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Object motion in natural scenes results in visual stimuli with a rich and broad spatiotemporal frequency spectrum. While the question of
how the visual system detects and senses motion energies at different spatial and temporal frequencies has been fairly well studied, it is
unclear how the visual system integrates this information to form coherent percepts of object motion. We applied a combination of
tailored psychophysical experiments and predictive modeling to address this question with regard to perceived motion in a given
direction (i.e., stimulus speed). We tested human subjects in a discrimination experiment using stimuli that selectively targeted four
distinct spatiotemporally tuned channels with center frequencies consistent with a common speed. We first characterized subjects’
responses to stimuli that targeted only individual channels. Based on these measurements, we then predicted subjects’ psychometric
functions for stimuli that targeted multiple channels simultaneously. Specifically, we compared predictions of three Bayesian observer
models that either optimally integrated the information across all spatiotemporal channels, or only used information from the most
reliable channel, or formed an average percept across channels. Only the model with optimal integration was successful in accounting for
the data. Furthermore, the proposed channel model provides an intuitive explanation for the previously reported spatial frequency
dependence of perceived speed of coherent object motion. Finally, our findings indicate that a prior expectation for slow speeds is added
to the inference process only after the sensory information is combined and integrated.
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Introduction
The relative movements of objects in our visual environment lead
to complex patterns of spatiotemporal luminance changes in the
retinal images. To form coherent motion percepts, the visual
system must first detect and sense these changes at different spa-
tial and temporal frequencies, and then combine the sensory in-
formation appropriately. Here, we investigated the computations
that underlie this integration in the case of coherent motion.

The rich patterns of incoming visual information are
decomposed into their basic spatiotemporal components in pri-
mary visual cortex (V1). These components are then appropri-
ately combined and processed along a hierarchy of extrastriate
cortical areas to represent more complex features (Felleman and
Van Essen, 1991). Most neurons in V1 respond to moving stimuli
and are tuned for a specific range in spatiotemporal frequency
space (Movshon et al., 1985). The medial temporal (MT) area
receives direct input from V1 and is considered the first extrastri-
ate area that integrates visual motion information (Zeki, 1974).
While it is relatively well understood how the responses of V1
neurons are combined to form the input to neurons in area MT

(in particular with regard to their direction tuning; Adelson and
Bergen, 1985; Simoncelli and Heeger, 1998; Perrone and Thiele,
2002; Rust et al., 2006; Solomon et al., 2011), it remains unclear
how this neural integration relates to motion perception. What
makes this question challenging but interesting is the fact that
perceived motion depends on stimulus contrast and spatial fre-
quency (Thompson, 1982; Smith and Edgar, 1991). Several stud-
ies have investigated the potential link between changes in
motion percepts and the contrast and spatial frequency-
dependent changes in the response characteristics of neurons in
area MT (Churchland and Lisberger, 2001; Priebe and Lisberger,
2004; Liu and Newsome, 2005; Priebe et al., 2006; Stocker et al.,
2009). Yet the results are at best not conclusive (for a more in
depth discussion, see Krekelberg et al., 2006).

Figure 1 illustrates the conceptual framework within which we
considered the problem of motion integration. We assumed a
motion stimulus with a rich spatiotemporal frequency spectrum.
For simplicity, we only considered coherent motion along a given
motion direction (i.e., visual speed). We started with the assump-
tion that stimulus motion is represented in a set of independent
sensory channels (Campbell and Robson, 1968; Graham and
Nachmias, 1971) each tuned for a specific spatiotemporal fre-
quency band (Jogan and Stocker, 2011, 2013; Simoncini et al.,
2012). We then asked the question how the visual system inte-
grates the information provided by these channels and, poten-
tially, combines it with prior expectations to form a coherent
percept of motion. We formulated three Bayesian observer mod-
els (Stocker and Simoncelli, 2006) that differed only in the way
they integrated information across the channels: optimally, by
considering only the channel with the most reliable signal, or
by forming an average percept based on each individual chan-
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nel. We performed a two-alternative
forced-choice (2AFC) speed-discrimination
experiment in which we selectively tar-
geted four different spatiotemporal
frequency channels. We validated the
models against the data and found that
only a Bayesian channel model with opti-
mal signal integration can accurately
predict the data both in terms of discrim-
ination thresholds and perceived speeds.

Materials and Methods
Four subjects participated in the speed-dis-
crimination experiment (one female; three
males). All but one subject were naive with re-
gard to the purpose of the study at the time they
were participating. Participants had normal or
corrected-to-normal vision and all gave in-
formed consent before the experiment. The
study was approved by the University of Penn-
sylvania Institutional Review Board (protocol
#813601). During the experiment, subjects were sitting in a darkened
room and their head position was controlled with a chin rest. Stimuli
were displayed at a distance of 60 cm on a Samsung Dell P992 CRT 17
inch computer display with 120 Hz refresh rate and 1024 � 768 pixel
resolution. Gamma was corrected. The experiment was programmed in
Matlab (Mathworks) using display routines from the MGL toolbox
(http://justingardner.net/mgl), and was executed on an Apple Mac Pro
computer with a 2.93 GHz quad-core Intel Xeon processor running OS X
10.6.8.

Stimuli. Stimuli were gratings, generated by taking one-dimensional
bandwidth-limited random noise signals and replicating them along the
second spatial dimension (Fig. 2). The random noise signals were created
by inverse Fourier transforms (random phase). Each stimulus was de-
fined by its spatial frequency spectrum with nonzero amplitudes only
within narrow frequency bands (b � 0.04 �s) centered on four spatial
frequencies �s � {0.5, 1, 2, 4} cycles/° visual angle. The spectrum was
uniform over the bands. Stimuli either had a single-band spectrum (Fig.
2b, single-channel conditions A–D) or a spectrum that consisted of var-
ious combinations of the single-band spectra (Fig. 2c, combined channel
conditions AD, ABD, ABCD). Coherent motion stimuli were generated
by rigidly translating the gratings at a given speed behind a static aper-
ture. The aperture size was 4° and was smoothed with a circular cosine
window of the same width. Stimulus intensity over time was modulated
by a tapered cosine window (100 ms fade-in/fade-out; 600 ms total stim-
ulus duration).

Stimulus calibration. Subjects first participated in a calibration proce-
dure whose purpose was to individually adjust the spectral energies of the
stimuli targeting single channels such that the subjects’ discrimination
thresholds for these stimuli were approximately within a desired range.
The goal was to create single-channel stimuli that provided equally reli-
able sensory information. Subjects compared the speed of a test and
reference stimulus pair that targeted the same spatiotemporal channel
(same spatial frequency spectrum, balanced condition; Fig. 3b). The test
stimulus was always moving at st � 3°/s while the reference was moving at
one of two fixed reference speeds, sr1 � st � sr2 that were equally distant
from the test (in the log-normalized space; see Eq. 1, below). Subjects
were asked to select the stimulus that they perceived as moving faster and
received feedback after each trial. We adaptively adjusted the amplitude
of the spatial frequency spectrum of both the test and reference stimuli
until the subject’s discrimination thresholds approached a predefined
target level. This adjustment was guided by the following procedure: we
modeled a sequence of N recent trials at a particular reference speed sr as
a Bernoulli process with an unknown parameter � that describes the
probability of subjects answering “reference faster.” For � � �, the prob-
ability of K “reference faster” answers in the past N trials is given by the
binomial distribution B(N, �). Given K and N, we were able to continu-
ously infer the posterior probability of � by calculating the beta distri-

bution, � � B(1 � N, 1 � K � N ) (Bayes and Price, 1763). We formed a

current estimate �̂ of the probability value by taking the mean of the
posterior. We computed this estimate whenever the variance of the pos-
terior distribution was below a certain threshold and reset the counter N.
Based on this estimate, we then increased or decreased the spectral ener-
gies of the stimuli depending on some target probability values, assuming
that increased energies lead to a decrease in threshold. The target prob-
ability values were � � 0.25 and � � 0.75, respectively, which corre-
spond to a psychometric function with a slope of 0.6 (cumulative
Gaussian in normalized log-units). This slope value is equivalent to a
stimulus noise level of � � 0.6/�2 according to signal detection theory
(SDT; Green and Swets, 1966). Each staircase was terminated after 200
trials, leading to a total of 1600 trials per subject. The calibration proce-
dure resulted in single-channel stimuli with individual spectral energies
for individual subjects. Across all subjects, we found that the different
channels had very different sensitivities. Specifically, the average stimulus
power (integral over the power spectrum, scaled to represent displayed
luminance values, averaged across subjects) for each channel was as fol-
lows: A, 0.9 cd/m 2; B, 1.9 cd/m 2; C, 2.5 cd/m 2; and D, 8.4 cd/m 2, corre-
sponding to the following maximum contrast values (Michelson
contrast): A, 3.0%; B, 8.7%; C, 12.7%; and D, 45.0%. These characteriza-
tions are in agreement with previous findings that reported decreased
motion sensitivities at high (and very low) spatial frequencies (Chen et
al., 1998).

Speed-discrimination experiment. Subjects performed a 2AFC visual
speed-discrimination experiment (Fig. 3a). Each trial started with a fix-
ation period (400 ms) that was followed by the presentation of a reference
and a test grating on the left and right side of the fixation mark (600 ms).
Positions were randomly assigned. Gratings were presented at 6° eccen-
tricity. Both gratings were drifting in the same direction, either down-
leftwards or down-rightwards randomly assigned. After the gratings
disappeared, an indicator (white square) randomly appeared to the left
or right of the fixation mark (duration, 300 ms; eccentricity, 0.6°; size,
0.3°), and the subject had to answer whether the grating on the indicated
side was drifting faster or slower than the grating on the other side. The
purpose of the indicator was to dissociate a subject’s answer (yes/no)
from the identity of the stimulus (faster/slower) as a precautionary mea-
sure to avoid potential decision biases. All experiments were self-paced,
i.e., subjects had to push a button to start a new trial.

We characterized seven different stimuli from a total of 13 different
2AFC stimulus conditions. Seven balanced conditions (Fig. 3b) had a test
and a reference stimulus with identical spatial frequency spectrum while
in six unbalanced conditions (Fig. 3c) the test stimulus was compared
with a reference stimulus that targeted all channels (ABCD). Stimuli were
as described above and shown in Figure 2. Conditions were fully inter-
leaved. Subjects did not receive feedback. The speed of the test grating

Figure 1. Signal integration across spatiotemporal frequency channels. Natural image motion typically exhibits a rich pattern of
luminance changes over space and time, which is reflected in its broad spatiotemporal frequency spectrum. We assume that the
early visual system, using channels that are each tuned to motion energy in a specific spatiotemporal frequency band, decomposes
image motion into basic spatiotemporal signal components. Image motion with a coherent speed s along a given direction triggers
responses in a set of spatiotemporal frequency channels whose preferred frequency tuning (�s, �t) is consistent with that speed
(for simplicity, we illustrate only 1 spatial dimension). In this paper, we address the question how the visual system integrates the
responses of these channels together with potential prior expectations to form a coherent percept of visual speed.
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was always 3° per second while the reference speed was governed by two
adaptive staircases that each terminated after 100 trials. This led to a total
of 2600 trials, which subjects completed in six sessions. At the begin-
ning of each session, subjects performed a brief training run to famil-
iarize themselves with the task (20 trials). We characterized the
percepts of the test stimuli in each condition by extracting discrimi-
nation thresholds and matching speeds using a joint SDT analysis
(Fig. 3). The confidence in the extracted values of both parameters
was assessed by bootstrapping the data (100 iterations) and calculat-
ing the 95% sample intervals.

Bayesian channel models with different forms of signal integration. We
tested three different variations of a Bayesian observer model for speed
perception, which we formulated with regard to a logarithmic speed
space of the following form (Eq. 1): s � log(1 � slinear/s0), where s0 � 0.3
is a small normalization constant. It has been shown that in this space,
stimulus uncertainty is approximately constant over speed (Nover et al.,
2005), which simplifies the Bayesian model formulation (Stocker and
Simoncelli, 2006). We built on our previous modeling framework that
allowed us to account for subjects’ behavior in a 2AFC speed-
discrimination task at the level of individual psychometric functions
(Stocker and Simoncelli, 2006). The original model assumed that sub-
jects estimate the speed of a stimulus based on a single likelihood
function. Here, we augmented the model by assuming that the sen-
sory information is distributed in the responses of independent spa-
tiotemporal frequency channels. We assumed that a complex motion
stimulus is driving the channels according to its motion energy in
the corresponding frequency bands, eliciting a measurement vector
m� � 	mA, mB, mC, mD
. We parameterized the likelihood function p(mx �
s) for each channel (channel likelihood) as a Gaussian (Eq. 2):

p�mX�s
 �
1

�2��X
2

exp ��
�s�mX
2

2�X
2 �.

The likelihood width �X depends on how strongly the channel is driven.
Thus we assume that the likelihood function is uniform for nonactive
channels.

In addition, we assumed that subjects’ prior expectations follow a
power-law function (Stocker and Simoncelli, 2006). In the logarithmic
speed space, the logarithm of this prior can be expressed as a linear
function log( p(s)) � as � b, where a is the exponent of the power law.
Finally, we assumed that perceived speed ŝ equals the speed with maximal
posterior probability. With these basic assumptions, we defined three
Bayesian observer models that only differ in the way they integrate the
signals across the individual channels. Note that all model formulations
are expressed in the normalized log-speed space (Eq. 1).

Optimal integration. The “optimal model” integrates the information
from all the channels (Fig. 4a). Assuming that the noise in the channels is
independent, the model’s likelihood function is the product of the indi-
vidual channel likelihoods. With the above-described parameterizations
of the channel likelihoods (Eq. 2) and the prior (Eq. 3) we can write the
posterior as follows (Eq. 4):

p�sopt�m� 
 �
1

�
exp ���

X

�s�mX
2

2�X
2 	 �as 	 b
�,

with � a normalization factor. According to the chosen loss function, the
percept (estimate) ŝopt is then the value of s that maximizes the exponent
of Equation 4; thus, the following equation (Eq. 5):

ŝopt�m� 
 � argmaxs���
X

�s�mX
2

2�X
2 	 �as 	 b
�.

For example, for a stimulus that targets the two channels A and D (Fig.
2c), the observer model predicts a percept as follows (Eq. 6):

ŝopt�mA, mD
 �
�D

2

�A
2 	 �D

2 mA 	
�A

2

�A
2 	 �D

2 mD 	 a
�A

2 �D
2

�A
2 	 �D

2 .

To be able to compare the model’s predictions to the data from the 2AFC
experiment, we need a description of the distribution of percepts over
repeated trials; thus, p�ŝopt�s
. In general, the full distribution is computed
by mapping and marginalizing the estimation function ŝopt�m� 
 over the
distributions of the sensory measurement vector p�m� �s
. With the as-
sumptions that (1) the prior is smooth in the speed range we are consid-
ering (i.e., the exponent a is approximately constant; Eq. 3) and (2) the
speed dependence of the likelihood width is weak (in log space), we have
previously shown that the distribution is well approximated by a Gauss-
ian (Stocker and Simoncelli, 2006). Mean and variance of this Gaussian
can be computed for an arbitrary number of channels. For example, in
the case of a stimulus targeting channels A and D, the mean is as follows
(Eq. 7):

E� ŝopt�s��
�D

2

�A
2 	 �D

2 E�mA�s� 	
�A

2

�A
2 	 �D

2 E�mD�s� 	 a
�A

2 �D
2

�A
2 	 �D

2

�
�D

2

�A
2 	 �D

2 s 	
�A

2

�A
2 	 �D

2 s 	 a
�A

2 �D
2

�A
2 	 �D

2

� s 	 a
�A

2 �D
2

�A
2 	 �D

2

.

Similarly, we can approximate the variance as follows (Eq. 8):

Figure 2. Motion stimuli targeting individual spatiotemporal frequency channels. a, A stimulus that coherently moves with speed s has motion energy distributed along a line in the spatiotem-
poral frequency space (in log units), and therefore can be detected by spatiotemporal channels that are tuned for frequencies along this line. In our experiments we used grating stimuli drifting at
3° per second that had energy in narrow bands (0.04 �s) around four distinct spatial frequencies �s � {0.5, 1, 2, 4} cycles/°, respectively. We assumed that these stimuli targeted four independent
spatiotemporal frequency channels (A–D, red dots). b, Synthesized example stimuli that target each of the four channels individually. c, Stimuli that target two (A, D), three (A, B, D), or four (A–D)
channels simultaneously. They are synthesized by combining the frequency spectra of the corresponding single-channel stimuli. This allowed us to compare perceptual performance for complex
stimuli to that of their single-band components. Curves next to each stimulus represent the corresponding luminance profiles (before windowing).
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var� ŝopt�s�	 � �D
2

�A
2 	 �D

2 �2

var�mA�s� 	 � �A
2

�A
2 	 �D

2 �2

var�mD�s�

� � �D
2

�A
2 	 �D

2 �2

�A
2 	 � �A

2

�A
2 	 �D

2 �2

�D
2

�
�A

2 �D
2

�A
2 	 �D

2 .

Having a description for the distributions of the model percepts over
trials allows us to use SDT to directly generate model predictions for the
full, experimentally measured psychometric functions (see Model pre-
dictions of the psychometric functions).

Maximally reliable channel. The “max model” only considers the chan-
nel that provides the most reliable sensory response (Fig. 4b). Its formu-
lation is identical to the optimal model with the exception that the
likelihood function equals the channel likelihood with smallest vari-
ance. Thus the mean and variance of the predicted percept are ex-
pressed as (Eq. 9)

E� ŝmax�s� � s 	 a�min
2 ,

and (Eq. 10)

var� ŝmax�s� � �min
2 ,

respectively.
Channel averaging. The “averaging model” assumes that an indepen-

dent Bayesian estimate is performed for each channel (Fig. 4c). A poste-
rior (Eq. 11)

p�sX�mX
 �
1

�
exp � ��s � mX
2

2�X
2 ��as 	 b
�

and subsequently an individual estimate (Eq. 12)

ŝX�mX
 � mX 	 a�X
2

Figure 3. 2AFC speed-discrimination experiment. a, Subjects performed a 2AFC speed-discrimination experiment characterizing seven different motion stimuli. b, Seven balanced conditions
consisted of a test and a reference stimulus with identical spatial frequency spectrum. c, Six unbalanced conditions had a reference stimulus with a spatial frequency spectrum that targeted all four
channels (stimulus condition ABCD; Fig. 2c). Matching speeds of these psychometric functions indicate how fast the reference grating had to drift to be perceived as fast as the test (always drifting
at 3° per second). It represents a relative measure of the perceived speed of the test stimulus (in units of the reference speed). Discrimination thresholds were obtained from a joint SDT analysis: for
each test stimulus the corresponding pairs of balanced and unbalanced conditions were jointly fit to extract the SD �X of the test stimulus distribution. The SD �Ref was set to the value extracted from
the fit of the balanced condition ABCD. All measurements are performed in a logarithmic space of visual speed. See Materials and Methods for more details.
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can be formulated for each channel X. The model percept then reflects
the average estimate across all k channels; thus (Eq. 13):

ŝavg�m� 
 �
1

k��mX 	 a�X

2

.

Its mean and variance are (Eq. 14)

E� ŝavg�s� � s 	
a

k��X

2

and (Eq. 15)

var� ŝavg�s� �
1

k2��X

2
,

respectively. Unlike the optimal integration model, we assume the aver-
aging model to operate only on active channels, i.e., we implicitly assume
that there is a thresholding mechanism that decides whether a channel is
active or not.

Model predictions of the psychometric functions. The description of the
models in terms of estimation mean and variance allows us to predict
subjects’ perceptual behavior in the 2AFC speed-discrimination task. As
stated earlier, we assume that a subject’s percept ŝ of stimulus speed s over
repeated trials follows a distribution p�ŝ�s
 that is well approximated by a
Gaussian with mean and variance as derived above (e.g., Eqs. 7 and 8 for
the optimal model). We can define this distribution for any model, stim-
ulus type, and speed tested in our experiment. More specifically, we can
define two distributions p�ŝTest�sTest
 and p�ŝRef�sRef
 for the test and the
reference stimulus, respectively. According to SDT (Green and Swets,

1966), the probability that the reference is perceived to move faster than
the test is as follows (Eq. 16):

P� ŝRef 
 ŝTest
 �

0

�

p�ŝRef�sRef


0

ŝRef

p�ŝTest�sTest
 dŝTest dŝRef.

This represents a natural way to embed the Bayesian observer models in
an SDT framework (Stocker and Simoncelli, 2006). It provides a descrip-
tion of subjects’ perceptual behavior at the level of individual psychomet-
ric functions. Equation 16 also allows us to fit the individual models to
the measured psychometric functions using a maximum likelihood op-
timization methods, as well as to quantify the accuracy of the model
predictions in terms of their overall likelihood value in explaining the
data (“goodness-of-prediction”).

Results
We tested subjects in a 2AFC speed-discrimination experiment to
measure their discrimination thresholds and matching speeds for
all stimuli in our test set (Fig. 2b,c). The experiment consisted of
13 different stimulus conditions (test/reference pairs; Fig. 3). The
power spectra for the single-channel stimulus components were
chosen according to a calibration procedure. We then used the
data of the single-channel conditions to predict subjects’ percep-
tual behavior in the combined channel conditions (see Fig. 6)
according to three Bayesian observer models with different forms
of channel integration (Fig. 4).

Figure 4. Observer models with different forms of signal integration. a, Bayesian observer model performing optimal channel integration (optimal model). The model combines the sensory
information contained in all channel responses (mA, mB, mC, mD) by multiplying the individual channel likelihoods. The combined likelihood function is then multiplied with a prior probability
distribution over speed p(s) according to Bayes’ rule. The characteristic feature of the optimal integration model is that its likelihood function is always narrower than any of the individual channel
likelihoods. b, Bayesian observer model that only considers the most reliable channel response (max model). The likelihood function of this model is always identical with the likelihood function
provided by the most reliable channel. c, Observer model that averages independent estimates across all channels (averaging model). This model combines each channel likelihood with a prior, forms
individual estimates ŝX, and then takes an average. d, Model predictions for discrimination thresholds. We compared predictions for a given set of noise parameters and the prior exponent. All
models, and therefore their predictions, are equivalent for stimuli that activate only one channel. For combined stimuli, the optimal (blue) and the averaging model (yellow) both predict a similar
decrease in threshold while the max model (orange) predicts a threshold that is fixed at the level associated with the most reliable channel. e, Assuming a slow-speed prior (i.e., a negative exponent
in Eq. 3), all models predict the characteristic inverse relationship between threshold and perceived speed for single-channel conditions. However, only the optimal model predicts an increase in
perceived speed for stimuli that activate multiple channels.
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Discrimination thresholds and matching speeds
Figure 5 shows the extracted discrimination thresholds (indi-
cated as the SD of the noise from a joint SDT analysis; Fig. 3) and
the matching speeds for the average subject (i.e., the psychomet-
ric functions were computed across trial data from all subjects).
The discrimination thresholds for stimuli targeting channels
A–D in isolation were comparable yet generally higher for the
stimuli with the highest and lowest spatial frequency bands. The
thresholds for the combined stimuli targeting multiple channels,
however, are without exception all lower than the individual
thresholds for each of their stimulus components. In addition,
the threshold generally decreases for stimuli that target an in-
creasing number of channels. Both effects are a clear indication of
channel integration, signaling that the uncertainty of the overall
sensory representation decreases by combining information
across independent channels. The pattern is exactly reversed for
the extracted matching speeds. The matching speeds for the com-
bined stimulus conditions are all higher than the matching speeds
for any of their individual single-channel stimulus components.
Likewise, the matching speed is generally higher for stimuli tar-
geting multiple channels. Matching speed is a relative measure of
the perceived speed of the test stimulus in units of the reference
stimulus. Thus this inverse relationship between perceived speed
and discrimination threshold soundly supports the prediction of
a Bayesian model with a prior expectation of slow speeds: the
higher the signal uncertainty (thus the higher the discrimination
threshold), the stronger the effect of the prior and thus the slower
the perceived speed. This behavior is well preserved across all
stimulus conditions tested.

Optimal channel integration best predicts the data
The above qualitative comparison of the measured discrimina-
tion thresholds and matching speeds (Fig. 5) with the model
characteristics (Fig. 4d,e) already indicates that the optimal
model may best capture the characteristics of the observed per-
ceptual behavior. To perform a more quantitative model com-
parison, we tested how well each model can predict the subjects’
psychometric functions for the combined stimulus conditions
based on the data from the single-channel conditions. We fit each

model to the data from both the balanced and unbalanced single-
channel stimulus conditions. Note that because the models are
equivalent with regard to single-channel stimulus conditions,
their fit model parameters (i.e., the channel likelihood widths �A,
�B, �C, and �D, and the local prior exponent �) should be iden-
tical as well. Thus, we constrained the reference likelihood �Ref in
the unbalanced conditions to be the empirical values extracted
from the balanced stimulus condition ABCD to obtain identical
fits of the different models for the single-channel conditions in
the 2AFC experiment. Fit parameter values for all subjects are
listed in Table 1. The likelihood widths directly reflect the stim-
ulus noise levels. Their fit values lie within a reasonable range of
the target value of the calibration procedure (�0.42). The fit
prior exponents are similar to previously found values (Stocker
and Simoncelli, 2006; Hedges et al., 2011; Sotiropoulos et al.,
2014). The data from the balanced and unbalanced single-
channel conditions fully constrained these parameters.

We then used the fit model parameters to predict perceptual
behavior for the combined stimulus conditions according to each
of the three models. Predictions consisted of the full psychomet-
ric functions from which thresholds and matching speeds were
extracted. Figure 6 shows the extracted thresholds and matching
speeds for all stimulus conditions and all subjects (plus the aver-
age subject) together with the model predictions. While the mod-
els (equally) well fit the data for the single-channel conditions,
only the optimal model also well predicted the data for the joint-
channel conditions. The optimal model is the only model that can
account for the increase in matching speed for stimuli that target
multiple channels. We further quantified this by computing a
goodness-of-prediction measure for each model, which we de-

Figure 5. Measured discrimination thresholds and matching speeds. a, b, Discrimination thresholds (a) and matching speeds (b) for all stimulus conditions (shown for the average subject).
Discrimination thresholds are indicated as SD �X according to a joint SDT analysis of the data from both the balanced and unbalanced conditions (Fig. 3b,c). Thresholds are lower for conditions with
multiple active channels and perceived speeds are higher for lower discrimination thresholds (see data for individual subjects in Fig. 6). The inverse relationship between discrimination threshold and
matching speed (red arrows) is a signature of a Bayesian observer model with a prior expectation for slow speed. It also suggests that dependencies of perceived speed on stimulus contrast (spectral
energy) and spatial frequency can be reduced to the joint effect of these parameters on signal uncertainty. Error bars indicate the 95% confidence interval based on 100 bootstrapped samples of the
data. c, Goodness-of-fit as measured in negative log-likelihood. The value is presented relative to two reference values: the likelihood of a model observer providing random answers in the 2AFC task
(Chance) and the likelihood of the data under a binomial distribution using the empirical probabilities of the measured psychometric function, i.e., data explaining itself (Data). The difference to the
latter indicates the deviation of the data from a cumulative Gaussian description and thus reflects the amount of noise in the data.

Table 1. Values of the fit model parameters (identical for all models)

Subject �A �B �C �D �Ref
a Prior exponent �

#1 0.53 0.42 0.42 0.39 0.24 �2.70
#2 0.39 0.31 0.24 0.23 0.20 �5.00
#3 0.67 0.52 0.54 0.65 0.39 �2.71
#4 0.50 0.39 0.33 0.45 0.21 �1.50
Average 0.59 0.44 0.43 0.48 0.27 �1.97
a�Ref Was not actually fit but was set to the empirical value of �ABCD obtained from the balanced condition ABCD.
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fined as the log-likelihood of the data being predicted. For
every subject, the optimal model outperforms both the max
and the averaging model (Fig. 6c). The fact that the values for
the optimal model are close to the values obtained by fitting

individual cumulative Gaussians to each stimulus condition
further indicates that the optimal model is not only outper-
forming the other models but is also accurately predicting
perceptual behavior.

Figure 6. Model predictions of discrimination thresholds and matching speeds. We evaluated how well discrimination thresholds and matching speeds for combined channel stimuli can be predicted from
model fits to single-channel stimulus conditions. Predicted conditions are those with gray background. Model fit and predictions were based on embedding the observer model within the SDT framework as
described in Materials and Methods. Error bars indicate the 95% confidence interval based on 100 bootstrapped samples of the data. a, Panels in this column show the measured and predicted discrimination
thresholds for all four subjects (and the average subject). Light gray data points represent the measured thresholds for the balanced stimulus conditions only. Model fits are identical for the single-channel
conditions because we constrained the noise parameter of the reference stimulus �Ref to be the value directly obtained from the balanced condition ABCD (Fig. 3). Predictions of the optimal and the average
model are similar and close to the data, while the thresholds predicted by the max model are in general higher. b, Predictions for matching speed, however, clearly suggest that only the optimal model can
accurately account for the increased matching speeds in the combined stimulus conditions. c, Goodness-of-predictions: negative log-likelihood values for the predicted psychometric functions, relative to the
range set by the likelihood of a coin-flip model (Chance) and the likelihood of the data itself (Data; for details, see Fig. 5). Dashed lines represent the likelihood values provided by individual cumulative Gaussian
fits to the measured psychometric functions. The optimal model best predicts the data for all subjects. Its predictions almost reach the likelihood levels set by individual cumulative Gaussian fits to the data
(average subject). We think this is quite remarkable, particularly given that the predictions were for 5 of 13 stimulus conditions. Thus�40% of the data were predicted from the other 60%. For completion, the
likelihood values for the fits to single-channel conditions only are also shown (black bar).
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Discussion
We have demonstrated that human visual speed perception can
be accurately described as the result of a Bayesian inference pro-
cess that optimally integrates visual speed information across dif-
ferent spatiotemporal frequency channels. We experimentally
measured human subjects’ speed-discrimination performance
using a set of synthesized visual motion stimuli that specifically
targeted four independent spatiotemporal frequency channels.
Stimuli either targeted each channel individually or various com-
binations of channels simultaneously. Throughout all stimulus
conditions, the data showed a distinct inverse correlation be-
tween discrimination thresholds and matching speeds. This cor-
relation is a signature of a Bayesian observer model with a prior
belief for slow speeds. In addition, we were able to successfully
predict individual subjects’ perceived speeds for the combined
stimuli based on their data from the single-channel conditions.
We compared the predictions of a novel Bayesian channel model
that optimally integrates speed information across all channels
with those of a model that assumed only the most reliable channel
(max model) or performed a weak form of integration (Landy et
al., 1995; Yuille and Bülthoff, 1996; averaging model). The opti-
mal model clearly outperformed both alternative models in terms
of their measured goodness-of-prediction value (log-likelihood).
Its predictions almost as well accounted for the measured psy-
chometric functions as the fits of those functions with individual
cumulative Gaussians (average subject). The model comparison
is particularly fair given that the different models have exactly the
same model parameters and are computationally equivalent for
single-channel stimulus conditions. A model analysis based on
goodness-of-prediction rather than goodness-of-fit circumvents
the problem of overfitting, a problem often associated with
Bayesian observer models because of their relative large power for
the typically small amount of data available (Jones and Love,
2011).

The presented work extends the model and results of previous
work (Stocker and Simoncelli, 2006). It provides further experi-
mental evidence for the notion that perceived visual speed is the
result of Bayesian inference with a prior expectation for slow
speeds (Weiss et al., 2002). It introduces an augmented model
formulation that is a step toward a more biophysically detailed
Bayesian observer model. The new model assumes that inference
is based on a distributed and implicit representation of visual
speed. It allows us to incorporate known aspects of the neural
organization of the visual motion pathway without giving up the
rigor of a normative modeling approach that can explain percep-
tual behavior at the level of individual psychometric functions.
Our model also provides a new interpretation of the traditional
concept of “channels” (Campbell and Robson, 1968; Graham
and Nachmias, 1971) by embedding it within a Bayesian estima-
tion framework. Finally, the optimal Bayesian channel model
provides a unifying explanation for the reported dependencies of
perceived speed on stimulus contrast (Thompson, 1982; Stone
and Thompson, 1992) as well as spatial frequency (Smith and
Edgar, 1991; Priebe and Lisberger, 2004; Brooks et al., 2011). In
our model, the influence of these attributes is reduced to their
effect on the uncertainty of the channel signals. The uncertainty
depends on the amount of sensory drive (contrast) and channel
identity (different spatial frequencies target different channels
with different sensitivities).

Implications for neural processing of visual speed
The results of our computational/behavioral study have some
implications with regard to the underlying neural processing of

visual speed. The fact that the optimal model well explained the
data and clearly outperformed the averaging model suggests that
the integration of the sensory information happens before prior
expectations enter the inference process (Fig. 4). Given that most
electrophysiological studies did not find any signs of truly speed-
tuned neurons in the motion pathway earlier than area MT (and
even there, their fraction within the whole population of MT
neurons seems rather small; Priebe et al., 2003, 2006), this implies
that the combination of the sensory information with the prior
belief is likely to occur downstream of area MT. This might ex-
plain why previous studies have found it difficult to agree on how
the response characteristics of MT neurons are linked to behav-
ioral measures of perceived speed (Priebe and Lisberger, 2004;
Krekelberg et al., 2006). However, this does not automatically
imply that prior information is also represented downstream of
area MT as has been proposed (Yang et al., 2012). Yet, it suggests
that at least some read-out mechanism or mapping of the MT
neural population is required to get a signal that is a direct rep-
resentation of perceived stimulus speed. Some evidence indeed
exists that a labeled-line readout of MT neural responses to
broadband grating motion stimuli with different contrasts can
reproduce the perceptually measured bias toward slow speeds
with decreasing contrast (Stocker et al., 2009). Interestingly,
some recent theoretical studies suggest that Bayesian inference
can be well approximated by these type of decoders if the prior
information is embedded in the tuning characteristics of the neu-
ral population being decoded (Wei and Stocker, 2012; Ganguli
and Simoncelli, 2014). Thus prior information can be implicitly
embedded in the population tuning characteristics yet only be-
comes effective during the read-out process of the population.
Such implicit representation would also explain the results of a
recent fMRI study that showed that the contrast dependence of
perceived speed is already reflected in the BOLD signal of V1
when decoded appropriately (Vintch and Gardner, 2014).

Limits of optimal signal integration
While the literature reports many instances of optimal combina-
tion of sensory evidence from different sensory pathways (Ernst
and Banks, 2002; Hillis et al., 2004; Landy et al., 2011), our results
suggest that similar computations may also occur within a single
pathway. However, there are limits to optimal integration. If the
sensory information originates from different sources, then
clearly the right strategy is not to integrate the information
(Körding et al., 2007; Knill, 2007). This may explain some of the
differences between our results and the results of a recent study by
Simoncini and colleagues (Simoncini et al., 2012). In their study,
Simoncini and colleagues measured how sensory integration
across spatiotemporal frequency channels may differ with regard
to visuomotor behavior compared with perception. In contrast to
our results, their results showed no evidence of an increase in
perceptual sensitivity for stimuli with broader spatiotemporal
frequency spectra (i.e., channel integration). We believe that the
difference in results is mainly because the noncoherent motion
stimuli (motion clouds) used in their study may have led the
visual system to segregate rather than integrate the sensory infor-
mation. Other crucial stimulus parameters were also different,
which could further explain the difference in findings. Among
these differences were most notably the stimulus speed at which
integration was tested (20 vs 3°/s), stimulus size (27 vs 4°), and
stimulus location (foveal vs 6° eccentricity). However, our results
do not rule out the possibility that there may be limits also to
optimal integration for coherent motion stimuli. Channel inter-
dependencies induced by, for example, suppressive mechanisms
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(Cui et al., 2013), divisive normalization processes (Carandini
and Heeger, 2012), or noise correlations (Huang and Lisberger,
2009; Ponce-Alvarez et al., 2013) may limit the amount of infor-
mation that is conveyed by individual channels. A careful explo-
ration of such potentially limiting mechanisms will require
targeted experiments that must include more complex and pos-
sibly stronger stimuli targeting an even larger number of chan-
nels. In any case, the results of these experiments will allow us to
further refine the presented observer model by incorporating ad-
ditional details of the underlying neural processing into its Bayes-
ian formalism.

Note that there is a more concrete explanation for the slight
increase in threshold for the ABCD compared with the ABD
stimulus seen for some of the subjects (Fig. 6a,b) than assuming
channel interdependencies. Because stimulus ABCD simultane-
ously served as test and reference stimulus and thus was present
in every trial of the unbalanced conditions, it was substantially
over-represented in the total stimulus ensemble. This over-
representation likely produced some form of habituation effect.
For example, it might have induced perceptual adaptation that
resulted in a mild sensitivity reduction for the reference stimulus,
which would explain the deviations both in terms of threshold
and matching speed (Ledgeway and Smith, 1997; Stocker and
Simoncelli, 2009).

Last, the results of our study present an important step toward
a better understanding of human visual speed perception. We
believe that we have presented a general model framework that
potentially allows us to account for the perceived speed of indi-
vidual subjects for arbitrary motion stimuli.

Notes
Part of this work has been presented at the annual Vision Science Society
meeting in 2011, the Computational and Systems Neuroscience meeting
in 2012, and the annual meeting for Advances in Neural Information
Processing Systems in 2013.
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