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The physiological basis of mental states can be effectively studied by
combining cognitive psychology with human neuroscience. Recent research
has employed mental motor imagery in normal and brain-damaged subjects
to decipher the content and the structure of covert processes preceding the
execution of action. The mapping of brain activity during motor imagery
discloses a pattern of activation similar to that of an executed action.
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Introduction: motor representations

Most of our actions are driven indirectly by internally
represented goals, rather than directly by the external
environment. Until recently, the existence and structure
of such motor representations were interred from the
duration and timing of a reaction, or trom the pattern of
executed movements [1]. Now, however, a more direct
approach has been adopted that exploits the unique
ability of human subjects to image and simulate actions
consciously [2—4]. Motor imagery is a cognitive state that
can be experienced by virtually everyone with minimal
training, It corresponds to many situations experienced
in everyday life, such as watching somebody’s action
with the desire to imitate it, anticipating the effects of an
action, preparing or intending to move, refraining from
moving, or remembering an action [5°,6].

Using motor imagery as a means of analysing covert
processes seems justified by previous work on mental
imagerv in other modalities. Visual imagery engages
many of the mechanisms and neural structures employed
in visual perception [7,8,9%]. It seems logical, therefore,
to look at the motor system for the same direct continu-
ity between mechanisms for the representational stages
of action and (action) performance. The experimental
arguments reviewed below will demonstrate that a
motor image is endowed with the same properties as
those of the corresponding (normally covert) motor
representation. Namely, it has the same functional
relationship to the represented action, the same causal
role in the generation of that action, and shares common
mechanisms with motor execution.

Physiological correlates of motor imagery

Mental simulation of movement activates motor path-
ways. During motor imagery, muscular activity often

increases with respect to rest. When this is the case, elec-
tromyographic (EMG) activity is limited to those muscles
that participate in the simulated action, and tends to be
proportional to the amount of imagined effort [10]. The
tact that muscular activity is only partially blocked during
simulation of movement suggests that motoneurons are
close to threshold.

In several other motor imagery experiments, however,
EMG is quiescent (e.g. [11]). This does not necessarily
contradict the link between motor imagery and muscular
activity, as it may merely reflect better inhibition of
movement execution under certain conditions or in
certain subjects.

This reasoning was confirmed by a recent study of
spinal excitability during motor imagery. Bonnet et
al. (M Bonnet, ] Decety, ] Requin, M Jeannerod,
unpublished data) instructed subjects either to press
isometrically on a pedal or to simulate mentally the
same action, with two levels of force (weak and
strong). Monosynaptic reflexes were increased during
mental simulation in the leg involved in the simulated
movement, and this increase was more marked for
a strong simulated pressure than for a weak one.
The increase, which was more marked for tendinous
(T)-reflexes than Hoftmann (H)-reflexes, was only
slightly less than the reflex facilitation associated with the
current performance of the same movement. Whereas
both reflexes are conveyed through the same pathways,
the effect of the stimulus is significantly different: the
H-reflex, which is triggered by the electrical stimulation
of Ia fibers, by-passes neuromuscular spindles, whereas
the T-reflex is a response to stretching those spindles. A
selective increase in excitability of the T-reflex during
motor imagery, possibly due to an increase in gamma
motoncuron activity, emphasizes the role of spindle
afferents, not only during movement execution, but also
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for organizing the motor output during sclf-generated
actions [12].

Activation of descending motor pathways during mental
simulation ot movement or related processes is also sug-
gested by experiments measuring cortical responsiveness
to transcranial magnetic stimulation. Pascual-Leone ef
al. [13¢*] found that the size of the area responding to
finger movements increases as simulated movements are
repeated over training periods, in the same way as when
actual movements are repeated. In addition, Gandevia
and Rothwell [14] have shown that ‘concentrating’ on
one hand muscle without activating it increases the effect
of subthreshold magnetic stimulation of the cortical area
corresponding to that specific muscle. Thus, there is a
selective enhancement of responsiveness to stimulation
of motor cortical areas during motor imagery. A recent
experiment supports this notion further. Subjects were
requested to observe grasping movements pertormed
by an experimenter. During the observation period,
a transcranial magnetic stimulus was applied to their
motor cortex. The pattern of muscular response to
this stimulus was found to be selectively increased. In
addition, Fadiga et al. [15*%} observed that the set of
muscles activated by the stimulus was the same as that
used by the subjects when they actually performed the
movement. This suggests a common neural basis for
imitation, observational learning and motor imagery (see
below).

These results raise the problem of the mechanism and
the locus of motor inhibition during motor imagery.
During motor preparation, the movement is blocked
by a massive inhibition acting at the spinal level to
protect motoneurons against a premature triggering of
action—hence the decrease of spinal reflexes during the
preparatory period and their re-increase shortly before
the movement starts [16]. During mental simulation,
it is likely that the excitatory motor output generated
for executing the action is counterbalanced by another,
parallel, inhibitory output. The competition between
two opposite outputs would account for the partial
block of the motoneurons, as shown by residual EMG
recordings and increased reflex excitability. It is not
yet possible to identify whether this inhibitory output
originates in the cortex or elsewhere.

The autonomic system, normally not submitted to vol-
untary control, is also activated during motor imagery.
Heart rate, respiration rate and end-tidal Pego (CO5
pressure) were measured in subjects actually performing
or mentally simulating a leg exercise |17,18]. After only
a few seconds of actual or mental exercise, heart rate
began to increase up to about 50% and 32% over the
resting value, respectively. Respiration rate also increased
almost without delay during actual etfort and during
mental simulation [19¢]. These results confirm that a
large fraction of the fast increase in heart and respiration
rates at the onset of exercise (both real and mental)
is due to central factors rather than metabolic changes
[20]. Vegetative activation during preparation for effort
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Fig. 1. Ventilatory effects of mental motor imagery. In this exper-
iment, subjects (n=10) were requested to produce a physical ¢f-
fort (pedalling with the right foot against a 15 kg load) for 2 min,
and then mentally simulate the same exercise for the same du-
ration. Instructions were to start pedalling at a rate of ~1 Hz and
then to increase the frequency up to submaximal effort. The noise
of the ergometer while the subject performed the actual effort was
tape-recorded and played back to the subject during the mental ses-
sion. (a) Respiration rate and (b) end-tidal P, were sampled every
17.55. R1-R4, rest; E1-E7, effort; RV, recovery. Note the sharp in-
crease in ventilation at the onset of effort, and the graded increase
during exercise, both actual and mental. Also note the drop in Py
during mental effort as a result of increased ventilation in the ab-
sence of metabolic demands. Adapted from [18).

1s thus part of motor progranmuming. It 1s timed to begin
when motor activity starts, which represents an optimal
mechanism tor anticipating the forthcoming metabolic
changes and shortening the intrinsic delay needed for
heart and respiration to adapt to effort (reviewed in [21)).

The possibility that these autonomic changes are a
consequence of muscular activity can be ruled out by the
spectroscopic analysis performed by Decety er al. [18],
which shows no change in muscular metabolism during
mental simulation. In fact, the combination of increased
respiration rate and unchanged muscular metabolisim
during mental simulation results in a progressive drop
of P2 in this condition (Fig. 1): this never happens
during physical effort, where ventilation eliminates CO»
at about the same rate as it is produced, and where
Pcop remains constant. Recent work by Gandevia ef
al. [22] also supports this explanation: they observed
graded cardiovascular changes in curarized subjects
attempting muscular contractions, a situation close to
motor imagery. As paralysis was complete, the changes
could not be due to residual muscular activity and had
to be of a central origin.
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Brain activity mapping during motor imagery

Pioneering studies using two-dimensional regional cere-
bral blood flow (2-D rCBF) mapping or single pho-
ton emission computed tomography (SPECT) have
emphasized the activity of several brain areas during
motor imagery [23-26]. Prefrontal areas, supplementary
motor arca (SMA), cerebellum and basal ganglia are
the main activated arcas. Recent positron emission
tomography (PET) studies reveal that brain activity is in
fact influenced by the nature ot the imaginal task. Decety
et al. [27] instructed subjects to imagine themselves
grasping visually presented three-dimensional objects
with their right hand. This strongly activated Brodmann
area 6 in the inferior part of the frontal gyrus on both
sides as well as arca 40 in the contralateral inferior
parietal lobule. Subcortically, the caudate nucleus was
found to be activated on both sides and the cerebellum
on the left side. Another focus of activity was observed in
lett pretrontal areas, extending to the dorsolateral frontal
cortex (areas Y and 46). Finally, the anterior cingulate
cortex {arcas 24 and 32) was bilaterally activated.

In other studies, where the rask consisted of repetitive,
internally generated eye [28] or hand |29¢¢] movements,
an additional activation of SMA was observed. Interest-
ingly, comparison of externally and internally generated
movements in the same subjects showed that SMA
activation during simulated movements was more rostral
than commonly observed during executed movements
[29*.30]. This finding reinforces the notion that SMA
is divided into arcas of ditferent hierarchical status with
different tfunctional implications: the posterior zone is
purely exceutive (the SMA proper) |31], whereas the
more anterior zone is more related to representational
stages of action and to motor imagery [29°°].

Consciously representing an action thus involves a
pattern of brain activation that resembles that of
an intentonally  executed action (Fig. 25 see e.g.
[32¢]). Whether primary motor cortex is also activated
during imagery still remains uncertain. Georgopoulos
et al. [33] tound that the activity ot cortical cells in
monkey primary motor cortex was moditied during the
preparatory period of a reaching movement directed
toward a memorized target. In humans, however, in
spite of the clear activation of descending corticospinal
pathwavs described above, most researchers found no
activity in caudal area 4 during imagined movements
when using PET [27,29¢¢34¢] or functional magnetic
resonance unaging ((MRI) {35,36]. (For an exception,
sce Pascual-Leone e al. [13*], who reported tMRI
primarv motor cortex activation in this condition,
although the level of activation was less than during
execution.)

Taken together, the results on the neural correlates of
motor imagery provide a good basis for explaining
the etfects of ‘mental practice’, now commonly used
by sportsmen for mentally rehearsing motor pertor-
mance [37]. Motor imagery and related states, such as
observation of actions pertormed by others, produce
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Fig. 2. Pattern of cortical activation during mental motor imagery
in normal subjects. The main Brodmann areas activated during mo-
tor imagery have been outlined on schematic views of a left hemi-
sphere. Note the consistent involvement of pre-motor area 6, with-
out involvement of primary motor corntex (M1). The AC-PC (anterior
commissure to posterior commissure) line defines the horizontal ref-
erence plane in the magnetic resonance imaging (MR1) scan. The
vertical line passing through the AC (VAC) defines a verticofrontal
plane. VPC is the vertical line passing through the PC. Data taken
from [27,29%% 34¢].

a selective enhancement of neural activity in those
motor pathways concerned with the simulated action.
This leads to an increase in muscle strength [11] and a
decrease in the variability of movements [38¢*]. These
results have important implications for the mechanisins
of motor learning. As selective mprovements in motor
performance can be obtained in the absence of an
increase i muscular activity (and cheretore without
re-aftferent input from the muscle), they suggest that
learning could be due to a purely central shaping of
motor output.

Motor imagery in motor disorders

A prediction arising trom the close relationship between
mental simulation of movement and motor execution
is that motor imagery should be attected by motor
impairments. The finding that, in normal subjects,
mental movement times and real movement times are
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closely similar [2] provides a means for verifying this
prediction. Accordingly, a pathological condition that
slows movements, for example, should also increase
mental movement time for simulating the same move-
ments.

Mental movement times were compared in normal
subjects and Parkinsonian patients by Dominey et al.
[39°¢]. Patients were selected at the early stage of
their disease, when they had a predominantly akinetic
syndrome and presented essentially unilateral signs (on
the right side). Normal subjects and patients were
instructed to perform, with either hand, a sequential
finger movement (touching the pad of the thumb with
the pad of the other four fingers) in conditions of motor
execution and motor imagery. Parkinsonian patients
were slower than normals in all conditions; during motor
execution, their movements were slower than normals
in both hands, although this effect was more marked in
the right (primarily affected) hand. The same slowness
and asymmetry was observed for mental movements.
The degrees of asymmetry in both motor execution
and mental imagery were significantly correlated (Fig. 3).
This result stresses the problem that Parkinsonian patients
have in controlling their internal states and, particularly,
in using internal cues for shifting between states, as this
is required for execution of a sequential task.
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Fig. 3. Histogram demonstrating the slower of motor execution and
motor imagery in Parkinson disease patients. Movement time was
measured in right-sided hemi-Parkinson patients (n=7) and right-
handed normal controls (n=7), during a sequential motor task
{touching the tip of the thumb with the tip of the other fingers, five
times in a row) in three different conditions: actual performance un-
der visual control (Visual} and without visual control (Non-visual),
and mental performance (Imagined). Measurements were taken be-
tween a verbal ‘go’ signal preceded by a ‘ready’ signal, given by the
experimenter, and a verbal ‘stop’ signal given by the subject. Both
hands were tested, and an ‘asymmetry index’ was calculated, with
positive values indicating faster performance with the right hand,
and negative values indicating faster performance with the left
hand. Note a rightward (non-significant) bias in control subjects.
Parkinson patients, by contrast, showed a much faster performance
with the left (unimpaired) hand. The same variation was observed
under all three conditions. Adapted from [39®¢].

Impaired motor imagery in patients with Parkinson
disease could, however, have resulted from a general
difficulty in generating mental images. In order to

control for this, Dominey et al. [39**] compared patients’
performance during two mental rotation tasks: letter
rotation, where the time to decide whether the letter
was normal or mirror-oriented was measured; and hand
rotation, where the response depended on whether the
hand shown was right or left. Chronometric studies
suggest that the latter task is resolved by the subjects
mentally making an implicit movement with their
own hand until it matches the presented hand [40].
Parkinson patients were slower for hand rotations than
for letter rotations, and their performance in hand
rotation correlated with their poor imagery performance
in the sequential finger movement task.

Hemiplegic patients are also mentally slower with their
impaired arm [41]. Recently, a patient with progressive
hemiparesis in the left arm due to a right rolandic
lesion was tested for her ability to reproduce, both
physically and mentally, finger, wrist, elbow and shoulder
movements displayed by the experimenter. The left arm
was slower in executing motor tasks with the fingers and
elbow, but not with the shoulder. The same difference,
with the same effectors, was obscrved for mentally
simulated movements [42]. It thus appears that although
a motor cortical lesion does not affect the ability to
generate motor imagery, it impairs mentally performed
actions to the same extent as real movements.

A perspective on apraxia

Apraxic patients become impaired when they have to
imitate actions, reproduce actions from memory or
pantomime symbolic gestures (the so-called ideomotor
apraxia) [43,44]. They also have difficulties in rec-
ognizing gestures and discriminating between gestures
performed by another person [45]. A patient (LL) with a
bilateral posterior parietal lesion described by Sirigu et al.
[46¢] illustrates these points. Hand and finger movemeunts
were inadequate when LL was instructed to use an
object out of context, such as to perform the gesture
of eating soup with a spoon. The spoon was grabbed
incorrectly and was turned several times in the fingers.
LL’s problem was not a pure hand-shaping deficit, as
finger posture was correct when she took the object,
not for demonstrating its use, but for handing it over to
the examiner. The deficit also extended to recognition
of correctness or incorrectness of hand postures during
object use by the examiner. Finally, LL was equally poor
at verbally describing hand postures in relation to unseen
objects.

These findings support the notion that the motor
impairments observed in apraxic patients result from
a specific alteration in their ability to mentally evoke
actions, or to use stored motor representations for
forming mental images of actions. Thus, the deficit
arises when the patient shifts from a strategy where
object-oriented actions are processed automatically, to
when the content of these actions has to be explicitly
represented. A further logical step would be to examine
apraxic patients for their ability to generate motor
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imagery, with the idea that their deficit in selecting and
organizing motor ‘memory’ will also be revealed when
evoking actions mentally [47].

The same could be true for a related disorder, con-
structional apraxia, also trequently observed following
parietal lesions. Patients have no problem recognizing,
identifying or naming objects. Yet, they cannot re-
produce the same objects by drawing, especially when
requested to perform three dimenstonal drawings tor
complex objects or geometrical figures. Patients seem
to have lost the ability to process visual information
tor interacting with objects [48°], or to identify correctly
the object attributes needed for object-oriented actions
{3]. Accordingly, it can be predicted that these patients
should have no problem in evoking visual images of
objects, whereas they should be unable to simulate
object-oriented actions mentally.

Conclusions

We have shown converging evidence tor a similarity
of neural processes involved in central representation
of actions and motor imagerv. This points to motor
imagery as a direct means of accessing the mechanisms
of action preparation and imitation.
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