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A central problem for psychology is vision’s reaction to perspective. In the present studies, observers
looked at perspective pictures projected by square tiles on a ground plane. They judged the tile
dimensions while positioned at the correct distance, farther or nearer. In some pictures, many tiles
appeared too short to be squares, many too long, and many just right. The judgments were strongly
affected by viewing from the wrong distance, eye height, and object orientation. The authors propose a
2-factor angles and ratios together (ART) theory, with the following factors: the ratio of the visual angles
of the tile’s sides and the angle between (a) the direction to the tile from the observer and (b) the
perpendicular, from the picture plane to the observer, that passes through the central vanishing point.
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When we walk in front of a masterpiece such as Raphael’s
“School of Athens,” showing scholars discussing in a great hall,
we are entertaining a scene drawn in perspective, a format invented
as a crowning glory of the intellectual advances of the 15th
century. But even in the time of its invention, those adept in linear
perspective, such as Leonardo da Vinci, admitted it created a
mysterious mixture of acceptable and distorted effects. That is,
when looking at some pictures drawn with perfect adherence to
perspective, observers were struck by areas in which the picture
looked realistic (perceptual constancy) and areas in which the
picture looked distorted. Here, we respond to the mystery with a
new theory about the visual angles of the sides of an object and,
revealingly, the angle between two directions: (a) the direction to
the object from the observer and (b) the direction of a vanishing
point from the observer.

In our experiments, we examine a problem that originated
during the Renaissance—the problem of viewing in perspective,
particularly of viewing pictures from different distances. This
problem has been the subject of heated debate in experimental
psychology, developmental psychology, cross-cultural psychol-
ogy, philosophy, semiotics, engineering, physics, and art history.
There are few topics in psychology on which so much has been
written within psychology and outside it, for centuries, by many of
the best minds in scholarship. Is perspective a cultural convention?
Is it readily used by perception? This problem is at the core of

theories of constancy, ambiguity of our sensory input, and Gibso-
nian realism—in other words, the long history of research on
perception. Furthermore, perspective displays are very often used
as surrogates for real-world stimuli in many kinds of experiments,
video displays, and flying and driving simulators.

Can perceptual constancy be reconciled with its opposite con-
cept, distortion (Koenderink & van Doorn, 2003; Kubovy, 1986;
Sedgwick, 2003)? Our aim was to study pictures and perspective,
but ultimately we ask about a general account of perspective in
vision. The implications are many—not just for psychology but for
photography, movies, and art history for example.

Figure 1 is a perspective picture of tiles on a ground plane
(Gibson, 1966). The tiles project many different shapes. Do they
all suggest square tiles? No. Some look far from square. But why?
To answer, let us consider the essence of linear perspective and
then vision’s reaction to it.

Linear perspective dictates how a scene should be depicted from
a particular vantage point, with the picture set at a particular
location. When viewing a picture, vision’s task is “inverse projec-
tion” (Niall, 1992; Niall & Macnamara, 1989, 1990; Norman,
Todd, Perotti, & Tittle, 1996; Wagner, 1985). Every perspective
picture has a correct viewing distance from which the perspective
projection was determined. Call this “the artist’s (or the camera’s)
distance.” Strictly speaking, if a picture is viewed from farther than
the artist’s distance, and if vision followed perspective exactly,
then the pictured scene should expand in depth. From double the
artist’s distance, what was originally depicting a set of square tiles
should be seen as depicting elongated tiles, twice as long as broad
(Kennedy & Juricevic, 2002; La Gournerie, 1859; Pirenne, 1970).
Similarly, halve the viewing distance and the tiles should appear
stubby, cut in half. There is a simple reason for the multiplication.
Consider a point on the picture projected to a viewer’s vantage
point; it will be a projection of a point on the ground plane. Slide
the viewer back from the picture plane to double the viewing
distance, and, by similar triangles, the point projected on the
ground plane must also slide back, away from the picture plane,
and its distance must also double (see Figure 2).

It is well-known that a perspective picture, such as a photo-
graph, can be viewed from varied distances without all parts of the
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picture shrinking and expanding in the fashion we have just
described. So, vision does not use exact perspective. Indeed, some
theories have gone so far as to suggest that perceptual constancy
holds across perspective changes, and vision can ignore perspec-
tive’s multiplication effects by means of many subterfuges, top-
down or bottom-up, conscious or unconscious (Gibson, 1979,
1947/1982; Koenderink, van Doorn, Kappers, & Todd, 2001;
Kubovy, 1986; Pirenne, 1970; for discussion, see Rogers, 1995,
2003).

It is less widely appreciated that when perspective effects
become extreme, vision does become wildly distorted (Kennedy
& Juricevic, 2002; Kubovy, 1986). The margins of wide-angle
pictures induce vivid perceptual effects if the pictures are
viewed from afar, that is, much farther than the artist’s distance.
Just so, tiles in the very bottom margins of Figure 1 often
appear much too long to be square. It is because these vivid
perceptual effects are often most pronounced in the periphery of
a perspective picture that they are called marginal distortions.
However, as will become evident, central distortions may arise
from extensive foreshortening.

Marginal distortions caused artists to use rules of thumb such as
“paint only narrow-angle views” (say 12° on either side of the
vanishing point) when depicting a scene and caused camera mak-
ers to adopt lenses that only take in narrow visual angles. Central
distortions lead artists to hide distant squares in tiled piazza pic-
tures behind foreground objects such as people.

Our goal was to reconcile distortion and constancy. To begin,
we contend that many extant theories can explain one effect, not
both.

To relate the different major theories, we describe a single
“pseudoperspective” function (one related to perspective geome-
try), which deals with average tile length in a picture. Then, after
Experiment 1, we examine the angles and ratios together (ART)
theory, which reaches beyond average tile lengths, and reconciles
distortions and constancy. The ART theory treats individual tiles
and relates the ratio of the visual angles projected by sides of each
tile to its direction from its central vanishing point.

For the first major theory, consider “projective” theories. In this
approach, an observer perceives the width and length (i.e., the z
dimension, or depth) of each tile in Figure 1 according to the laws

of projective (perspective) geometry. They require perceived elon-
gation of depth when an observer is farther than the artist’s
distance, compression when an observer is too close (Kennedy &
Juricevic, 2002). Call the ratio of the depth to the width of each tile
its “relative depth.” Their function is perceived relative depth �
k(correct relative depth) � (observer’s distance)d/(artist’s dis-
tance)j, where k � 1, d � 1, and j � 1.

The ratio of observer’s and artist’s distance is directly linearly
related to perceived relative depth, as in projective geometry.

Many approaches can be expressed with similar pseudoperspec-
tive functions. “Perceived relative depth” is a tile’s perceived
depth divided by perceived width. “Correct relative depth” is the
actual relative depth, and for squares is 1. This term is multiplied
by a constant “k,” which is 1 if the tiles are all perceived as squares
at the artist’s distance. If k � 1, then the tile appears compressed,
and if k � 1, then the tile is elongated. Perceived depth in pictures
is often flattened (by 15%, e.g., Koenderink & van Doorn, 2003),
and it is possible that k is the only term needed to account for this.

An exponent, “d,” modifies “observer’s distance,” the physical
distance of the observer from the picture surface. Doubling the
distance doubles perceived relative depth if the exponent d � 1. In
compensation theories, “observer’s distance” does not affect de-
picted extents and has an exponent of d � 0 (so this term in the
equation is simply equal to 1). Larger exponents increase the effect
of the observer’s distance.

“Artist’s distance” is the distance used to create the perspective
picture and is the correct distance from which to view it. In correct
perspective, doubling the observer’s distance should double the
apparent depth of the tiles, so an artist’s distance half the observ-
er’s distance could make the tiles seem especially long. To reflect
this, artist’s distance is in the denominator of the equation (i.e.,
dividing by one half increases apparent size). Effects of artist’s
distance may not be exactly one-to-one, so it is given an exponent
“j.” In compensation theories, j � 0 and does not affect “perceived

Figure 1. A perspective picture of a series of square tiles on a ground
plane. The picture is rendered in one-point perspective, meaning that the
edges of the tiles are either orthogonal to the picture plane (e.g., the right
and left edges) or parallel to the picture plane (i.e., the closer and farther
edges). The central vanishing point for all tiles is also indicated.

Figure 2. Observer 1 (O1) looking at Point C at a distance of D1 from the
picture plane (P). Point C is a projection of Point G1 on the ground. The
triangle defined by the observer and the projected Point G1 (�O1D1G1) and
the triangle defined by Point C on the picture and Point G1 (�CPG1) are
similar triangles. As such, the distance from the picture plane to the
observer (D1) is geometrically similar to the distance from the picture plane
to the point on the ground plane (G1). Doubling the observer’s distance (to
D2) will therefore double the distance of the point projected on the ground
(to G2).
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relative depth.” The larger the j, the greater the effect of move-
ments away from the “artist’s distance.”

The size of j depends on the units used for the pseudoperspec-
tive function. This is simply a mathematical consequence of ex-
ponents. So, for convenience, j will always be calculated here with
respect to an artist’s distance less than 1 unit (i.e., less than 1 m),
and roughly arm’s length or within.

With respect to the projective theories, this approach could fail
on two accounts. First, distortions are predicted throughout the
picture rather than selectively for some tiles. Second, an incorrect
amount of distortion is predicted in many situations.

Next, consider the “compensation” argument that the visual
system determines the artist’s distance from information present
within the picture and adjusts for this when undertaking inverse
projection. Compensation predicts that regardless of the position of
the observer, this ratio is perceived as constant, which can be
summarized as perceived relative depth � k(correct relative
depth) � (observer’s distance)d/(artist’s distance)j, where k � 1,
d � 0, and j � 0.

Marginal distortions, according to compensation theories, occur
when the process of compensation breaks down. But there is, as
yet, no accepted explanation of why this breakdown in apparent
depth constancy occurs in the periphery of pictures of ground
planes (though see Kubovy, 1986; and Yang & Kubovy, 1999, for
excellent discussions of apparent angular distortions of cubes).
Furthermore, compensation theories make no allowance for dis-
tortions that may occur in central regions where there is extreme
foreshortening.

In the “invariant” approach, Gibson (1979) argued that percep-
tion is governed by contents of the optic array, especially one
projected by the ground plane. We follow him on this point but
argue that invariants are only one kind of function carrying the
optic array’s information. For Gibson, a spatial property (e.g., a
certain size or certain shape) can produce an optic invariant that is
specific to that property. For example, if a pole on the ground
plane has a top just below the horizon line, and another pole’s top
is above the horizon, then the one above is taller.

Many invariants remain no matter what in which direction the
observer moves in front of the picture; for example, a pole’s top is
always depicted above or below the horizon. Invariant relations of
this type (call them “horizon-ratio” type) are present regardless of
the observer’s distance from the picture. Hence, their function is
identical to compensation’s: perceived relative depth � k (correct
relative depth) � (observer’s distance)d/(artist’s distance)j, where
k � 1, d � 0, and j � 0.

As with compensation, invariants of the horizon-ratio type are
unable to account for constancy and distortions within one picture.
The invariants are present in both the apparently distorted area of
the picture and its perceptually constant neighbor.

The “compromise” approach proposes effects from the flatness
of the picture surface. Perceived flatness diminishes perceived tile
proportions (Koenderink & van Doorn, 2003) and may make the
ground appear sloped, that is, closer to the slant of the picture
surface (Miller, 2004; Rosinski & Farber, 1980; Rosinski, Mul-
holland, Degelman & Farber, 1980; Sedgwick & Nicholls, 1993).
In its pseudoperspective function, k is less than 1, shrinking as the
picture surface is made more salient, for example, by adding
texture (Sedgwick, 2001) or by instructing the observer to pay
attention to the surface (Miller, 2004): perceived relative depth �

k(correct relative depth) � (observer’s distance)d/(artist’s dis-
tance)j, where 0 � k � 1, d � 1, and j � 1.

Any compromise should occur across the entire picture because
information for depth and flatness is present across the entire
picture. However, this does not occur when peripheral areas show
distinctive distortions (Niederée & Heyer, 2003), for example, if
they look full of especially elongated tiles.

Finally, an “approximation” approach supports the argument
that vision’s inverse projection is just “ballpark-perspective”; it
may work well at moderate distances but veers from proper per-
spective in less-restricted tests, for example, a wide range of
artist’s distances.

Cross-scaling theory (Smallman, Manes, & Cowen, 2003;
Smallman, St. John, & Cowen, 2002) is a useful example of a
theory in which an approximation approach is used. In Figure 1,
the tiles have two sets of parallel edges, one running left to right,
the other in depth. The lines in the picture are parallel from left to
right and converge from bottom to top. The length of a line
projected onto the picture surface by a left-to-right tile edge
decreases linearly as the depth to the tile increases. In contrast, the
converging lines decrease in length as a square function of each
tile’s depth. This true mathematical perspective is not used by
vision, the cross-scaling model proposes. Rather, vision “ball-
parks” that the lines projected by both the left-to-right tile edges
and the tile edges in depth decrease linearly with depth. Differ-
ences between the ballpark function and true perspective’s qua-
dratic function become sizable in the far distance.

Unfortunately, cross-scaling cannot account for both constancy
and distortion. All the tiles in a row, such as the third row from the
bottom in Figure 1, should appear the same. If the center tile
appears square (perceptual constancy), while the leftmost tile
clearly does not (marginal distortion), then this contradicts
cross-scaling.

However, we believe the approximation approach holds the
most promise for a theory of vision’s use of perspective. Cross-
scaling is simply the wrong theory. Here, vision’s approximation is
shown to depart sizably from perspective proper by setting the
observer, like Goldilocks, too close to the picture (artist’s distance
large), too far from the picture (artist’s distance small), and just
right, which, in the present study, is a picture with an artist’s
distance of 0.36 m.

We varied artist’s distance in Experiment 1 and sought a pseu-
doperspective function, which looks for constancy and distortion
in one and the same picture. We follow this approach by intro-
ducing ART theory factors governing regions of constancy and
distortion.

Experiment 1

Method

Subjects. Twelve first-year students (7 women, with mean age � 19.9,
SD � 1.9) participated. All subjects were psychology students from the
University of Toronto, had normal or corrected-to-normal vision (self-
reported), and were naı̈ve about the purpose of the study.

Stimuli. Perspective pictures were projected as panoramic images onto
a large translucent back-projection screen using an EPSON PowerLite 51c
LCD projector (Model EMP-51). The resolution of the projector was
800 � 600. Projected, each picture measured 0.64 m (high) � 1.28 m
(wide) and subtended 79.3° � 121.3° of visual angle at a distance of
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0.36 m. The stimuli were presented to the limits of fidelity. That is, the
farthest row of tiles shown to subjects (in this case, row 9) was chosen
because it was the last row for which tile proportions could be resolved
distinctly from tile proportions in the next possible row.

The perspective pictures each depicted 153 square tiles (17 columns �
9 rows) on a ground plane (see Figures 1 and 3). The rows were numbered
from 1 (near) to 9 (far), beginning with the row depicted closest to the
observer (i.e., the row that projects to the lowest part of the picture plane).
The columns were also numbered from 1 (center) to 9 (left), beginning with
the center column (1 center) and increasing for each column to the left (9
left). Columns to the right of the center column were not used in the
experiment because they are symmetrical with those to the right. Inspection
and informal testing found no differences in the visual response between
right and left stimuli. (Figures 4, 6, 9, and 11 in the Results sections below
are shown symmetrical for clarity of presentation.) Any tile’s position can,
of course, be described by giving the tile’s row and column number.

The tiles were depicted in one-point perspective; that is, the two receding
edges of each tile were perpendicular to the picture plane, and the other two
were parallel. Oblique lines depicting the receding edges converged in the
picture to a single, central vanishing point. The width of the tiles was such
that the closest edge of the tile in row 1 near, column 1 center subtended
6.1° of visual angle when viewed at a distance of 0.36 m.

The tiles were depicted using seven different artists’ distances. The
distances were all on the normal from the horizon. The observer’s vantage
point was in front of the central column of tiles (column 1), and varied in
its distance from the picture plane. The seven distances varied by 0.09 m
and were at 0.09, 0.18, 0.27, 0.36, 0.45, 0.54, and 0.63 m.

The tiles tested were those located in the factorial combinations of rows
1, 3, 5, 7, and 9 and columns 1, 3, 5, 7, and 9. They were indicated to the
subjects by using bold lines (three times the thickness of the other lines in
the picture) to depict the closest and rightmost edge of the tiles. In each
picture, only one tile was depicted with bold edges.

The 25 different tiles tested were factorially combined with the seven
artist’s distances to produce 175 pictures that were used in the experiment.

Procedure. Each subject was tested individually and instructed to
judge the length of the right edge of an indicated tile (one of the converging
lines) relative to the closest edge of the tile (a horizontal line). They were
told that the judgment was relative to the closest edge, set at 100 units.
Thus, if the right edge appeared to be as long as the closest edge, then the
subject would judge it to be 100 units. If it appeared longer or shorter, then
the subject would judge its length proportionately.

The subject viewed each picture monocularly. To control the position
from which the subject viewed the picture, a bar parallel to the floor was
positioned 0.36 m from the picture plane. For a subject using the right eye,
the bar was positioned in front of the picture plane, on the right side of the
picture. The end of the bar was at the height of the horizon in the picture,
approximately 3 cm to the right of the central vanishing point. The end of
the bar touched the subject’s temple at eye height, just to one side of the
corner of the right eye. Subjects were instructed to maintain the temple’s
contact with the bar. For subjects using their left eye, the position of the bar
was reversed. In this way, the subject was positioned so that her or his eye
was in front of the central vanishing point, in line with the foot of the
normal, and he or she was free to turn their eyes and head. Each picture was
presented with no time limit. Once the subject made her or his judgment,
the screen went black for 2 s, and the next picture was displayed.

Subjects were asked to judge the length of the tile, not the lines in the
picture. They were reminded that, in a picture, a mountain off in the
distance may be drawn with smaller lines than a person who is nearby.

Results

Dependent measure. The dependent measure was perceived
relative depth, obtained by dividing the responses by 100. Tiles
longer than their width have ratios greater than 1, shorter less than
1, and tiles perfectly square 1.

To fit the function perceived relative depth � k(correct
relative depth) � (observer’s distance)1/(artist’s distance)j, a
choice has to be made as to the exponent for observer’s dis-
tance. Fortunately, for theories in which the artist’s distance
affects perceived relative depth, the observer’s distance has an
exponent of 1 (i.e., projective and compromise approaches). We
may set aside for the moment theories in which the exponent on
observer’s distance should be set to 0 (as in the invariant and
compromise approaches).

Repeated measures analysis of variance (ANOVA). For this
and all subsequent analyses, an alpha level of .05 was used.

Three independent variables were tested: artist’s distance, col-
umn, and row in a 7 (artist’s distance) � 5 (column) � 5 (row)
repeated measures ANOVA. In brief, centers of pictures often had
perceived square tiles, but tiles in leftmost columns stretched, tiles
in top rows compressed, and bottom rows lengthened in depth (see
Figure 4).

The ANOVA revealed a main effect of artist’s distance, F(6,
66) � 63.82, �p

2 � .85. Perceived relative depth increased as the
artist’s distance decreased. Bonferroni a posteriori comparisons
revealed significant differences between all artist’s distances (all
p � .03). Figure 4 illustrates this effect, as the number of tiles that
appear square changes dramatically from Figure 4a, in which all
tiles are elongated, to Figure 4g, in which all are compressed,
covering both extremes.

The main effect of column, F(4, 44) � 27.10, �p
2 � .71, was the

result of tiles to the side being judged longer than central ones.
Bonferroni a posteriori comparisons revealed significant differ-
ences between column 9 and all other columns (all p � .09),

Figure 3. Seven different perspective pictures of the same set of square
tiles. The pictures are all rendered using different artist’s distances. The
artist’s distance for each picture (in meters) refers to when the picture is
presented at a scale of 0.64 m (high) � 1.28 m (wide). The artist’s
distances are (a) 0.09, (b) 0.18, (c) 0.27, (d) 0.36, (e) 0.45, (f) 0.54, and (g)
0.63 m.
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column 7 and columns 3–1 center (all p � .04), and between
column 5 and column 1 center ( p � .01).

The main effect of row, F(4, 44) � 78.92, �p
2 � .88, indicates

near tiles in the scene appeared longer than far tiles. Bonferroni a
posteriori comparisons revealed significant differences between all
rows (all p � .05).

The ANOVA revealed significant Artist’s Distance � Col-
umn, F(24, 264) � 3.25, �p

2 � .23, and Artist’s Distance �
Row, F(24, 264) � 37.98 �p

2 � .78, interactions, meaning the
tiles to the far side are markedly different than ones in the
central column and nearer rows at the smaller artist’s distances.
The Row � Column interaction did not reach significance,
F(16, 1768) � 1.38, p � .16, �p

2 � .11. However, the three-way
Artist’s Distance � Row � Column interaction did, F(96,
1056) � 1.73, �p

2 � .14 (see Figure 4). This indicates that tiles
in the extreme side columns and bottom rows are especially
enlarged at small artist’s distances.

Perceived relative depth function. We can begin to understand
the complex effects of row, column, and artist’s distance by first
devising a pseudoperspective function for the average tile in a
picture for each artist’s distance. The result is perceived relative
depth � k (correct relative depth) � (observer’s distance)d/(artist’s
distance)j, where k � 1.30, d � 1 (fixed a priori), and j � 0.67. The
95% confidence intervals for k and j were 1.24 � k � 1.35 and
0.64 � j � 0.71. The pseudoperspective function is highly signif-
icant, F(1, 5) � 1645.37, MSE � .001, and fits the data almost
perfectly, with R2 � .98.

Discussion

Artist’s distance affects perceived relative depth less than pre-
dicted by perspective geometry. For an observer at 0.36 m viewing
pictures that have artist’s distances of 0.63–0.09 m, perspective
predicts a sevenfold increase in perceived relative depth, from 0.57
to 4.0, respectively. The actual values changed less than fourfold,
from 0.61 to 2.3.

In the pseudoperspective functions for the compromise and
projective theories, j � 1 (the exponent on artist’s distance), and in
compensation and invariant theories, j � 0. Significantly different
from both in the function derived here, j � 0.67 (95% confidence
interval 0.64 � j � 0.71). Furthermore, in the pseudoperspective
functions for the compromise, invariant, and projective theories,
k � 1, and in compensation theories, 0 � k � 1. Once again, the
function derived here is significantly different from both, with k �
1.30 (confidence interval 1.24 � k � 1.35).

The value of 0.67 for the mediator j needs to be interpreted in
light of the constant k, which was 1.30. One factor alone cannot
predict the depth distortions. Consider that many researchers argue
that a perceived “flattening” of depth regularly occurs when view-
ing pictures (Koenderink & van Doorn, 2003; Miller, 2004; Sedg-
wick, 2003; Woodworth & Schlosberg, 1954). For example, Koen-
derink and van Doorn (2003) found flattening to 85% of real depth
(a compression of 15%). If there were no mediator j, then this
flattening of 85% would predict a constant k of 0.85 not the 1.30
that was found. In fact, a constant k of 1.30 alone implies that a
perceived “elongation” of depth occurs when viewing pictures, a
sort of “hyper-depth” perception. The factor that is preventing the
apparent depth being pushed to 1.30 is the mediator j; its value of
0.67 balances the effect of the constant k. Koenderink’s 0.85 is a
product of two functions.

It has further been pointed out that observers do not notice
change in apparent depth as they move pictures to and fro. In the
pseudoperspective function, this is also achieved by both the
constant k and the mediator j. Perceived relative depth varies less
for smaller values of the mediator j. As j shrinks toward 0, the
artist’s distance factor approaches 1. This is a key factor in
constancy, producing much less elongation of depth than perspec-
tive predicts. However, too small an exponent j leads to square
tiles being perceived as compressed—too stubby—when the ob-
server is closer to the picture than the artist.

Recall that the pseudoperspective function merely deals with the
average perceived relative depth per picture. We need to envisage
extra factors involved with individual tiles, as Figure 4 clearly
indicates constancy can be shown by one tile and distortion by its
neighbor.

To simplify, we define three categories as follows: let com-
pressed tiles have a perceived relative depth less than 0.9, square
tiles a perceived relative depth between 0.9 and 1.1 (inclusive), and
elongated tiles a perceived depth greater than 1.1. Their locations
are far from random. Compressed tiles are in centermost regions.
Elongations are in the periphery, and happily, of course, square
tiles always occupy the region between the two. Categories appear
to spread out from the central vanishing point in reasonably
concentric bands or crescents, shown in Figure 4d, beginning with
compressed tiles, followed by square, and then elongated tiles.

Two very influential implications follow: First, the values for k
and j in the pseudofunction can be easily modified. It is important

Figure 4. Experiment 1 Vantage Point � Column � Row interaction. For
the sake of simplicity, mean perceived relative depths have been divided
into three groups: (a) compressed (mean perceived relative depth � 0.9),
(b) square (mean perceived relative depth � 0.9–1.1), and (c) elongated
(mean perceived relative depth � 1.1). The artist’s distances are (a) 0.09,
(b) 0.18, (c) 0.27, (d) 0.36, (e) 0.45, (f) 0.54, and (g) 0.63 m.
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that we point this out emphatically. The crucial fact is that one
could simply add more tiles to pictures in the apparently com-
pressed bands (near the central vanishing point) to decrease the
value of the constant k. If k deals with average lengths, then adding
more apparently short tiles will reduce k. To increase k, one could
simply add tiles to the periphery, in the apparently elongated band.
If j operates on rates of change, then shortening or lengthening all
the tiles equally would not affect j, but modifying the apparent rate
of compression and elongation across pictures would. It is abso-
lutely clear that, whereas the basic form of the function will not
change, the specific values of k or j are not set in stone, as our later
experiments show. For any set of pictures, the values are easily
shifted for good reasons that we need to explore.

The second implication has to do with how perceptual constancy
has failed altogether for some pictures in the study (e.g., Fig-
ure 4a), illustrating the power of the pseudoperspective function.
Some pictures are considerably beyond the limits of constancy.
The challenge now is to understand the factors producing these
limits. To this end, we propose an angles and ratios together (ART)
theory.

Some combination of optical features signals the relative width
and depth of a depicted square tile (Gibson, 1979). The ART
theory proposes that the perception is determined by a combination
of “visual angle ratio” and “angle from normal” (see Figure 5). The
visual angle ratio is the ratio of the visual angle of the depth of an
object divided by the visual angle of the width of an object. The
angle from normal is defined as the angle between the line joining
the observer to the central vanishing point and the line to a point
on the object (see Figure 5). For convenience, the object’s point
(N) is chosen to be on the base of the object closest laterally from
the observer. The line joining the observer to the central vanishing
point is traditionally referred to as the “normal” to the plane. The
normal and the vanishing point are conventionally defined with

respect to a flat picture plane, but they can be considered to be a
function of parallel lines and visual angles. The direction of the
normal to the vanishing point is also the direction of a line from the
observer parallel to the receding sides of a set of tiles. This concept
will be important when considering the ART theory’s relation to
direct perception. For now, consider that many theories have dealt
with the visual angles of sides of squares, but here, we have added
an angle-from-normal factor, in a novel way.

A priori, one can see that visual angle ratio and angle from
normal together determine the perceived relative depth. A given
visual angle ratio has to produce a compressed tile for a large angle
from the normal and a square tile as the angle from normal
decreases. Let us see why. A square on the ground directly below
the observer is at 90° from the normal and has a visual angle ratio
of 1. A square that is directly in front of the observer and very far
away is at a very small angle from the normal and has a very small
visual angle ratio because, as it recedes, the visual angle of the
square’s depth approaches 0° faster than the visual angle of its
width. But the small visual angle ratio is visually indeterminate
because rectangles approaching the horizon also have a visual
angle limit of 0°. In practice, vision rejects the indeterminate and
sees slim (horizontally elongated) rectangles in keeping with the
foreshortened forms.

A square that is to one side of an observer and very far away will
have a very large visual angle ratio. This is because the visual
angle of its width approaches 0° faster than the visual angle of its
depth. The square’s visual angle ratio, approaching infinity as its
distance from the observer increases, is visually indeterminate
because, once again, all rectangles approach infinity in this fash-
ion. Vision once again sees rectangles, but elongated in depth, the
z dimension. Overall, then, the visual angle ratio for an object in
front of the observer can range from 0 to infinity, with 1 being
specific to a square for objects on the ground below the observer.

Given that the visual angle ratio range (zero to infinity) is far
larger than the angle-from-the-normal range (0–90°), one might
expect the visual angle ratio to make a larger contribution to
perceived relative depth than angle from normal. Also, in princi-
ple, visual angle ratio has to be a major influence because angle
from normal is not information about object shape.

If moving the observer to and fro in front of the picture does not
change the observer’s/artist’s distance ratio much, then the visual
angle ratios and angles from the normal also do not change much,
which will lead to perceptual constancy for a particular tile. Notice
that Figures 4d, 4e, and 4f reveal large regions in which tiles
remain square, especially 4e and 4f (artist’s distances of 0.45–0.54
m). In this fashion, most movies viewed in theaters are viewed
from too close. The artist’s distance is at the projector; only here
would the observer be at the correct position. Audiences in a movie
theater fall in this area of moderate constancy. Little wonder our
experience with movies is often acceptable, despite being forward
of the projector.

A single picture can have tiles both within the boundaries for
square tiles (perceptual constancy) and outside (distortions). Fur-
thermore, distortions occur in the center as well as in the periphery
of pictures, for some tiles near the center seem compressed (too
small a visual angle ratio). The ART theory, unlike others, can
accommodate distortions throughout the picture.

Although the size of the contributions of the factors of the ART
theory to perceived relative depth are purely empirical, the choice

Figure 5. Consider an Observer (O) standing in front of a ground plane
covered with tiles. The visual angle ratio of a tile is defined as �DON/
�HON (the angle defined by two lines in the figure, one joining Point D
to Point O, and the other joining Point O to Point N). The angle from
normal of a tile is defined as the �VON. Both these concepts are integral
to the angles and ratios together (ART) theory of spatial perception.
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of the factors is not. These factors fit the argument that all objects
that are perceived as equal in relative depth (i.e., square) project
visual signals that the object’s sides are equal (Gibson, 1966). The
most basic element of the information available to the visual
system is the visual angle. Angle from normal, importantly,
changes as an object moves on the ground plane. It is direction
information. Direction and information about a horizontal plane
specify the 3-D location of the object. Once the direction and
location on a plane, such as the ground plane, is known then,
theoretically, the visual angle ratio indicates the perceived relative
depth.

We can conclude from first principles that visual angle ratio and
angle from the normal belong in the ART theory. To evaluate their
empirical contributions in practice, we ran a linear regression
analysis, relating visual angle ratio and angle from normal to
perceived relative depth of each tile in Experiment 1. That is,
whereas the pseudoperspective function was based on mean sizes
per picture, the regression analysis was based on every tile. The
predictors were entered into the linear regression analysis using
stepwise criteria, with both predictors passing criteria.

Because of its larger range, and greater expected contribution to
perceived relative depth, visual angle ratio was the first variable
entered into the model and, as expected, explained a significant
amount of the variance, F(1, 173) � 1032.6, MSE � .069, with
R2 � .86. Angle from normal was the second variable entered into
the model. It produced a significant increase in the amount of
variance explained, F(1, 172) � 110.4, MSE � .043, and increased
the R2 of the model to .91. The overall model, then, was highly
significant, F(2, 174) � 866.8, MSE � .043, with an R2 � .91. The
regression function is perceived relative depth � a � b1(visual
angle ratio) � b2(angle from normal), where a � 0.64, b1 � 1.22,
and b2 � �0.012.

If the ART theory reflects vision’s approximation to perspec-
tive, then it can predict mean depth perception of a new sample of
pictures. Its predictions should fit the function: actual perceived
relative depth � s(ART theory prediction), where s � 1. Notice
that “s” is the slope of the function. If s � 1, then the ART theory
can be said to successfully predict perceived relative depth. How-
ever, if s � 1, then the ART theory is underestimating perceived
relative depth, whereas an s � 1 would indicate that the ART
theory is overestimating perceived relative depth. This will be
called the “slope” test.

Second, it is possible to compare the accuracy of the ART
theory’s predictions with those of the compensation, projective,
invariant, and compromise approaches. Their pseudoperspective
functions can be used to make precise predictions for each and
every tile tested. The prediction can be compared with the mean
and standard deviation of the judgments of that tile by the subjects
in a given experiment. The ART theory’s success rate (the per-
centage of successful predictions) can be compared with those of
the other approaches. This second test is called the “individual
tiles” test.

Consider Experiment 1. The relation between the ART theory
predicted values and the actual perceived relative depth is actual
perceived relative depth � s(ART theory prediction), where s �
0.95 (SD � .32). A two-sided t test revealed that the ART theory’s
predictions were successful, as s did not differ significantly from
a slope of 1, t(173) � 1.97, p � .057, MSE � .024.

Second, was the ART theory more successful at predicting the
perceived relative depths of the tiles, obtained from the 12 subjects
in Experiment 1, than the other approaches? As with the slope test,
predictions for the ART theory were calculated using its ballpark-
perspective function. Predictions for the other four approaches—
compensation, projective, invariant, and compromise—were cal-
culated using their pseudoperspective functions. Because the
pseudoperspective functions of the compensation and invariant
approaches are identical, their predictions are considered together.
These predictions were then tested to see whether they differed
significantly from the actual perceived relative depths. Bonferroni
adjusted t tests were performed to test the difference between the
predictions and the actual perceived relative depths for each indi-
vidual tile. A significant difference was counted as a failure, and
the percentage of successful predictions were calculated for the
ART theory and the compensation, projective, invariant, and com-
promise approaches. Note that for the compromise approach, a
value of k was chosen so that the average predicted perceived
relative depth equaled the average obtained perceived relative
depth. This post hoc manipulation of the value of k maximized the
fit of the pseudoperspective function for the compromise approach
and, as such, greatly favored the success rate of the compromise
approach.

A one-way repeated measures ANOVA, with theory as the
independent variable (ART theory, compensation/invariant, pro-
jective, and compromise), was performed with “successful predic-
tion” as the dependent variable. The variable successful prediction
takes on a value of 1 when there is no significant difference
between the prediction and the obtained perceived relative depth
for an individual tile (as revealed by the t test comparing mean and
standard deviation of the judgments of the 12 subjects to the
predicted value) and a value of 0 when there is a difference. The
average successful prediction for each theory is equal to its per-
centage of successful predictions.

The ANOVA revealed that the theories differed in their rates of
successful predictions, F(3, 519) � 12.01, �p

2 � .065. More
important, Bonferroni a posteriori comparisons revealed that the
ART theory had more successful predictions (96.6%) than any of
the other approaches: compensation/invariant (73.6%), projective
(79.9%), or compromise (79.9%) (all p � .001).

The successes of the ART theory here are not a fair measure
because the ballpark-perspective function was derived from and
tested on the same results. What is needed is a test in new
conditions, for example, increasing the observer’s distance from
0.36 to 0.54 m.

Experiment 2

An increase in observer’s distance to 0.54 m puts the observer
far from the shortest artist’s distance (0.09 m). Will perceptual
effects fit with ART theory?

Method

Subjects. Twelve first-year students (7 women, mean age � 19.6,
SD � 1.9) participated.

Stimuli. The apparatus was the same as in Experiment 1.
Procedure. Observers viewed the pictures from a larger distance than

before (0.54 m). Perspective predicts that the tiles with an artist’s distance
of 0.09 m should now appear fully 6.0 times longer than wide, rather than
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4.0 times, as in Experiment 1. Hence, Experiment 2 may be a more
sensitive test.

Results

Dependent measure. The dependent measure was as before,
that is, perceived relative depth.

Repeated measures ANOVA. Three independent variables
were tested: artist’s distance, column, and row in a 7 (artist’s
distance) � 5 (column) � 5 (row) repeated measures ANOVA.
Once again, central tiles were generally compressed and peripheral
ones elongated (see Figure 6).

As artist’s distance grew, tile judgments shrank, F(6, 66) �
42.48, �p

2 � .79. Bonferroni a posteriori comparisons revealed
significant differences between all artist’s distances (all p � .007).

Tiles in peripheral columns were judged especially large, F(4,
44) � 54.50, �p

2 � .83. Bonferroni a posteriori comparisons
revealed significant differences between all pairs of columns (all
p � .016), except for columns 3 and 5 ( p � .58).

Tiles in lower rows were judged particularly large, F(4, 44) �
49.26, �p

2 � .82. Bonferroni a posteriori comparisons revealed
significant differences between all rows (all p � .004).

The ANOVA revealed significant Artist’s Distance � Column,
F(24, 264) � 7.24, �p

2 � .40, and Artist’s Distance � Row, F(24,
264) � 38.75, �p

2 � .78, interactions. There was also evidence of
a Row � Column interaction, F(16, 1768) � 4.42, �p

2 � .29. This
interaction was nonsignificant in Experiment 1. Evidently, the
more extreme conditions in Experiment 2 allowed this interaction
to become significant. This might be expected from the significant

three-way Artist’s Distance � Row � Column interaction in both
Experiments: here, F(96, 1056) � 2.34, �p

2 � .18.
Slope test. The relation between the ART theory predicted

values and the actual perceived relative depth is actual perceived
relative depth � s(ART theory prediction), where s � 0.98 (SD �
.25). A two-sided t test revealed that the ART theory’s predictions
were successful, as s did not differ significantly from 1, t(173) �
1.11, p � .27, MSE � .019.

Individual tiles test. A one-way repeated measures ANOVA,
with theory (ART theory, compensation/invariant, projective, and
compromise) as the independent variable and successful prediction
as the dependent variable, revealed that the theories differed in
their rates of successful predictions, F(3, 522) � 53.15, �p

2 � .23.
More important, Bonferroni a posteriori comparisons revealed that
the ART theory had higher predictive success (97.1%) than any of
the other approaches: compensation/invariant (84.6%), projective
(45.1%), or compromise (78.3%) (all p � .001).

Discussion

The ART theory applies at the new observer distance. The
effects of the change were much less than perspective predicts. For
example, when the artist’s distance changed from 0.54 to 0.63 m,
40% of tiles (10 out of 25) changed less than 10%. That is, some
perceptual constancy occurred, in keeping with common experi-
ence that many pictures look the same when viewed from different
distances. However, in revealing cases, there was far less con-
stancy. For instance, when the artist’s distance changed from 0.09
to 0.18 m, only a mere 4% of tiles (1 out of 25) changed less than
10%.

More important, the ART theory was able to predict both the
constancy and the distortions. Constancy occurred mostly when
the relative change in artist’s distance was small (e.g., increasing
from 0.54 to 0.63 m) and may be the result of minor changes in
visual angle ratios and angles from the normal. Distortions oc-
curred predominately when the relative change in artist’s distance
was large (e.g., from 0.09 to 0.18 m), implying that many distor-
tions occur because of large changes in the visual angle ratios and
angles from the normal.

The observer’s distance from the picture plane is one of the
three variables that fully determine a perspective picture. The
remaining two are (a) the observer’s position above the ground
plane and (b) the orientation in the plane of the objects within the
scene. If the ART theory is general, then it applies to these
variables. Experiment 3 was designed to test the observer’s posi-
tion above the ground plane.

Experiment 3

Three perspective pictures of tiles on a ground plane are illus-
trated in Figure 7. Each has a different artist’s vantage point or
“eye” height. They can be called “standard view,” “child’s view,”
and “worm’s-eye view.” What does perspective geometry propose
should happen as eye height diminishes? No change should occur
for tile length, though the vantage point of the observer should
appear to lower.

Of great importance to the ART theory is that the visual angle
ratios and angles from the normal of all the tiles change with eye
height. Consider the entire range of eye heights, from 0 (i.e., at the

Figure 6. Experiment 2 Vantage Point � Column � Row interaction. For
the sake of simplicity, mean perceived relative depths have been divided
into three groups: (a) compressed (mean perceived relative depth � 0.9),
(b) square (mean perceived relative depth � 0.9–1.1), and (c) elongated
(mean perceived relative depth � 1.1).
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ground) to infinitely high. From infinitely high, every square
projects an equal visual angle for depth and width and has a visual
angle ratio of 1, the ratio specific to a square on the ground. From
eye heights approaching ground level, the visual angle for depth
decreases to 0, and the visual angle ratio approaches 0. The same
ratio is projected by any rectangle, and hence shape is visually
indeterminate.

What about angle from the normal? The set of angles from the
normal is compressed in Figure 7’s pictures as eye height lowers.

In summary, the ART theory is tested at three different eye
heights in Experiment 3.

Method

Subjects. Twelve first-year students (8 women, mean age � 18.5,
SD � 1.6) participated.

Stimuli. The apparatus was the same as in Experiments 1 and 2.
The perspective pictures for Experiment 3 are based on the perspective

pictures in Experiment 1. Only three of the seven artist’s distances were
used, namely, 0.18, 0.36, and 0.54 m. These three artist’s distances were
factorially combined with three different eye heights. The eye heights for
each picture can be expressed as a percentage of the eye height used in
Experiment 1. The percentages for the standard view, the child’s view, and
the worm’s-eye view are 100%, 71%, and 42%, respectively. The observ-
er’s distance was 0.36 m (as in Experiment 1).

Note that the standard view is, in essence, a “reduced” replication of
Experiment 1. The tiles that were tested are the same as those in Experi-
ments 1 and 2, namely, those tiles located in the factorial combinations of

rows 1, 3, 5, 7, and 9 and columns 1, 3, 5, 7, and 9. All other aspects of the
stimuli were exactly as those in Experiments 1 and 2.

The 25 different tiles tested factorially combined with the three artist’s
distances and three eye heights produced the 225 pictures used in Exper-
iment 3.

Procedure. The procedure was the same as in Experiment 1, with the
subjects positioned at a distance of 0.36 m from the picture surface.

Results

Dependent measure. The dependent measure was the same as
in Experiments 1 and 2, that is, perceived relative depth.

Repeated measures ANOVA. Four independent variables were
tested—eye height, artist’s distance, column, and row—in a 3 (eye
height) � 3 (artist’s distance) � 5 (column) � 5 (row) repeated
measures ANOVA (see Figures 8 and 9).

The ANOVA revealed that tile sizes decreased as eye height
decreased, F(2, 18) � 168.20, �p

2 � .95. Bonferroni a posteriori
comparisons revealed significant differences between all eye
heights (see Figure 8).

The ANOVA revealed that tile size increased as artist’s distance
decreased, F(2, 18) � 152.77, �p

2 � .94. Bonferroni a posteriori
comparisons revealed significant differences between all artist’s
distances (see Figure 9).

Tile size increased toward peripheral columns, F(4, 36) �
165.05, �p

2 � .95. Bonferroni a posteriori comparisons revealed
significant differences between all columns. Furthermore, tile size
increased toward bottom rows, F(4, 36) � 121.36, �p

2 � .93.
Bonferroni a posteriori comparisons revealed significant differ-
ences between all rows.

All two-way interactions were significant (all F � 4.53, �p
2

.26). The three-way Eye Height � Artist’s Distance � Column
interaction approached significance, F(16, 144) � 1.62, p �
.07, �p

2 � .15. All other three-way interactions were significant
(all F � 2.23, �p

2 � .20), as well as the four-way Eye Height �
Artist’s Distance � Column � Row interaction, F(64, 576) �
1.50, �p

2 � .14 (see Figure 10). Tile size increased toward
bottom peripheral tiles as artist’s distance decreased, especially
for lower eye heights.

Slope test. The relation between the ART theory’s predicted
values and the actual perceived relative depth determined for each
eye height is (a) standard view: actual perceived relative depth �
s(ART theory prediction), where s � 0.94 (SD � .32); (b) child’s
view: actual perceived relative depth � s(ART theory prediction),
where s � 0.95 (SD � .30); (c) worm’s-eye view: actual perceived
relative depth � s(ART theory prediction), where s � 0.92 (SD �
.39).

A two-sided t test with a Bonferroni adjustment revealed that the
ART theory’s predictions were successful, as s did not differ
significantly from 1 for any of the eye heights, all t(73) � 1.89,
p � .063, MSE � .45.

Individual tiles test. Because the ART theory passed the slope
test for each eye height, the individual tiles in each eye height were
pooled for the individual tiles test. A one-way repeated measures
ANOVA, with theory (ART theory, compensation/invariant, pro-
jective, and compromise) as the independent variable, found dif-
ferences in the rates of successful predictions, F(3, 672) � 11.24,
�p

2 � .05. More important, Bonferroni a posteriori comparisons
revealed that the ART theory had more successful predictions
(86.2%) than any of the other approaches: compensation/invariant

Figure 7. Three perspective pictures of the same tiles from three different
eye heights (going from highest to lowest): standard view (A), child’s view
(B), and worm’s-eye view (C).
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(68.0%), projective (65.3%), or compromise (69.3%) (all p �
.001).

Discussion

It is evident that ART theory applies across eye heights. Of most
interest, in Experiment 3, the ART theory succeeded though there

was very little perceptual constancy across eye heights. Specifi-
cally, the perceived relative depth of many tiles decreased notice-
ably as eye height decreased—fully 81% of tiles (61 out of 75)
decreased by 10% or more as eye height decreased from the
standard to the worm’s-eye views. It appears that the ART theory
can handle situations in which there is a lot of apparent constancy

Figure 8. Experiment 3 main effect of artist’s distance (with standard error bars). For all eye heights, as artist’s
distance increases, mean perceived relative depth per picture decreases.

Figure 9. Experiment 3 Eye Height �Vantage Point � Column � Row interaction. For the sake of simplicity,
mean perceived relative depths have been divided into three groups: (a) compressed (mean perceived relative
depth � 0.9), (b) square (mean perceived relative depth � 0.9–1.1), and (c) elongated (mean perceived relative
depth � 1.1).
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(see Experiment 2) as well as situations in which constancy fails
(see Experiment 3).

The remaining degree of freedom for objects on a ground plane
is rotation, which is tested in Experiment 4.

Experiment 4

Changing the orientation of a group of tiles from squares to
diamonds results in their diagonals receding directly from the
observer (see Figure 10). The vanishing point for the diagonals is
implicit because they are not represented by actual lines. Use of
diagonals increases the depth of each of the tiles and the total depth
of the set of tiles. The relative depth, that is, the depth to width
ratio, remains unchanged. The effect is that the mean visual angle
ratios of the pictures are increased, from 0.79 (see Experiment 1)
to 0.84 (see Experiment 4). Also, from picture to picture, the rate
of change in visual angle ratio for Experiment 4 (decrease of 14%)
is smaller than in Experiment 1 (decrease of 17%).

Furthermore, changing the orientation of tiles also changes the
angles from the normal. In the same way that depth was increased,
width is also increased. Coupled with the changes in depth, this
produces an entirely new set of angles from the normal. In sum-
mary, changing the orientation of the tiles is yet another way to
manipulate the visual angle ratios and the angles from the normal.

Method

Subjects. Twelve third-year students (7 women, mean age � 22.8,
SD � 3.2) participated.

Stimuli. The apparatus used in Experiment 4 is as in Experiments 1–3,
but with tiles rotated at 45° (see Figure 10). The depth of a diamond tile in
Experiment 4 (a diagonal) is greater than the depth of a square tile (an
edge) in Experiment 1 by a factor of 	2. The same applies to width.
Because of this increase in width, only 13 columns were depicted (one
center column and six on either side). The tiles tested in Experiment 4
consisted of those tiles located in the factorial combinations of rows 1, 3,
5, and 7 and columns 1, 2, 3, 4, 5, and 6. These tiles were indicated to the
subjects by using bold lines (three times the thickness of the other lines in
the picture) to depict the depth and width of the tiles. The width was
depicted at the corner of the tile closest to the observer, whereas the depth
was depicted at the left corner of the tile.

The 24 different tiles tested were factorially combined with the seven
artist’s distances to produce 168 pictures that were used in the experiment.

Results

Repeated measures ANOVA. Three independent variables
were tested—artist’s distance, column, and row—in a 7 (artist’s
distance) � 6 (column) � 4 (row) repeated measures ANOVA
(see Figure 11).

Tile size increased with decreases in artist’s Distance, F(6,
66) � 47.05, �p

2 � .81. Bonferroni a posteriori comparisons
revealed significant differences between all artist’s distances (all
p � .012).

Tile size increased toward peripheral columns, F(5, 55) �
62.10, �p

2 � .85. Bonferroni a posteriori comparisons revealed
significant differences between all pairs of columns (all p � .023)
except for columns 1 and 2 ( p � .99), columns 1 and 3 ( p � .68),
and columns 5 and 6 ( p � .073).

Tile size increased toward bottom rows, F(3, 33) � 57.92, �p
2 �

.84. Bonferroni a posteriori comparisons revealed significant dif-
ferences between all rows (all p � .01).

The ANOVA revealed significant Artist’s Distance � Column,
F(30, 330) � 2.12, �p

2 � .16, and Artist’s Distance � Row, F(18,
198) � 40.67, �p

2 � .79, interactions. The Row � Column inter-
action did not reach significance, F(15, 165) � 1.43, p � .14, �p

2

� .12. Finally, the three-way Artist’s Distance � Row � Column
interaction was significant, F(90, 990) � 1.69, �p

2 � .13. Tiles in
the periphery and bottom rows increased in perceived relative
depth the most as artist’s distance decreased.

Slope test. The relation between the ART theory predicted
values and the actual perceived relative depth is actual perceived
relative depth � s(ART theory prediction), where s � 0.94 (SD �
.22). A two-sided t test revealed that the ART theory’s predictions

Figure 11. Experiment 4 Vantage Point � Column � Row interaction.
For the sake of simplicity, tiles have been divided into four groups: (a)
compressed (mean perceived relative depth � 0.9), (b) square (mean
perceived relative depth � 0.9–1.1), (c) elongated (mean perceived relative
depth � 1.1), and (d) untested tiles.

Figure 10. A perspective picture of a series of square tiles rotated at 45°
on a ground plane.
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deviated slightly but significantly, and the slope was not equal to
1, t(167) � 3.35, p � .001, MSE � .017.

Individual tiles test. A one-way repeated measures ANOVA,
with theory (ART theory, compensation/invariant, projective, and
compromise) as the independent variable and successful predic-
tions as the dependent variable, was performed.

The ANOVA revealed that the theories differed in their rates of
successful predictions, F(3, 501) � 9.40, �p

2 � .053. More impor-
tant, Bonferroni a posteriori comparisons revealed that the ART
theory had more successful predictions (86.3%) than any of the
other approaches: compensation/invariant (69.6%), projective
(60.7%), or compromise (67.3%) (all p � .002).

Discussion

Again, the ART theory makes the best predictions. Of most
interest is that it was imperfect on the slope test and overesti-
mated the actual perceived relative depth by 6%. Although this
is an extremely small overestimation, it does pose some inter-
esting possibilities. The overestimation may have been because
of the diagonal tiles being perceived as resting on a tilted
ground plane and foreshortened less than they would be if
horizontal. Alternatively, the diamonds’ vanishing point from
which the angles from the normal are measured is not explicitly
represented. If this leads to underestimations of the angles from
the normal, then it would produce the overestimations. The last
possibility to be considered is that it is simply the result of a
response bias. Observers may have been reluctant to report
large perceived relative depths. The preponderance of appar-
ently compressed tiles may have caused observers to bias their
judgments toward lower perceived relative depths. This possi-
bility is bolstered by the fact that, even though Experiments 1–3
all passed the slope test, the slopes were all in the direction of
overestimated predictions. If so, then the 6% overestimation
here is an interesting procedural artifact rather than a genuine
perceptual result.

Comparing common tiles in Experiments 1 and 4 reveals very
little constancy; only 21% of tiles (18 of 84) changed less than
10%. So, the ART largely accounted for perceived relative depth
again, even though constancy failed.

General Discussion

The ART theory predicted tile perception across distance, eye
height, and tile rotation better than alternatives tested with
highly favorable assumptions. Though devised using squares,
ART theory may apply widely. In Figure 12, the relative depth
of Object 1 is simply its length divided by its width. It has both
a visual angle ratio and an angle from the normal. Therefore,
ART theory can be applied to solid objects. It also applies to
perception of spaces. In Figure 12, the space between Objects 1
and 2 has both a visual angle ratio and an angle from the normal
(from the central vanishing point to the intersection of Arrows
C and D).

Thus far, ART theory has been applied to the relative depths of
objects. However, some of the tiles in the periphery of pictures
may seem not only elongated but also not to have 90° corners, that
is, not to be rectangular. The perception of the angles at corners is
another important aspect of shape perception. Indeed, some theo-

ries, for example, Perkins’ laws, indicate when corners of cubes
appear correct versus distorted, that is “90°” versus “not 90°”
(Cutting, 1987; Kubovy, 1986; Perkins & Cooper, 1980). Usefully,
however, the ART theory can also be applied to the perception of
angles.

Assume that the horizontal parallel lines on the screens in
Experiments 1–3 (the lines running left and right) are perceived as
showing parallel edges on the ground, an assumption justified by
geometric constraints on “assuming good form” (Perkins & Coo-
per, 1980). Call this the assumption of “two parallel edges on the
ground.” Given this “two parallel edges” assumption, the ART
theory predicts changes in perceived angle. For example, for tiles
at or very near the center of the picture (e.g., tiles in the central
column and the adjoining ones), the edges shown by converging
lines in the picture (that is, the perceived left and right sides of the
tile) are equal or nearly equal. Together with the “two parallel
edges” assumption, this requires perceived angles of 90° or very
close.

For tiles near the periphery, the perceived lengths of the left
and right sides of the tile are not equal. However, given the
“two parallel edges on the ground” assumption, the ART theory
predicts the perceived angles of the four corners of the tile. For
example, consider a case in which the tile in the central column
is perceived as square. Now consider a tile near the periphery.
If the length of the right side is 1.1 units and the left side is 1.2
units, and the base is 1.0 (the closer of the two parallel edges on
the ground), then trigonometry predicts the perceived corner
angles to be 112° (bottom right), 52° (bottom left), 68° (top
right), and 128° (top left). Of course, it is important to check the

Figure 12. Object 1 and Object 2 are standing on the ground plane, the
central vanishing point being clearly illustrated. Object 1 has a width
indicated by Arrow A and a depth indicated by Arrow B. The visual angle
ratios and angles from the normal of both Arrows A and B can be
determined. From this information, the angles and ratios together (ART)
theory can predict a perceived relative depth for Object 1. The same logic
applies to the relative distance between Objects 1 and 2, where lateral
distance is indicated by Arrow C, whereas distance in depth is indicated by
Arrow D.
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ART theory’s predictions empirically. Vision may adopt some-
what independent approximations for length and angle in per-
spective pictures. Our point here is simply that the ART theory
is consistent with changes in angle perception as well as length.
Indeed, the ART theory might be integrated smoothly with
Perkins’ laws of angles at cubic corners because it indicates
when tile edges are at or far from 90°. Perkins’ laws are
“all-or-nothing” however, whereas the ART theory predicts
gradual changes in perceived angle.

Both one- (see Experiments 1, 2, and 3) and two-point
perspective pictures (see Experiment 4) were tested here.
Three-point perspective results if the tiles are on a cube tilted
with respect to the picture plane (see Figure 13). The top of the
cube is the equivalent of a square tile on a horizontal plane, and
the sides are the equivalent of square tiles on vertical planes.
The orientation of the planes is not a factor in the ART theory;
it can apply at all orientations and to each face of a cube
independently. For sure, in Figure 13, cubes look distorted. So
constancy and distortion need to be reconciled for three-point
pictures, and ART theory’s factors may be key. For example,
differential elongation of sides can produce angular distortions
at corners.

The ART factors are present in the 3-D world. Visual angle ratio
is simply the visual angle of an object’s depth divided by the visual
angle of the object’s width. The central vanishing point is a
direction to which parallel edges recede. Hence, angle from the
normal can be defined as the angle between the line beginning at
the observer and parallel to the ground and an object’s parallel
receding edges, and the line to a point on the object (see Figure 5).
Indeed, some of the effects that the ART theory can account for in
picture perception occur in the 3-D world. Perceived compression
at great distances is an often-reported phenomenon (Baird &
Biersdorf, 1967; Foley, 1972; Gilinsky, 1951; Harway, 1963;
Wagner, 1985). Perceived elongation, another effect in ART the-
ory, although not as widely reported, has also been found (Baird &
Biersdorf, 1967; Harway, 1963; Heine, 1900, as cited in Norman
et al., 1996; Wagner, 1985).

In summary, ART theory is an approximation theory, pro-
posing that optical features (visual angle ratio and angle from
normal) determine the perception of relative depth; it predicts
when constancy fails and by how much and explains the factors
responsible for the perspective effects that puzzled Renaissance
artists.
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Correction to Perruchet et al. (2006)

In the article, “Do We Need Algebraic-Like Computations? A Reply to Bonatti, Pena, Nespor, and
Mehler (2004),” by Pierre Perruchet, Ronald Peereman, and Michael D. Tyler (Journal of Exper-
imental Psychology: General, 2006, Vol. 135, No. 2, pp. 322–326), the page numbers that Dr.
Perruchet cited from Dr. Bonatti et al.’s article were printed incorrectly. These page numbers should
appear as follows:

p. 322, left column, Paragraph 1, Line 5: Replace “(p. 21)” with “(p. 320)”

p. 322, left column, Paragraph 2, Line 3: Replace “(e.g., pp. 7, 8, 11)” with “(e.g., pp. 317, 318,
320)”

p. 322, left column, Paragraph 2, Line 4: Replace “(e.g., p. 12)” with “(e.g., p. 320)”

p. 324, right column, Footnote 2, Line 11: Replace “(p. 12)” with “(p. 317)”

p. 325, left column, Paragraph 1, Line 8: Replace “(p. )” with “(p. 318)”

p. 326, left column, Paragraph 2, Line 10: Replace “(p. 8)” with “(p. 316)”
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