
COGNITIVE SCIENCE 16, 307354 (1992)

Forward Models:
Supervised Learning with a Distal Teacher

MICHAELI.JORDAN
Massachusetts Institute of Technology

DAVIDE.RUMELHART
Stanford University

Internal models of the environment have an important role to play in adaptive
systems, in general, and are of particular importance for the supervised learning
paradigm. In this article we demonstrate that certain classical problems associ-
ated with the notion of the “teacher” in supervised learning con be solved by
judicious use of learned internal models as components of the adaptive system.
In particular, we show how supervised learning algorithms con be utilized in

cases in which an unknown dynamical system intervenes between actions and
desired outcomes. Our approach applies to any supervised learning algorithm
that is capable of learning in multilayer networks.

Recent work on learning algorithms for connectionist networks has seen a
progressive weakening of the assumptions made about the relationship
between the learner and the environment. Classical supervised learning
algorithms such as the perceptron (Rosenblatt, 1962) and the LMS algorithm
(Widrow & Hoff, 1960) made two strong assumptions: (1) The output units
are the only adaptive units in the network, and (2) there is a “teacher” that
provides desired states for all of the output units. Early in the development
of such algorithms it was recognized that more powerful supervised learning
algorithms could be realized by weakening the first assumption and incor-
porating internal units that adaptively recode the input representation pro-
vided by the environment (Rosenblatt, 1962). The subsequent development

We wish to thank Michael Mozer, Andrew Barto, Robert Jacobs, Eric Loeb, and James
McClelland for helpful comments on the manuscript. This project was supported in part by
BRSG 2 SO7 RR07047-23 awarded by the Biomedical Research Support Grant Program, Divi-
sion of Research Resources, National Institutes of Health, by a grant from ATR Auditory and
Visual Perception Research Laboratories, by a grant from Siemens Corporation, by a grant
from the Human Frontier Science Program, and by grant NOOO14-90-J-1942 awarded by the
Office of Naval Research.

Correspondence and requests for reprints should be sent to Michael I. Jordan, MIT,
Department of Brain and Cognitive Sciences, Cambridge, MA 02139.

307

308 JORDAN AND RUMELHART

of algorithms such as Boltzmann learning (Hinton & Sejnowski, 1986) and
backpropagation (LeCun, 1985; Parker, 1985; Rumelhart, Hinton, &
Williams, 1986, Werbos, 1974) have provided the means for training net-
works with adaptive nonlinear internal units. The second assumption has
also been weakened: Learning algorithms that require no explicit teacher
have been developed (Becker & Hinton, 1989; Grossberg, 1987; Kohonen,
1982; Linsker, 1988; Rumelhart & Zipser, 1986). Such “unsupervised” learn-
ing algorithms generally perform some sort of clustering or feature extrac-
tion on the input data and are based on assumptions about the statistical or
topological properties of the input ensemble.

In this article we examine in some detail the notion of the “teacher” in
the supervised learning paradigm. We argue that the teacher is less of a
liability than has commonly been assumed and that the assumption that the
environment provides desired states for the output of the network can be
weakened significantly without abandoning the supervised learning
paradigm altogether. Indeed, we believe that an appropriate interpretation
of the role of the teacher is crucial in appreciating the range of problems to
which the paradigm can be applied.

The issue we wish to address is best illustrated by way of an example.
Consider a skill-learning task such as that faced by a basketball player learn-
ing to shoot baskets. The problem for the learner is to find the appropriate
muscle commands to propel the ball toward the goal. Different commands
are appropriate for different locations of the goal in the visual scene; thus, a
mapping from visual scenes to muscle commands is required. What learning
algorithm might underlie the acquisition of such a mapping? Clearly, clus-
tering or feature extraction on the visual input is not sufficient. Moreover, it
is difficult to see how to apply classical supervised algorithms to this prob-
lem, because there is no teacher to provide muscle commands as targets to
the learner. The only target information provided to the learner is in terms
of the outcome of the movement, that is, the sights and sounds of a ball
passing through the goal.

The general scenario suggested by the example is shown in Figure 1.
Intentions are provided as inputs to the learning system. The learner trans-
forms intentions into actions, which are transformed by the environment
into outcomes. Actions are proximal variables, that is, variables the learner
controls directly, whereas outcomes are distal variables, variables the learner
controls indirectly through the intermediary of the proximal variables.
During the learning process, target values are assumed to be available for
the distal variables but not for the proximal variables. Therefore, from a
point of view outside the learning system, a “distal supervised learning
task” is a mapping from intentions to desired outcomes. From the point of
view of the learner, however, the problem is to find a mapping from inten-
tions to actions that can be composed with the environment to yield desired

DISTAL SUPERVISED LEARNING 309

intention
Learner

action outcome c

Figure 1. The dktol supervked learning problem: Target values are avallable far the dfsfal
varfabfes (the outcomes) but not for the proximal variables (the actions).

distal outcomes. The learner must discover how to vary the components of
the proximal action vector so as to minimize the components of the distal
error.

The distal supervised learning problem also has a temporal component.
In many environments the effects of actions are not punctate and instanta-
neous, but rather linger on and mix with the effects of other actions. Thus
the outcome at any point in time is influenced by any of a number of pre-
vious actions. Even if there exists a set of variables that have a static rela-
tionship to desired outcomes, the learner often does not have direct control
over those variables. Consider again the example of the basketball player.
Although the flight of the ball depends only on the velocity of the arm at the
moment of release-a static relationship-it is unlikely that the motor con-
trol system is able to control release velocity directly. Rather, the system
outputs forces or torques, and these variables do not have a static relation-
ship to the distal outcome.

In the remainder of the article we describe a general approach to solving
the distal supervised learning problem. The approach is based on the idea
that supervised learning in its most general form is a two-phase procedure.
In the first phase the learner forms a predictive internal model (a forward
model) of the transformation from actions to distal outcomes. Because such
transformations are often not known a priori, the internal model must
generally be learned by exploring the outcomes associated with particular
choices of action. This auxiliary learning problem is itself a supervised
learning problem, based on the error between internal, predicted outcomes
and actual outcomes. Once the internal model has been at least partially
learned, it can be used in an indirect manner to solve for the mapping from
intentions to actions.

The idea of using an internal model to augment the capabilities of super-
vised learning algorithms was also proposed by Werbos (1987), although
his perspective differs in certain respects from our own. There have been
a number of further developments of the idea (Kawato, 1990; Miyata,
1988; Munro, 1987; Nguyen & Widrow, 1989; Robinson & Fallside, 1989;
Schmidhuber, 1990), based on either on the work of Werbos or our own un-
published work (Jordan, 1983; Rumelhart, 1986). There are also close ties
between our approach and techniques in optimal control theory (Kirk,

310 JORDAN AND RUMELHART

1970) and adaptive control theory (Goodwin & Sin, 1984; Narendra &
Parthasarathy, 1990). We discuss several of these relationships in the re-
mainder of the article, although we do not attempt to be comprehensive.

DISTAL SUPERVISED LEARNING AND FORWARD MODELS

This and the following sections present a general approach to solving distal
supervised learning problems. We begin by describing our assumptions
about the environment and the learner.

We assume that the environment can be characterized by a next-state
function f and an output function g. At time step n - 1 the learner pro-
duces an action u[- 11. In conjunction with the state of the environment
x[n - 11, the action determines the next state x[n]:

x[n] =f(x[n - 11, u[n - I]). (1)

Corresponding to each state x[n] there is also a sensation y[n]:

Ybl = g(m). (2)

(Note that sensations are output vectors in the current formalism, “out-
comes” in the language of the introductory section). The next-state func-
tion and the output function together determine a state-dependent mapping
from actions to sensations.

In this article we assume that the learner has access to the state of the en-
vironment; we do not address issues relating to state representation and
state estimation. State representations might involve delayed values of
previous actions and sensations (Ljung & SBderstriim, 1986), or they might
involve internal state variables that are induced as part of the learning pro-
cedure (Mozer BE Bachrach, 1990). Given the state x[n - l] and given the in-
Put PM - 11, the learner produces an action u[n - 11:

u[n - I] = h(x[n - 11, p[n - 11)‘. (3)

The goal of the learning procedure is to make appropriate adjustments to
the input-to-action mapping h based on data obtained from interacting with
the environment.

A distal supervised learning problem is a set of training pairs { pi[n - 11,
y?[n]}, where p&r - l] are the input vectors and yi*[n] are the corresponding
desired sensations. For example, in the basketball problem, the input might
be a high-level intention of shooting a basket, and a desired sensation would
be the corresponding visual representation of a successful outcome. Note

I The choice of time indices in Equations 1,2, and 3 is based on our focus on the output at
time n. In our framework a learning algorithm alters y[n] based on previous values of the
states, inputs, and actions.

DISTAL SUPERVISED LEARNING 311

x [n-l]
I

t
P In-11

* Learner
u [n-l]

+ Environment
Y InI

Figure 2. The composite performance system consisting of the learner and the environ-
ment. This system is a mapping from inputs p[n - l] to sensations y[n]. The training data

(Pik - 11, yf[n]} specify desired input/output behavior across the composite system.
Note that there is on implicit loop within the environment such that the output at time n

depends on the stote at time n - 1 (cf. Equation 1).

that the distal supervised learning problem makes no mention of the actions
that the learner must acquire; only inputs and desired sensations are
specified. From a point of view outside the learning system, the training
data specify desired input/output behavior across the composite perfor-
munce system consisting of the learner and the environment (see Figure 2).
From the point of view of the learner, however, the problem is to find a
mapping from inputs p[n - l] to actions u[n - l] such that the resulting
distal sensations y[n] are the target values y*[n]. That is, the learner must
find a mapping from inputs to actions that can be placed in series with the
environment so as to yield the desired pairing of inputs and sensations. Note
that there may be more than one action that yields a given desired sensation
from any given state; that is, the distal supervised learning problem may be
underdetermined. Thus, in the basketball example, there may be a variety
of patterns of motor commands that yield the same desired sensation of see-
ing the ball pass through the goal.

Forward Models
The learner is assumed to be able to observe states, actions, and sensations
and can therefore model the mapping between actions and sensations. A
forward model is an internal model that produces a predicted sensation i[n]
based on the state x[n - l] and the action u[n - 11. That is, a forward model
predicts the consequences of a given action in the context of a given state
vector. As shown in Figure 3, the forward model can be learned by compar-
ing predicted sensations to actual sensations and using the resulting predic-
tion error to adjust the parameters of the model. Learning the forward
model is a classical supervised learning problem in which the teacher pro-
vides target values directly in the output coordinate system of the learner.z

a In the engineering literature, this learning process is referred to as “system identification”
(Ljung & SiiderstrGm, 1986).

312 JORDAN AND RUMELHART

u [n-l] Y InI
b Envlronment e

I

Figure 3. Learning the forward model using the prediction error y[n- l] - $[n].

x [n-l]

T T
P In-11

b Learner
u [n-l] Forward j InI

Model

Figure 4. The composite learning system: This composite system maps from inputs p[n] to
predicted sensations Girt] in the context of a given state vector.

Distal Supervised Learning
We now describe a general approach to solving the distal supervised learning
problem. Consider the system shown in Figure 4, in which the learner is
placed in series with a forward model of the environment. This composite
learning system is a state-dependent mapping from inputs to predicted sen-
sations. Suppose that the forward model.has been trained previously and is
a perfect model of the environment, that is, the predicted sensation equals
the actual sensation for all actions and all states. We now treat the compos-
ite learning system as a single supervised learning system and train it to map
from inputs to desired sensations according to the data in the training set.
That is, the desired sensations yi* are treated as targets for the composite
system. Any supervised learning algorithm can be used for this training pro-
cess; however, the algorithm must be constrained so that it does not alter the
forward model while the composite system is being trained. By fixing the
forward model, we require the system to find an optimal composite mapping
by varying only the mapping from inputs to actions. If the forward model is
perfect, and if the learning algorithm finds the globally optimal solution,
then the resulting (state-dependent) input-to-action mapping must also be

DISTAL SUPERVISED LEARNING 313

X [n-l] Yin1 - Ylnl

\
1

P In-11
1 ./

- Learner
u [n-l] c Fortyaid

yodel
c

\
\ /

Figure 5. The composite system is trained using the performance error: the forward model
is held fixed while the composite system is being trained.

perfect in the sense that it yields the desired composite input/output
behavior when placed in series with the environment.

Consider now the case of an imperfect forward model. Clearly, an imper-
fect forward model will yield an imperfect input-to-action map if the com-
posite system is trained in the obvious way, using the difference between the
desired sensation and the predicted sensation as the error term. This differ-
ence, the predicted performance error (y* - i), is readily available at the
output of the composite system, but it is an unreliable guide to the true per-
formance of the learner. Suppose, instead, that we ignore the output of the
composite system and substitute the performance error (y* - y) as the error
term for training the composite system (see Figure 5). If the performance
error goes to zero, the system has found a correct input-to-action map,
regardless of the inaccuracy of the forward model. The inaccuracy in the
forward model manifests itself as a bias during the learning process, but
need not prevent the performance error from going to zero. Consider, for
example, algorithms based on steepest descent. If the forward model is not
too inaccurate, the system can still move downhill and thereby reach the
solution region, even though the movement is not in the direction of steep-
est descent.

To summarize, we propose to solve the distal .supervised learning pro-
blem by training a cqmposite learning system consisting of the learner and a
forward model of the environment. This procedure solves implicitly for an
input-to-action map by training the composite system to map from inputs to
distal targets. The training of the forward model must precede the training
of the composite system, but the forward model need not be perfect, or
pretrained throughout all of state space. The ability of the system to utilize
an inaccurate forward model is important: It implies that it may be possible
to interleave the training of the forward model and the composite system.

In the remainder of the article, we discuss the issues of interleaved train-
ing, inaccuracy in the forward model, and the choice of the error term in

314 JORDAN AND RUMELHART

x[n-I]

YZnl Inverse
Model

u [n-l]
b Environment

Y InI

Flgure 6. An inverse model OS a controller.

more detail. We first turn to an interesting special case of the general distal
supervised learning problem: learning an inverse model of the environment.

Inverse Models
An inverse model is an internal model that produces an action u[n - l] as a
function of the current state x[n - l] and the desired sensation y*[n]. In-
verse models are defined by the condition that they yield the identify
mapping when placed in series with the environment.

Inverse models are important in a variety of domains. For example, if the
environment is viewed as a communications channel over which a message
is to be transmitted, then it may be desirable to undo the distorting effects
of the environment by placing it in series with an inverse model (Carlson,
1986). A second example, shown in Figure 6, arises in control system design.
A controller receives the desired sensation y*[n] as input and must find
actions that cause actual sensations to be as close as possible to desired sen-
sations, that is, the controller must invert the transformation from actions
to sensations.) One approach to achieving this objective is to utilize an ex-
plicit inverse model of the environment as a controller.

Whereas forward models are uniquely determined by the environment,
inverse models are generally not. If the environment is characterized by a
many-to-one mapping from actions to sensations, then there are generally
an infinite number of possible inverse models. It is also worth noting that
inverses do not always exist: It is not always possible to achieve a particular
desired sensation from any given state. As we shall discuss, these issues of
existence and uniqueness have important implications for the problem of
learning an inverse model.

There are two general approaches to learning inverse models using super-
vised learning algorithms: the distal learning approach presented earlier and
an alternative approach that we refer to as “direct inverse modelling” (cf.
Jordan & Rosenbaum, 1989). We begin by describing the latter approach.

3 Control system design normally involves a number of additional constraints involving
stability and robustness; thus, the goal is generally to invert the environment as nearly as possi-
ble, subject to these additional constraints.

DISTAL SUPERVISED LEARNING 315

I([n-l]
c Environment

Y InI

x [n-l]

-
Inverse
Model

Figure 7. The direct inverse modeling approach to learning an inverse model.

Direct Inverse Modeling. Direct inverse modeling treats the problem of
learning an inverse model as a classical supervised learning problem (Widrow
& Stearns, 1985). As shown in Figure 7, the idea is to observe the input/out-
put behavior of the environment and to train an inverse model directly by
reversing the roles of the inputs and outputs. Data are provided to the
algorithm by sampling in action space and observing the results in sensation
space.

Although direct inverse modeling has been shown to be a viable tech-
nique in a number of domains (Atkeson & Reinkensmeyer, 1988; Kuperstein,
1988; Miller, 1987), it has two drawbacks that limit its usefulness. First, if
the environment is characterized by a many-to-one mapping from actions to
sensations, then the direct inverse modeling technique may be unable to find
an inverse. The difficulty is that nonlinear many-to-one mappings can yield
nonconvex inverse images, which are problematic for direct inverse model-
ing.’ Consider the situation shown in Figure 8. The nonconvex region
on the left is the inverse image of a point in sensation space. Suppose that
the points labelled by Xs are sampled during the learning process. Three of
these points correspond to the same sensation; thus, the training data as
seen by the direct inverse modeling procedure are one-to-many: one input is
paired with many targets. Supervised learning algorithms resolve one-to-
many inconsistencies by averaging across the multiple targets (the form of
the averaging depends on the particular cost function that is used). As is
shown in the figure, however, the average of points lying in an nonconvex
set does not necessarily lie in the set. Thus, the globally optimal (minimum

’ A set is convex if, for every pair of points in the set, all points on the line between the
points also lie in the set.

316 JORDAN AND RUMELHART

J Action space Sensation space

Flgure 8. The convexity problem. The region on the left is the inverse image of the point on
the right. The arrow represents the direction in which the mopping is learned by direct
inverse modeling. The three points lying inside the inverse image are averaged by the lear-
ning procedure, yielding the vector represented by the small circle. This point is not a solu-
tion, because the inverse image is not convex.

cost) solution found by the direct inverse modeling approach is not neces-
sarily a correct inverse model. (We present an example of such behavior in a
following section).

The second drawback with direct inverse modeling is that it is not “goal
directed.” The algorithm samples in action space without regard to partic-
ular targets or errors in sensation space. That is, there is no direct way to
find an action that corresponds to a particular desired sensation. To obtain
particular solutions the learner must sample over a sufficiently wide range
of actions and rely on interpolation.

Finally, it is also important to emphasize that direct inverse modeling is
restricted to the learning of inverse models: It is not applicable to the
general distal supervised learning problem.

The Distal Learning Approach to Learning an Inverse Model. The methods
described earlier in this section are directly applicable to the problem of
learning an inverse model. The problem of learning an inverse model can be
treated as a special case of the distal supervised learning problem in which
the input vector and the desired sensation are the same (i.e., p[n - l] is
equal to y*[n] in Equation 3). Thus, an inverse model is learned by placing
the learner and the forward model in series and learning an identity mapping
across the composite system.s

’ An interesting analogy can be drawn between the distal learning approach and indirect
techniques for solving systems of linear equations. In numerical linear algebra, rather than
solving explicitly for a generalized inverse of the coefficient matrix, solutions are generally
found indirectly (e.g., by applying Gaussian elimination to both sides of the equation, GA = I,
where I is the identity matrix).

DISTAL SUPERVISED LEARNING 317

A fundamental difference between the distal learning approach and
direct inverse modeling approach is that, rather than averaging over regions
in action space, the distal learning approach finds particular solutions in
action space. The globally optimal solution for distal learning is a set of vec-
tors {ui} such that the performance errors {y? - yi} are zero. This is true
irrespective of the shapes of the inverse images of the targets y?. Vectors
lying outside an inverse image, such as the average vector shown in Figure 8,
do not yield zero performance error and are therefore not globally optimal.
Thus, nonconvex inverse images do not present the same fundamental dif-
ficulties for the distal learning framework as they do for direct inverse
modeling.

It is also true that the distal learning approach is fundamentally goal-
directed. The system works to minimize the performance error, thus, it
works directly to find solutions that correspond to the particular goals at
hand.

In cases in which the forward mapping is many-to-one, the distal learning
procedure finds a particular inverse model. Without additional information
about the particular structure of the input-to-action mapping, there is no way
of predicting which of the possibly infinite set of inverse models the proce-
dure will find. As is discussed later, however, the procedure can also be con-
strained to find particular inverse models with certain desired properties.

DISTAL LEARNING AND BACKPROPAGATION

In this section we describe an implementation of the distal learning approach
that utilizes the machinery of the backpropagation algorithm. It is impor-
tant to emphasize at the outset, however, that backpropagation is not the
only algorithm that can be used to implement the distal learning approach.
Any supervised learning algorithm can be used as long as it is capable of
learning a mapping across a composite network that includes a previously
trained subnetwork; in particular, Boltzmann learning is applicable (Jordan,
1983).

We begin by introducing a useful shorthand for describing backpropaga-
tion in layered networks. A layered network can be described as a parameter-
ized mapping from an input vector x to an output vector y:

Y = 4(x, w), (4)

where w is a vector of parameters (weights). In the classical paradigm, the
procedure for changing the weights is based on the discrepancy between a
target vector y* and the actual output vector y. The magnitude of this dis-
crepancy is measured by a cost functional of the form:

318 JORDAN AND RUMELHART

J = + (y* - YP-fY* - Y). (5)

(J is the sum of squared error at the output units of the network). It is
generally desired to minimize this cost.

Backpropagation is an algorithm for computing gradients of the cost
functional. The details of the algorithm can be found elsewhere (e.g.,
Rumelhart, Hinton et al. 1986); our intention here is to develop a simple
notation that hides the details. This is achieved formally by using the chain
rule to differentiate J with respect to the weight vector w:

VwJ = - g (Y* - Y).

This equation shows that any algorithm that computes the gradient of J
effectively multiplies the error vector y* - y by the transpose Jacobian
matrix (ay/a~)r.~ Although the backpropagation algorithm never forms
this matrix explicitly (backpropagation is essentially a factorization of the
matrix; Jordan, 1992), Equation 6 nonetheless describes the results of the
computation performed by backpropagation.’

Backpropagation also computes the gradient of the cost functional with
respect to the activations of the units in the network. In particular, the cost
functional Jean be differentiated with respect to the activations of the input
units to yield:

V,J = - $ (y* - y).

We refer to Equation 6 as “backpropagation-to-weights” and Equation 7 as
“backpropagation-to-activation.” Both computations are carried out in
one pass of the algorithm; indeed, backpropagation-to-activation is needed
as an intermediate step in the backpropagation-to-weights computation.

In the remainder of this section we formulate two broad categories of
learning problems that lie within the scope of the distal learning approach

6 The Jacobian matrix of a vector function is simply its first derivative: It is a matrix of first
partial derivatives. That is, the entries of the matrix (ay/aw) are the partial derivatives of each
of the output activations with respect to each of the weights in the network.

’ To gain some insight into why a transpose matrix arises in backpropagation, consider a
single-layer linear network described by y = Wx, where Wis the weight matrix. The rows of W
are the incoming weight vectors for the output units of the network, and the columns of Ware
the outgoing weight vectors for the input units of the network. Passing a vector forward in the
network involves taking the inner product of the vector with each of the incoming weight vec-
tors. This operation corresponds to multiplication by IV. Passing a vector backward in the net-
work corresponds to taking the inner product of the vector with each of the outgoing weight
vectors. This operation corresponds to multiplication by v, because the rows of WT are the
columns of IV,

DISTAL SUPERVISED LEARNING 319

and derive expressions for the gradients that arise. For simplicity it is assumed
in both of these derivations that the task is to learn an inverse model (i.e.,
the inputs and the distal targets are assumed to be identical). The two for-
mulations of the distal learning framework focus on different aspects of the
distal learning problem and have different strengths and weaknesses. The
first approach, the “local optimization” formulation, focuses on the local
dynamical structure of the environment. Because it assumes that the learner
is able to predict state transitions based on information that is available
locally in time, it depends on prior knowlege of an adequate set of state
variables for describing the environment. It is most naturally applied to
problems in which target values are provided at each moment in time, al-
though it can be extended to problems in which target values are provided
intermittently (as we demonstrate in a following section). All of the compu-
tations needed for the local optimization formulation can be performed in
feedforward networks, thus, there is no problem with stability. The second
approach, the “optimization-along-trajectories” formulation, focuses on
global temporal dependencies along particular target trajectories. The com-
putation needed to obtain these dependencies is more complex than the
computation needed for the local optimization formulation, but it is more
flexible. It can be extended to cases in which a set of state variables is not
known a priori and it is naturally applied to problems in which target values
are provided intermittently in time. There is potentially a problem with
stability, however, because the computations for obtaining the gradient in-
volve a dynamical process.

Local Optimization
The first problem formulation that we discuss is a local optimization prob-
lem. We assume that the process that generates target vectors is stationary
and consider the following general cost functional:

J= f E{(y* - Y>*cY* - Y)), (8)

where y is an unknown function of the state x and the action u. The action u
is the output of a parameterized inverse model of the form:

u = b, Y”, WI,
where w is the weight vector.

Rather than optimizing J directly, by collecting statistics over the ensem-
ble of states and actions, we utilize an online learning rule (cf. Widrow &
Stearns, 1985) that makes incremental changes to the weights based on the
instantaneous value of the cost functional:

J,, = $ (Y*[nl - Yw(Y*I~l - Ybl). (9)

320 JORDAN AND RUMELHART

An online learning algorithm changes the weights at each time step based on
the stochastic gradient of J; that is, the gradient of Jn:

w[n + I] = w[n] - qV,yJn,

where 7 is a step size. To compute this gradient the chain rule is applied to
Equation 9:

au= ayT
VwJ,, = - -- aw au (Yvd - Ybl)s

where the Jacobian matrices @y/&r) and (&r/aw) are evaluated at time
n - 1. The first and the third factors in this expression are easily computed:
The first factor describes the propagation of derivatives from the output
units of the inverse model (the “action units”) to the weights of the inverse
model, and the third factor is the distal error. The origin of the second fac-
tor is problematic, however, because the dependence of y on u is assumed to
be unknown a priori. Our approach to obtaining an estimate of this factor
has two parts: First, the system acquires a parameterized forward model
over an appropriate subdomain of the state space. This model is of the
form:

L
i =&u,v), (11)

where v is the vector of weights and 9 is the predicted sensation. Second, the
distal error is propagated backward through the forward model; this effec-
tively multiplies the distal error by an estimate of the transpose Jacobian
matrix (8y/&r).

Putting these pieces together, the algorithm for learning the inverse
model is based on the following estimated stochastic gradient:

fr,Jn = - $$ $ (y*[n] - y[n]). (12)

This expression describes the propagation of the distal error (y*[n] - y[n])
backward through the forward model and down into the inverse model
where the weights are changed.’ The network architecture in which these
computations take place is shown in Figure 9. This network is a straight-
forward realization of the block diagram in Figure 5. It is composed of an
inverse model, which links the state units and the input units to the action
units, and a forward model, which links the state units and the action units
to the predicted-sensation units.

* Note that the error term (y*[n] - y[n]) is not a function of the output of the forward
model; nonetheless, activation must flow forward in the model because the estimated Jacobian
matrix (&/&I) varies as a function of the activations of the hidden units and the output units
of the model.

DISTAL SUPERVISED LEARNING 321

1 Inverse Model 1 Forward Model 1

State
Units

State
Units

Figure 9. A feedforward network that includes a forward model: The action units are the
output units of the system.

Learning the Forward Model. The learning of the forward model can
itself be formulated as an optimization problem, based on the following
cost functional:

where 9 is of the form given in Equation 11. Although the choice of proce-
dure for finding a set of weights v to minimize this cost is entirely independent
of the choice of procedure for optimizing lin Equation 8, it is convenient to
base the learning of the forward model on a stochastic gradient as before:

VvLn = - ?g (YDJI - 9tm, (13)

where the Jacobian matrix (a$/&) is evaluated at time n - 1. This gradient
can be computed by the propagation of derivatives within the forward
model and therefore requires no additional hardware beyond that already
required for learning the inverse model.

The Error Signals. It is important to clarify the meanings of the error
signals used in Equations 12 and 13. As shown in Table 1, there are three er-
ror signals that can be formed from the variables y, 9, and y*: theprediction
error, y - 4; theperformance error, y* - y, and the predictedperformance

322 JORDAN AND RUMELHART

TABLE 1
The Error Signals and Their Sources

Name Source

Y” ,Y
Y - YA
Y* -Y

performance error
prediction error

predicted performance error

environment, environment
environment, model
environment, model

error, y* - 9. All three of these error signals are available to the learner
because each of the signals y*, y, and 9 are available individually: the target
y* and the actual sensation y are provided by the environment, whereas the
predicted sensation i is available internally.

For learning the forward model, the prediction error is clearly the appro-
priate error signal. The learning of the inverse model, however, can be based
on either the performance error or the predicted performance error. Using
the performance error (see Equation 12) has the advantage that the system
can learn an exact inverse model even though the forward model is only ap-
proximate. There are two reasons for this: First, Equation 12 preserves the
minima of the cost functional in Equation 9: They are zeros of the estimated
gradient. That is, an inaccurate Jacobian matrix cannot remove zeros of the
estimated gradient (points at which y* - y is zero), although it can in-
troduce additional zeros (spurious local minima). Second, if the estimated
gradients obtained with the approximate forward model have positive inner
product with the stochastic gradient in Equation 10, then the expected step
of the algorithm is downhill in the cost. Thus, the algorithm can, in prin-
ciple, find an exact inverse model even though the forward model is only
approximate.

There may also be advantages to using the predicted performance error.
In particular, it may be easier in some situations to obtain learning trials
using the internal model rather than the external environment (Rumelhart,
Smolensky, McClelland, & Hinton, 1986; Sutton, 1990). Such internal trials
can be thought of as a form of “mental practice” (in the case of backpropa-
gation-to-weights) or “planning” (in the case of backpropagation-to-
activation). These procedures lead to improved performance if the forward
model is sufficiently accurate. (Exact solutions cannot be found with such
procedures, however, unless the forward model is exact).

Modularity. In many cases the unknown mapping from actions to sensa-
tions can be decomposed into a series of simpler mappings, each of which
can be modeled independently. For example, it may often be preferable to
model the next-state function and the output function separately rather than
modeling them as a single composite function. In such cases, the Jacob-
ian matrix @$/&I) can be factored using the chain rule to yield the follow-
ing estimated stochastic gradient:

DISTAL SUPERVISED LEARNING 323

ewJn = - g- $ z (y*[n] - y[n]). (14)

The estimated Jacobian matrices in this expression are obtained by propa-
gating derivatives backward through the corresponding forward models,
each of which are learned separately.

Optimization Along Trajectories9
A complete inverse model allows the learner to synthesize the actions that
are needed to follow any desired trajectory. In the local optimization for-
mulation we effectively assume that the learning of an inverse model is of
primary concern and the learning of particular target trajectories is second-
ary. The learning rule given by Equation 12 finds actions that invert the
dynamics of the environment at the current point in state space, regardless
of whether that point is on a desired trajectory or not. In terms of network
architectures, this approach leads to using feedforward networks to model
the local forward and inverse state transition structure (see Figure 9).

In the current section we consider a more specialized problem formula-
tion in which the focus is on particular classes of target trajectories. This
formulation is based on variational calculus and is closely allied with
methods in optimal control theory (Kirk, 1970; LeCun, 1987). The algorithm
that results is a form of “backpropagation-in-time” (Rumelhart, Hinton et
al., 1986) in a recurrent network that incorporates a learned forward model.
The algorithm differs from the algorithm presented earlier in that it not only
inverts the relationship between actions and sensations at the current point
in state space but also moves the current state toward the desired trajectory.

We consider an ensemble of target trajectories {yZ[n]} and define the
following cost functional:

J = +E{ .?I (yhtnl - ~cJ~l)=(~tbl - ~c,bl)h (13

where (Y is an index across target trajectories and y, is an unknown function
of the state x, and the action uU. The action Us is a parameterized function
of the state x, and the target ya*:

Ua = ma, Y& WI.

As in the previous formulation, we base the learning rule on the stochastic
gradient of J, that is, the gradient evaluated along a particular sample
trajectory, ya:

9 This section is included for completeness and is not needed for the rkmainder of the
article.

324 JORDAN AND RUMELHART

Ja = 1 2 $, (Ym - Y&mYb[~l - YuMl).

The gradient of this cost functional can be obtained using the calculus of
variations (see, also, LeCun, 1987; Narendra 8c Parthasarathy, 1990). Letting
+,[n] represent the vector of partial derivatives of J, with respect to x&z],
and letting q[n] represent the vector of partial derivatives of J, with respect
to u&r], Appendix A shows that the gradient of J, is given by the following
recurrence relations:

and

@+I - I] = ahT -@[n] -I- a&
!%+ - ay & (Yml - YCM)

au,=
VwJ,-&] = - aw w4,

(17)

(18)

(19)

where the Jacobian matrices are all evaluated at time step n and za stands
for x&r + l] (thus, the Jacobian matrices @z&3&) and (az,/au,) are the
derivatives of the next-state function). This expression describes backpropa-
gation-in-time in a recurrent network that incorporates a forward model of
the next-state function and the output function. As shown in Figure 10, the
recurrent network is essentially the same as the network in Figure 9, except
that there are explicit connections with unit delay elements between the
next-state and the current state.‘O Backpropagation-in-time propagates
derivatives backward through these recurrent connections as described by
the recurrence relations in Equations 17 and 18.

As in the local optimization case, the equations for computing the gra-
dient involve the multiplication of the performance error y* - y by a series
of transpose Jacobian matrices, several of which are unknown a priori. Our
approach to estimating the unknown factors is once again to learn forward
models of the underlying mappings and to propagate signals backward
through the models. Thus, the Jacobian matrices (az,/au,), (az,/&Q, and
(ay,/&) in Equations 17, 18, and 19 are all replaced by estimated quanti-
ties in computing the estimated stochastic gradient of J.

In the following two sections, we pursue the presentation of the distal
learning approach in the context of two problem domains. The first section
describes learning in a static environment, whereas the second section

I0 Alternatively, Figure 9 can be thought of as a special case of Figure 10 in which the back-
propagated error signals stop at the state units (cf. Jordan, 1986).

DISTAL SUPERVISED LEARNING 325

Input
Units

n

Predicted- Predicted-
Sensation

Units

Figure 10. A recurrent network with a forward model: The boxes labeled by Ds are unit
delay elements.

describes learning in a dynamic environment. In both sections, we utilize the
local optimatization formulation of distal learning.

STATIC ENVIRONMENTS

An environment is said to be static if the effect of any given action is in-
dependent of the history of previous actions. In static environments the
mapping from actions to sensations can be characterized without reference
to a set of state variables. Such environments provide a simplified domain
in which to study the learning of inverse mappings. In this section, we pre-
sent an illustrative static environment and focus on two issues: (1) the effects
of nonconvex inverse images in the transformation from sensations to
actions, and (2) the problem of goal-directed learning.

The problem that we consider is that of learning the forward and inverse
kinematics of a three-joint planar arm. As shown in Figures 11 and 12, the
configuration of the arm is characterized by the three joint angles, qI, q2, and
q,, and the corresponding pair of Cartesian variables xl and x2. The func-
tion that relates these variables is the forward kinematic function x = g(q).

326 JORDAN AND RUMELHART

Figure 11. A three-joint planar arm.

x* 4 x
b Controller c Arm c

Figure 12. The forward and inverse mappings associated with arm kinematics.

It is obtained in closed form using elementary trigonometry: XI [I [I,cos(q,) + I2cos(q, + 42) + I,cos(q, + q2 + q,) =
X2 bsin(q,) + bsin(q, + a) + Lsin(a + 42 + qJ 1 , (20)

where I,, L, and 1, are the link lengths.
The forward kinematic function g(q) is a many-to-one mapping: for

every Cartesian position inside the boundary of the workspace, there are an
infinite number of joint-angle configurations to achieve that position. This
implies that the inverse kinematic relation g-r(x) is not a function;
rather, there are an infinite number of inverse kinematic functions corre-
sponding to particular choices of points q in the inverse images of each of
the Cartesian positions. The problem of learning an inverse kinematic con-
troller for the arm is that of finding a particular inverse among the many
possible inverse mappings.

Simulations
In the simulations reported in the following, the joint-angle configurations
of the arm were represented using the vector [cos(q, - r/2), cos(q*),
cos(q3)]T, rather than the vector of joint angles. This effectively restricts the
motion of the joints to the intervals [- a/2, 7r/2], [0, ?r], and [0, ?r], respec-
tively, assuming that each component of the joint-angle configuration vec-
tor is allowed to range over the interval [- 1, 11. The Cartesian variables, x,
and x2, were represented as real numbers ranging over [- 1, 11. In all of the

DISTAL SUPERVISED LEARNING 327

simulations, these variables were represented directly as real-valued activa-
tions of units in the network. Thus, three units were used to represent joint-
angle configurations and two units were used to represent Cartesian posi-
tions. Further details on the simulations are provided in Appendix B.

The Nonconvexity Problem. One approach to learning an inverse mapping
is to provide training pairs to the learner by observing the input/output be-
havior of the environment and reversing the role of the inputs and outputs.
This approach, which we referred to earlier as “direct inverse modeling,”
has been proposed in the domain of inverse kinematics by Kuperstein
(1988). Kuperstein’s idea is to randomly sample points q’ in joint space and
to use the real arm to evaluate the forward kinematic function x = g(q’),
thereby obtaining training pairs (x, q’) for learning the controller. The con-
troller is learned by optimization of the following cost functional:

J = +a’ - ml’ - 911 (21)

where q = h(x*) is the output of the controller.
As we discussed earlier, a difficulty with the direct inverse modeling ap-

proach is that the optimization of the cost functional in Equation 21 does
not necessarily yield an inverse kinematic function. The problem arises
because of the many-to-one nature of the forward kinematic function (cf.
Figure 8). In particular, if two or more of the randomly sampled points q’
happen to map to the same endpoint, then the training data provided to the
controller are one-to-many. The particular manner in which the inconsistency
is revolved depends on the form of the cost functional: Use of the sum-of-
squared error given in Equation 21 yields an arithmetic average over points
that map to the same endpoint. An average in joint space, however, does
not necessarily yield a correct result in Cartesian space, because the inverse
images of nonlinear transformations are not necessarily convex. This im-
plies that the output of the controller may be in error even though the
system has converged to the minimum of the cost functional.

In Figure 13 we demonstrate that the inverse kinematics of the three-joint
arm is not convex. To see if this nonconvexity has the expected effect on the
direct inverse modeling procedure, we conducted a simulation in which a
feedforward network with one hidden layer was used to learn the inverse
kinematics of the three-joint arm. The simulation provided target vectors to
the network by sampling randomly from a uniform distribution in joint
space. Input vectors were obtained by mapping the target vectors into
Cartesian space according to Equation 20. The initial value of the root-
mean-square (RhIS) joint-space error was 1.41, filtered over the first 500
trials, After 50,000 learning trials the filtered error reached asymptote at a
value of .43. A vector field was then plotted by providing desired Cartesian

328 JORDAN AND RUMELHART

Figure 13. The nonconvexity of inverse kinematics. The dotted configuration is an average
in joint space of the two solid configurations.

Figure 14. Near-asymptotic performance of direct inverse modeling. Each vector repre-
sents the error at a particular position in the workspace.

vectors as inputs to the network, obtaining the joint-angle outputs, and
mapping these outputs into Cartesian space using Equation 20. The result-
ing vector field is shown in Figure 14. As can be seen, there is substantial
error at many positions of the workspace, even though the learning algo-
rithm has converged. If training is continued, the loci of the errors continue
to shift, but the RMS error remains approximately constant. Although this
error is partially due to the finite learning rate and the random sampling
procedure (“misadjustment”; see Widrow & Stearns, 1985), the error re-
mains above .4 even when the learning rate is taken to zero, Thus, misadjust-
ment cannot account for the error, which must be due to the nonconvexity
of the inverse kinematic relation. Note, for example, that the error observed
in Figure 13 is reproduced in the lower left portion of Figure 14.

DISTAL SUPERVISED LEARNING

Figure 15. Near-asymptotic performance of distal learning.

In Figure 15, we demonstrate that the distal learning approach can find a
particular inverse kinematic mapping. We performed a simulation that was
initialized with the incorrect controller obtained from direct inverse model-
ing. The simulation utilized a forward model that had been trained previ-
ously (the forward model was trained during the direct inverse modeling
trials). A grid of 285 evenly spaced positions in Cartesian space was used to
provide targets during the second phase of the distal learning procedure.‘*
On each trial the error in Cartesian space was passed backward through the
forward model and used to change the weights of the controller. After
28,500 such learning trials (100 passes through the grid of targets), the
resulting vector-field was plotted. As shown in the figure, the vector error
decreases toward zero throughout the workspace; thus, the controller is
converging toward a particular inverse kinematic function.

Additional Constraints. A further virtue of the distal learning approach
is the ease with which it is possible to incorporate additional constraints in
the learning procedure and thereby bias the choice of a particular inverse
function. For example, a minimum-norm constraint can be realized by add-
ing a penalty term of the form -xX to the propagated errors at the output
of the controller. Temporal smoothness constraints can be realized by incor-
porating additional error terms of the form X(x[n] - x[n - 11). Such con-
straints can be defined at other sites in the network as well, including the
output units or hidden units of the forward model. It is also possible to pro-
vide additional contextual inputs to the controller and thereby learn multi-
ple, contextually appropriate inverse functions. These aspects of the distal
learning approach are discussed in more detail in Jordan (1990, 1992).

I1 The use of a grid is not necessary; the procedure also works if Cartesian positions are
sampled randomly on each trial.

330 JORDAN AND RUMELHART

Flgure 16. Goal-directed learning: A Cartesian target in the lower right portion of the
figure wos presented for 10 successive trials: the error vectors ore close to zero in the
vicinity of the target.

Goal-Directed Learning. Direct inverse modeling does not learn in a
goal-directed manner. To learn a specific Cartesian target, the procedure
must sample over a sufficiently large region of joint space and rely on inter-
polation. Heuristics may be available to restrict the search to certain
regions of joint space, but such heuristics are essentially prior knowledge
about the nature of the inverse mapping and can equally well be incor-
porated into the distal learning procedure.

Distal learning is fundamentally goal directed. It is based on the perfor-
mance error for a specific Cartesian target and is capable of finding an exact
solution for a particular target in a small number of trials. This is demon-
strated by the simulation shown in Figure 16. Starting from the controller
shown in Figure 14, a particular Cartesian target was presented for 10 succes-
sive trials. As shown in Figure 16, the network reorganizes itself so that the
error is small in the vicinity of the target. After 10 additional trials, the error
at the target is zero within the floating-point resolution of the simulation.

Approximate Forward Models. We conducted an additional simulation
to study the effects of inaccuracy in the forward model. The simulation
varied the number of trials allocated to the learning of the forward model
from 50 to 5,000. The controller was trained to an RMS criterion of .OOl at
the three target positions (- .25, .25), (.25, .25), and (.OO, .65). As shown in
Figure 17, the results demonstrate that an accurate controller can be found
with an inaccurate forward model. Fewer trials are needed to learn the tar-
get positions to criterion with the most accurate forward model; however,
the dropoff in learning rate with less accurate forward models is relatively

DISTAL SUPERVISED LEARNING 331

Z
g 3000-

2!
t m
0

3 2000-
‘c
z

E
c

z IOOO-

ii =
0
t
c

s 0-r
0

I I
1000 2000 3000 4000

Forward model training (trials)

Figure 17. Number of trials required to train the controller to an RMS criterion of .OOl as a
function of the number of trials allocated to training the forward model: each point is an
average over three runs.

slight. Reasonably rapid learning is obtained even when the forward model
is trained for only 50 trials, even though the average RMS error in the for-
ward model is 0.34 m after 50 trials, compared to 0.11 m after 5000 trials.

Further Comparisions with Direct Inverse Modeling. In problems with
many output variables it is often unrealistic to acquire an inverse model
over the entire workspace. In such cases the goal-directed nature of distal
learning is particularly important because it allows the system to obtain in-
verse images for a restricted set of locations. However, the forward model
must also be learned over a restricted region of action space, and there is no
general a priori method for determining the appropriate region of the space
in which to sample. That is, although distal learning is goal directed in its
acquisition of the inverse model, it is not inherently goal directed in its ac-
quisition of the forward model.

Because neither direct inverse modeling nor distal learning is entirely goal
directed, in any given problem it is important to consider whether it is more
reasonable to acquire the inverse model or the forward model in a nongoal-
directed manner. This issue is problem dependent, depending on the nature
of the function being learned, the nature of the class of functions that can
be represented by the learner, and the nature of the learning algorithm. It is
worth noting, however, that there is an inherent tradeoff in complexity be-
tween the inverse model and the forward model, due to the fact that their
composition is the identity mapping. This tradeoff suggests a complemen-

332 JORDAN AND RUMELHART

tarity between the classes of problems for which direct inverse modeling and
distal lear.mng are appropriate. We believe that distal learning is more
generally useful, however, because an inaccurate forward model is generally
acceptable whereas an inaccurate inverse model is not. In many cases, it
may be preferable to learn an inaccurate forward model that is specifically
inverted at a desired set of locations rather than learning an inaccurate in-
verse model directly and relying on interpolation.

DYNAMIC ENVIRONMENTS:
ONE-STEP DYNAMIC MODELS

To illustrate the application of distal learning to problems in which the envi-
ronment has state, we consider the problem of learning to control a two-joint
robot arm. Controlling a dynamic robot arm involves finding the appropri-
ate torques to cause the arm to follow desired trajectories. The problem is
difficult because of the nonlinear couplings between the motions of the two
links and because of the fictitious torques due to the rotating coordinate
systems.

The arm that we consider is the two-link version of the arm shown pre-
viously in Figure 11. Its configuration at each point in time is described by
the joint angles, q,(t) and q2(t), and by the Cartesian variables, x,(t) and
x2(f). The kinematic function, x(t) = g(q(t)), which relates joint angles to
Cartesian variables, can be obtained by letting 1, equal zero in Equation 20: xdt) [I [kos(q4)) + I,cos(q,(t) + q*(t))

= 1 , a(t) 4sin(a(t)) + Itsin + q2(t))

where I, and I2 are the link lengths. The state space for the arm is the four-
dimensional space of positions and velocities of the links.

The essence of robot arm dynamics is a mapping between the torques ap-
plied at the joints and the resulting angular accelerations of the links. This
mapping is dependent on the state variables of angle and angular velocity.
Let q, q, and q represent the vector of joint angles, angular velocities, and
angular accelerations, respectively, and let r represent the torques. In the
terminology of earlier sections, q and (1 together constitute the “state” and
T is the “action.” For convenience, we take q to represent the “next-state”
(see the ensuing discussion). To obtain an analog of the next-state function
in Equation 1, the following differential equation can be derived for the
angular motion of the links, using standard Newtonian or Lagrangian
dynamicaI formulations (Craig, 1986):

DISTAL SUPERVISED LEARNING

4, i

33!3

. . l

4 2

t Controller m Arm
s

c

Figure 18. The forward and inverse mappings associated with arm dynamics.

where M(q) is an inertia matrix, C(q, q) is a matrix of Coriolis and centri-
petal terms, and G(q) is the vector of torque due to gravity. Our interest is
not in the physics behind these equations per se, but in the functional rel-
tionships that they define. In particular, to obtain a “next-state function,”
we rewrite Equation 22 by solving for the accelerations to yield:

q = M-‘(db - (3, dq - GOdI, (23)

where the existence of M-t(q) is always assured (Craig, 1986). Equation 23
expresses the state-dependent relationship between torques and accelera-
tions at each moment in time: Given the state variables, q(t) and q(t), and
given the torque r(f), the acceleration q(t) can be computed by substitution
in Equation 23. We refer to this computation as the forward dynamics of
the arm.

An inverse mapping between torques and accelerations can be obtained
by interpreting Equation 22 in the proper manner. Given the state variables
q(t) and q(t), and given the acceleration a(t), substitution in Equation 22
yields the corresponding torques. This (algebraic) computation is referred
to as inverse dynamics. It should be clear that inverse dynamics and forward
dynamics are complementary computations: Substitution of r from Equa-
tion 22 into Equation 23 yields the requisite identity mapping.

These relationships among torques, accelerations, and states are sum-
marized in Figure 18. It is useful to compare this figure with the kinematic
example shown in Figure 12. In both the kinematic case and the dynamic
case, the forward and inverse mappings that must be learned are fixed func-
tions of the instantaneous values of the relevant variables. In the dynamic
case, this is due to the fact that the structural terms of the dynamical equa-
tions (the terms M, C, and G) are explicit functions of state rather than
time. The dynamic case can be thought of as a generalization of the
kinematic case in which additional contextual (state) variables are needed to
index the mappings that must be learned.lZ

I2 This perspective is essentially that underlying the local optimization formulation of distal
learning.

334 JORDAN AND RUMELHART

Figure 18 is an instantiation of Figure 6, with the acceleration playing the
role of the“‘next state.” In general, for systems described by differential
equations, it is convenient to define the notion of “next state” in terms of
the time derivative of one or more of the state variables (e.g., accelerations
in the case of arm dynamics). This definition is entirely consistent with the
development in preceding sections; indeed, if the differential equations in
Equation 22 are simulated in discrete time on a computer, then the numeri-
cal algorithm must compute the accelerations defined by Equation 23 to
convert the positions and velocities at the current time step into the posi-
tions and velocities at the next time step.‘)

Learning a Dynamic Forward Model
A forward model of arm dynamics is a network that learns a prediction 4
of the acceleration ;ri, given the position q, the velocity q, and the torque 7.
The appropriate teaching signal for such a network is the actual acceleration
ii, yielding the following cost functional:

L = +{(q - @(ii - &}. 04

The prediction 4 is a function of the position, the velocity, the torque, and
the weights:

i = hq, 4, 7, w).
For an appropriate ensemble of control trajectories, this cost functional is
minimized when a set of weights is found such that A*, w) best approximates
the forward dynamical function given by Equation 23.

An important difference between kinematic problems and dynamic prob-
blems is that it is generally infeasible to produce arbitrary random control
signals in dynamical environments, because of considerations of stability.
For example, if 7(t) in Equation 22 is allowed to be a stationary, white-
noise stochastic process, then the variance of q(t) approaches infinity (much
like a random walk). This yields data that is of little use for learning a
model. We have used two closely related approaches to overcome this prob-
lem. The first approach is to produce random equilibrium positions for the
arm rather than random torques. That is, we define a new control signal u(t)
such that the augmented arm dynamics are given by:

Mhlii + Ch, tilti + G(q) = kv(il - 13 + k,dq - II), (25)

IS Because of the amplification of noise in differentiated signals, however, most realistic
implementations of forward dynamical models would utilize positions and velocities rather
than accelerations. In such cases the numerical integration of Equation 23 would be incor-
porated as part of the forward model.

DISTAL SUPERVISED LEARNING

- Feedback 4
- Controller

. Feedforward
Controller Arm

Forward +
- -Model - - - - 1

Flgure 19. The composite control system.

for fixed constants kp and k,. The random control signal u in this equation
acts as a “virtual” equilibrium position for the arm (Hogan, 1984) and the
augmented dynamics can be used to generate training data for learning the
forward model. The second approach also utilizes Equation 25 and differs
from the first approach only in the choice of the control signal u(t). Rather
than using random controls, the target trajectories themselves are used as
controls (i.e., the trajectories utilized in the second phase of learning are
also used to train the forward model). This approach is equivalent to using a
simple fixed-gain proportional-derivative (PD) feedback controller to
stabilize the system along a set of reference trajectories and thereby generate
training data.‘* Such use of auxiliary feedback controller is similar to its use
in the feedback-error learning (Kawato, Furukawa, & Suzuki, 1987) and
direct inverse modeling (Atkeson & Reinkensmeyer, 1988; Miller, 1987) ap-
proaches. As discussed in the following, the second approach has the
advantage of not requiring the forward model to be learned in a separate
phase.

Composite Control System
The composite system for controlling the arm is shown in Figure 19. The
control signal in this diagram is the torque 7, which is the sum of two
components:

I4 A PD controller is a device whose output is a weighted sum of position errors and velocity
errors. The position errors and the velocity errors are multiplied by fixed numbers (gains)
before being summed.

336 JORDAN AND RUMELHART

7 = ?-j-f + T/b,

where TJ- is a feedforward torque and 7~ is the (optional) feedback torque
produced by the auxiliary feedback controller. The feedforward controller
is the learning controller that converges toward a model of the inverse
dynamics of the arm. In the early phases of learning, the feedforward con-
troller produces small random torques, thus, the major source of control is
provided by the error-correcting feedback controller.‘5 When the feedfor-
ward controller begins to be learned, it produces torques that allow the
system to follow desired trajectories with smaller error, thus, the role of the
feedback controller is diminished. Indeed, in the limit where the feedforward
controller converges to a perfect inverse model, the feedforward torque
causes the system to follow a desired trajectory without error and the feed-
back controller is therefore silent (assuming no disturbances). Thus, the
system shifts automatically from feedback-dominated control to feedfor-
ward-dominated control over the course of learning (see, also, Atkeson &
Reinkensmeyer, 1988; Kawato et al., 1987; Miller, 1987).

There are two error signals utilized in learning inverse dynamics: The
prediction error q - q and the performance error ii* - ;[i.“j The prediction
error is used to train the forward model as discussed in the previous section.
Once the forward model is at least partially learned, the performance error
can be used in training the inverse model. The error is propagated backward
through the forward model and down into the feedforward controller where
the weights are changed. This process minimizes the distal cost functional:

J= $E{(ij’ - ii>?&* - a>}* (26)

Simulations
The arm was modeled using rigid-body dynamics assuming the mass to be
uniformly distributed along the links. The links were modeled as thin
cylinders. Details on the physical constants are provided in Appendix C.
The simulation of the forward dynamics of the arm was carried out using a
fourth-order Runge-Kutta algorithm with a sampling frequency of 200 Hz.
The control signals provided by the networks were sampled at 100 Hz.

Standard feedforward connectionist networks were used in all of the
simulations. There were two feedforward networks in each simulation-a
controller and a forward model-with overall connectivity as shown in
Figure 18 (with the box labelled “Arm” being replaced by a forward

IJ As discussed later, this statement is not entirely accurate. The learning algorithm itself
provides a form of error-correcting feedback control.

I6 As noted previously, it is also possible to include the numerical integration of 1 as part of
the forward model and learn a mapping whose output is the predicted next state (&I], &I]).
This approach may be preferred for systems in which differentiation of noisy signals is a
concern.

DISTAL SUPERVISED LEARNING 337

Figure 20. The workspace (the gray region) and four target paths: The trajectories move
from left to right along the paths shown.

trial 0 trial 30

(a) cb)
Figure 21. Performance on one of the four learned trajectories: (a) before learning; (b)
after 30 learning trials.

model). Both the controller and the forward model were feedforward net-
works with a single layer of logistic hidden units. In all of the simulations,
the state variables, torques, and accelerations were represrnted directly as
real-valued activations in the network. Details of the networks used in the
simulations are provided in Appendix B.

In all but the final simulation reported later, the learning of the forward
model and the learning of an inverse model were carried out in separate
phases. The forward model was learned in an initial phase by using a ran-
dom process to drive the augmented dynamics given in Equation 25. The
random process was a white-noise position signal chosen uniformly within
the workspace shown in Figure 20. The learning of the forward model was
terminated when the filtered RMS prediction error reached 0.75 rad/s2.

Learning with an Auxiliary Feedback Controller. After learning the for-
ward model, the system learned to control the arm along the four paths
shown in Figure 20. The target trajectories were minimum jerk trajectories
of l-s duration each. An auxiliary PD feedback controller was used, with
position gains of 1 .O N.m/rad and velocity gains of 0.2 N*ms/rad. Figure
21 shows the performance on a particular trajectory before learning (with

338 JORDAN AND RUMELHART

-1.04 ,
0.0 02 0.4 0.6 0.6 1.0

ttlne

1.0

1
,

c 0.0'

c
I?

-1 .o-

-2.01 ,
0.0 0.2 0.4 0.6 0.6 1.0

Urn0

4.0-

3.0.

20.

1.6-l
0.0 0.2 0.4 0.6 0.6

Wmr

0.6

I

4.
0.0 02 0.4 0.6 0.6

ttme

/

Figure 22. Before learning: In the top graphs, the dotted line is the reference angle and thr
solid line is the actual angle; in the middle graphs, the dotted line is the feedback torque

and the solid line is the feedforward torque.

the PD controller alone) and during the 30th learning trial. The correspond-
ing waveforms are shown in Figures 22 and 23. The middle graphs in these
figures show the feedback torques (dashed lines) and the feedforward torques
(solid lines). As can be seen, in the early phases of learning the torques are
generated principally by the feedback controller and in later phases the
torques are generated principally by the feedforward controller.

DISTAL SUPERVISED LEARNING

-1. .
0.0 02 0.4 0.6 0.6 1.0

-3.01 ,
0.0 0.2 0.4 0.6 0.6 1.0

ttme

1.91 ,
0.0 02 0.4 0.6 0.6 1.0

Ume

0.0 0.2 0.4 0.6 0.6 1.0

0.0 02 0.4 0.6 0.6 1.0

nlna

Figure 23. After learning: In the top grophs, the dotted line is the reference angle and the
solid line is the actual angle: In the middle graphs, the dotted line is the feedback torque

and the solid line is the feedforward torque.

Learning Without an Auxiliary Feedback Controller. An interesting con-
sequence of the goal-directed nature of the forward modeling approach is
that it is possible to learn an inverse dynamic model without using an aux-
iliary feedback controller. To see why this is the case, first note that
minimum jerk reference trajectories (and other “smooth” reference trajec-
tories) change slowly in time. This implies that successive time steps are

340 JORDAN AND RUMELHART

mu = 0.0 mu = 0.01

mu ~0.02

Q.. ** 0
. . ..a’

.’

>

mu ~0.05 Q.......“”
1

mu = 0.1 mu ~0.5

Figure 24. Performance on the first learning trial as a function of the learning rate.

essentially repeated learning trials on the same input vector, thus, the con-
troller converges rapidly to a “solution” for a local region of state space.
As the trajectory evolves, the solution tracks the input, thus, the controller
produces reasonably good torques prior to any “learning.” Put another
way, the distal learning approach is itself a form of error-correcting feed-
back control in the parameter space of the controller. Such error correction
must eventually give way to convergence of the weights if the system is to
learn an inverse model; nonetheless, it is a useful feature of the algorithm
that it tends to stabilize the arm during learning.

This behavior is demonstrated by the simulations shown in Figure 24.
The figure shows performance on the first learning trial as a function of the
learning rate. The results demonstrate that changing the learning rate essen-
tially changes the gain of the error-correcting behavior of the algorithm.

DISTAL SUPERVISED LEARNING 341

mu = 0.1
-. mu=O.O

0 10 20 30 40 50

trial
Figure 25. RMS error for zero and nonzero learning rates.

When the learning rate is set to .5, the system produces nearly perfect per-
formance on the first learning trial. This feature of the algorithm makes it
important to clarify the meaning of the learning curves obtained with the
distal learning approach. Figure 25 shows two such learning curves. The
lower curve is the RMS error obtained with a learning rate of .l. The upper
curve is the RMS error obtained when the learning rate is temporarily set to
zero after each learning trial. Setting the learning rate to zero allows the ef-
fects of learning to be evaluated separately from the error-correcting
behavior. The curves clearly reveal that, on the early trials, the main con-
tributor to performance is error correction rather than learning.

Combining Forward Dynamics and Forward Kinematics. Combining the
forward dynamic models of this section with the forward kinematic models of
the preceding section makes it possible to train the controller using Cartesian
target trajectories. Given that the dynamic model and the kinematic model
can be learned in parallel, there is essentially no performance decrement
associated with using the combined system. In our simulations, we find that
learning times increase by approximately 8% when using Cartesian targets
rather than joint-angle targets.

Learning the Forward Model and the Controller Simultaneously. The
distal learning approach involves using a forward model to train the con-
troller, thus, learning of the forward model must precede the learning of the

342 JORDAN AND RUMELHART

trial 0 trial 30

(4 (b)
Figure 26. Learning the forward model and the controller simultaneously: (a) performonce
before learning an two of the target trajectories; (b) performance after 30 learning trials.

controller. It is not necessary, however, to learn the forward model over the
entire state space before learning the controller: A local forward model is
generally sufficient. Moreover, as we have discussed, the distal learning ap-
proach does not require an exact forward model: Approximate forward
models often suffice. These two facts, in conjunction with the use of
smooth reference trajectories, imply that it should be possible to learn the
forward model and the controller simultaneously. An auxiliary feedback
controller is needed to stabilize the system initially; however, once the for-
ward model begins to be learned, the learning algorithm itself tends to
stabilize the system. Moreover, as the controller begins to be learned, the er-
rors decrease and the effects of the feedback controller diminish auto-
matically. Thus, the system bootstraps itself toward an inverse model.

The simulation shown in Figure 26 demonstrates the feasibility of this
approach. Using the same architecture as in previous experiments, the
system learned four target trajectories starting with small random weights in
both the controller and the forward model. On each time step, two passes of
the backpropagation algorithm were required: one pass with the prediction
error, q - 4, to change the weights of the forward model, and a second
pass with the performance error, q* - q, to change the weights of the con-
troller. An auxiliary PD feedback controller was used, with position gains
of 1.0 N.m/rad and velocity gains of 0.2 N.m*s/rad. As shown in the figure,
the system converges to an acceptable level of performance after 30 learning
trials.

Although the simultaneous learning procedure requires more presenta-
tions of the target trajectories to achieve a level of performance comparable
to that of the two-phase learning procedure, the simultaneous procedure is,
in fact, more efficient than two-phase learning because it dispenses with the
initial phase of learning the forward model. This advantage must be weighed

DISTAL SUPERVISED LEARNING 343

against certain disadvantages, in particular, the possibility of instability is
enhanced because of the error in the gradients obtained from the partially
learned forward model. In practice, we find that it is often necessary to use
smaller step sizes in the simultaneous learning approach than in the two-
phase learning approach. Preliminary experiments have also shown that is
worthwhile to choose specialized representations that enhance the speed
with which the forward model converges. This can be done separately for
the state variable input and the torque input.

DYNAMIC ENVIRONMENTS:
SIMPLIFIED MODELS

In the previous section we demonstrated how the temporal component of
the distal supervised learning problem can be addressed by knowledge of a
set of state variables for the environment. Assuming prior knowledge of a
set of state variables is tantamount to assuming that the learner has prior
knowledge of the maximum delay between the time at which an action is
issued and the time at which an effect is observed in the sensation vector. In
this section we present preliminary results that aim to broaden the scope of
the distal learning approach to address problems in which the maximum
delay is not known (see, also, Werbos, 1987).

A simple example of such a problem is one in which a robot arm is re-
quired to be in a certain configuration at time T, where T is unknown, and
where the trajectory in the open interval from 0 to Tis unconstrained.17 One
approach to solving such problems is to learn a one-step forward model of
the arm dynamics and then to use backpropagation-in-time in a recurrent
network that includes the forward model and a controller (Jordan, 1990;
Kawato, 1990).1a In many problems involving delayed temporal conse-
quences, however, it is neither feasible nor desirable to learn a dynamic for-
ward model of the environment, either because the environment is too com-
plex or because solving the task at hand does not require knowledge of the
evolution of all of the state variables. Consider, for example, the problem
of predicting the height of a splash of water when stones of varying size are
dropped into a pond. It is unlikely that a useful one-step dynamic model
could be learned for the fluid dynamics of the pond. Moreover, if the con-
trol problem is to produce splashes of particular desired heights, it may not

I7 A unique trajectory may be specified by enforcing additional constraints on the temporal
evolution of the actions; however, the only explicit target information is assumed to be that
provided at the final time step.

I8 In Kawato’s (1990) work, backpropagation-in-time is implemented in a spatially unrolled
network and the gradients are used to change activations rather than weights; however, the
idea of using a one-step forward dynamic model is the same. See, also, Nguyen and Widrow
(1989) for an application to a kinematic problem.

344 JORDAN AND RUMELHART

be necessary to model fluid dynamics in detail. A simple forward model that
predicts as integrated quantity-splash height as a function of the size of the
stone-may suffice.

Jordan and Jacobs (1990) illustrated this approach by using distal learn-
ing to solve the problem of learning to balance an inverted pendulum on a
moving cart. This problem is generally posed as an avoidance control prob-
lem in which the only corrective information provided by the environment is
a signal to indicate that failure has occurred (Barto, Sutton, & Anderson
1983). The delay betwen actions (forces applied to the cart) and the failure
signal is unknown, and indeed, can be arbitrarily large. In the spirit of the
foregoing discussion, Jordan and Jacobs also assumed that it is undesirable
to model the dynamics of the cart-pole system; thus, the controller cannot
be learned by using backpropagation-in-time in a recurrent network that in-
cludes a one-step dynamic model of the plant.

The approach adopted by Jordan and Jacobs (1990) involves learning a
forward model whose output is an integrated quantity: an estimate of the
inverse of the time until failure. This estimate is learned using temporal dif-
ference techniques (Sutton, 1988). At time steps on which failure occurs, the
target value for the foward model is unity:

e(f) = 1 - i(r),
where O(t) is the output of the forward model, and e(t) is the error term used
to change the weights. On all other time steps, the following temporal dif-
ference error term is used:

e(t) =
1

1 + i-‘(t + 1)
- i(t),

which yields an increasing arithmetic series along any trajectory that leads
to failure. Once learned, the output of the forward model is used to provide
a gradient for learning the controller. In particular, because the desired out-
come of balancing the pole can be described as the goal of maximizing the
time until failure, the algorithm learns the controller by using zero minus
the output of the forward model as the distal error signal.19

The forward model used by Jordan and Jacobs (1990) differs in an im-
portant way from the other forward models described in this article. Be-
cause the time-until-failure depends on future actions of the controller, the
mapping that the forward model must learn depends not only on fixed
properties of the environment but also on the controller. When the con-
troller is changed by the learning algorithm, the mapping that the forward

I9 This technique can be considered as an example of using sufiervised learning algorithms
to solve a reinforcement learning problem (see the following),

DISTAL SUPERVISED LEARNING 345

model must learn also changes. Thus, the forward model must be updated
continuously during the learning of the controller. In general, for problems
in which the forward model learns to estimate an integral of the closed-loop
dynamics, the learning of the forward model and the controller must pro-
ceed in parallel.

Temporal difference techniques provide the distal learning approach
with enhanced functionality. They make it possible to learn to make long-
term predictions and thereby adjust controllers on the basis on quantities
that are distal in time. They can also be used to learn multistep forward
models. In conjunction with backpropagation-in-time, they provide a flexi-
ble set of techniques for learning actions on the basis of temporally ex-
tended consequences.

DISCUSSION

In this article we have argued that the supervised learning paradigm is
broader than is commonly assumed. The distal supervised learning
framework extends supervised learning to problems in which desired values
are available only for the distal consequences of a learner’s actions and not
for the actions themselves. This is a significant weakening of the classical
notion of the “teacher” in the supervised learning paradigm. In this section
we provide further discussion of the class of problems that can be treated
within the distal supervised learning framework. We discuss possible
sources of training data and we contrast distal supervised learning with rein-
forcement learning.

How Are Training Data Obtained?
To provide support for our argument that distal supervised learning is more
realistic than classical supervised learning, it is necessary to consider possi-
ble sources of training data for distal supervised learning. We discuss two
such sources, which we refer to as imitation and envisioning.

One of the most common ways for humans to acquire skills is through
imitation. Skills such as dance or athletics are often learned by observing
other persons performing the skill and attempting to replicate their behavior.
Although in some cases a teacher may be available to suggest particular pat-
terns of limb motion, such direct instruction does not appear to be a neces-
sary component of skill acquisition. A case in point is speech acquisition:
Children acquire speech by hearing speech sounds, not by receiving instruc-
tion on how to move their articulators.

Our conception of a distal supervised learning problem involves a set of
(intention, desired outcome) training pairs. Learning by imitation clearly
makes desired outcomes available to the learner. With regard to intentions,

346 _ JORDAN AND RUMELHART

there are three possibilities. First, the learner may know or be able to infer
the intentions of the person serving as a model. Alternatively, an idiosyn-
cratic internal encoding of intentions is viable as long as the encoding is con-
sistent. For example, a child acquiring speech may have an intention to
drink, may observe another person obtaining water by uttering the form
“water,” and may utilize the acoustic representation of “water” as a distal
target for learning the articulatory movements for expressing a desire to
drink, even though the other person uses the water to douse a fire. Finally,
when the learner is acquiring an inverse model, as in the simulations
reported here, the intention is obviously available because it is the same as
the desired outcome.

Our conception of a distal supervised learning problem as a set of train-
ing pairs is, of course, an abstraction that must be elaborated when dealing
with complex tasks. In a complex task such as dance, it is presumably not
easy to determine the choice of sensory data to be used as distal targets for
the learning procedure. Indeed, the learner may alter the choice of targets
once he or she has achieved a modicum of skill. The learner may also need
to decompose the task into simpler tasks and to set intermediate goals. We
suspect that the role of external “teachers” is to help with these representa-
tional issues rather than to provide proximal targets directly to the learner.

Another source of data for the distal supervised learning paradigm is a
process we refer to as “envisioning.” Envisioning is a general process of
converting abstract goals into their corresponding sensory realizations, with-
out regard to the actions needed to achieve the goals. Envisioning involves
deciding what it would “look like” or “feel like” to perform some task.
This process presumably involves general deductive and inductive reasoning
abilities as well as experience with similar tasks. The point we want to em-
phasize is that envisioning need not refer to the actions actually needed to
carry out a task; that is the problem solved by the distal learning procedure.

Comparisions with Reinforcement Learning
An alternative approach to solving the class of problems we have discussed in
this article is to use reinforcement learning algorithms (Barto, 1989; Sutton,
1984). Reinforcement learning algorithms are based on the assumption that
the environment provides an evaluation of the actions produced by the
learner. Because the evaluation can be an arbitrary function, the approach
is, in principle, applicable to the general problem of learning on the basis of
distal signals.

Reinforcement learning algorithms work by updating the probabilities of
emitting particular actions. The updating procedure is based on the evalua-
tions received from the environment. If the evaluation of an action is favor-
able, then the probability associated with that action is increased and the
probabilities associated with all other actions are decreased. Conversely, if

DISTAL SUPERVISED LEARNING 347

the evaluation is unfavorable, then the probability of the given action is de-
creased and the probabilities associated with all other actions are increased.
These characteristic features of reinforcement learning algorithms differ in
important ways from the corresponding features of supervised learning
algorithms. Supervised learning algorithms are based on the existence of a
signed error vector rather than an evaluation. The signed error vector is
generally, although not always, obtained by comparing the actual output
vector to a target vector. If the signed error vector is small, corresponding
to a favorable evaluation, the algorithm initiates no changes. If the signed
error vector is large, corresponding to an unfavorable evaluation, the algo-
rithm corrects the current action in favor of a particular alternative action.
Supervised learning algorithms do not simply increase the probabilities of
all alternative actions; rather, they choose particular alternatives based on
the directionality of the signed error vector.20

It is important to distinguish between learning paradigms and learning
algorithms. Because the same learning algorithm can often be utilized in a
variety of learning paradigms, a failure to distinguish between paradigms
and algorithms can lead to misunderstanding. This is particularly true of
reinforcement learning tasks and supervised learning tasks because of the
close relationships between evaluative signals and signed error vectors. A
signed error vector can always be converted into an evaluative signal (any
bounded monotonic function of the norm of the signed error vector suf-
fices); thus, reinforcement learning algorithms can always be used for
supervised learning problems. Conversely, an evaluative signal can always
be converted into a signed error vector (using the machinery we discussed;
see, also, Munro, 1987); thus, supervised learning algorithms can always be
used for reinforcement learning problems. The definition of a learning
paradigm, however, has more to do with the manner in which a problem is
naturally posed than with the algorithm used to solve the problem. In the
case of the basketball player, for example, assuming that the environment
provides directional information such as “too far to the left,” “too long,”
or “too short,” is very different from assuming that the environment pro-
vides evaluative information of the form “good,” “better,” or “best.”
Furthermore, learning algorithms differ in algorithmic complexity when ap-
plied across paradigms: Using a reinforcement learning algorithm to solve a
supervised learning problem is likely to be inefficient because such algo-
rithms do not take advantage of directional information. Conversely, using
supervised learning algorithms to solve reinforcement learning problems is
likely to be inefficient because of the extra machinery required to induce a
signed error vector.

I0 As pointed out by Barto et al. (1983). this distinction between reinforcement learning and
supervised learning is significant only if the learner has a repertoire of more than two actions.

348 _ JORDAN AND RUMELHART

In summary, although it has been suggested that the difference between
reinforcement learning and supervised learning is the latter’s reliance on a
“teacher,” we believe that this argument is mistaken. The distinction between
the supervised learning paradigm and the reinforcement learning paradigm
lies in the interpretation of environmental feedback as an error signal or as
an evaluative signal, not the coordinate system in which such signals are
provided. Many problems involving distal credit assignment may be better
conceived of as supervised learning problems rather than reinforcement
learning problems if the distal feedback signal can be interpreted as a per-
formance error.

CONCLUSIONS

There are a number of difficulties with the classical distinctions between
“unsupervised, ” “reinforcement,” and “supervised” learning. Supervised
learning is generally said to be dependent on a “teacher” to provide target
values for the output units of a network. This is viewed as a limitation
because in many domains there is no such teacher. Nevertheless, the environ-
ment often does provide sensory information about the consequences of an
action that can be employed in making internal modifications, just as if a
teacher had provided the information to the learner directly. The idea is that
the learner first acquires an internal model that allows prediction of the con-
sequences of actions. The internal model can be used as a mechanism for
transforming distal sensory information about the consequences of actions
into proximal information for making internal modifications. This two-
phase procedure extends the scope of the supervised learning paradigm to
include a broad range of problems in which actions are transformed by an
unknown dynamical process before being compared to desired outcomes.

We first illustrated this approach in the case of learning an inverse model
of a simple “static” environment. We showed that our method of utilizing a
forward model of the environment has a number of important advantages
over the alternative method of building the inverse model directly. These
advantages are especially apparent in cases where there is no unique inverse
model. We also showed that this idea can be extended usefully to the case of
a dynamic environment. In this case, we simply elaborate both the forward
model and the learner (i.e., controller) so they take into account the current
state of the environment. Finally, we showed how this approach can be
combined with temporal difference techniques to build a system capable of
learning from sensory feedback that is subject to an unknown delay.

We also suggested that comparative work in the study of learning can be
facilitated by making a distinction between learning algorithms and learning
paradigms, A variety of learning algorithms can often be applied to a par-
ticular instance of a learning paradigm. Thus, it is important to characterize

DISTAL SUPERVISED LEARNING 349

not only the paradigmatic aspects of any given learning problem, such as
the nature of the interaction between the learner and the environment and
the nature of the quantities to be optimized, but also the tradeoffs in algo-
rithmic complexity that arise when different classes of learning algorithms
are applied to the problem. Further research is needed to delineate the
natural classes at the levels of paradigms and algorithms and to clarify the
relationships between levels. We believe that such research will begin to pro-
vide a theoretical basis for making distinctions among candidate hypotheses
in the empirical study of human learning.

REFERENCES

Atkeson, C.G., & Reinkensmeyer, D.J. (1988). Using associative content-addressablememories
to control robots. Proceedings of the IEEE Conference on Decision and Control.

Barto, A.G. (1989). From chemotaxis to cooperativity: Abstract exercises in neuronal learning
strategies. In R.M. Durbin, R.C. Maill, & G.J. Mitchison (Eds.), The computing
neurone. Reading, MA: Addison-Wesley.

Barto, A.G., Sutton, R.S., & Anderson, C.W. (1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13, 834-846.

Becker, S., & Hinton, G.E. (1989). Spatial coherence as an internal teacher for a neural net-
work (Tech. Rep. No. CRG-TR-89-7). Toronto: University of Toronto, Department of
Computer Science.

Carlson, A.B. (1986). Communication systems. New York: McGraw-Hill.
Craig, J.J. (1986). Introduction to robotics. Reading, MA: Addison-Wesley.
Gelfand, I.M., & Fomin, S.V. (1963). Calculus of variations. Englewood Cliffs, NJ: Prentice-

Hall.
Goodwin, G.C., & Sin, K.S. (1984). Adaptive filtering prediction and control. Englewood

Cliffs, NJ: Prentice-Hall.
Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance.

Cognitive Science, II, 23-63.
Hinton, G.E., & Sejnowski, T.J. (1986). Learning and relearning in Boltamann machines.

In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel distributed processing (Vol. 1).
Cambridge, MA: MIT Press.

Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of
Neuroscience, 4, 2745-2754.

Jordan, M.I. (1983). Mentalpractice. Unpublished dissertation proposal, Center for Human
Information Processing, University of California, San Diego.

Jordan, M.I. (1986). Serial order: A parallel, distributedprocessing approach (Tech. Rep. No.
8604). La Jolla: University of California, San Diego.

Jordan, M.I. (1990). Motor learning and the degrees of freedom problem. In M. Jeannerod
(Ed.), Attention andperformance (Vol. 13). Hillsdale, NJ: Erlbaum.

Jordan, M.I. (1992). Constrained supervised learning. Journal of h4athematical Psychology,
36, 396-425.

Jordan, M.I., & Jacobs, R.A. (1990). Learning to control an unstable system with forward
modeling. In D. Touretzky (Ed.), Advances in neural information processing systems
(Vol. 2). San Mateo, CA: Morgan Kaufmamr.

Jordan, MI., & Rosenbaum, D.A. (1989). Action. In M.I. Posner (Ed.), Foundations of cog-
nitive science. Cambridge, MA: MIT Press.

350 . JORDAN AND RUMELHART

Kawato, M. (1990) Computational schemes and neural network models for formation and
control of multijoint arm trajectory. In W.T. Miller, III, R.S. Sutton, & P.J. Werbos
(Eds.), Neural nelworksfor control. Cambridge, MA: MIT Press.

Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural network model for
control and learning of voluntary movement. Biological Cybernetics, 57, 169-185.

Kirk, D.E. (1970). Optimal control theory. Englewood Cliffs, NJ: Prentice-Hall.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biotogi-

cat Cybernetics, 43, 56-69.
Kuperstein, M. (1988). Neural model of adaptive hand-eye coordination for single postures.

Science, 239, 1308-1311.
LeCun, Y. (1985). A learning scheme for asymmetric threshold networks. Proceedings of

Cognitiva 85.
LeCun, Y. (1987). Mod&s connexionnistes de I’apprentissage. [Connectionist models of

learning]. Unpublished doctoral dissertation, University of Paris.
Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105-117.
Ljung, L., t Sijderstrom, T. (1986). Theory and pructice of recursive ident(fication. Cam-

bridge, MA: MIT Press.
Miller, W.T. (1987). Sensor-based control of robotic manipulators using a general learning

algorithm. IEEE Journal of Robotics and Automation, 3, 157-165.
Miyata, Y. (1988). An unsupervised PDP learning model for action planning. Proceedings of

the Tenth Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.
Mozer, MC., & Bachrach, J. (1990). Discovering the structure of a reactive environment by

exploration. In D. Touretzky (Ed.), Advances in neural information processing systems
(Vol. 2). San Mateo, CA: Morgan Kaufmann.

Munro, P. (1987). A dual back-propagation scheme for scalar reward learning. Proceedings of
the Ninth Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Narendra, K.S., & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, I, 4-27.

Nguyen, D., & Widrow, B. (1989). The truck backer-upper: An example of self-learning in
neural networks. Proceedings of the International Joint CorZference on Neural Net-
works, 2, 357-363.

Parker, D. (1985). Leurning logic (Tech. Rep. No. TR-47). Cambridge, MA: MIT, Sloan
School of Management.

Robinson, A.J., & Fallside, F. (1989). Dynamic reinforcement driven error propagation net-
works with application to game playing. Proceedings of Neural Information Systems.
American Institute of Physics.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.
Rumelhart, D.E. (1986). Learning sensorimotor programs in parallel distributed processing

systems. Paper presented at US-Japan Joint Seminar on Competition and Cooperation
in Neural Nets, II, Los Angeles, CA.

Rumelhart, D.E., Hinton, GE., & Williams, R.J. (1986). Learning internal representations
by error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Purutleldistributed
processing (Vol. 1). Cambridge, MA: MIT Press.

Rumelhart, D.E., Smolensky, P., McClelland, J.L., & Hinton, GE. (1986). Schemata and
sequential thought processes in PDP models. In D.E. Rumelhart & J.L. McClelland
(Eds.), Purallel distributed processing (Vol. 2). Cambridge, MA: MIT Press.

Rumelhart, D.E., & Zipser, D. (1986). Feature discovery by competitive learning. In D.E.
Rumelhart & J.L. McClelland (Eds.), Parallel distributed processing (Vol. 1). Cam-
bridge, MA: MIT Press.

Schmidhuber, J.H. (1990). An on-line algorithm for dynamic reinforcement learning and
planning in reactive environments. Proceedings of the International Joint Corlference
on Neural Networks, 2, 253-258.

DISTAL SUPERVISED LEARNING 351

Sutton, R.S. (1984). Temporal credit assignment in reinforcement learning. (COINS Tech.
Rep. No. 84-02). Amherst: University of Massachusetts, Department of Computer and
Information Sciences.

Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9-44.

Sutton, R.S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. Proceedings of the Seventh International Con-

ference on Machine Learning pp. 216-224.
Werbos, P. (1974). Beyond regression: New tools forprediction and analysis in the behavioral

sciences. Unpublished doctoral dissertation, Harvard University, Cambridge, MA.
Werbos, P. (1987). Building and understanding adaptive systems: A statistical/numerical ap-

proach to factory automation and brain research. IEEE Transactions on Systems, Man,
and Cybernetics, 17, 7-20.

Widrow, B., & Hoff, M.E. (1960). Adaptive switching circuits. Institute of Radio Engineers,
Western Electronic Show and Convention, Convention Record (Part 4), 96-104.

Widrow, B., & Stearns, S.D. (1985). Adaptive signal processing. Englewood Cliffs, NJ:
Prentice-Hall.

APPENDIX A

To obtain an expression for the gradient of Equation 16, we utilize a contin-
uous-time analog, derive a necessary condition, and then convert the result
into discrete time. To simplify the exposition we compute partial derivatives
with respect to the actions u instead of the weights w. The resulting equa-
tions are converted into gradients for the weights by premultiplying by the
transpose of the Jacobian matrix (&/a~).

Let u(t) represent an action trajectory and let y(t) represent a sensation
trajectory. These trajectories are linked in the forward direction by the
dynamical equations:

B = f(x, II)
and

Y = g(x).
The action vector u is assumed to depend on the current state and the target
vector:

u = h(x, yy.
The functional to be minimized is given by the following integral:

J = $ j,T(y* - y)T(y* - YW,

352 JORDAN AND RUMELHART

which is the continuous-time analog of Equation 16 (we have suppressed the
subscript (11 to simplify the notation).

Let ‘P(t) and \k(t) represent vectors of time-varying Lagrange multipliers
and define the Lagrangian:

L(f) = + (y* - y>=cy* - y) + [Ax, II) - k]=@ + [h(x, y*) - u]T f.

The Lagrange multipliers have an interpretation as sensitivities of the cost
with respect to variations in i and y, respectively. Because these sensitivities
become partial derivatives when the problem is converted to discrete time,
we are interested in solving for *(t).

A necessary condition for an optimizing solution is that it satisfy the
Euler-Lagrange equations (Gelfand & Fomin, 1963):

at
ax

dE=()
-Z air

and
aL

au
daL=()

-tit ati
at each moment in time. These equations are the equivalent in function
space of the familiar procedure of setting the partial derivatives equal to
zero.

Substituting for L(t) and simplifying we obtain:

and

q=afT*.
au

Using a Euler approximation, these equations can be written in discrete
time as recurrence relations:

@[n - l] = Wnl + tZ*ln] + T$P[n] -

7 s (YW - Ybl)

and

afT 9[n] = - au @P[~l, V-9

DISTAL SUPERVISED LEARNING 353

where T is the sampling period of the discrete approximation. To utilize
these recurrence relations in a discrete-time network, the sampling period r is
absorbed in the network approximations of the continuous-time mappings.
The network approximation off must also include an identity feedforward
component to account for the initial autoregressive term in Equation 27.
Premultiplication of Equation 28 by the transpose of the Jacobian matrix
(&r/aw) then yields Equations 17, 18, and 19 in the main text.

APPENDIX B

The networks used in all of the simulations were standard feedforward con-
nectionist networks (see Rumelhart, Hinton, et al. 1986).

Activation Functions. The input units and the output units of all net-
works were linear, and the hidden units were logistic with asymptotes of - 1
and 1.

Input and Target Values. In the kinematic arm simulations, the joint
angles were represented using the vector [cos(q, - a/2), cos(q2), cos(q,)lr.
The Cartesian targets were scaled to lie between - 1 and 1, and fed directly
into the network.

In the dynamic arm simulations, all variables-joint angles, angular
velocities, angular accelerations, and torques-were scaled and fed directly
into the network. The scaling factors were chosen such that the scaled varia-
bles ranged approximately from - 1 to 1.

Initial Weights. Initial weights were chosen randomly from a uniform
distribution on the interval [- S, 31.

Hidden Units. A single layer of 50 hidden units was used in all networks.
No attempt was made to optimize the number of the hidden units or their
connectivity.

Parameter Values. A learning rate of .l was used in all of the kinematic
arm simulations. The momentum was set to 3.

In the dynamic arm simulations, a learning rate of .l was used in all
cases, except for the simulation shown in Figure 24 in which the learning
rate was manipulated explicitly. No momentum was used in the dynamic
arm simulations.

354 JORDAN AND RUMELHART

APPENDIXC
The dynamic arm was modeled using rigid-body mechanics. The link
lengths were 0.33 m for the proximal link and 0.32 m for the distal link. The
masses of the links were 2.52 kg and 1.3 kg.

The mass was assumed to be distributed uniformly along the links. The
moments of inertia of the links about their centers of mass were therefore
given by Ii = mil?/12, yielding 0.023 kg*m’ and 0.012 kg-m2 for the proxi-
mal and distal links, respectively.

