
1 Introduction
Research presented by Jennifer Freyd (1983a, 1983b) first demonstrated that observers
use motor knowledge when decoding static handwritten material. Babcock and Freyd
(1988) showed that the spatial distortions produced during movement execution provide
information on the direction of the motor sequence and stroke order. This information
is exploited during the recognition of artificial characters. Furthermore, knowledge of
the underlying production method is particularly relevant for character discrimination
(DeKay and Freyd 1991). In the recognition of Chinese logograms, perceptual processes
are also sensitive to stroke order, ie to information on the underlying motor sequence
(Flores d'Arcais 1994). Moreover, palaeographers often use the information provided
by the upstrokes and downstrokes followed by the scribe's pen (the ductus) for decipher-
ing ancient texts (Shailor 1987; Friedman 1992, 1994). When a character is difficult
to read, this information enables the palaeographer to infer the movement the scribe
executed to trace it. The analysis of movement trajectory constitutes the means by
which the character is identified. These studies therefore show the importance of motor
information in the perception of static graphic material.

Other studies on the visual perception of dynamic graphic material confirm that
visual processes can use motor information. Drawing movements follow a systematic
relation between movement velocity and the geometry of its trajectory (Viviani and
Terzuolo 1982; Lacquaniti et al 1983). Thus, a circle is drawn at constant velocity
whereas the velocity of the graphic movement when drawing an ellipse decreases in
the curved regions and increases in the more linear ones. Viviani and Stucchi (1989)
showed that spotlights tracing circles were perceived as tracing ellipses when the kine-
matics of the presented movements corresponded to those of a human drawing ellipses.
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In other words, the geometric figure (circle) is interpreted in terms of the movement
that produced it (elliptic), eliciting a perceptual illusion.

Kandel et al (1994) and Orliaguet et al (1997) suggested that motor information
could be used during visual processes to anticipate forthcoming motor sequences. In
everyday life we are permanently predicting other people's movements. For instance,
when a person puts his/her hand forward to give us an object, we predict the final
position of the movement so we place our hand at the right place for grasping it.
In other words, the visual system starts a spatiotemporal `reading' process of the
motor sequence to predict and adapt the organism to the following one. So, the ability
to predict movements has a very important adaptative function. Kandel et al (1994)
showed that anticipatory information contained in a handwriting gesture can be exploited
by perceptual processes to predict the forthcoming motor sequences. For example, by
viewing the production of a letter l, subjects can predict the identity of the following
letter (eg ll , le, ln) well before its spatial information becomes available.

Complementary experiments showed that the visual perception of motor anticipation
is observed with pairs of letters (eg ll , le, lm) as well as with letters within words (eg fille,
filet, filme) (Kandel et al 1993). This ability is also found with small and large letters
and for a large range of movement times (Kandel et al 1995). Prediction scores are higher
in conditions where the stimulus provides kinematic information (dynamic presenta-
tion) than in conditions where only spatial information is available (static presentation)
(Orliaguet et al 1997). The subject does perceive the shape differences, but these differ-
ences do not provide enough information to predict the identity of the forthcoming
letter. In addition, this prediction ability is not learned during the experiment. It appears
from the first trials and subjects are not aware of the quality of their performance.

It is noteworthy that similar results were observed in other kinds of perceptual
tasks. In audiovisual speech, visual information can become available well before its
acoustic output (Benguërel and Cowan 1974). Cathiard and Lallouache (1992) showed
that a French [ y ] can be correctly identified 160 ms before the voiced output. They
observed a correspondence between the identification functions and the acceleration
peak of the upper lip as well as the interolabial area. Furthermore, the visual percep-
tion of anticipatory grasping movements enables subjects to know whether a glass will
be grasped for drinking, throwing, or displacing (Orliaguet et al 1996).

The aim of the present study was to explore when visual processes detect anticipatory
information during the presentation of dynamic handwriting movements. More precisely,
the goal was to determine the moment at which the subject can predict the following
letter. In other words, how much information about the downstroke of an l is required to
predict whether it will be followed by another l , an e, or an n? Two types of contextual
effects were explored: changes in size (ll vs le) and changes in rotation direction (le vs ln).
The methodological principle was to provide different amounts of kinematic information
about the l's downstroke and assess subjects' predictions based on that information.

2 Experiment 1
Cursive handwriting implies the production of continuous sequences of letters varying
in shape and size. Several studies have shown that the shape and kinematics of a letter
fluctuate as a function of the production of surrounding letters (Thomassen and
Schomaker 1986; van Galen et al 1986). That is to say, when reproducing the letter l ,
the movement time of its downstroke is a function of the spatial constraints of the
following letter (Orliaguet and Boe« 1990; Boe« et al 1991). Changes in size (ll vs le) as
well as in size and rotation direction (le vs ln) entail temporal differences in the down-
stroke of the l . Movement time of the l downstroke is shorter when it is followed by
another l than when it is followed by an e and, in turn, is shorter still when it is followed
by an n. This indicates that the motor system anticipates the following letter while
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writing the l . The kinematic pattern of the movement executed to produce a letter, as
shape distortions, varies according to specific modulations that are essentially due to
contextual constraints.

This motor-anticipation phenomenon was demonstrated at a perceptual level by
Kandel et al (1994). As mentioned above, perceptual processes seem to use anticipatory
motor information to predict the identity of the forthcoming letter. In this experiment
our aim was to determine the moment at which the subject can predict the following
letter. We therefore studied the evolution of the correct responses as a function of the
amount of presented spatiotemporal information. In other words, we investigated the
temporal course of the perceptual process during the presentation of the l downstroke
and the correspondence between perceptual results and movement kinematics. To be
more exact, we examined whether the significant increase of identification scores is
linked to a specific kinematic event involved in the production of the l downstroke.

2.1 Method
To examine the evolution of the visual detection of motor anticipation in handwriting
gestures, we used a gating procedure. This technique has proved to be particularly
useful for the study of the time course of identification processes in speech (Úhman
1966; Warren and Marslen-Wilson 1987; Cathiard and Lallouache 1992). The stimulus
is presented by gradual increases of information from the beginning of the stimulus
until its end. The subject's task is to identify it, even if in some trials he/she can only
guess. By calculating the number of gates needed for identification, we can investigate
the evolution of responses as a function of the presented information.

2.1.1 Subjects. Twenty-seven right-handed subjects, between 23 and 30 years old, par-
ticipated in the experiment on a voluntary basis. Informed consent was obtained and
subjects' rights were protected. The subjects had normal or corrected-to-normal vision
and were students in several domains.

2.1.2 Stimulus preparation. A subject was asked to write the letter l ten times in three
different contexts (ll , le, ln) on a digitiser (Wacom SD; sampling frequency, 200 Hz;
spatial precision, 0.2 mm). As in Boe« et al (1991), kinematic analysis revealed that the
writing speed of the l is determined by the spatial characteristics of the following letter.
Three ls, one from each digram (ll , le, ln), were thus selected. The three digrams
were then cut at the lowest point of the downstroke of the l , ie when velocity was
minimum. The shape of the three ls (ll , le, ln) was slightly modified by calculation to
avoid perceptual biases due to geometrical differences (cf Orliaguet et al 1997). This
normalisation procedure was necessary for the control of this particular experiment,
but other experiments were run with non-normalised stimuli (eg Kandel et al 1993).

The shape of the l traces was thus normalised by transforming coordinates x(t)
and y(t) of, for example, the l of ll in X(T ) and Y(T ) coordinates of an l neutral shape
that we shall henceforth call template (see Orliaguet et al 1997 for a discussion on
shape neutrality). If the l starts at t1 and T1 (for the l of ll and for the l of the template,
respectively) and ends at t2 and T2 (for the l of ll and for the l of the template, respec-
tively), the distance d(t) between the beginning of the l and the instant t is:

d�t� �
� t

t
1

f�x�t��2 � � y�t��2g1=2dt .

The same procedure was applied to D(T �, the distance between the beginning of the
template and the instant T. Then the distance d�t� has been normalised to match the
total distance d(t2 � with the template's total distance D�T2 �:

d 0�t� � d�t�D�T2 �
d�t2 �

.
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This normalisation changes the quantity d(t) without changing the original kine-
matics. Finally, the quantities x 0(t) and y 0(t) will be recovered. They correspond to the
distance d 0(t) and follow the shape of the template. To obtain x 0�t� and y 0�t� we use
the known functions X�D� and Y�D� and interpolate them with the quantities d 0�t�
yielding x 0(t) � X [d 0(t)] and y 0(t) � Y [d 0(t)]. The interpolated coordinates x 0(t) and
y 0(t) thus follow the shape of the template but preserve the original kinematics of the l
of ll. The same procedure was used to normalise the l of le and ln.

By this procedure we obtained a single-shaped l with three different kinematic
patterns which corresponded to the original productions of ll , le, and ln. Then, each l
was cut in several gates, from the beginning of the downstroke until its end, as shown
in figure 1. The last gate of each stimulus ended at the lowest point of the downstroke,
such that no spatial information on the identity of the letter following the l was
available in the stimulus.

In this first experiment, the ls were cut into eight gates (G1 to G8), from the
beginning of the downstroke until its end. Each gate had exactly the same length.
The perimeter of the downstroke was divided into eight identical parts. Each part
constituted a gate.

The experiment consisted of two blocks of stimuli: one for the change in size con-
dition (le ^ ll ) and another for the change in rotation direction condition (le ^ ln).
Each block consisted of 160 trials, making a total of 320 trials.

2.2 Procedure
The experiment was run in a HyperCard 2.2 environment, with a PASCAL extension
(XFCN) that enabled the reproduction of the exact dimensions, velocity, and temporal
course of the original productions on the screen of the computer. Each l was progres-
sively traced on the screen. The presentation time corresponded to the movement time
of the original productions. The stimulus disappeared at the end of the gate and the
subject was asked to predict to which couple of letters the presented l corresponded
by clicking on one of two buttons of the mouse. For example, for the block presenting
le and ll , the subject had to click the LE button only if he/she was `sure' or `almost
sure' that the l corresponded to le. Otherwise, the other button had to be clicked. The
same procedure was used for the other two blocks. This procedure, though apparently
complicated, is very efficient for measuring the subject's maximal certainty of response.

The order of presentation of the blocks was counterbalanced whereas stimulus
presentation within a block was random. No feedback of results was given to the
subjects. The experiment consisted of a total of 320 trials. 10 practice trials preceded
the beginning of the experiment.

downstroke start

downstroke end

G1

G2

G3

G4

G5

G6

G7
G8

Figure 1. Cutting each l in gates of equivalent trajectory: example of
stimulus le.
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2.3 Results
For each stimulus, the percentages of correct le responses and the distribution of the
identification curves were analysed.

2.3.1 Percentages of correct responses. The percentages of correct le responses for the
two conditions (changes in size ll ^ le, changes in rotation direction le ^ ln) as a func-
tion of the eight gates of the downstroke are shown in figure 2.

Analysis indicates that the percentages of correct responses increase significantly
as the number of presented gates increases (F7 26 � 23:437, p 5 0:01). Overall, results
show that subjects predict the identity of the letter following the l significantly above
chance level (50%) at gate G6: 57% for the change in size condition and 63% for the
change in rotation direction condition (t significant at p 5 0:01 for both conditions).
This corresponds to 75% of the downstroke trajectory. Responses for gate G5 do not
differ from chance. In addition, performance for the first four gates is significantly
below chance [G4: 37% for the change-in-size condition and 44% for the change in
rotation direction condition (t 5 0:05)]. Results for the change in rotation direction
condition are equivalent to those of the change in size condition, except for the last
two gates (t 5 0:01).

2.3.2 Distribution of identification curves. Performance is rather stable during the first
three gates, and then a significant increase takes place at gate G4, ie with the presentation
of the first half of the downstroke (cf figure 2). This indicates that correct prediction
does not increase progressively, as more spatial information becomes available, but
rather implies the detection of pertinent kinematic information provided by the first
part of the downstroke. We evaluated the distribution of the percentages of correct
responses as a function of gate presentation to support this idea.

The results indicate that correct prediction does not increase progressively, since
the distribution of the data is not linear (linear regression test). Furthermore, the
results show a correspondence between a significant increase in the percentages of
correct responses and the velocity peak of the l downstroke (Shapiro and Wilk 1965;
Shapiro and Francia 1972).

2.4 Discussion
The aim of this first experiment was to determine the moment at which the information
on the production movement provides the critical information (change in size and
change in rotation direction) for predicting the identity of the letter following the l .
The results reveal that with the presentation of 75% of the downstroke trajectory
subjects can successfully identify the following letter (percentages of correct responses
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Figure 2. Experiment 1. Percentages of correct le
responses for the changes in size (ll ^ le) and rotation
direction (le ^ ln) as a function of the downstroke
gates.
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are significantly above chance at gate G6). The presentation of the whole downstroke
is therefore not necessary for correct prediction. The fact that percentages of correct
responses in the change in rotation direction condition are higher than in the change
in size condition in gates G7 and G8 could be due to the detection of the temporal
increase observed when executing the change in rotation direction of the wrist to
produce the n (van Galen et al 1986). This supports the idea that the differences
observed at the production level are observed at the perceptual level.

Another significant result is that the information provided by the first four gates
is insufficient for correct prediction, indicating that the critical cues appear between
gates G4 and G6. Subjects' performance for the first three gates is around 25%, which
may suggest that they made an effort to answer correctly even in situations where there
was not enough information to do so. This shows that the `maximal certainty' task
used in the experiment worked rather well. In addition, responses for gate G5 do not
differ from chance.

The analysis of the distribution of the experimental data corroborates the hypothesis
on the correspondence between movement production and the detection of anticipatory
information. Indeed, the percentages of correct responses regarding changes in size
and rotation direction increase significantly during the acceleration phase, that is after
the presentation of the velocity peak. The visual detection of motor anticipation in
handwriting seems to take place during the first part of the downstroke. It could be
argued, however, that subjects' responses were influenced by duration differences
between the gates. As a recent experiment on the perception of handwritten anticipa-
tory movements shows, cues on total duration enhance performance in perceptual
anticipation by up to 20%. Therefore, another experiment with equivalent gate dura-
tions is required to confirm the results obtained in experiment 1.

3 Experiment 2
In this second experiment the detection threshold of the visual perception of motor
anticipation was investigated in more detail. Experiment 1 shows that the first part of
the l downstroke (the acceleration phase) provides the critical information used by
perceptual processes. The duration of the gates in the preceding experiment varied
from gate to gate. The visual detection of motor anticipation could therefore be due
to a processing of movement time differences among stimuli instead of exploiting
anticipatory motor information. To avoid this potential bias, the stimuli used in this
experiment did not present duration differences between gates. The aim of this experi-
ment, as that of experiment 1, was to determine the nature of the information involved
during the detection of anticipatory information.

Gates were thus constituted with identical duration. Stimuli differed only in the
duration of the last gate. If duration is the critical information exploited during the
perception of motor anticipation, subjects should need the presentation of the whole
downstroke to predict the following letter. Conversely, if motor information is used
during the detection of the anticipatory event, subjects should be able to respond
correctly before the end of the downstroke. Our aim in experiment 2 was to confirm
that the visual perception of motor anticipation relies on the detection of kinematic
events and not on durational cues.

3.1 Method
In this experiment we also used the gating technique, but the downstroke of the l ,
instead of being cut with a spatial criterion, was cut according to a temporal one. The
gates were constituted in such a manner that their duration was identical.

3.1.1 Subjects. Nine right-handed subjects, between 20 and 25 years old, volunteered
to participate in the experiment. Informed consent was obtained and subjects' rights
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were protected. The subjects had normal or corrected-to-normal vision, and were
students in several domains, having no particular knowledge of movement control or
visual perception.

3.1.2 Stimulus preparation and procedure. The same letter ls written in three different
contexts (ll , le, ln) were again used in this second experiment. They were cut at the
lowest point of the downstroke. The duration of each gate was 50 ms (see figure 3),
but the duration of the last gate of each stimulus was variable because it included the
remaining part of the downstroke. The downstroke of the l of stimulus ll was presented
in four gates; the downstroke of the l of stimulus le in six gates and the downstroke
of the l of stimulus ln in eight gates. The experiment consisted of two blocks of stimuli:
one for the change in size condition (le ^ ll ) and a second one for the change in rotation
direction condition (le ^ ln).

The procedure was exactly the same as in experiment 1. The l was progressively
traced on the screen and it disappeared at the end of the gate. The subject's task was
to predict to which pair of letters the presented l corresponded by clicking on one of
two buttons of the mouse.

The order of presentation of the blocks was counterbalanced whereas stimulus
presentation within a block was random. The experiment consisted of a total of 120 trials.
No knowledge of results was given to the subjects.

3.2 Results
As in experiment 1, we analysed the evolution of correct responses and the distribution
of the identification curves.

3.2.1 Percentages of correct responses. The percentages of correct responses are shown
in figure 4. As in experiment 1, the percentages of correct responses increase signifi-
cantly as a function of the number of gates presented by the stimulus (F5 30 � 17:166,
p 5 0:01).

With the information provided by the first four gates (200 ms: 63.5% of the
downstroke time) subjects distinguish le from ll at 60% and ln at 77.14%, ie signifi-
cantly above chance level (t significant at p 5 0:01 for both conditions). Performance
for the first three gates (150 ms: 47.6% of the downstroke time) is significantly below
chance (t 5 0:01): 34% for the change in size condition and 40% for the change in
rotation direction condition at 150 ms. Analysis also indicates that the percentages of
correct responses for le ^ ll are lower than for le ^ ln (F1 6 � 29:824, p 5 0:01).

Overall, the results show that the information provided by 63% of the downstroke
time is enough for predicting the letter following the l with at least 50% of response
certainty.

,

,

downstroke start

downstroke end

50 ms

100 ms

150 ms

200 ms

250 ms

315 ms
Figure 3. Cutting each l in gates of equivalent duration: example
of stimulus le.
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3.2.2 Distribution of identification curves. The results indicate that the scores do not
increase progressively, and that the increase is observed well before the end of the
downstroke. As in experiment 1, the results show that performance increases signifi-
cantly at a certain point, which corresponds to the occurrence of the velocity peak of
the l downstroke. This supports the idea that the presentation of the acceleration phase
accounts for a significant increase of the percentages of correct responses.

3.3 Discussion
The goal of this second experiment was to perform a temporal analysis of the perceptual
processes involved in the visual detection of motor anticipation. Overall, the results
show that with the presentation of only 63.5% of the downstroke time (200 ms) subjects
can successfully predict the following letter. This implies that the visual detection of
anticipatory information does not rely on temporal differences between the stimuli.
Furthermore, when 150 ms of the l downstroke were presented, performance was signifi-
cantly below chance level, indicating that the critical cues for correct prediction
appeared during the 50 ms period between 150 and 200 ms. The analysis of the curves
supports the idea that the cues provided by the first 200 ms, ie by the acceleration
phase, are critical during the perceptual anticipation process.

The results confirm those of the first experiment, that perceptual anticipation relies
on the cues provided during the acceleration phase, ie the first part of the downstroke,
including the velocity peak. Therefore, the whole downstroke is not necessary for correct
prediction. The results also show that the percentages of correct responses are higher
in the change in rotation direction condition (le ^ ln) than in the change in size con-
dition (ll ^ le). The anticipation observed in the production movement is thus observed
at a perceptual level.

4 Experiment 3
Experiments 1 and 2 show that visual processes use kinematic information to predict
the identity of the letter following the l . Perceptual anticipation takes place well before the
end of the downstroke. It could be argued, however, that the `maximal certainty' response
instructions we used could bias results. The subject had to predict to which digram
the presented l corresponded by clicking on one of two buttons if, and only if, he/she
was `sure' or `almost sure' of the answer. Otherwise, the other button had to be clicked.
The reason for using this strategy, instead of a normal forced-choice manner of response,
was to observe the evolution of correct responses during the initial gates and determine
the point at which a significant increase took place. The aim of this third experiment is to
show that response instructions in experiments 1 and 2 did not bias performance.
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Figure 4. Experiment 2. Percentages of correct le
responses for the changes in size (ll ^ le) and rotation
direction (le ^ ln) as a function of the downstroke
time.

960 S Kandel, J-P Orliaguet, L-J Boe«



4.1 Method
The method was the same as that used in experiment 2, the only difference being in
the response instructions.

4.1.1 Subjects. Ten right-handed subjects, between 22 and 26 years old, volunteered to
participate in the experiment. Informed consent was obtained and subjects' rights were
protected. The subjects had normal or corrected-to-normal vision, and were students
from several disciplines, having no particular knowledge of movement control or visual
perception.

4.1.2 Stimulus preparation and procedure. The stimuli were the same as in experiment 2.
The experiment consisted of two blocks of stimuli: one for the change in size condition
(le ^ ll ) and a second one for the change in rotation direction condition (le ^ ln). The
l was progressively traced on the screen and it disappeared at the end of the gate. The
subjects' task was to `guess' to which couple of letters the presented l corresponded by
clicking one of two buttons of the mouse. No further instructions were administered.
The order of presentation of the blocks was counterbalanced whereas stimulus presen-
tation within a block was random. The experiment consisted of a total of 120 trials.
No feedback of results was given to the subjects.

4.2 Results
As in experiments 1 and 2, we analysed the evolution of correct responses for the change
in size and the change in rotation direction conditions.

4.2.1 Percentages of correct responses. The percentages of correct responses are shown
in figure 5. As in experiments 1 and 2, the percentages of correct responses increase
significantly as a function of the number of gates presented by the stimulus (F5 45 � 18:57,
p 5 0:01).

Subjects distinguish le from ll at 72% (ie above chance level, t significant at
p 5 0:01) with the information provided by the first four gates (200 ms: 63.5% of the
downstroke time). They distinguish le from ln at 67% (ie above chance level, t signifi-
cant at p 5 0:01) at gate G3 (150 ms: 47.6% of the downstroke time). Performance
for the first three gates in the change in size condition does not differ from chance.
Percentages for the change in rotation direction condition do not differ from chance
up to 100 ms presentation (gates G1 and G2). Percentages of correct responses for
le ^ ll are systematically lower than for le ^ ln but differences are not significant.

Overall, the results show that prediction above chance level is possible with the
presentation of the first 100 ms of the downstroke time.
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Figure 5. Experiment 3. Percentages of correct le
responses for the changes in size (ll ^ le) and rotation
direction (le ^ ln) as a function of the downstroke
time.
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4.3 Discussion
The results show that scores increase significantly after the presentation of 63.5%
of the downstroke time (200 ms) for the change in size condition, which is similar to
the performance observed in experiments 1 and 2. In the change in rotation direction
condition, correct prediction above chance level (67%) takes place in the preceding
gate (150 ms: 47.5% of the downstroke time). Data also indicate that the percentages
of correct responses are higher in the change in rotation direction condition (le ^ ln)
than in the change in size condition (ll ^ le), although in this experiment differences
are not statistically significant. It therefore seems that our results were not biased
by methodological strategy differences, except for a 50 ms advance observed in the
change in rotation direction condition.

5 General discussion
The goal of this study was to determine the detection threshold in the visual perception
of motor anticipation in handwriting. The first experiment reveals that the threshold
is at 75% of the downstroke trajectory and the second experiment that it is at 63.5% of
the downstroke time, which is in approximately the same range of xy coordinates.
Experiment 3 confirms these results. The presentation of the whole downstroke is not
necessary for correct prediction. Another relevant result is that the prediction relies
on the presentation of the acceleration phase of the downstroke. Analysis reveals that
the moment at which correct prediction takes place seems to include the velocity peak.
Percentages of correct responses are systematically higher in the change in rotation
direction condition (le ^ ln) than in the change in size condition (ll ^ le). These differences
are probably due to the fact that the anticipatory movement for producing the l of ln
is affected by the change in rotation of the wrist needed to trace the n (cf van Galen
et al 1986). The production of the l of ll or le does not require this additional wrist
gesture. Changes in rotation direction seem to be more salient, therefore easier and
faster to detect than changes in size.

It is noteworthy that the critical point in the downstrokeöwhere guessing turns
into predictionöis in the vicinity of the crossing with the upstroke. Although this
spatial cue could be used by subjects during the perceptual process, as shown in other
experiments on handwriting recognition (Freyd 1983a; Babcock and Freyd 1988), it is
unlikely that it provides critical information on the identity of the following letter.
Orliaguet et al (1997) have shown that subjects do detect spatial cues during this kind
of perceptual task but this information seems to be insufficient for correct prediction
on a merely spatial basis. In addition, the shape of all the stimuli used in the experi-
ments was normalised, thus avoiding eventual perceptual biases due to differences in
spatial information at any point of our ls.

Another important remark concerns the fact that the experiments involved changes
in letter size and rotation direction with one cueing letter and two response alternatives.
The reader may question whether these results can generalise to the whole alphabet.
A previous, unpublished, experiment on handwriting production run in our laboratory
showed that ll , le, and ln represent all the l� letter possibilities one can find in our
cursive alphabet: the production of the l of ll is equivalent to the production of the
l of lb or lt ; the production of the l of le is equivalent to the production of the l
of lu or lo ; and the production of the l of ln is equivalent to the production of the
l of lm or lr. Although more perceptual experiments would be desirable and in other
pairs of letters discriminational information could be more ambiguous, it would be
impossible to test all the possible combinations of the alphabet. Furthermore, as in
many neuropsychological studies, single-case data can be presented to show the
existence of a particular phenomenon without making it less robust than a study
performed on a larger sample.
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Overall, the experiments confirm that information on the production movement of
the first letter enables subjects to predict the identity of the following one well before
spatial cues become available. The visual detection of motor events (eg the acceleration
phase), and its use in predicting forthcoming information, suggests that perceptual
processes do exploit anticipatory motor information.

Although these results support the idea of a perception ^ production link, they do
not actually prove it. Another series of experiments seems to be more convincing. The
same kind of task was presented to children aged 7 to 11 years. Results show that
prediction is at chance level at the ages of 7 and 9 years, and only at the age of 11
years do scores become equivalent to adult performance (Kandel et al, forthcoming).
Perceptual anticipation, in fact, appears at the age at which handwriting control becomes
more stable and anticipation is clearly observed at the production level. It therefore
seems that the information provided by the gesture cannot be exploited perceptually if
it cannot be linked to the individual's motor performance.

Another experiment, in which the same perceptual anticipation task was applied
to human handwritten traces as well as artificially generated ones (Kandel et al 2000)
supports the idea of a motor ^ perceptual interaction. The authors manipulated the
distribution of the velocity along the trajectory and thus generated stimuli that did not
look like human handwriting movements. Results show that correct prediction is only
possible when velocity ^ shape covariations are in agreement with possible handwriting
movements, suggesting that visual processing does exploit anticipatory motor infor-
mation to predict forthcoming sequences, but only the motor information that the
subjects are themselves capable of producing.

Finally, this idea has proven to be efficient in the area of automatic recognition of
handwritten traces. The computational potential of an approach to movement pattern
recognition based on movement pattern generation has been demonstrated in connected
cursive handwritten character recognition by Wada et al (1995).
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