-
nation when the pacing frequency reaches a crmitical value
(Haken et al., 1985; Kelso & Scholz, 1985; Schoneret al., 1986)
Indeed, a number of additional phenomena can now be accom-
madated, including the “seagull effect” observed by Yamanishu,
Kawato, and Suzuki (1980) and Tuller and Kelso (1985, see
Kelso, Schoner, Scholz, & Haken, 1987, Section 6).

In summary, the model offers a synthesis of a variety of quite
different movement behaviors that we have simulated explicitly
on a digital computer (see Figure 2). That is, a successful imple-
mentation of the model has been effected that 1s now subject to
further controlled experimentation. One appealing aspect of
the model 1s that 1t formalizes and extends some of Feldman’s
(1966) early but influential work (see, e.g., Bizz: et al., 1976;
Cooke, 1980; Kelso, 1977; Ostry & Munbhall, 1985; Schnmidt &
McGown, 1980). Feldman (1966) presented observations on
the execution of rhythmic movement that strongly suggested
that the nervous system was capable of controlling the natural
frequency of the joint using the so-called invariant characteris-
tics—a plot of joint angle versus torque (see also Berkenblit,
Feldman, & Fukson, 1986, Davis and Kelso, 1682). But he also
recognized that “a certain mechanism to counteract damping
1n the muscles and the joint” must be brought into play, 1n order
tc “make good the energy losses from friction in the system™
(Feldman, 1966, p. 774). Our model shows—in an abstract
sense—how excitation and dissipation balance each other so
that stable rhythmic oscillations may be produced

On the other hand, 1n modeling movement 1n terms of low-
dimensional, nonlinear dynamics, we have made certain as-
sumptions that will now be addressed, because they require ad-
ditional experimental test. For reasons of clarity we hst these
modeling assumptions systematically.

1. Equfinality. This 1s a pivotal 1ssue of the entire approach
The very fact that the oscillatory movement pattern can be
reached reproducibly from uncontrolled 1nitial conditions indi-
cates—as far as the theory 15 concerned—that (a) a description
of the system dynamics in terms of a single variable (a displace-
ment angle about a single rotaton axis) and its dervative 1s
sufficient—that is, there are no hidden dynamaical variables that
influence the movement outcome—-and that (b) the modeling
n terms of a low-dimensional description must be dissipative
n nature (allowing for attractor sets that are reached indepen-
dent of inthial conditions). An experimental test of the equifi-
nality property consists of studying the stabihity of the move-
ment pattern under perturbations. Although such stability was
observed 1n earlier studies (Kelso et al,, 1981), a much more
systematic investigation 15 now required.

2 Autonomy. A further reduction 1n the number of relevant
variables is possible through the assumption of autonomous
dynamucs. Nonautonomous forcing—as mentioned in the in-
troduction—essentially represents one additional variable,
namely, time itself. Apart from the conceptual advantages dis-
cussed 1n the introduction, there are experimental ways to test
this assumption. One such method consists of studying phase
resetting curves 1n perturbation experiments {Winfree, 1980).
For example, 1n a system driven by a ume-dependent forcing
function (e g., a driven damped harmonic oscillator), perturba-
tions will not introduce a permanent phase shuft. On the other
hand, 1f consistent phase shifis are observed 1n the data, the

rhythm cannot be due fundamentally to a nonautonomous
driving element

A strong line of empincal support for the autonomy assump-
tien comes from the transition behavior 1n the bimanual case,
as frequency 1s scaled (Kelso, 1981, 1984; Kelso & Scholz,
1985). Here autonomous dynamics were able to account for the
transition behavior 1n some detail (Haken et al., 1985; Schoner,
et al. 1986). Note also that during the transition one or both of
the hands must make a shuft in phase, a result that would require
a not easily understood change in the periodic forcing func-
tion(s); that 1s, one or both “timing programs” would have to
alter :n unknown ways to accomplish the transition

3 Minmmality The effective number of system degrees of
freedom can be further limited by the requirement that the
model be minimal 1n the following sense. The attractor layout
(Le., the attractors possible for varying model parameters)
should mclude only attractors of the observed type In the pres-
ent single-hand case, for example, the model should not contain
more than a (monostable) hmat cycle and a single fixed point
{corresponding to posture). This limits the dynamics to those
of second order: Higher orders would allow, for example,
quasiperiodic or chaotic solutions (e.g., Haken, 1983), which
have not been observed thus far

The above considerations (equifinality, autonomy, and mum-
mality) thus constrain the number of possible models consider-
ably. Explicitly, the most general form of the model given these
constraints 1s

x+f(x,x)=0 (13)

We can 1llustrate the relation of the hybrid model to the general
case (Equation 13) by expanding /in a Taylor series (assuming
symmetry under the operation x — —x, as inferred to be a good
approximation from the phase portraits [Figure 2]), as follows.

X = w?x + ax + 8% + yx2x + sxx? + ex? + 00, xx?) (14)

The hybrid mode! (Equation 5) then results from putting
i=e=0

Qur discussion of modehng assumptions can be drawn to a
close by remarking that more detailed information about the
system dynamics can now be gained by asking experimental
questions that are motivated by the theory. For example, in the
model the system’s relaxation time (1., the time taken to re-
turn to the limit cycle after a perturbation) 1s approximately
the inverse of « (see Appendix A), which a simple dimensional
analysis reveals to be related to the strength of the nonlinearity
(see Appendix B). Thus, relaxation time measurements can give
important information about how and by how much the system
supphes and dissipates “energy” 1n 1ts oscillatory behavior
(where energy is to be understood as the integral along x of the
right-hand side of Equation 14; see Jordan & Smuth, 1977, and
Footnote 1). In another vein, it should be recognized that the
model’s dynamics are entirely deterministic 1 their present
form. Stochastic processes, which have been shown quite re-
cently to play a crucial role 1n effecting movement transitions
(Kelso & Scholz, 1985; Kelso, Scholz, & Schoner, 1986;
Schoner et al., 1986), have not been considered. However, these
processes are probably present, as evidenced, for example, 1n
the scatter of amplitudes at a given oscillation frequency. Sto-
chastic properties of rhythmic movement patterns may be ex-
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plored independent of perturbation experiments by approprniate
spectral analysis of the time-series data (see, e.g., Kelso &
Scholz, 1985) Elaboration of the medel to incorporate stochas-
tic aspects 18 warranted and is a goal of further research.

A final comment concerns the physiological underpinnings
of our behavioral results, With respect to the present model,
such underpinnings are obscure at the moment. Just as there
are many mechanisms that can achieve macroscopic ends, so
too there are many mechanisms that can instantiate hmit cycle
behavior (for a brief discussion, see Kelso & Tuller, 1984, pp
334-338) The aim here has been to create a model that can
realize the stability and reproducibility of certain so-called
“simple” movement behaviors, Whatever the physiological
bases of the latter, our argument 1s that they must be consistent
with low-dimensional dissipative dynamics. There 15 not neces-
sarily a dichotomy between the present macroscopic account,
which stresses kinematic properties as emergent consequences
of an abstract dynamical system, and a more reductiomstic ap-
proach, which seeks to explain macrophenomena on the basis
of microscopic properties, The basis for explanation of a com-
plex phenomenon like movement may be the same (1.€., dynam-
ical) at all levels within the system, operative, perhaps, on
different time scales
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Appendix A

Limit Cycle Model Calculations

In this appendix we 1llustrate some of the basic tools employed mm
the medel calculations 1n terms of the van der Pol oscillator For an
introduction to such techniques see, for example, Haken (1983), Jordan
and Smuth {1977), and Minorsky (1962)

The equation of motion of the van der Pol oscillator 1s again

x+ax+yxixtax=0 (A}

For small nonlinearity this 1s very close to a ssimple harmonic oscillator
of frequency w The idea here 1s that the nonlinearity stabihizes the oscil-
lation at a frequency not too different from « This suggests a transfor-
mation from x(¢) and x(¢) to new variables, namely, an amphtude r(?)
and phase §(1) (x(¢) = 2r{f)cos{w! + ¢{1)]) For ease of computation, we
adopt complex notation

x = B()e'™ + B¥ne™™, (A2)

where 8 1s a complex time dependent amplitude and 8* 15 1ts complex
conyugate In this new coordinate system we can define two important
approximations to the exact solution (which 1s unobtainable analyti-
cally) The slowly varying amplitude approximation amounts to assum-
mg |Bl € B and 15 used in a self-consistent manner (see below) The
rotating wave approximation (RWA) consists of neglecting terms higher
in frequency than the fundamental, such as ¥, ¢~ and so forth
This means that the anharmonicity of the solution 1s neglected (this 1s
why the RWA 1s sometimes also called the harmonic balance approxi-
mation) See, for example, Haken (1985) for a physical interpretation
of these approximations Using Equation Al and these two approxima-
tions we obtain for Equation Al

_aB  y|BI'B

B=-7 2

(A3)

Introducing polar coordinates 1n the complex plane,
B = r(ne™?, (Ad)

and separating real and umaginary parts we find
r=————— (AS)

¢=0 (A6)

Equation AS for the radius r of the init cycle (which here 1s a hmat
circle 1n the complex plane due to the RWA) has a form that makes
visualization of its solutions very simple—namely, 1t corresponds to the
overdamped movement of a particle in the potential

Figure A1 Amphtude potential, F, as a function of the amphtude, 7, for
the van der Pol oscillator, when o 15 less than zero and greater than zero
(Unuts are arbitrary [see Appendix B] )

2 4
=20 X (A7)

This potential 1s tllustrated m Figure Al for « > 0 and for « < 0, while
+ > 01n both cases
Obviously for v > 0, the liumit cycle of finite amphitude,

1o = V]edlfv, (A8)

15 a stable, stationary solution A movement with an amplitude close to
rp relaxes to the hmit cycle according to

=t =0)—r)e ™ +r (A9)

(as can be seen by lineanzation of Equation AS around » = rg) Thus
this amphtude varies slowly, as long as |«| € w This 1s the above-men-
tioned self-consistency condition The time (1/)el) 15 called the relax-
ation time of the amphtude Equation A6 of the relative phase shows
that phase is marginally stable, that 1s, does not return to an imitial value
if perturbed Thas can be tested 1n phase resetting experiments as ex-
plained 1n the General Discussion
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Appendix B

Dimensional Analysis of Hybrid, Nonlinear Oscillator

Here we perform a dimensional analysis to compare different contri-
butions to the oscillator dynamics To that end we estimate the different
forces 1n the equation of motion (Equation 5) by their amplitudes when
the systemn 1s on the limit cycle The linear restoring force behaves as

w’x =~ w'rg, (B1)

where ry 15 the radius of the limit cycle The linear (negative) damping
15
ax = awryp (B2)

The van der Pol nonlinearity 1s
vx2x == ywrd, (B3)

while the Rayleigh nonlinearnty scales as

Bx* =~ Buw’rd (B4)
ro = 2Vlal/(38e” + )

as the radws of the hybrid limit cycle, the strength of the nonlhinear
dissipative terms relative to the hinear restoring term 1s

Using Equation 6,

Bxl 4 yx’x  offu’ +v)
w'x T w38t + ¥)

(B5)
For exther of the ssmple oscillators this reduces to a/w
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