
1 Introduction

Koenderink and van Doorn (1975) showed that optic flow over a small area of the

visual field can be decomposed into two translational components, and four first-order

elementary flow components (EFCs) shown in figure 1. The EFCs are circular motion

or rot (rotation), radial motion or div (divergence), and two components of shearing

motion def� and def6 (deformation). Together, rot and div are called the conformal

components of flow; def� and def6 are the deformation components.

A computational analysis of the `shape from flow' problem reveals that the deforma-

tion components are the least dependent on ego-motion.(1) [Koenderink (1986) showed
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motion in a simulated planar environment. The recent search for deformation-selective cells in MST
is then used to illustrate the importance of the input PDF in determining cell characteristics. The
results are consistent with the finding that MST cells exhibit a continuum of responses to transla-
tion, rotation, and divergence. In addition, there are negative correlations between the deformation
and conformal components of optic flow. Consequently, if cells responsible for shape analysis are
present in the MST area, they should respond best to combinations of deformation with other first-
order flow components, rather than to the pure stimuli used in previous neurophysiological studies.

rot div def� def6

Figure 1. Elementary flow components. The four first-order components of optic flow: rotation,
divergence, and two forms of shearing. The arrows indicate the displacement of a square relative
to its centroid.
(1) In this context `shape' refers to the local three-dimensional structure of surfaces in the environment.
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that all four EFCs depend on the structure of the environment, and on the translational

component of ego-motion in the frontoparallel plane; however, only the conformal com-

ponents depend on other aspects of the relative movement between the observer and

the environment.] Consequently, def� and def6 are the most useful EFCs for recovering

surface shape. Deformation-selective cells are therefore expected to be present in areas

of the brain that compute shape from optic flow. This analysis has prompted the search

for neurons that respond to deforming flow fields.

1.1 The medial superior temporal area

Neurons in the medial superior temporal (MST) area of the primate cerebral cortex have

large receptive fields and are directionally selective for moving stimuli. Duffy and Wurtz

(1991a) tested 220 MST neurons using a set of dynamic stimuli 100 deg in diameter.

About a quarter of the cells responded primarily to one component of motion (planar,

circular, or radial), one third responded to two components (plano-circular or plano-

radial, but never circulo-radial), and one third responded to all three components.

Although Duffy and Wurtz did not examine responses to deforming stimuli, their

study is typical of many which suggest that MST neurons contribute to the analysis of

large-field optic flow. However, it is not known for certain whether MST is involved

in computing motion or shape (or both) from flow.

When a cell responds both to translation and to EFCs it is possible that the EFC

response is caused either by positioning the stimuli off-centre or, when positioning

is correct, by an asymmetry in the translation receptive field. An MST cell which is

selective only for translation might therefore give a continuum of responses to transla-

tion, rotation, and divergence stimuli. To avoid this possibility, Lagae et al (1994)

compared the receptive field maps for translation and for EFCs in 82 cells from the

MST area. Direction selectivity for an EFC was position invariant in 40% of the cells;

these were considered EFC-selective. Most of the EFC-selective cells responded to a

single component, sometimes combined with translation. However, only 3 EFC-selective

cells responded to deforming stimuli; these cells also responded to either translation

or rotation. The fact that relatively few deformation-selective cells were found was inter-

preted as evidence that MST is not involved in recovering shape from flow. However,

Lagae et al used pure deformation stimuli which, as we shall argue in subsections 1.2

and 1.3, may not be appropriate. The first argument is based on an analysis of input

selectivity; the second is based on consideration of the optic-flow environment and hence

on the probabilities of various combinations of EFCs occurring naturally.

1.2 Neural architecture: pattern matching versus projection

There is an important difference between the notion of a neuron selective for deforma-

tion as specified by Lagae et al (1994), and the notion of a deformation projector

which is implicit in many other studies. The first is a nonlinear template for a limited

range of optic flow which may include translation and conformal components in addi-

tion to deformation. The second is a linear projector which responds only to the

deformation component of any input, ignoring translation and conformal flow. This is

similar to the distinction made by Duffy and Wurtz (1991b) between the direction

mosaic and vector field hypotheses for flow selectivity.(2)

Figure 2a shows the four-dimensional EFC space represented in two dimensions,

with the horizontal axis devoted to the deformation (Def) components and the vertical

(2)The direction mosaic (pattern-matching) hypothesis states that the receptive fields of MST cells
contain direction-selective subfields which match the local directions of motion within optic-flow
fields. The vector field (projection) hypothesis states that the receptive fields are uniquely sensitive
to distributed properties of planar, circular, or radial flow. Duffy and Wurtz (1991b) therefore
examined the optic-flow selectivity of small subfields within the large receptive fields of 160 MST
neurons; however, the results were not entirely consistent with either of the hypotheses.
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axis devoted to the conformal (Con) components. A pattern-matching neuron selective

for pure deformation would have its receptive field oriented along the horizontal axis.

The response of this cell would depend on both the deformation and the conformal

components of its input. [Such tuned cells can be modelled by hyper-radial basis func-

tions with ellipsoidal receptive fieldsösee Girosi et al (1995).] In contrast, a linear

projector for deformation would give the same response regardless of the conformal

components of its input. The receptive field of a deformation projector is well-localised

in Def space, so that deformation must be present to elicit a response; however, it is

not well-localised in Con space, so the response is not affected by rotation or diver-

gence. It is difficult to see how a projector could be built other than by OR-ing

together the outputs of many pattern-matching cells. The common assumption that

pure deformation stimuli are optimal for identifying deformation-selective cells is only

justified if the cells behave like linear projectors. However, several recent studies have

suggested that MST cells behave more like nonlinear pattern matchers, responding to

a limited range of input flow patternsöfor example, see Orban et al (1992), and

Perrone and Stone (1994, 1998).(3) Experiments using pure deformation stimuli are

therefore only suitable for identifying cells selective for deformation with little or no

translation, rotation, or divergence; other deformation-selective cells will be much

less responsive to pure stimuli. For example, a pattern-matching cell with mixed selec-

tivity for def� combined with rot will exhibit small responses to both components in

isolation; however, it will respond most strongly to a mixture of the two.

A simple combinatorial analysis suggests that pattern-matching cells selective for

pure deformation will be relatively rare. For example, a coarse coding of EFC space

by cells which each register conformal and deformation components as positive, zero,

or negative would give the partition shown in figure 2b. In this two-dimensional illus-

tration only 3ÿ 1 � 2 out of 32 � 9 cells are selective for pure deformation. In four

dimensions only 32 ÿ 1 � 8 out of 34 � 81 cells would be selective for pure defor-

mationöthose in the (def�, def6) plane, excluding the central zero-flow cell. This

proportion obviously decreases with finer (uniform) coding of the input space, which is

considered in the next subsection.

(3)The concept of optic-flow templates (pattern matchers) has been around for some timeö
for example, see Saito et al (1986) and Tanaka et al (1986, 1989). However, it was not widely
accepted until recently because the details of how such templates could be constructed were
not formalised. Perrone and Stone (1994, 1998) eliminate this deficit by describing a convincing
simulation which demonstrates the possible role of MST in template-based heading estimation.

Con Con �ve

Def

Def
�veÿve

ÿve

li
n
ea
r
p
ro
je
ct
o
r

(a) (b)

Figure 2. Pattern matchers and projectors. (a) The receptive fields of four pattern-matching cells
(ellipses) in EFC space. One cell is selective for pure deformation (shaded); two of the others respond
to mixtures of deformation with conformal components. The `receptive field' of a deformation
projector is also shown (arrows). The projector ignores conformal components, effectively projecting
optic flow onto the horizontal (Def ) axis so that its response is governed solely by the deforma-
tion components. (b) A coarse coding of EFC space with a 363 array of pattern-matching cells;
those selective for pure deformation are shaded.
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1.3 The `ecological' PDF for linear optic flow

Consider a neural module that performs some information-processing task. In a natural

environment some inputs will be more likely than others. The probability that the

module will receive an input in a small volume of the input space is proportional to

that volume, with the coefficient being the local probability density function (PDF) of

the inputs. If the neural module acts as an intermediate representation of the input,

with its output being used by a range of other modules, then it should represent the

input so as to maximise the amount of information carried by each output. Linsker

(1989) has shown that when the output representation is a winner-take-all place-coding

scheme (using neurons with Gaussian receptive fields) the configuration which maximises

information is one in which activation of each node is equally likely. This configura-

tion can be achieved by unsupervised learning algorithmsöfor example, see Kohonen

(1988)öwhich encode input ^ output relationships by placing more nodes where the

relationships are more complex. The density of neurons in a volume of input space

should therefore be proportional to the input PDF there.(4)

As an organism develops, it will establish a PDF for the six components of linear

flow generated by moving through its environment. Individual neurons should arrange

themselves to sample this `ecological' PDF optimally. This assumption leads to the

prediction that `nonecological' flow space which is devoid of inputs will not be popu-

lated at all, while space that is dense with flow inputs will be well populated by

neurons. Pure deformation fields tend to arise only from very unlikely combinations of

motion and shape parameters, and also tend to have very short durations. [For example,

when approaching a planar surface, the apparent expansion can only be removed if the

surface rotates to foreshorten one dimension at exactly the rate necessary to leave pure

deformation. (Lines perpendicular to the rotation axis must contract at twice the rate

that lines parallel to the axis expand.) Such motion will soon result in the plane being

parallel to the line-of-sight, at which time the flow vanishes.] Cells selective for pure

deformation will therefore have very little work to do, and so are likely to be rare.

Thus, rather than being selective for pure deformation, MST cells might instead be

tuned for mixtures of deformation with other flow components.

1.4 Aims

The prevalent theory in the neurophysiological literature is that MST plays an important

role in motion analysisöfor example, see Tanaka et al (1989) or Perrone and Stone

(1994, 1998). However, a complete description of the characteristics shown by a neural

population depends crucially on at least three pieces of information: the nature of the

task(s) for which the cells are used, the architecture of the computational units, and

the environment in which the computation is performed. In particular, the distribution

of responses shown by flow-selective cells is likely to be governed by their pattern-

matching architecture and by the distribution of inputs in EFC space. No argument

based on the observed abundance, or otherwise, of deformation-selective cells is safe

until both these characteristics have been considered. Hence the conclusion that MST

does not contribute to shape analysis may be unjustified.

From the arguments developed in this section it seems that a computational study of

the ècological' PDF for optic flow might provide interesting quantitative data suitable

for comparing with, and making predictions about, biological findings. The remaining

(4)This conclusion is invalid if the output is used for a very restricted range of tasks. For example,
consider an error-correcting cell such as a `falling-over' detector. The situations in which this cell
will respond have low probability, but are vitally important. In general, supervised training regimes
which minimise the error in performing a task will not lead to equiprobable neuron configurations.
However, other things being equal, neurons should still be more dense where the PDF is high
than where it is low. The broader the range of tasks to which a module contributes, the safer this
conclusion is.
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sections of this paper therefore describe a Monte-Carlo simulation designed to generate

the PDF for linear optic-flow components in PDF in ecologically plausible settings; a

summary of this work is given by Ivins et al (1998).

The study by Lagae et al (1994) is used to investigate the possibility that the `eco-

logical' PDF of a perceptual stimulus (in this case optic flow) may be crucial in

determining the characteristics of cells which respond to that stimulus. Predictions

about deformation selectivity based on the PDF of optic flow may or may not provide

some insight into the function of MST cells. More generally, however, understanding

the ecology of any perceptual stimulus may prove invaluable for interpreting experi-

mental results in psychophysics, neurophysiology, and related disciplines. In this wider

context, the relationship between deformation, MST, and shape recovery is a side issue,

albeit a very interesting and important one.

2 Method: Monte-Carlo simulation

The PDF for linear optic-flow components was approximated by Monte-Carlo methodsö

see Press et al (1992). This section describes the main features of the simulation, which

is (very crudely) intended to resemble a primate moving through a `forest' and `savannah'

environment; further mathematical details are given in the appendix.

2.1 Simulating the environment

For comparison with existing neurophysiological data, only the zero-order and first-

order components of optic flow were simulated. These are often the highest-order

components considered robust enough to be usefulöfor example, see Verri et al (1992).

Furthermore, restricting the study to linear flow offers the advantage that an environ-

ment can be simulated with planes as shown in figure 3.

The simulated environment is typically based on a ground plane 100 m6100 m

square, surrounded by four planar walls, with a `sky' plane at a height of 100 m.

Exploration is restricted to the ground plane, so the sky is always effectively at infinity.

(a) (b)

Figure 3. Ego-motion in a simulated environment. (a) An aerial view of a typical simulated planar
environment. The ground plane is littered with 200 disks, each 2 m in diameter. The central area is
covered by a canopy of planes each 5 m across arranged in a 10610 grid (represented by black dots).
(b) An enlarged view of the central part of the ground plane. The current position of the eye is shown
(top centre) as a black square from which two vectors project; previous positions are shown as a trail
of dots. The longer vector shows the line-of-sight from the eye to the current fixation point; the
shorter vector indicates the current velocity.
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The environment is littered with between 50 and 200 planar disks arranged with random

positions and orientations;(5) each disk is 2 m in diameter with its centre 1 m above

the ground plane. There is also a 10610 grid of planes which form a canopy over the

central 50 m650 m area to obscure the sky when viewed from below. Each canopy

plane is 5 m across and has a random orientation within 308 of horizontal, with its

centre 10 m above the ground plane. [The canopy planes might represent trees 10 m

high; they are not exactly horizontal because, when viewed from below, a tree consists

of numerous `planes' (leaves) with random orientations.]

The optic-flow mechanisms described in subsection 2.3 respond to all of the bounding

planes (the four walls, ground plane, and sky), and all of the planar disks near the ground

plane and in the `forest' canopy. However, the simulation can be varied in a number of

waysöfor example, by altering the number of disks near the ground plane or in the

canopy (possibly removing these features altogether) or by altering the characteristics

of each disk, such as its size, position, and orientation.

2.2 Simulating motion of the eye

The kinematic chain used to model ego-motion consists of a single eye that can pitch

and yaw, connected to a head that has position t (coincident with the eye) and three

translational degrees of freedom:

t �
x�t�
y�t�
z�t�

0

@

1

A, where y�t� � h0 � h1 sin�o1 t� . (1)

The height y(t) of the eye above the ground plane is h0 (typically 1 m) plus a sine-wave

oscillation with amplitude h1 (typically 0.5 m) intended to simulate the head-bobbing

and posture changes that occur during locomotion over uneven terrain.

Deterministic ego-motion over the (x, z) ground plane is specified directly by two

Fourier series of the form:

1

2
a0 �

X

n

k� 1

ak cos�ko2 t� � bk sin�ko2 t� . (2)

The coefficients o1 , o2 , a0 , ak , bk , and n are chosen randomly but constrained so

that the eye cannot leave the environment, and the translational and angular velocities

stay within realistic limits. The maximum translational velocity is less than 4 m sÿ1,

and the maximum angular velocity is under p=2 rad sÿ1. Motion is always forward in

the simulation; backward motion (like falling over) is regarded as an exceptional case.

The overall behaviour can be regarded as pseudo-random exploration of the environment.

The pose of the eye is specified by a rotation matrix R composed of orthonormal

vectors ex , ey , and the line-of-sight ez :

R �
ex
ey
ez

0

@

1

A . (3)

As the eye moves, it fixates a point in the world using Fick (`gun turret') movements

with two degrees of freedomöhorizontal and vertical orientation; there is no cyclo-

torsion. The pose of the eye is therefore completely specified by its position t and the

fixation point f :

ez � f ÿ t , ex �
0

1

0

0

@

1

A6ez , ey � ez6ex . (4)

(5) In this context `orientation' refers to the `pose' of a planeöthe direction of its normal vector
(and hence its roll, pitch, and yaw), which is selected at random.

22 J Ivins, J Porrill, J Frisby, G Orban



The fixation point is tracked until either it is too close to the eye, or the line-of-sight

becomes too eccentric (more than 458) relative to the direction of motion. (There is no

obstacle-avoidance mechanism, so planes less than 0.5 m from the eye become invisible,

prompting re-fixation; this strategy eliminates the unnatural flows that would arise

from moving through objects.) Re-fixation on the nearest plane in the direction of

motion occurs when either of these constraints is violated. Vertical eye orientation is

chosen randomly each time the eye re-fixates, with a pitch range of �458 above and

below horizontal.

2.3 Simulating the retina

The optic flow on the retina is coarsely sampled at 9 or 25 positions with a regular

363 or 565 grid of receptors. The grid spacing is 20 deg of visual angle, so a 565 grid

covers �40 deg from the fovea. The whole grid of receptors therefore spans 80 deg

vertically and horizontally, which is roughly the size of an MST receptive field. (MST

neurons can have receptive field diameters of up to 100 deg.) However, the receptors

are not intended to simulate MST neurons; they merely sample the PDF for optic flow

in the simulated environment. The grid was introduced to investigate variations in flow

distribution with retinal location; for simplicity, however, this aspect of the analysis will

not be emphasised.

Gaze stabilisation is calculated for the central receptor which is regarded as a fovea.

The flow calculation is performed by ray-tracing from each receptor to find the closest

plane along the line-of-sight; optic-flow components are then calculated directly for

that plane by the formula of Longuet-Higgins and Prazdny (1980) as shown in the

appendix. Each of the cells in figure 4 shows the optic flow at one of the point

receptors in a 363 grid. The central vector in each cell gives the translational flow at

(a) (b)

Figure 4. Linear flow components. Two graphical representations of a typical optic-flow field from
the Monte-Carlo simulation. Receptors are arranged in a 363 grid of retinal positions at 20 deg
offsets around the central fovea. For each receptor, a central vector indicates the translation
(this is zero at the fovea); the surrounding vectors show the first-order flow. (a) The starting
points of the eight radial vectors join to form a square; the ends of these vectors form a parallelo-
gram (an affine distortion of the square), the shape of which indicates the first-order flow regis-
tered by the receptor. (b) An invariant decomposition of this flow. The rot component is shown
by tangent vectors arranged at N, E, S, and W compass points. A circle passing through the starting
points of the rotation tangents indicates zero divergence; a larger circle indicates positive div and
a smaller circle indicates negative div. Deformation vectors are arranged at N, E, S, and W for
def�; and at NE, SE, SW, and NW for def6.
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that receptor; the surrounding vectors in (a) show (magnified) first-order flow, while the

vectors and circles in (b) show the equivalent EFCs. These displays change dynamically

as the environment is explored, revealing the wealth of information available from the

optic-flow simulation. In reality an environment consists of many microfacets, and optic

flow at a retinal receptor is obtained by integrating over all such facets in its receptive

field. However, receptor size is not an important issue when using a small number of

planar facets to simulate an environment. A receptive field in the simulation will rarely

overlap multiple planes, so it can be treated as a single point. This simplification sidesteps

the issue of integrating flow to simulate a large receptive field, and with good reason:

an obvious method, such as averaging over many point receptors, is probably an over-

simplification of a complicated nonlinear process. Note that the simulation is conserva-

tive as far as the recovery of correlations between flow components is concerned, in that

results are more random than would be obtained in reality. (Integration over microfacets

would tend to increase correlations rather than decrease them, being biased towards the

production of planes frontoparallel to the line-of-sight.)

3 Results

Flow was generated over a simulated time of 5 min in each of ten different environments.

To avoid aliasing artifacts, flow samples were calculated randomly, once every second

on average. (The time step for numerical differentiation was 0.04 s, giving a maximum

possible sampling rate of 25 Hz.) Results from many different environments have been

compared, and those shown in this section are typical. A single flow sample from one

receptor produces a single dot in each graph.

3.1 Translation

Figure 5, which has the same layout as the grids in figure 4, shows the joint PDF for x

and y translation, broken down by receptor. The receptor at the fovea receives negligible

translation because the optic behaviour is restricted to fixation with occasional (blind)

saccades. In contrast, receptors at the periphery receive large translational flows.

For simplicity, the analysis of first-order components in the remainder of this section

excludes the translation components; note, however, that pure deformations can only

occur when the translation components are both zero. Translation is considered further

in subsection 4.3.

3.2 Elementary flow components

Since the recovered EFCs form a four-dimensional data set, graphical presentation is

problematic. Pairs of variables are therefore shown with the aid of two-dimensional

density plots, which are sufficient to illustrate the correlations in the data. Each plot is

an approximation to the marginal distribution of the variables chosenöthat is, the

first-order PDF with the other two variables integrated out.

Figure 6a shows the joint PDF of the conformal components. There is no obvious

correlation between rotation and divergence, though divergence is predominantly positive

because the eye is usually moving towards visible planes. Occasionally, negative diver-

gence is produced when the angle between the direction of motion and the line-of-sight

is large (near 458); under these circumstances it is possible for a peripheral receptor to

move away from the plane it sees. The PDF is dense around the origin as is necessary

for the presence of pure deformations (which can only occur when both rotation and

divergence are zero). However, these samples might simply represent flows for which all

EFCs are small.

Figure 6b shows the joint PDF of the deformation components. Again, there is no

obvious correlation between the two components. Because the ground plane forms the

lower bound of the environment, it is more often than not visible between 0.5 and

1.5 m below the simulated eye (though it is sometimes obscured by the obstacles which

24 J Ivins, J Porrill, J Frisby, G Orban



1

0.5

0

ÿ0.5

ÿ1

1

0.5

0

ÿ0.5

ÿ1

1

0.5

0

ÿ0.5

ÿ1
ÿ1 ÿ0.5 0 0.5 1 ÿ1 ÿ0.5 0 0.5 1 ÿ1 ÿ0.5 0 0.5 1

Receptor (ÿ20 deg, 20 deg) Receptor (0, 20 deg) Receptor (20 deg, 20 deg)

Receptor (ÿ20 deg, 0) Receptor (0, 0) Receptor (20 deg, 0)

Receptor (ÿ20 deg, ÿ20 deg) Receptor (0, ÿ20 deg) Receptor (20 deg, ÿ20 deg)

Figure 5. Translation. The translation at each of eight peripheral receptors arranged at 20 deg
offsets around the central fovea. The horizontal axes show x-translation, and the vertical axes
show y-translation. There is almost no translation at the fovea (the eye is usually fixating); however,
peripheral receptors receive large translational flows.
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Figure 6. Conformal and deformation components. (a) Marginal distribution of conformal compo-
nents (all receptors). There is no correlation between these components; however, div tends to be
positive. (b) Marginal distribution of deformation components (all receptors). There is no correla-
tion between these components; however, def� tends to be negative.
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are randomly scattered 1 m above its surface); def� therefore tends to be negative [see

equation (A9) in the appendix].

Figure 7 supports the hypothesis that pure deformations occur very rarely; it shows

the magnitudes of the conformal and deformation components, computed as follows:

jConj � �rot2 � div
2�

1=2
, jDef j � �def�2 � def62�

1=2
.

Almost all flow samples lie below the diagonal line rot2 � div
2 � def�2 � def62 on which

these magnitudes are equal. The upper half of the plot is almost unoccupied, confirming

that deformation components rarely occur unless accompanied by larger conformal

components. In contrast, relatively pure rotation or divergence (or at least a deforma-

tion-free mixture of the two) are quite likely to occur. Pure deformation-selective cells,

with receptive fields positioned along the vertical axis of this plot, would receive very

few appropriate inputs; they are therefore likely to be rare. Deformation-selective

MST cells are, instead, likely to respond best to mixtures of def� or def6 with other

first-order flow components.

The nature of the coupling between conformal and deformation components is

clearly seen in figure 8 which reveals some interesting correlations. Figure 8a shows

the joint PDF of div and def�. The distribution of def� is asymmetrical (tending to be

negative), and is inversely correlated with div (which is usually positive). This may at

least partly reflect the fact that the term Ny vy appears (with different signs) in the

formulae for both components given in the appendix; the term Nx vx which also

1.5
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Joint density: conformal
and deformation components

Figure 7. Conformal and deformation magnitudes. Marginal
distribution of conformal (Con) and deformation (Def)
magnitudes (for all receptors). The horizontal axis shows the
combined rot and div components of each flow measure-
ment; the vertical axis shows the combined def� and def6
components. The Con component is usually larger than the
corresponding Def component.
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Figure 8. Correlations between EFCs. (a) Marginal distribution of div and def�, which are
inversely correlated; the divergence usually exceeds the associated deformation in magnitude.
(b) Marginal distribution of rot and def6, which are inversely correlated; the rotation usually
exceeds the associated deformation in magnitude.
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appears in these formulae is often small in comparison. Figure 8b shows the joint

PDF of rot and def6. The distribution of def6 is symmetrical, and is inversely corre-

lated with rot. This may at least partly reflect the presence of the term Ny vx in the

formulae for both components.

Figure 8 not only specifies the types of flow mixtures that should occur, it also

suggests the ratios for these mixtures: div will generally be faster than def�; rot will

generally be faster than def6. (Note that there is no correlation between rot and def�,
or between div and def6.)

3.3 Principal component analysis

The most representative combinations of EFCs were recovered quantitatively by principal

component analysis. The required covariance matrix was calculated with the use of a

cropped, symmetric data set. Cropping was necessary because high-speed approaches

close to obstacles generated a small number of exceptionally large flow measurements; the

2% of measurements lying more than 3 standard deviations from the mean were therefore

deleted. The cropped data set was made symmetric about the origin by adjoining the

negative of each flow sample to the set. Before being made symmetric, the flow distri-

bution was skewed in some dimensions, and so was not well described by its covariance.

The covariance matrix of the cropped, symmetric data reveals correlations between

EFCs similar to those illustrated in the graphical analysis in the previous subsection:
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The principal components can be recovered as the eigenvectors of the covariance matrix:
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The eigenvectors are arranged in order of decreasing contribution to variance, given by

the eigenvalues: 0.042, 0.019, 0.004, 0.001. The first two components therefore describe

over 90% of the variance.

The first principal component is mainly a combination of positive div (expansion)

and negative def� with a third of the magnitude. The second principal component is

mainly a mixture of rot and def6 with equal magnitude and opposite sign. These

components can be visualised graphically by combining elementary flow fields with

coefficients taken from the appropriate eigenvector. The resulting fields are approxi-

mately an asymmetric expansion and a horizontal shear, as shown in figure 9.

The second principal component is particularly interesting, given the apparent pre-

dominance of spiral-tuned units found in the dorsal division of the MST area (MSTd)

by Graziano et al (1994). [The study tested whether MSTd neurons decompose optic

flow into discrete channels for translation, rotation, and divergence, by searching for

MSTd cells preferentially tuned to spiral stimuli combining both rotation and expansion/

contraction. Many of the MSTd cells responded to spiral stimuli, suggesting that

decomposition of flow does not occur. Instead, the authors suggested that there is

a continuum of patterns to which MSTd cells are selective, which agrees with the

suggestion that MST cells behave more like pattern matchers than projectors.] It is

possible that some of the spiral-tuned MSTd cells might actually have been tuned to

flow patterns similar to the horizontal-shear principal component described above.
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4 Discussion

We argue that an accurate description of the characteristics shown by a population of

neurons depends on at least three pieces of information: the nature of the computa-

tional task performed by the cells (for example, motion or shape analysis), the neural

architecture (for example, pattern matcher or projector), and the environment in which

the cells operate. The key assumption when considering the impact of the environment,

which is based on the properties of artificial pattern-matching neural networks, is that

the input PDF plays a significant role in determining the distribution of selectivity in

a neural population.

The argument is illustrated by considering the recent unsuccessful search for defor-

mation-selective cells in the MST area of the primate cerebral cortex. Arguments for

the existence of such cells were based on computational models of the recovery of

shape from optic flow, which highlighted the importance of the deformation compo-

nents in the recovery process. However, Lagae et al (1994) found that primate MST

neurons are not sensitive to pure deformation stimuli, which seems to indicate that

MST is not involved in recovering shape from flow. We challenge this notion by arguing

that pure deforming stimuli are rare during normal ego-motion, and that neurons

selective for pure deformation should be correspondingly rare.

A Monte-Carlo simulation was used to generate the joint PDF for linear optic-

flow components, as seen by an ambulating primate in a pseudo-realistic environment.

This ècological' PDF revealed significant correlations which suggest that when deforma-

tions occur in natural flow fields they are usually combined with conformal components.

In particular, def� is most likely to occur when divergence is already present in the

flow, while def6 tends to occur when rotation is already present. Artificial neural

models suggest that flow-selective cells should partition the optic-flow space according

to the input PDF. Thus if deformation-selective neurons are present in MST (or in

any other area of the primate cortex), they should respond best to hybrid stimuli

containing mixtures of deformation and conformal components.(6)
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Figure 9. Principal components of first-order optic flow. (a) The first principal component is
approximately an asymmetric expansion. (b) The second principal component is approximately
a horizontal shear.

(6) Previous work has shown that separating the components of flow might be important in carrying
out biologically useful tasks. This strategy is used in computational systems that attempt to extract
heading, where rotational information is factored out to leave translationöfor example, Longuet-
Higgins and Prazdny (1980), and Heeger and Jepson (1990). Hence the computational task may
exert pressure to separate flow components, even if they are correlated in the environment. However,
even if pure def� or def6 are computed at some point in the neural processing of optic flow, a pure
deformation stimulus will only be useful if the pattern-matching cells responsible for the flow
input can detect it.
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Even if the MSTarea is involved in shape analysis, it is unlikely that cells selective for

pure deforming fields will be present there. Hence, the failure to find large numbers

of cells selective for pure deformation cannot be used as evidence that MST is not

involved in shape analysis. This finding clearly demonstrates the importance of the

ècological' PDF in determining the characteristics of a neuron population.

4.1 Recovering shape and motion

Several recent studies have suggested that MST is involved in analysing motion from

optic flow, a process for which deformation is not important.

Perrone and Stone (1994) proposed a computational model in which optic flow is

processed by specialised detectors acting as templates for specific instances of self-

motion. The detectors respond to global optic flow by sampling image motion over a

large portion of the visual field through networks of local motion sensors with properties

similar to those of neurons found in the middle temporal (MT) area of primate extra-

striate visual cortex. These detectors were designed to extract self-translation (heading)

and self-rotation, as well as the scene layout (relative distances) ahead of a moving

observer. Perrone and Stone (1998) subsequently compared MST responses with those

of detectors from two different configurations of the model under matched stimulus

conditions. The results indicated that characteristic physiological properties of MST

neurons can be explained by the template model. These findings suggest that MST neurons

are well suited to support self-motion estimation from optic flow via a direct encoding,

with individual neurons in the MST area acting as heading detectors.

Nevertheless, evidence that MST is involved in motion analysis does not exclude

the possibility that it is also involved in shape recovery. Furthermore, the argument

that the `ecological' PDF may be crucial in determining the characteristics of cell

populations is valid regardless of the function performed by the cells.

4.2 Varying the simulation

The basic form of the EFC correlations can be recovered analytically; however, this

involves several rigid assumptions about the distribution and independence of motion

and shape parameters; the Monte-Carlo method is much more flexible. Nevertheless,

a variety of simplifications were used in the simulationöfor example, only two kinds

of obstacle (large and small planes) were present in the environment, and motion was

deterministic rather than random.

In an environment composed of planar disks with random positions and orienta-

tions in a three-dimensional volume most of the patterns described in section 3 are

no longer present. However, patterns arising from the motion of the eye are preserved

to some extent, most notably the positive divergence due to forward motion. These

findings highlight the importance of basic features of the natural environment, such as

the fact that the ground plane is always relatively close to the observer whereas the

sky is always relatively distant. Aside from these basic features, the exact form of the

environment has little impact on the results of the simulation. For example, removing

the central canopy or altering the motion parameters in equations (1) and (2) had little

effect on the overall results.

The environment could be made more realistic simply by adding more obstacles;

likewise, the simulated motion could be made more realistic by including a more

complicated kinematic chain and by adding ocular roll (cyclotorsion) to the pitch and

yaw. (Note that using Listing's law for cyclotorsion would simply introduce very small

additional rotation components.) However, it seems unlikely that additional complexity

would alter the finding that pure deformations are unlikely to occur.

`Ecological' PDF for linear optic flow 29



4.3 Predictions

Adding def� and def6 to a translation stimulus produced by a random-dot display

generates a compelling impression of surface slant in human observersösee Meese et al

(1995), and Freeman et al (1996). This observation raises the question whether or not a

mixture of deformation and translation would produce a response in MST neurons. For

simplicity, the simulation did not examine translation in detail. However, peripheral

receptors are nearly always exposed to some translational flow (see figure 5) so it is

likely that a suitable deformation stimulus could include translation, though this is not

the case at the fovea. [Note that many of the EFC-selective cells examined by Lagae et al

(1994) also responded to translation.] However, the suitability of mixing translation

and deformation without conformal components is unclear given that deformation is

unlikely to arise in the simulation unless conformal flow is also present.

The principal component analysis suggests that the most appropriate EFC stimuli for

examining deformation selectivity would be either a horizontally dominated asymmetric

expansion or a horizontal shear. These components might form the basis of appropriate

stimuli for experimental work (the first is def� mixed with div; the second is def6 mixed

with rot). Physiological mechanisms in MST might be tuned to these combinations if

MST is involved in shape analysis. Further neurophysiological investigations will be

necessary to determine whether this is the case in the primate visual cortex.
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APPENDIX

Computation of linear optic flow

As outlined in subsection 2.2, exploratory motion is specified in terms of (x, z) coor-

dinates in the ground plane by finite Fourier series. Given the simplicity of the motion

and the fixation strategy, ego-motion (the translational and angular velocities of the

eye) could be calculated analytically. However, motion parameters are calculated by

numerical differentiation since this is much simpler and more general.

As the eye moves, both the position t(t) of its centre and the rotation matrix R(t)

specifying its orientation are continually updated. If the eye pose at time t is R1 , t1
and at time t� dt is R2 , t2 , then for small dt the translational velocity v and the

components of angular velocity x with respect to the eye frame are:

v �
1

t2 ÿ t1
R

ÿ1
1 �t2 ÿ t1 � ,

(A1)

x �
ox

oy

oz

0

@

1

A � ÿ
1

t2 ÿ t1

Qyz

Qzx

Qxy

0

@

1

A , where � R
ÿ1
1 R2 .

Optic flow is calculated for each receptor separately, in Cartesian coordinates in which

the z-axis is directed along the receptor line-of-sight and the x-axis is horizontal in

the world (the y-axis is simply orthogonal to the other two).

Consider a point q � (x, y, z)
T
lying on a planar disk with centre p and normal n ;

the following relationships hold:

�qÿ p� � n � 0 ) q � n � p � n . (A2)

The closest plane along the receptor line-of-sight is transformed into receptor coordi-

nates, and its equation is put into the form nxx� nyy� nz z � P which can be rewritten

in terms of depth and retinal image coordinates. Setting P � p � n and dividing through

by Pz the equation of the plane becomes:

1

z
� NxX�NyY�Nz , where Nx �

nx

P
, Ny �

ny

P
, Nz �

nz

P
. (A3)

The apparent motion of the point q produced by a translational velocity v and an

angular velocity x relative to the origin is given by:

_q � v� x6q . (A4)
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Longuet-Higgins and Prazdny (1980) showed that if a point in the world such as q

has velocity v and angular velocity x then the image velocity (optic flow) of the

corresponding retinal image point (X,Y ) � (x=z, y=z� is given by:

_X �
vx ÿ Xvz

z
ÿ XYox � �1� X 2�oy ÿ Yoz ,

(A5)

_Y �
vy ÿ Yvz

z
ÿ �1� Y 2�ox � XYoy � Xoz .

Substituting the expression for 1=z from equation (A3) into the equations of Longuet-

Higgins and Prazdny (1980) gives:

_X � �vx ÿ Xvz ��Nz �NxX�NyY� ÿ XYox � �1� X 2�oy ÿ Yoz ,
(A6)

_Y � �vy ÿ Yvz ��Nz �NxX�NyY� ÿ �1� Y 2�ox � XYoy � Xoz .

Keeping only terms in X,Y up to first order gives:

fX � Nz vx � oy � �Nx vx ÿNz vz �X� �Ny vx � oz �Y ,
(A7)

fY � Nz vy ÿ ox � �Nx vy � oz �X� �Ny vy ÿNz vz �Y .

The corresponding invariant first-order optic flow components (the EFCs) are defined as:

rot �
1

2

qfY

qx
ÿ
qfX

qy

� �

, div �
1

2
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qx
�
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,

(A8)

def� �
1

2

qfX

qx
ÿ
qfY

qy

� �

, def6 �
1

2

qfX

qy
�
qfY

qx

� �

.

From equation (A7) these components can be calculated as follows:

rot � oz �
1

2
�Nx vy ÿNy vx � , div � ÿNz vz �

1

2
�Nx vx �Ny vy � ,

(A9)
def� � 1

2
�Nx vx ÿNy vy � , def6 � 1

2
�Nx vy �Ny vx � .

These equations only apply at the fovea; however, re-projection can be used to obtain

the decomposition elsewhere on the retina: flow is calculated in an imaginary eye

(with the same focal point) facing in the required direction. See Ivins and Porrill (1995)

for further details.
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