
Ann. Rev. Neurosci. 1987. 10 : 477 533
Copyright © 1987 by Annual Reviews Inc. All rights reservea
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INTRODUCTION

The measurement and use of visual motion is one of the most fundamental
abilities of biological vision systems, serving many essential functions. For
example, a sudden movement in the scene might indicate an approaching
predator or a desirable prey. The rapid expansion of features in the visual
field can signal an object about to collide with the observer. Discontinuities
in motion often occur at the locations of object boundaries and can be
used to carve up the scene into distinct objects. Motion signals provide
input to centers controlling eye movements, allowing objects of interest to
be tracked through the scene. Relative movement can be used to infer the
three-dimensional (3-D) structure and motion of object surfaces, and the
movement of the observer relative to the scene, allowing biological systems
to navigate quickly and efficiently through the environment. More gener-
ally, the analysis of visual motion helps us to maintain continuity of our
perception of the constantly changing environment around us.

This article reviews our current understanding of a number of aspects
of visual motion analysis in biological systems, from a computational
perspective. We illustrate the kinds of insights that have been gained
through computational studies and how they can be integrated with exper-
imental studies from psychology and the neurosciences to understand the

1Present address: Division of Biology, 216-76, California Institute of Technology,
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478 HILDRETH & KOCH

particular computations used by biological systems to analyze motion. In
the remainder of this introduction, we briefly describe the computational
approach to the study of vision and discuss the areas of motion analysis
that are addressed in this review.

The Computational Study of Vision

One of the most important tenets underlying a computational approach
to the study of biological vision is the belief that the brain, like a computer,
can be thought of as a machine that processes information extracted from
the environment that results in some sort of action. Like Aristotle, Galen,
and Descartes before us, we often think of the brain in terms of our most
successful machines, which today happen to be digital computers. We
must be careful in making such an analogy, however. The electrochemical
environment of neurons, their means of transmitting information, and
their overall architecture is very different from that of the wires and etched
crystals of semiconducting material that comprise computers. The Turing
machine, a core concept of computer science, works in a discrete mode
in a world determined by classical physics. Such a machine can only
approximate the truly analog operations of biological hardware in a world
governed by the laws of quantum physics.

Although their hardware differs greatly, both biological systems and
machines can perform similar functions that rely on the same mathematical
and physical principles. Thus, there exists a level of description of the tasks
performed by these two systems that is independent of the underlying
hardware. In order to understand how natural or artificial systems can
solve problems like sensing motion or depth or manipulating the environ-
ment, we must understand the nature of the problem--for example,
whether it can be solved at all and what constraints the physical world
imposes on the solution--before we can fully understand the detailed
procedures used to find a solution.

A computational approach to the study of biological systems, based on
the founding principles of the field of Artificial Intelligence, was elucidated
by Marr & Poggio (1977, Marr 1982). Marr was attracted to the field
of Artificial Intelligence after experiencing certain limitations of other
theoretical approaches to brain research in his early work on the cere-
bellum (Marr 1969). Although his model for learning in the cerebellum
has led to important experimental work (for example, Ito 1984), Marr
abandoned this line of research after realizing that it did not shed light on
how complex motor behavior can actually be achieved.

In his later work in computational vision, Marr elucidated three distinct
levels of analysis that are necessary for understanding an information
processing task :
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COMPUTATIONS UNDERLYING MOTION 479

1. A computational theory analyzes what problem is being solved and why,
and investigates the natural constraints that the physical world imposes
on the solution to the problem.

2. An al#orithm is a detailed step-by-step procedure that represents one
method for yielding the solution indicated by the theory.

3. An implementation is a physical realization of the algorithm by some
mechanism or hardware.

These levels could suggest a prescription for conducting research on com-
plex problems; that is, one first formulates a theory, then dcrives an
algorithm, and lastly designs a mechanism that implements the algorithm :

theory ~ algorithm ~ mechanism.

Despite the initial success of this approach, research over the past few
years has shown that computational theories, even if complemented by
psychophysical experiments revealing how humans perform visual tasks,
have inherent limitations in understanding the brain. In particular, the
nature of the hardware can profoundly influence the type of algorithm
needed to solve a particular problem. Thus, while the computational theory
and properties of the hardware can often be studied independently, the
algorithmic level is influenced by both. A given computation, such as the
computation of stereo depth or motion, usually can be performed by
several different algorithms. These algorithms depend not only on the
nature of the computation itself, but also on the properties and limitations
of the hardware in which the algorithm is implemented. Thus, in order to
explain the functions of a visual system at its different levels, not only must
the abstract, computational nature of a task be understood but also the
properties of the underlying hardware. The flow of information is therefore
in both directions :

theory =~ algorithm ~ mechanism.

These observations stress the importance of integrating the results of
computational studies with those of experimental studies of biological
vision systems.

Other introductions to the computational approach described here can
be found, for example, in Poggio (1984), Morgan (1985), Ullman (1986),
and Hildreth & Hollerbach (1985). The latter review also addresses the
limitations and successes of the computational approach in the area of
motor control.

Other "’Computational" Approaches to the Study of

Bioloyical Systems

The term computational is often used within the neurosciences to denote
very different concepts. For example, certain neural modeling approaches
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480 HILDRETH & KOCH

that study how neuronal networks can operate and how these operations
can be extrapolated to explain higher brain functions frequently are termed
"computational." Examples of this include the seminal work by McCul-
loch & Pitts (1943) on neuronal networks, the work on perceptrons (Min-
sky & Papert 1969) and parallel "connectionist" networks (Ballard 1986),
as well as Marr’s original work on the cerebellum. The word "com-
putational" in this case refers to the detailed working of specialized hard-
ware, such as linear threshold automata, rather than tb an analysis of
information processing at a leyel independent of the underlying hardware.
Similarly, connectionist theories refer directly to neuronal hardware and
therefore lack the characteristics of Marr’s notion of a computational
theory (Koch 1986). Although they have made important contributions 
automata theory and theoretical cybernetics, we want to emphasize a
distinction between these approaches and that described by Marr & Poggio
(1977, Marr 1982). It is of course essential to understand the properties 
the biological hardware--neurons, dendrites, synapses, channels, etc--
in order to understand what algorithms the brain uses to analyze its
environment, and a.substantial fraction of this article is devoted to aspects
of neuronal hardware. We believe, however, that to fully understand a
complex information processing system, it is necessary first to understand
the nature of the tasks the system is required to perform.

Finally, "computational" is used in yet another sense, as in com-
putational chemistry or computational biophysics. This term generally
refers to the existensive use of computers to simulate a given chemical or
biophysical system, such as the reconstruction of the tertiary structure of
simple proteins by using the principles of quantum physics and chemistry
(Clementi 1985) or the simulation of the electrical properties of an array
of pyramidal cells in the hippocampus (Traub et al 1984). In the following
pages we refer frequently to such simulations of biophysical circuits.

Overview of Visual Motion Analysis

The pattern of movement in a changing image is not given to the visual
system directly, but must be inferred from the changing intensities that
reach the eye. The 3-D shape of object surfaces, the locations of object
boundaries, and the movement of the observer relative to the scene can in
turn be inferred from the pattern of image motion. Typically, the overall
analysis of motion is divided into two stages: first, the measurement of
movement in the changing two-dimensional (2-D) image, and second, the
use of motion measurements, for example to recover the 3-D layout of the
environment. It is not clear whether motion analysis in biological systems
is necessarily performed in two distinct stages, but this division has served
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COMPUTATIONS UNDERLYING MOTION 481

to facilitate theoretical studies of motion analysis and to focus empirical
questions for perceptual and physiological studies.

The measurement of movement can itself be divided into multiple stages
and may be performed in different ways in biological systems. In the
human visual system alone, motion may be measured by at least two
processes, termed short-ran#e and lon#-range processes (for example,
Braddick 1974, 1980). The short-range process analyzes continuous
motion, or motion presented discretely but with small spatial and temporal
displacements from one moment to the next. The long-range process may
then analyze motion over larger spatial and temporal displacements, as in
apparent motion. Evidence indicates that these two processes interact at
some stage (Clatworthy & Frisby 1973, Green &von Grtinau 1983), but
initially they may be somewhat independent.

The subsequent uses of motion measurements impose different require-
ments on the precision and completeness with which image motion must
be represented. The localization of object boundaries requires the detection
of sharp changes in direction or speed of movement, but may not need a
precise representation of absolute velocities everywhere. Object tracking
requires knowledge of the gross translation of an object, but not infor-
mation about the detailed relative movements that take place within the
object. The recovery of the accurate 3-D shape of a moving object, on the
other hand, appears to require a more precise and complete estimate of
the local variations of motion across object surfaces. Motion analysis in
the human visual system may ultimately involve the interaction of many
processes, some fast but rough, others slow but more accurate, and still
others that are specialized for specific tasks such as detecting object bound-
aries or looming motion. These processes must work together in a way
that provides a versatile and robust motion analysis system.

In this review, we first discuss the earliest stage of motion measurement.
We discuss two important theoretical models of motion detection, cor-
relation and gradient models, and present relevant psychophysical and
physiological data regarding biological motion detectors. We then discuss
at length possible biophysical mechanisms that implement the com-
putations underlying motion discrimination in retinal and cortical neurons.
Later stages of motion measurement are then discussed in a subsequent
section, which addresses the computation of an instantaneous 2-D velocity
field, long-range motion correspondence, and the detection of motion
discontinuities. Finally, we discuss the recovery of 3-D structure from
relative motion. This article is not intended as an exhaustive overview of
work on motion analysis. Rather, we highlight some of the areas that
exhibit fruitful interactions between computational and cxperimcntal stud-
ies. Two recent reviews of motion analysis include the surveys by Barron
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482 HILDRETH & KOCH

(1984), focusing on computational methods for deriving and interpreting
optical flow, and by Nakayama (1985) focusing primarily on the psycho-
physics and physiology of motion.

EARLY MOTION DETECTION AND
MEASUREMENT

Detectin9 Motion : Theory

Before motion can be used to reconstruct the 3-D structure of objects, the
vision system must first reliably detect and measure relative motion in the
2-D image. What types of schemes have been proposed for this initial
detection? How are these schemes related? What are their computational
properties? The most general property of any motion discrimination sys-
tem is that the underlying operation must be nonlinear. As first noted by
Poggio & Reichardt (1973), no linear operation can extract the direction
of motion of a moving stimulus. The schemes proposed for motion detec-
tion fall broadly into two classes : (a) correlation-like schemes (Hassenstein
& Reichardt 1956, Poggio & Reichardt 1973, van Santen & Sperling 1984)
and (b) gradient schemes (Fennema & Thompson 1979, Horn & Schunck
1981, Marr & Ullman 1981). As we shall see, most biological motion
detection schemes cannot reliably measure velocity even for one-dimen-
sional motions, since their output typically depends on contrast and on a
mixture of velocity and spatial structure of the moving pattern (Reichardt
et al 1983).

CORRELATION MODELS The best known motion detection scheme is based
on research done over the last 30 years on movement perception in insects.
On the basis of open- and closed-loop experiments performed first on the
beetle, Chlorophanus, and later on the fruitfly, Drosophila, and the housefly,
Musea Domestiea, a number of researchers, most notably W. Reichardt,
were led to the following conclusions regarding motion discrimination in
insects (Hassenstein & Reichardt 1956, Varju & Reichardt 1967, G6tz
1968, 1972, Reichardt 1969, Poggio & Reichardt 1976, Reichardt & Guo
1986) 

1. A sequence of two light stimuli impinging on adjacent receptors is the
elementary event that evokes an optomotor response.

2. The relation between the stimulus input to these two receptors and the
optomotor output follows the rule of algebraic sign multiplication. For
instance, stimulating receptor 1 with alternating dark to light changes
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COMPUTATIONS UNDERLYING MOTION 483

and receptor 2 with light to dark transitions leads to a turning response
of the insect opposite to the direction of stimulus successions, while
dark to light transitions presented to both receptors elicits a turning
response in the direction of the stimulus succession.

3. The strength of the optomotor response is proportional to the product
of the two stimuli.

On the basis of these experimental conclusions, a minimum math-
ematical model of motion perception in insects was formulated. Figure 1 a
shows a modified version of this correlation model. The image is sampled
by a receptor with a point-like receptive field. The input to the receptor
can thus be described by I(t). The output of the receptor is subsequently
passed through a linear high-pass filter, removing steady-state components
of the output of the receptor, before being multiplied with a low- or band-
pass filtered signal from a neighboring receptor. Thus, at this stage the
signal strength is given by

R(t) = f+~°° f_+~ W(t’,t2)l(t-tl)I(t-t2) dtl dt2_ 

where W(tb t2) represents the lumped transfer-function for the different
filters. Subsequently, the output of the multiplication operation is inte-
grated over time. A little analysis will show that the output of this stage
is equivalent to the autocorrelation of the input function I(t). Let us assume
that the low-pass filter actually corresponds to a fixed delay 6t > 0. We
are then essentially multiplying a linearly transformed version of I(t) with
itself, but shifted by the total amount At = 6t+Ax/v (where Ax > 0 is the
spacing between the receptors and v the velocity of the stimulus), and
integrating the resulting function over time. For a range of negative vel-
ocities, i.e. movement from the right to the left, At will be very small and
the final output of this subunit will be large. For positive velocities, that
is for movements in the opposite direction, the two functions I(t) and
I(t ÷ At) are out of synchrony and their product, integrated over time, will
be small. The output of this subunit is then subtracted from the output of
the complementary subunit to yield the total detector response. It follows
that if the output of the right subunit exceeds the output of the left subunit,
the detector response is positive, indicating rightward motion ; likewise, if
the output of the left subunit exceeds the output of the right subunit,
detector response is negative, indicating leftward motion.

This theoretical model has a number of properties that can be tested
experimentally. Two of the most interesting are phase invariance and
spatial aliasin9 (for an overview see Reichardt 1969).

Imagine a light pattern consisting of a number of superimposed sinu-
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484 HILDRETH & KOCH

null

preferred
1 1 2 1 2

Figure 1 (a) A direction-selective subunit of the correlation model of Hassenstein 
Reichardt (1956) as modified by Kirschfeld (1972). The two inputs are multiplied after 
pass filtering with different time constants. If an average operation is made on the output,
the overall operation is equivalent to cross-correlation of the two inputs. Subsequently, the
time-averaged response of this subunit is subtracted from the response of a similar but
mirror-symmetric subunit to yield the final movement-sensitive response. (b) The functional
scheme proposed by Barlow & Levick (1965) to account for direction selectivity in the rabbit
retina. A pure delay At is not necessary : A low pass filtering operation is sufficient. (c) The
equivalent electrical circuit of the synaptic interaction assumed to underly direction selectivity
as proposed by Torre & Poggio (1978). The interaction implemented by the circuit is of the
type g~--~g~g2, where g~ and 92 represent the excitatory and inhibitory synaptic inputs.
From Torre & Poggio (1978).

soidal gratings of different spatial frequencies. Because the process of auto-
correlation, i.e. multiplication and subsequent integration, destroys all of
the information that is inherent to the specification of the phases of the
gratings, the output of the motion detectors is invariant to any changes in
the phase relations of the sinusoidal gratings. Since any pattern I(t) can
be decomposed into its Fourier components, it follows that this cla~s
of motion detectors does not sense the relative position of the Fourier
components. This important result has been tested and confirmed in exper-
iments with the beetle, Chlorophanus, the fruitfly, Drosophila, and with
Musca by evaluation of the time-avcragcd optomotor reactions to the
angular motion of a fixed pattern painted on the inside of a drum. More-
over, the total time-averaged response is simply given by the sum of the
time-averaged response to the individual Fourier components (Poggio 
Reichardt 1973). Figure 2a shows the angular distribution of the brightness
of two distinct patterns, obtained by superposition of the different
Fourier components. These patterns only differ with respect to their phase
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COMPUTATIONS UNDERLYING MOTION 485

0° 360°
I

Fiyure2 Two experimental predictions of the correlation model. (a) Phase invariance : The
left part of the figure shows two different light patterns received by a photoreceptor at
different angular positions of the environment. Both distributions contain the same set of
Fourier components shown in the ri.qht part of the figure, but with different phases. However,
insects like the housefly, the fruitfly or the beetle respond with the same optomotor reaction
to both patterns. At the moment, it is not known whether direction-selective cells in the
mammalian visual system show phase invariance. (b) Inverse motion perception : interference
phenomena in the insect eye elicited by a moving pattern with a comparatively small spatial
wavelength. When the distance A~0 between input channels in the insect’s eye is between one
half and one spatial period 2 of the pattern of excitation, the correlation model signals the
incorrect direction of motion. The insect is compelled to follow this apparent motion in the
direction opposite to the "true" direction of motion. Redrawn from G6tz (1972).
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486 HILDRETH & KOCH

relations. Yet the fruitfly reacts equally to motions of the two patterns
(G6tz 1972).

For any particular sinewave grating, the temporal phase difference
between the two inputs to the multiplication will depend on the distance
between its input channels, Ax, and on the spatial wavelength 2. of the
sinewave grating used. The original correlation model displays spatial
aliasing: If one changes the spatial period of the grating, but not its
direction of motion, the sign of the detector response reverses, indicating
an incorrect motion. Within the wavelength region 2. > 2Ax, the moving
sinusoidal pattern is resolved by the receptor system as the number of
samples received per period 2 at any time is greater than or equal to two.
If, however 2. < 2Ax, optimal resolution of the periodic pattern breaks
down, since less than two samples per wave length of the pattern are
observed (see also Shannon’s sampling theorem), and the detector signals
the incorrect direction for Ax < 2. < 2Ax (Figure 2b). This inversion 
apparent motion does occur in various insects and has been used to
determine the grating constant of the receptor spacing (Reichardt 1969).

This property of the original correlation model can be avoided by
replacing the point-shaped receptive field of the receptor in the original
Reichardt model with a spatial-dependent receptive field of finite extent
(Fermi & Reichardt 1963, G6tz 1965, Reichardt et al 1983, van Santen 
Sperling 1984, 1985). Van Santen & Sperling show how to choose the
receptive field in their "elaborated Reichardt detector" so that the sign of
the detector output is correct for any drifting sinewave grating. Van Santen
& Sperling (1985) showed that the elaborated Reichardt model is fully
equivalent to two recently proposed models of human motion detection :
an elaborated version of the motion detector of Watson & Ahumada
(1985) and the "spatiotemporal energy" motion detector of Adelson 
Bergen (1985). These and similar models characterized by a multiplication-
like nonlinearity are all equivalent to the correlation model (Poggio 
Reichardt 1973).

GRADIENT MODELS Gradient schemes rely on the relationship between the
spatial and temporal gradients of image intensity. In the case of the one-
dimensional movement of an intensity profile I(x, t) over a small dis-
placement dx in time dt, the temporal derivative of image intensity
It ~ (I(x,t+dt)-I(x,t))/dt and the spatial derivative of the intensity
Ix ~ ( I(x ÷ dx, t)-I(x, t))dx are related 

dx
dt L

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
87

.1
0:

47
7-

53
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 C
O

L
L

E
G

E
 D

E
 F

R
A

N
C

E
 o

n 
06

/3
0/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


COMPUTATIONS UNDERLYING MOTION 487

where v is the velocity of the pattern. This method was originally proposed
by Limb & Murphy (1975) and later extended by Fennema & Thompson
(1979). The approach carries over to the 2-D case (Horn & Schunk 1981).
Here, however, due to a fundamental limitation in the measurement
process, termed the aperture problem (discussed below), only the com-
ponent of the velocity in the direction of the brightness gradient can be
measured. If we assume that the motion measurement process occurs along
an edge, only the velocity component at right angles to the edge can be
recovered. It is given by

where I~, Iy are the spatial derivatives in the x and y directions. This
equation is strictly only correct for rigid, translating patterns, with no
rotation, seen under parallel projection (Schunck 1984). For sufficiently
small temporal and spatial displacements dx, dy, and dt, however, the
equation approximates the correct one. Gradient schemes suffer from
the disadvantage that they require computation of the derivatives of the
intensity values, an operation that is sensitive to noise.

A quantized version of the gradient scheme was proposed by Marr &
Ullman (1981). This model operates on locations in the images where the
light intensity changes significantly. Marr & Hildreth’s analysis (1980)
showed that zero-crossings, that is locations where the Laplacian of the
image is zero, correspond closely to intensity edges in the original image.
Marr & Ullman track the motion of zero-crossing in the following way.
An edge detector S of the Marr & Hildreth type signals the absence or
presence of a zero-crossing at location x. This detector has two variants,
one for transitions from dark to light (termed a light-on edge) and one for
light to dark transitions (light-off’edge). A second type of detector, termed
a T unit, samples the temporal derivative of the intensity in approximately
the same patch of the visual field as the edge-detecting unit. One version
of this unit, T+, only signals when the temporal derivative is positive, that
is when a light-on edge has moved to the left or a light-off edge movcs to
the right, whereas T- only responds to a reduction in light intensity.
Combining the output of an S and a T unit conjunctively yields a set of
detectors signaling the left (or rightward) motion of light-on or light-off
edges. Marr & Ullman tentatively identify the edge detecting S units with
sustained X-like on- or off-center cells and the T+ and T units with
transient Y-like on- or off-center cells. Computer experiments on some
imagcs have shown that this gradient scheme can recover motion infor-
mation from image sequences. Note that their model, different from other
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gradient schemes, does not provide an estimate of the local velocity, but
only its sign, that is the direction of motion, although some measure of
velocity could be extracted.2

MOTION PRIMITIVES What are the primitives used to detect and measure
motion, and at what stage in the analysis of the image does the detection
of motion take place? For instance, are the initial measurements of the
light intensity in the photoreceptors taken as primitives, or are the measure-
ments extracted after the filtering and smoothing of the visual input at the
stage of the retinal ganglion cells or even cortical cells? Finally, more
symbolic primitives such as zero-crossings, edges, and line segments or
even endpoints, corners, breaks, local deformities of objects, or discon-
tinuities in line orientation could also be used. The advantage of match-
ing more symbolic tokens, such as zero-crossings, across the image is
that these tokens mark interesting points in an image, for instance locations
where the image intensity changes most. Tokens are generally far more
stable to changes and noise in the illumination than the original intensities
or some filtered version of them. Moreover, since tokens presumably are
sparsely distributed in the image, far fewer points must bc matched and
ambiguities can be avoided. If, however, large areas Of the image contain
no tokens, for instance if the light intensity changes little, these areas will
not have any motion measurements assigned initially (these areas could
be filled in later on). A further disadvantage of symbolic primitives is that
they must be unambiguously identified before they can bc matched, thus
preventing an early computation of motion.

For the visual system of the fly, the experimental evidence suggests that
the primitive is simply some measure of local intensity flux (Reichardt et
al 1983). For the short-range motion system, Hildreth 0984) discusses the
evidence that motion measurement relies on the detection of the movement
of zero-crossings, or some similar measure operating on the smoothed
intensity values, and that the limits on spatial and temporal displacements
observed empirically in the short-range motion system are the consequence
of the limited spatial and temporal extent of the initial filtering (see also
Marr & Ullman 1981). Much more work needs to be done, however, before
the question of the primitives used by the motion system can be answered.

Detecting Motion : Psychophysics

Both gradient and correlation schemes are local, involving only limited
parts of the visual scene, and are therefore likely to provide a dominant
input to the short-range process, which appears to operate on motion

2 It can be shown formally that for small contrast amplitudes, the correlation-model and

the gradient scheme are equivalent (T. Poggio, personal communication).
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COMPUTATIONS UNDERLYING MOTION 489

restricted to a spatial range of up to 10-15 minutes of visual arc and an
interstimulus interval less than 80-100 msec (Braddick 1974, 1980). Since
these separations in space and time are small, establishing correspondence
between items in consecutive images is considerably easier than in the
long-range process (see next section). Finally, the short-range process 
assumed to operate directly on the light intensities, filtered intensities, or
on edges or zero-crossings. Interestingly, color seems to provide little if
any input to the short-range process (Ramachandran & Gregory 1978).
In the following, we discuss the (limited) human perception evidence that
has been used to discriminate between the various models of motion
computation discussed above.

One of the main properties of the Reichardt correlation model is that
its output responds not only to pattern velocity but also to structural
properties of the pattern contrast. This property allows the motion detector
to be used as pattern discriminator, at least in flies (Reichardt et al 1983,
Reichardt & Guo 1986). Specifically, it can be shown (for instance, 
Poggio & Reichardt 1973, 1976) that the time-averaged response of the
correlation subunit depends on the ratio, for each spatial Fourier com-
ponent, of the pattern velocity v and the spatial wavelength 2 of the
stimulus used. Thus wavelength and velocity trade off against each other
and, as a consequence, the correlation model cannot reliably measure
the speed of movement. This property, first confirmed with behavioral
experiments for the fly, Musca Domestica (Eckert 1973), also seems 
extend to the human visual system. If subjects fixate a point while square
or sinusoidal gratings of variable spatial wavelength are moved past the
fixation point at various speeds, their perception of velocity depends lin-
early on both the speed and spatial frequency of the gratings (Diener et
al 1976, Burr & Ross 1982). These experiments seem consistent with 
multiplicative-like second-order correlation model.

A striking prediction of the original Reichardt model is motion inver-
sion: If the wavelength of the stimulus pattern is less than twice the
separation between input channels, the insect will perceive motion in the
direction opposite to the true direction of motion (Reichardt 1969, G6tz
1972). Since humans, in contrast to insects, generally do not seem to show
spatial aliasing, the point-like receptive field assumption of the original
correlation model must be abandoned in favor of extended receptive fields
(Fermi & Reichardt 1963). It can then be shown that motion reversal can
be prevented (see, for instance, van Santen & Sperling 1984). Van Santen
& Sperling (1984, 1985) test this "elaborated Reichardt" model with 
number of psychophysical experiments. In particular, by varying the con-
trast of neighboring vertically oriented bars moving in a horizontal direc-
tion, they show that the total response of the subject depends on the
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490 HILDRETH & KOCH

product of the amplitudes of the two bars, a finding that offers support
for the multiplication principle.

Psychophysical evidence in favor of the gradient scheme is presented by
Moulden & Begg (1986). In one particularly ingenious experiment, they
show polarity and direction-specific effects on motion discrimination in
response to adaptation to a nonmoving, spatially homogeneous stimulus,
and provide evidence for channels tuned to detect an increase or decrease
in the light intensity [Marr & Ullman’s (1981) + and T- u nits]. T hus,
tbe current psychophysical evidence does not decisively favor a particular
theory.

Detecting Motion : Circuitry and Biophysics

Having discussed some of the algorithms proposed to underlie motion
detection, we discuss in more detail the biophysical mechanisms that may
be used for motion detection. Numerous nerve cells in the visual system
of both invertebrates and vertebrates respond differentially to motion.
Moving a visual stimulus, say a dark bar on a light background, in
the preferred direction elicits a vigorous response from the cell whereas
movement in the opposite direction, termed the null direction, yields no
significant response. Direetional-seleetive cells, first described in the frog’s
retina in a classical paper by Maturana et al (1960), have subsequently
been identified in the third optic ganglion of the house fly (for a review of
the extensive literature see Hausen 1982a,b), in the retina of pigeons
(Maturana & Frenk 1963, Holden 1977), rabbits (Barlow et al 1964,
Barlow & Levick 1965), ground squirrels (Michael 1966), and cats (Stone
& Fabian 1966, Cleland & Levick 1974), and in the visual cortex of both
cats and monkeys (Hubel & Wiesel 1959, 1962, Schiller et al 1976, Orban
et al 1981). Analyzing these cells afford us the opportunity to study the
elementary biophysical events underlying a well characterized but non-
linear (that is, nontrivial) operation in single nerve cells.

In most mammals, except cats and primates, the first cells that seem to
discriminate the direction of motion are the retinal ganglion cells. Thus,
in the rabbit’s retina approximately one quarter of the ganglion cells can
be described as direction selective. In the cat retina, however, less than
1% of the physiological identified ganglion cells are direction selective
(Rodieck 1979), while no such cells have been reported in the monkey’s
retina? Since neither cells in the A and A1 layers of the lateral geniculate
nucleus (LGN) of the cat nor cells in the magno- and parvo-cellular layers
in the monkey are strongly direction selective, the appearance of

3 Due to the inevitable electrode bias, this does not necessarily imply that such cells do not

exist in the primate retina.
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substantial numbers of direction-selective neurons in the primary cortex
of both animals strongly suggests that this property arises first in the
cortex.

COMPUTING THE DIRECTION OF MOTION IN THE RETINA

Early experiments Barlow & Levick (1965) systematically explored direc-
tional selectivity in the retina of the rabbit by using extracellular recordings.
About 20% of the ganglion cells in the visual streak give both on and off
responses to stationary, flashed stimuli and are direction selective for
moving stimuli. These cells therefore compute the direction of motion
independent of the contrast of the stimulus (i.e. dark stimulus on a light
background or vice versa). A smaller proportion of ganglion cells (~ 7%)
are direction selective and of the on-type, that is, they respond only to
light-on edges. These cells project to the accessory optic system in the
midbrain and are believed to be crucial for the control of the optokinetic
nystagmus (Oyster et al 1972) and image stabilization (Simpson 1984).
Off-type direction-selective cells have been reported in neither rabbit nor
cat, although they are found in the turtle. Two important conclusions can
be drawn from Barlow & Levick’s (1965) report. First, inhibition is crucial
for direction selectivity. On the basis of this evidence Barlow & Levick
proposed that sequence discrimination is based upon a scheme whereby
the response to the null direction is vetoed by appropriate neighboring
inputs (the and-not gate in Figure lb). Directionality is achieved by 
asymmetric delay--or by a low pass filter--between excitatory and inhibi-
tory channels from the photoreceptors to the ganglion cell. This model
can be considered as an instance of the Reichardt correlation model.
Second, this veto operation must occur within small independent subunits
distributed throughout the receptive field of the cell, since movement of a
bar over 0.25° to 0.5° elicits a direction-selective response (whereas the
whole receptive field subtends 4.5° ; Barlow & Levick 1965). Thus, the site
of the veto operation is extensively replicated throughout the receptive
field of the direction-selective cell. Confirming evidence for the critical role
of inhibition comes from experiments in which inhibition is blocked with
pharmacological agents (Caldwell et al 1978, Ariel & Daw 1982, Ariel 
Adolph 1985), a situation resulting in an equal response for both preferred
and null directions (see below).

A biophysical model We can now ask how this operation is implemented
at the level of the hardware, i.e. at the level of retinal cells. Torre& Poggio
(1978) proposed a specific biophysical mechanism implementing the neural
equivalent of a veto operation.

When two neighboring regions of a dendritic tree experience sim-
ultaneous conductance changes, induced by synaptic inputs, the resulting
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postsynaptic potcntial is generally not the sum of the potentials generated
by each synapse alone; that is, synaptie inputs may interact in a highly
nonlinear fashion. This is particularly true for an inhibitory synaptic input
that increases the membrane conductance with an associated ionic battery
that reverses at, or very near, the resting potential Ero~t of the cell. Activating
this type of inhibition, called silent or shunting inhibition, is similar to
opening a hole in the membrane : Its effect is only noticed if the intracellular
potential is substantially different from Ercst. Torte & Poggio (1978) showed
in a lumped electrical model of the membrane of the cell that silent inhi-
bition can cancel effectively the excitatory postsynaptic potential (EPSP)
induced by an excitatory synapse without hyperpolarizing the membrane.
Moreover, for small synaptic conductance inputs the interaction between
excitation and silent inhibition is multiplication-like, thereby approxi-
mating the nonlinear operation underlying the correlation scheme (see
legend to Figure lc). Pairs of excitatory and inhibitory synapses distributed
throughout the dendritic tree may compute the direction of motion at
many independent sites throughout the receptive field of the cell, in agree-
ment with the physiological data. Since nonlinearity of the interaction is
an essential requirement of this scheme, Torre & Poggio suggest that the
optimal location for excitation and inhibition are fine distal dendrites or
spines of the direction-selective ganglion cell.

Because this analysis left out the precise conditions required to produce
effective and specific nonlinear interactions in a dendritic tree, Koch et al
(1982, 1983) used one-dimensional cable theory to analyze the interaction
between time-varying excitatory and inhibitory synaptic inputs in a mor-
phologically characterized cat retinal ganglion cell (of the ~ type; see
Boycott & W/issle 1974). They were able to prove rigorously in the case
of steady state synaptic conductance inputs that in a passive and branched
dendritic tree the most effective location for silent inhibition (most effective
in terms of reducing an EPSP) must always be on the direct path between
the location of the excitatory synapse and the soma.

Detailed biophysical simulations of highly branched and passive
neurons show that this on-the-path condition can be quite specific. If the
amplitude of the inhibitory conductance change is above a critical value,
inhibition can reduce excitation by as much as a factor of 10, as long as
inhibition is located between the excitatory synapse and the soma. Inhi-
bition more than about 10 /~m behind excitation or on a neighboring
branch 10 or 20 #m off the direct path is ineffective in reducing excitation
significantly. This specificity in terms of spatial positioning of excitatory
and inhibitory synapses carries over into the temporal domain. For maxi-
mal effect, inhibition must last at least as long as excitation and the
inhibitory and excitatory conductance changes must occur nearly
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COMPUTATIONS UNDERLYING MOTION 493

synchronously (Koch et al 1983, Segev & Parnas 1983). Finally, the on-
the-path condition is also valid in the presence of action potentials: In
order for silent inhibition to block the propagation of a spike past a
branching point, it must be located at most 5/~m from the branch point
(O’Donnell et al 1985). Since such a precise mapping imposes stringent
conditions on the specificity of the positioning of synapses during devel-
opment of the retinal circuitry, one simple developmental rule would be
that a pair of excitatory and inhibitory inputs originating from interacting
photoreceptors should contact the ganglion cell dendrite close to one
another.

The specificity of silent inhibition contrasts with the action of a hyper-
polarizing synaptic input (i.e. a conductance change with an associated
battery below Erest). In this case, the interaction between excitation and
inhibition will be much more linear, that is, the inhibitory synapse will
reduce the EPSP generated by the excitatory synapse by an amount roughly
proportional to the inhibitory conductance change with less regard to the
relative spatial positioning of excitatory and inhibitory synapses (Koch et
al 1982, O’Donnell et al 1985, Koch & Poggio 1986).

Criticalpredictions of the model How does the model fare against exper-
imental evidence? The following lists some of the most important pre-
dictions :

1. On-Offdirection-selective cells receive distinct excitatory and inhibitory
synaptic inputs. The reversal potential of the inhibitory input is close to
the resting potential of the cell (probably acting via a GABA,~ receptor).

2. Bicucculin should abolish direction selectivity.
3. Inhibitory synapses are not more distal to the soma than excitatory

synapses.
4. Direction selectivity is computed at many independent sites in the

dendritic tree before spike initiation at the axonal hillock.
5. The direction-selective cell should show a (5-like morphology, with 

highly branched, bistratificd dendritic tree with small diameter dendrites
or possibly spines.

6. On-Off direction-selective cells are expected to show little interaction
between a dark bar/spot and light bar/spot moving in opposite direc-
tions within the receptive field.

Currently, the main support for this hypothesis derives from intracellular
recordings in retinal ganglion cells from the turtle (Marchiafava 1979) and
the bullfrog (Watanabe & Murakami 1984). Moving a spot or bar in the
preferred direction gives rise to a somatic EPSP with superimposed action
potentials whereas null direction stimulation results in a smaller EPSP
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494 HILDRETH & KOCH

without a hyperpolarization. The reduced somatic EPSP in the null direc-
tion appears to be caused by an inhibitory process that increases the
membrane conductance with an associated reversal potential at or very
near the resting potential of the cell. This silent inhibition is revealed by
injecting a steady-state depolarizing current into the soma, giving rise
to a hyperpolarization (see Figure 3). Preliminary evidence from rabbit
ganglion cells indicates the presence of a similar inhibitory input (F.
Amthor, personal communication).

60 60

0 400 800 I000 0 400 800 I000

0 400 800 I000 0 400 800 IO00

16[-

I I I I

Figure 3 (a) The effect of intracellular current injection upon the photoresponse in an
intracellular recorded direction-selective turtle ganglion cell. The response in the preferred
and null directions are shown in the left and right part of (a). The lower record shows the
photoresponse while 0.23 n~. current was being injected into the soma. Adapted from
Marchifava (1979). (b) Simulated intracellular potential at the soma of the reconstructed
rabbit on-off direction-selective ganglion cell shown in Figure 4, assuming a purely passive
membrane. The two distinct peaks correspond to the leading edge, receiving on input, and
the trailing edge, receiving off input. In the bottom half, a step current of 0.091 n/~ was
injected into the soma. Preferred direction is left and null direction right. From Koch et al
(1986).
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COMPUTATIONS UNDERLYING MOTION 495

Within the last few years, two groups have determined the structure of
on-off direction-selective ganglion cells. Using a fluorescent stain, Jensen
& DeVoe (1983) visualized these cells in the turtle retina. Amthor 
al (1984) used horseradish peroxidase (HRP) in the rabbit. The overall
morphology of these cells is similar in the two species. Rabbit direction-
selective ganglion cells have several distinct features that allow visual
identification on purely morphological grounds (Figure 4a).

1. These cells have two levels of dendritic ramification. This observation
is consistent with studies that have divided the inner plexiform layer
into on and off laminae (Famiglietti & Kolb 1976).

2. The dendritic branches of the direction-selective cells are of very small
diameter relative to other rabbit ganglion cells. Moreover, the dendrites
carry spines or spine-like structures.

3. The dendritic branching pattern is quite complex, with dendrites form-
ing apparent loops.

Note that although the cell drawn in Figure 4a has an asymmetric place-
ment of the soma with respect to the dendritic tree, preferred and null
directions do not appear to be predictable from the gross dendritic mor-
phology of these cells. Thus, the morphology of direction-selective cells
agrees well with previous predictions (Koch et al 1982).

In order to model massive synaptic input to a direction-selective gan-
glion cell, the passive electrical properties of the anatomically recon-
structed cell shown in Figure 4a was simulated on the basis of one-
dimensional cable theory (O’Donnell et al 1985, Koch et al 1986b). The
computation of the voltages is carried out by a circuit simulation program,
SPICE, first applied to biophysical circuit modeling by Segcv et al (1985).
Figure 3 shows the resulting somatic depolarization in the absence and in
the presence of a depolarizing current step injected at the soma, in com-
parison with experimental records obtained from turtle ganglion cells
(Marchiafava 1979). The intracellular potential can also be displayed 
color throughout the entire cell (O’Donnell et al 1985, Koch et al 1986b).

Presynaptic circuitry How much do we know about the origin and prop-
erties of the excitatory and inhibitory inputs to direction-selective cells?
Considerable evidence implicates acetylcholine (ACh) as the excitatory
neurotransmitter underlying direction selectivity in the rabbit retina (Ariel
& Adolph 1985). If all synaptic transmission in the perfused retina is
blocked by pharmacological manipulation of the bathing medium, on-off
direction-selective cells can be driven by direct application of ACh, thus
implying that these cells are the postsynaptic target for cholinergic
synapses. Ariel & Daw (1982) found that upon application of physo-
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stigmine, a drug that inhibits the hydrolysis of ACh after it has hound to 
the postsynaptic membrane, ganglion cells lose their ability to discriminate 
motion. Other properties like speed and size specificity and radial grating 
inhibition do not seem to be affected. This result may at  first seem para- 
doxical, since physostigmine increases the effectiveness of ACh. One simple 
explanation is that this increased effectiveness during null direction serves 
to overcome the inhibition and to initiate action potentials at the soma. In 
turtle retina, similar experiments yield similar results (Ariel &Adolph 1985). 

Recently, Masland and colleagues (Masland et al 1984, Tauchi & Mas- 
land 1984) identified two unique populations of cholinergic amacrine cells. 
In the rabbit retina, the only cells synthesizing and releasing ACh are 
two groups of amacrine cells distributed in the on and off layers. Using 
radioactive labeled ACh, Masland et al demonstrated that these two suh- 
types of amacrine cells release ACh transiently either at the onset (cells 
in the on layer) or at  the offset of light (cells in the off layer). Because the 
cells have a unique morphology reminiscent of fireworks, they are called 
starhust amacrine cells. These cells appear to be presynaptic to bistratified 
ganglion cells, with the morphological attributes of the direction-selective 
cells of Amthor et al (1984). 

The inhibitory input for motion discrimination is believed to be mediated 
by the neurotransmitter, y-aminobutyric acid (GABA). Caldwell et al 
(1978) and Ariel & Daw (1982) infused picrotoxin, a potent antagonist of 
GABA, into the rabbit retina. Within minutes after the start of drug 
infusion, the response of direction-selective cells in the null direction 
increased dramatically, so that the cell became equally responsive to move- 

Fi,qyure 4 (a) Camera lucida drawing of an HRP-injected on-off direction-selective cell in 
the viswal streak of thc rabbit retina. The dendritic fields have been drawn in two parts: 
“Outer” refers to the part of the inner plexiform layer (IPL) Closest to thc inner nuclear 
layer, where the cells of the off pathway make synaptic conncctions, while “inner” is the 
layer closest to the ganglion cell layer where the on pathway is connected. There are no 
obvious asymmetries in the cell that are correlated with the preferred direction. Adapted 
from Amthor et a1 (1984). (b) A simplified schcmatic of the excitatory pathway from the 
outer plexiform layer (OPL) lo the on-OR direction-sclcctive ganglion cell in the rabbit. 
Depolarizing (an) and Hyperpolarizing (on) bipolar cells convey the visual information from 
the OPL to the on or off part of the IPL. Here they most likely synapsc either directly, 
possibly using glutamate or aspartate as excitatory neurotrdnsmitter, or indirectly, via other 
amacrine cells, onto the cholinergic starburst amacrine cells. Thesc amacrine cells feed in 
turn directly onto the bistratified an-off ganglion cells. (c) Possible sites for the computations 
underlying motion discrimination. GABAergic amacrine cells can veto the excitatory path- 
wdy at the level of the ganglion cell ( I ) ,  the starburst amacrine cells (2). 01 bipolar cells (3). 
Current evidence seems to favor site (I) .  The on and off pathways arc segregated up to the 
cell body of the on-off direction-selective cell. From Koch el al (1986b). 
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ment in both directions. A few minutes after drug infusion was discon- 
tinued, the cell again became direction selective. In the turtle retina, direct 
application of ACh leads to spontaneous firing in direction-selective cells 
during blockage of synaptic transmission via a low calcium concentration 
and EGTA (Ariel & Adolph 1985). This Ach-induced spike activity can 
be suppressed by GABA, thus indicating that both ACh and GABA 
receptors must coexist on the membrane of turtle direction-selective gan- 
glion cells. In the rat retina, the only cells staining for glutamic acid 
decarboxylase (GAD ; the rate-limiting enzyme for the synthesis of GABA) 
are amacrine cells (Vaughn et al 1981). These cells make synapses onto 
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processes of bipolar, amacrine and ganglion cells in descending order of
frequency.

Thus, at least in the turtle and rabbit retina, the excitatory and the
inhibitory inputs to direction-selective ganglion cells appear to derive from
cholinergic and GABAergic amacrifie cells. This finding does not exclude,
however, direct input from bipolar cells that may be responsible, for
instance, for the center-surround organization of direction selective cells.

Alternative models What are the alternative models for the neuronal
operations underlying motion discrimination? If one assumes that direc-
tion selectivity is first expressed at the level of the ganglion cells, then the
experimental evidence of Barlow & Levick (1965) and the intracellular
recordings of Marchiafava (1979) and Watanabe & Murakami (1984) 
conjunction with the pharmacology (Ariel & Adolph 1985) argue in favor
of our postsynaptic, silent inhibition scheme. Although both Werblin
(1970) and Marchiafava (1979) have failed to record direction-selective
responses in bipolar or amacrine cells, the possibility that the critical
computations occur presynaptic to ganglion cells cannot be excluded.
Indeed, DeVoe and his collaborators (DeVoe et al 1985) have recorded
from direction-selective amacrine and bipolar cells in the retina of the
turtle. Their evidence points toward an alternative or coexistent pre-
synaptic site for the critical computation underlying direction selectivity in
the turtle. A second piece of evidence favoring a presynaptic arrangement is
the influence of GABA on ACh. GABA inhibits the light evoked release
of ACh in the rabbit retina (Massey & Neal 1979 ; see Figure 4).

Other classes of presynaptic models for motion discrimination have been
proposed (Dowling 1979, Koch & Poggio 1986, Koch et al 1986b). Since
GABAergic processes synapse onto bipolar, amacrine, and ganglion cells,
the site of the critical computation underlying direction s.clectivity could
either be a bipolar cell exciting the starburst amacrine cell 6r the starburst
amacrine cell itself. Starburst amacrine cells have dendrites that are prob-
ably decoupled from each other and the soma (Miller & Bloomfield 1983).
Only the distal-most portion of the dendrites give rise to conventional
chemical synaptic output, whereas the bipolar and amacrine cell input is
distributed throughout the cell (Famiglietti 1983). Thus, each dendrite may
behave from an electrical point of view as an independent subunit, acting
as the morphological basis of Barlow & Levick’s subunits (1965). At least
two biophysical mechanisms could underlie direction selectivity: (a) the
and-not veto scheme, now implemented at the level of bipolar or amacrine
cells, or (b) a linear interaction between an excitatory synapse and 
hyperpolarizing synapse followed by synaptic rectification (Koch & Poggio
1986). In this case, the nonlinearity essential for direction selectivity (Pog-
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gio & Reichardt 1973) would be implemented by a synaptic transduction
mechanism that only allows transmission of depolarizing events. For these
presynaptic models, the release of neurotransmitter, whether from the
bipolar onto the amacrine cell or from the amacrine onto the ganglion
cell, would in itself be direction selective.

We would like to point out that both pre- and postsynaptic models may
turn out to be correct. For instance, the direction-selective bipolar and
amacrine cells recorded by DeVoe et al 0985) have a smaller velocity
range than direction-selective ganglion cells. Thus, a rough estimate
of the direction of a moving stimuli could be computed at the level of
bipolar/amacrine cells, while ganglion cells would perform similar but
finer measurements.

COMPUTING MOTION IN THE VISUAL CORTEX Much more work has been
done on the biophysical mechanisms underlying direction selectivity in the
retina than in the cortex. Therefore, our discussion of cortical mechanisms
will necessarily be brief. As mentioned above, cells in the primary visual
cortex of cats and primates are likely to compute the direction of motion
de nouveau, since the geniculate input shows no evidence of direction
selectivity. Moreover, if the inhibition mediated by local interneurons is
removed by application of bicuculline, an antagonist of GABA (Sillito
1977, Sillito et al 19g0), direction selectivity of cortical cells is severely
reduced or abolished.4 This experiment, similar to Ariel & Daw’s exper-
iment in the retina (1982), underscores the importance of inhibition for
direction discrimination.

An extension of the veto mechanism outlined above has been proposed
to underlie direction selectivity in the visual cortex (Poggio 1982, Koch 
Poggio 1985). The basic idea is as follows : A single LGN on-center neuron
(or a row of such cells) excites a cell in area V1 whenever a light-on stimulus
falls within its receptive field center. A neighboring on-center LGN cell
reduces the activity of the cortical neuron by a delayed silent inhibition.
Since it is unlikely that LGN cells have an inhibitory effect on their
postsynaptic targets, the second geniculate cell excites an interneuron,
possibly in layer 4c, which in turn inhibits the direction-selective cell. This
seems plausible in light of the fact that direction-selective ceils in the
primate cortex first occur one synapse beyond layer 4c, i.e. in layer 4b
(Dow 1974). If the silent inhibition is located either on the direct path
between excitation and the soma or very near the excitatory synapse, it
will effectively veto excitation in the null direction. Adding a similar but

4 The crucial nature of inhibition for motion discrimination seems to be well preserved

across species. Injecting picrotoxin, a GABA antagonist, into the third optic ganglion of the
blowfly, Calliphora Erythrocephala, abolishes motion discrimination at both the cellular and
the behavioral levels (BfJlthoff & Biilthoff 1986).
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inverted circuit constructed of geniculate off-center neurons endows our
cortical neuron with direction selectivity for both light-on and light-off
edges moving in the same direction--the most common type of direction-
selective cell (the $2 cell of Schiller et al 1976). These off-center neurons,
whose receptive fields overlap with the fields of their on-center counter-
parts, map onto a different part of the dendritic tree of the direction-
selective cortical cell. This prediction, i.e. that direction selectivity for
light-on and light-off edges results from the independent convergence
from the geniculate, is supported by experiments done by Schiller (1982)
in the monkey and by Sherk & Horton (1984) in the cat, using the phar-
macological agent APB. APB infusion into the retina reversibly blocks the
on pathway at the level of the retinal outer plexiform layer and eliminates
the response of the cortical direction-selective cell to light edges while
leaving the response to dark edges intact.

One intriguing possibility is that dendritic spines might be the specialized
sites for the synaptic veto operation to take place. 5-20% of spines on
cortical cells have been reported to carry symmetrical and asymmetrical
synaptic profiles on the same spine (see, for instance, Jones & Powell 1969,
Sloper & Powell 1979). Such an arrangement can be used to perform 
highly tuned temporal discrimination operation, essentially without influ-
encing the rest of the neuron (Koch & Poggio 1983). With a fast excitatory
and a much slower inhibitory conductance change simultaneously occur-
ring on the same spine, inhibition will effectively veto excitation if it sets
in before the start of excitation (null direction). Activating the inhibition
some fraction of a millisecond after the start of excitation will not influence
excitation to any significant degrec (preferred direction).

Very recently Saito et al (1986) have proposed that a more complex type
of motion discrimination, namely cells in the superior temporal sulcus of
the macaque monkey that respond only to either expanding or contracting
size change of patterns or to rotation of patterns in one direction, is based
on local synaptic veto operations occurring at numerous independent sites
in the dendritic tree of these cells. Finally, Warren et al (1986) recently
proposed that the synaptic veto mechanism underlies the direction selective
response to cells in the somatosensory cortex of awake monkeys when
wheels with surface grating are rolled over their skin.

Open Questions
The evidence still seems insufficient to press a clear-cut case for either the
correlation or the gradient scheme for human motion discrimination. In
fact, both schemes may be used by the human visual system. Since the
physiological and behavioral data seem to indicate the validity of the
correlation model for invertebrates and a large class of vertebrates, it may

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
87

.1
0:

47
7-

53
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 C
O

L
L

E
G

E
 D

E
 F

R
A

N
C

E
 o

n 
06

/3
0/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


COMPUTATIONS UNDERLYING MOTION 501

be hypothesized that the Reichardt correlation model, possibly
implemented via the synaptic veto mechanisms of Torre & Poggio (1978),
is used in the primate retina to endow some cells with direction selectivity.
These cells, which cannot exist in very large numbers, project to the
superior colliculus and from there possibly to the cortex. Motion dis-
crimination in the cortex could be computed de nouveau within simple
cells in the striate cortex by use of a different scheme, for instance the
gradient scheme of Marr & Ullman (1981) or the implementation of the
correlation model based on and-not type of synaptic logic (Poggio 1982,
Koch & Poggio 1985). Psychophysical experiments may thus be unable
to separate these two models. Clearly, what is needed are physiological
experiments, e.g. single cell recordings using some of the psychophysical
paradigms, to identify unambiguously the algorithm used to detect motion.

In the section on the biophysical mechanisms possibly underlying direc-
tion selectivity we have discussed the strengths and limitations of simu-
lating biophysical hardware, that is neurons. Modeling the events under-
lying a particular computation at the cellular level can give us valuable
insights into the elementary operations underlying information processing
at the single cell level, operations that cannot be resolved by present
experimental techniques because of the small distances and the brief times
involved. Thus, the major justification of this approach is its predictive
power. Computer simulations should provide a number of detailed pre-
dictions that can be evaluated experimentally. Ideally, these predictions
should be nontrivial and should rule out alternative explanations.

The major drawback of this approach is that any model is only as
good as its fundamental assumptions. For instance, most of the studies
addressing properties of the synaptic veto operation assume the absence
of any significant electrical nonlinearity, such as dendritic spikes. This
proviso must be taken into account when comparing experiments with the
theoretical predictions, and the effect of this simplifying assumption on
the mechanism in question must be carefully assessed (see O’Donnell et al
1985). Biophysical models of the electrical properties of neurons depend
on a host of parameters and assumptions, most of which are poorly
characterized. Thus, the foremost requirement of any detailed model of
cellular properties must be robustness : Varying some parameter, such as
the membrane resistance, by a given amount should not lead to drastically
changed properties in the circuit except if some critical, and specified, value
has been crossed. Ideally, one would like to show that some particular
behavior occurs for a broad range of parameters and is not overly sensitive
to any one of them. If the model’s behavior varies dramatically by changing
a parameter, for instance the location of inhibition with respect to
excitation, this dependency should be studied carefully, since it may lead
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to interesting predictions. Any model that overly constrains a parameter
seems biologically unreasonable.

THE INTEGRATION OF EARLY MOTION
MEASUREMENTS
Solving the Aperture Problem
The motion detection mechanisms described in the preceding section pro-
vide only partial information about the 2-D pattern of movement in the
changing image, due to a problem often referred to as the aperture problem
(Wallach 1976, Fennema & Thompson 1979, Burt & Sperling 1981, Horn
& Schunck 1981, Marr & Ullman 1981, Adelson & Movshon 1982). Con-
sider the computation of the projected 2-D velocity field for the rotating
wireframe object illustrated in Figure 5a. Suppose that the movement of
features on the object were first detected by using operations that examine
only a limited area of the image, such as those performed by neural
mechanisms with spatially limited receptive fields. The information pro-
vided by such mechanisms is illustrated in Figure 5b. The extended edge
E moves across the image, and its movement is observed through a window
defined by the circular aperture A. Through this window, it is only possible
to observe the movement of the edge in the direction perpendicular to its
orientation. The component of motion along the orientation of the edge is
invisible through this limited aperture. Thus it is not possible to distinguish
between motions in the directions b, c, and d. This failure to distinguish
between motions when the object is viewed through a small window has
been referred to as the aperture problem and is inherent in any motion
detection operation that examines only a limited area of the image.

As a consequence of the aperture problem, the measurement of motion

Figure 5 The aperture problem in motion measurement. (a) On the left are three views of
a wire-frame object undergoing rotation around a central vertical axis. On the right, the
arrows along the contours of the object represent the instantaneous velocity field at one
position in the object’s trajectory. For simplicity, an orthographic projection is used. (b) 
operation that views the moving edge E through the local aperture A can compute only the
component of motion c in the direction perpendicular to the orientation of the edge. The
true motion of the edge is ambiguous. (c) The circle undergoes pure translation to the right;
the arrows represent the perpendicular componcnts of velocity that can be measured from
the changing image. (d) The vector v represents the perpendicular component of velocity 
some location in the image. The true velocity at that location must project to the line l
perpendicular to v; examples are shown with dottedarrows. (e) The curve C rotates, translates,
and deforms over time to yield the curve C’. The velocity of the point p is ambiguous.
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(b)

(c) (d) ",.

(e)
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in the changing image requires two stages of analysis: The first stage
measures components of motion in the direction perpendicular to image
features; the second combines these components of motion to compute
the full 2-D pattern of movement in the image. In Figure 5c, a circle
undergoes pure translation to the right. The arrows along the contour
represent the perpendicular components of velocity that can be measured
directly from the changing image. These component measurements each
provide some constraint on the possible motion of the circle, as illustrated
in Figure 5d. The vector v represents the local perpendicular component
of motion at a particular location in the image. The possible true motions
at that location are given by the set of velocity vectors whose endpoint lies
along the line l oriented perpendicular to the vector v. Examples of possible
true velocities are indicated by the dotted vectors. The movement of image
features such as corners or small spots can be measured directly. In general,
however, the first measurements of movement provide only partial infor-
mation about the true movement of features in the image, and must be
combined to compute the full pattern of 2-D motion.

The measurement of movement is difficult because in theory there are
infinitely many patterns of motion that are consistent with a given changing
image. For example, in Figure 5e, the contour C rotates, translates, and
deforms to yield the contour C’ at some later time. The true motion of
the point p is ambiguous. Additional constraint is required to identify a
unique solution. 4 It should also be noted that in general, it may not be
possible to recover the 2-D projection of the true 3-D field of motions of
points in space, from the changing image intensities. Factors such as
changing illumination, speculafities, and shadows can generate patterns
of optical flow in the image that do not correspond to the real movement
of surface features. The additional constraint used to measure image
motion can yield at best a solution that is most plausible from a physical
standpoint.

Many physical assumptions could provide the addition constraint
needed to compute a unique pattern of image motion. One possibility is
the assumption of pure translation. That is, it is assumed that velocity is
constant over small areas of the image. This assumption has been used
both in computer vision studies and in biological models of motion
measurement (for example, Lappin & Bell 1976, Pantle & Picciano
1976, Fennema & Thompson 1979, Anstis 1980, Marr & Ullman 1981,
Thompson & Barnard 1981, Adelson & Movshon 1982). Methods that
assume pure translation may be used to detect sudden movements or to

5 Like many early vision problems, the measurement of motion is an ill-posed problem, as

formalized by Hadamard (Poggio et a11985). A body of mathematics known as regularization
theory may serve to unify the solution to many ill-posed problems in vision.
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track objects across the visual field. These tasks may require only a rough
estimate of the overall translation of objects across the image. Tasks such
as the recovery of 3-D structure from motion require a more detailed
measurement of relative motion in the image. The analysis of variations
in motion such as those illustrated in Figure 5a requires the use of a more
general physical assumption.

Davis et al (1983) proposed a computational method for solving the
aperture problem that assumes that the pattern of image motion can be
approximated locally by rigid motion in the image plane. In more recent
studies, the local image motions have been modeled by second-order
polynomials in the image coordinates (Wohn 1984, Waxman & Wohn
1985, Wohn & Waxman 1985, Waxman 1986). This approach implicitly
assumes that the image locally represents the projection of a quadric
surface patch in motion.

Other computational studies have assumed that velocity varies smoothly
across the image (Horn & Schunck 1981, Hildreth 1984, Nagel 1984,
Nagel & Enkelmann 1984, 1986, Anandan & Weiss 1985, Scott 1986). The
assumption rests on the principle that physical surfaces are generally
smooth ; that is, variations in the structure of a surface are usually small,
compared with the distance of the surface from the viewer. When surfaces
move, nearby points tend to move with similar velocities. There exist
discontinuities in movement at object boundaries, but most of the image
is the projection of relatively smooth surfaces. Thus, it is natural to assume
that image velocities vary smoothly over most of the visual field. A unique
pattern of movement can be obtained by computing a velocity field that
is consistent with the changing image and has the least amount of variation
possible. In other words, a pattern of movement is derived for which
nearby points in the image move with velocities that are as similar as
possible.

The use of the smoothness assumption for motion measurement has
several important attributes from a computational perspective. First, it
allows general motion to be analyzed. Surfaces can be rigid or nonrigid,
undergoing any movement in space. It is always possible to compute a
projected velocity field that preserves the variation in the local pattern of
movement. Second, the smoothness assumption can be embodied in the
motion measurement computation in a way that guarantees a unique
solution (Hildreth 1984). Third, the velocity field of least variation can 
computed straightforwardly, using standard computer algorithms (Horn
& Schunck 1981, Hildreth 1984, Nagel & Enkelmann 1984, Anandan &
Weiss 1985), as well as simple analog resistive networks (Poggio et al 1985,
Poggio & Koch 1985).

From the perspective of perceptual psychology, one can ask whether
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the human visual system derives patterns of movement that are consistent
with those predicted by a computation that uses the smoothness assump-
tion. In particular, one can ask whether an incorrect pattern of motion is
perceived in situations in which a computer algorithm also fails. The
method for computing the velocity field suggested by Hildreth (1984) 
guaranteed to yield the correct solution for at least two classes of motion :
(a) pure translation and (b) general motion (translation and rotation) 
rigid 3-D objects whose edges are essentially straight. For example, the
computation yields the correct velocity field for the moving object of Figure
5a. For smooth curves undergoing rotation, this computation sometimes
yields a solution that differs from the correct projected velocity field. The
human visual system also appears to derive an incorrect perception of
motion in these situations (Hildreth 1984). Comparisons between the
results of computational models and perceptual behavior have so far been
only qualitative, however. Open questions remain regarding whether the
human visual system maintains a local representation of the pattern of
image motions, and whether perceived motion is quantitatively consistent
_with that expected from a computation that uses the smoothness
constraint. Perceptual studies indicate that when visual patterns undergo
uniform translation, human observers can match velocity directions to a
resolution of about 1 ° (Levinson & Sekuler 1976, Nakayama & Silverman
1983). It is not yet known, however, whether such precision of velocity
direction is also obtained when the velocity field varies continuously across
the visual field.

A second issue that arises regarding the solution to the aperture problem
is the question of whether the early motion measurements are integrated
over 2-D areas of the image or along connected contours such as edges.
Models such as that suggested by Horn & Schunck (1981) integrate these
measurements over areas, while the model proposed by Hildrcth (1984)
integrates motion measurements along connected contours. This issue was
addressed in a recent perceptual study by Nakayama & Silverman (1984a).
Their study used a simple distorted line, oscillating up and down. When
viewed alone, a central diagonal section of the line appeared to move in
an oblique direction, so that the entire figure appeared nonrigid. The figure
could be made to appear to move rigidly up and down by the introduction
of additional features that were unambiguously moving up and down.
Nakayama & Silverman introduced both breaks on the contour and short
segments off the contour. They found that both the breaks on the line and
the segments off the line could cause the central part of the line to appear
to move up and down, but the features on the contour had a much stronger
effect, in that their distance from the center could be very large. The
segments had to be very close to the line in order to exert any influ6nce on
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the perception of its motion. These phenomena suggest that the integration
of motion constraints along contours may play a stronger role in the
human visual system, an observation that is also supported by perceptual
demonstrations presented by Hildreth (1984).

The local perpendicular componcnts of motion are not always combined
by the human visual system. The conditions governing whether or not
these measurements are combined were studied by Adelson & Movshon
(1982) and by Nakayama & Silverman (1983). In the Adelson & Movshon
study, the stimulus patterns consisted by two superimposed sinewave grat-
ings at different orientations, moving in the direction perpendicular to
their orientations. Together, the two gratings formed a single rigid pattern,
moving in a direction consistent with the constraints imposed by the two
components. Under some conditions, the gratings did not form a single
coherent pattern perceptually; rather, the two components appeared to
split and move independently of one another. The coherence of the com-
bined pattern was found to decrease with an increase in any of the following
factors: (a) the difference in contrast between the two gratings, (b) 
angle between the primary directions of the gratings, (c) the difference
between the two spatial frequencies, and (d) the speed of movement of the
overall pattern. In a later study by Adelson (1984), it was shown that the
two components of motion would also appear to split if they were presented
on different depth planes. This observation suggests that stereo disparity
enters into the solution to the aperture problem in motion. Nakayama &
Silverman (1983), by using stimuli consisting of sinewave lines, dem-
onstrated that two components of motion tend not to be combined if their
orientations are very similar (i.e. they differ by at most about 30°). These
perceptual studies suggest that early measurements of the perpendicular
components of motion are not always combined by the human visual
system. Under some conditions, they will remain separate, resulting in a
perception of motion that corresponds directly to the pattern of
components. More generally, these studies provide implicit support for
the notion that motion measurement takes place in two stages, with the
first stage providing the perpendicular components of motion and the
second stage combining these components into a single coherent pattern
of motion. More explicit psychophysical support for a two-stage motion
measurement computation is presented in Movshon et al (1985).

The motion measurement problem can also be examined from a physio-
logical perspective. Early movement detectors in biological systems have
spatially limited receptive fields and therefore face the aperture problem.
Stimulated by a theoretical analysis of the aperture problem, Movshon et
al (1985) sought and found direct physiological evidence for a two-stage
motion measurement computation in the primate visual system. Two visual
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areas that include an abundance of motion-sensitive neurons are cortical
areas V1 and the middle temporal area of extrastriate cortex (MT), located
in the posterior bank of the superior temporal sulcus (for example, see
Maunsell & Van Essen 1983, Van Essen & Maunsell 1983, Allman et al
1985, Saito et al 1986). The explicit role of area MT in the cortical analysis
of visual motion was confirmed recently by Newsome et al (1985), who
showed that small restricted chemical lesions in area MT of the macaque
monkey led to a behavioral deficit in the monkey’s ability to match the
velocity of smooth pursuit eye movements with the velocity of visual
targets. Moreover, lesions in the cat’s Claire-Bishop area, which is assumed
to correspond to area MT in the macaque anatomically, led to a much
reduced ability of behaving cats to distinguish small moving figures from
both moving and stationary surround (Strauss & van Seelen 1986).
Movshon et al 0985) explored the type of motion analysis taking place in
the prlmate’s MT by using the same stimulus with superimposed sinewave
gratings used by Adelson & Movshon (1982). The results of these exper-
iments indicate that the selectivity of neurons in area V1 for direction of
movement is such that they could provide only the component of motion
in the direction perpendicular to the orientation of image features. These
neurons essentially only respond to a single component of the combined
grating pattern and their response is uninfluenced by the presence of the
second grating. Area MT, however, contains a subpopulation of cells,
referred to as pattern cells, that appear to respond to the 2-D direction of
motion of the combined grating pattern. For example, imagine a sinewave
grating moving diagonally up this page (bottom left to top right) and 
second pattern, superimposed on the first, moving diagonally down the
page (top left to bottom right). A neuron in V1 whose best direction 
diagonally upward Would respond to the superimposed patterns as though
the downward moving diagonal was not even present. A pattern cell in
MT, however, would respond to the superimposed patterns as though they
were moving directly across the page from left to right. Thus, these pattern
cells serve to combine motion components to compute the real 2-D direc-
tion of velocity of a moving pattern. These experiments do not yet dis-
tinguish between the use of the simple assumption of pure translation, as
suggested in the study by Movshon et al (1985), and a more general
assumption such as smoothness. Stimulus patterns undergoing more com-
plicated motions are required to make such a distinction. If the pattern cells
in area MT employ the assumption of smoothness in their computation of
motion, one would expect to find direct interaction between pattern cells
that analyze nearby areas of the visual field.

Poggio & Koch 0985, Poggio et al 1985) presented hypothetical neural
implementations of regularization algorithms in terms of very simple
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linear, electrical or chemical, analog networks. In particular, they proposed
an implementation for the computation of the smoothest velocity field as
suggested by Hildreth (1984). From these networks, a neural circuit is then
designed that behaves in a similar way. Examples of the electrical and
neural networks are shown in Figure 6. In the network of Figure 6a, the
currents /~ and conductances 9 and 9i represent measurements of the
perpendicular components of velocity and other properties of a moving
contour obtained directly from the image. The voltages V; represent the
tangential component of velocity (i.e. the component of velocity in the
direction parallel to the orientation of features in the image) that is reco-
vered by the computation of the full 2-D velocity field. These analog
resistive networks allow a fast computation of the smoothest velocity field
and are guaranteed to converge to the correct solution (Poggio & Koch
1985). In the corresponding neural implementation of Figure 6b, the tan-
gential component of the velocity field is represented by the voltages

0)
Ii-I Ii

Vi-I Vi Vi* I

b) ll.l
li

li,.l

Figure 6 Analog models of the velocity field computation. (a) A si~nple resistive network
that computes the smoothest velocity field. The conductances g and gi and the currents Ii
represent properties of a moving contour that are measured directly from the image. In
particular, gi is proportional to the square of the contrast of the contour at location i. The
2-D velocity field along the contour is represented implicitly by the combination of these
inputs and the resulting voltages Vi. (b) A hypothetical neural implementation of the circuit
shown in (a). Synaptic mediated currents li, and additional inputs Ri (possibly a GABA~
type of synapse) represent properties of a moving contour. The resulting voltages Vl, sampled
by dendro-dendritic synapses, together with the input currents, represent local velocities
along the contour. Redrawn from Poggio & Koch (1985).
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510 HILDRETH & KOCH

Vi along a dendrite, which are sampled by dendro-dendritic synapses.
Measurements from the image are represented by synaptically mediated
current injections Ii and other synaptic inputs R~ (for instance, a silent
GABAA type inhibitory synapse) that control the membrane resistance.
The full 2-D velocity field is represented implicitly by the combination of
the currents/,, and the voltages Vt. This hypothetical neural implementation
was not intended as a specific model for the measurement of motion in
area MT. Rather, its intent was to show that it is possible for neural
hardware to exploit a model of this computation that incorporates a
general assumption such as smoothness of the velocity field. Models such
as this can help to focus experimental questions regarding the actual neural
circuitry in areas such as MT.

Long-Range Motion Correspondence

The preceding section addressed computational models that might underlie
the short-range process. The computation of a velocity field requires that
motion in the image be roughly continuous. The perception of motion by
the human visual system does not however, require that objects move
continuously across the visual field. Motion can be inferred when features
are presented discretely at positions separated by up to several degrees of
visual angle6 and with long temporal intervals between presentations.
There are many visual patterns that yield qualitatively different perceptions
of motion, depending on the size of the spatial and temporal displacements
between frames (for example, Ternus 1926, Anstis 1970, 1980, Braddick
1974, 1980, Anstis & Rogers 1975, Pantie & Picciano 1976, Petersik &
Pantle 1979, Shepard & Judd 1976, Burt & Sperling 1981, Green &von
Griinau 1983, Hildreth 1984, Anstis & Mather 1985). Although the short-
and long-range motion processes may interact at some stage (Clatworthy
& Frisby 1973, Green &von Grtinau 1983), there is evidence that they are
initially distinct processes (Mather et al 1985, Gregory 1985, Anstis 
Mather 1985).

The long-range motion phenomena illustrate the ability of the human
visual system to derive a correspondence between elements in the changing
image, over considerable distances and temporal intervals. Under these
conditions, there is no continuous motion of elements across the image to
be measured directly. A correspondence computation is therefore likely to
underlie the long-range motion process. Two issues arise regarding this
computation: First, what features in the image are matched from one
moment to the next, and second, how is a unique correspondence of

~ In fact, commissurotomy patients perceive apparent motion even when the two locations
are lying on each side of the vertical meridian at a distance of up to 9° (Ramachandran et
a11986).
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features established? Just as with the velocity field computation, very
many possible matchings between features in two images can exist, and
additional constraints must be imposed to compute a single cor-
respondence that is most plausible from a physical standpoint.

The possible image features that could form the matching elements span
a wide range, from simple edge and line segments, points, and blobs, to
texture boundaries, subjective contours, and groups of primitive features,
and even to structured forms or entire objects. Motion measurement
schemes used in computer vision, reviewed for example in Thompson &
Barnard (1981), Ullman (1981a), and Barron (1984), have considered 
of these possible matching elements. In general, the earlier tokens such as
edge and line segments are easier to compute, but entail greater ambiguity
in the matching of these tokens from one moment to the next. The use of
primitive tokens also allows the correspondence process to operate on
arbitrary objects undergoing complex shape changes. More complex
tokens such as structured forms can simplify the correspondence process,
but more computation is required to extract these features from the image,
and there is less flexibility in the types of motion that can be analyzed.

Perceptual studics suggest that many long-range motion phenomena
can be explained in terms of a correspondence of elements such as edges,
bars, line terminations, and points (Ullman 1979). The human visual
system can also establish a correspondence between groups of primitive
elements even when the constituents of the groups are not the same (Riley
1981), subjective contours and texture boundaries (Ramachandran et 
1973, Riley 1981) and subjective surfaces (Ramachandran 1985). Prop-
erties of primitive elements such as orientation, contrast, and size can
influence the correspondence computation (for example, Frisby 1972,
Kolers 1972, Ullman 1979, 1981b), although a correspondence can be
established between objects that differ significantly in their components
(Navon 1976, Anstis & Mather 1985). Chen (1985) has suggested 
topological features such as connectivity, closure, and the presence of holes
can play a role in motion correspondence, but it is not clear whether these
properties are made explicit in the description of the matching elements,
or whether they are reflected in the constraints that are used to establish
a unique correspondence of elements between frames.

The rules or constraints that are used by the human visual system to
establish a correspondence of elements between frames have also been
explored in many studies. Early perceptual studies focused on the role of
the time and distance between elements in successive frames (for example,
Ternus 1926, Kolers 1972, Burt & Sperling 1981). When the elements in
motion are isolated dots, each dot in general "prefers" to match its nearest
neighbor in the subsequent frame, although this constraint sometimes can
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512 HILDRETH & KOCH

be violated locally when a field of dots in motion interacts (Ullman 1979,
Burt & Spcrling 1981). The distance metric that is used in the cor-
respondence process appears to be based on 2-D distances between
elements rather than 3-D distances (Ullman 1979, Mutch et al 1983,
Tarr & Pinker 1985). Ramachandran & Anstis 0983, 1985) showed that
"inertia" can influence correspondence; that is, in ambiguous situations,
moving elements will tend to maintain the Same direction of motion over
time.

A computational model of correspondence presented by Ullman (1979)
assumes independence of the matching elements. Subsequent studies have
revealed situations in which the independence assumption appears not to
hold. For example, the perceived motion of a feature can be influenced by
the motion of other features connected to it along a contour (Hildreth
1984, Chen 1985). Ramachandran & Anstis (1985) created a display 
which a local pattern of dots whose motion was two-way ambiguous was
repreated in a large array. Each local subpattern could in principle be
perceived as moving in either of two directions, but observers always
perceived the array of patterns as moving in the same direction. The
correspondence established within one subpattern of the display could
influence the correspondence of dots in neighboring subpatterns.

To summarize, much is known about the matching elements used in
long-range correspondence, and the rules or constraints used to match
elements. Many recent perceptual studies were motivated by com-
putational models of the correspondence process. Still lacking, however,
are computational models that adequately account for all of the long-range
motion phenomena observed in perceptual studies. Recent physiological
studies that explored the response of MT neurons to apparent movement
stimuli (Newsome et al 1982, 1986, Mikama et al 1986) suggest that area
MT might provide some of the neural substrate for the interpretation of
long-range motion.

The Detection of Motion D&continuities

If two adjacent surfaces undergo different motions, a discontinuity gen-
erally occurs in the optical flow or velocity field along their boundary.
The explicit detection of motion discontinuities allows the detection and
localization of object boundaries in the scene. Other cues to the presence
of boundaries often exist as well, such as sharp changes in stereo disparity
or texture, but perceptual studies suggest the possibility of detecting object
boundaries on the basis of motion information alone (Anstis 1970, Regan
& Spekreijse 1970, Julesz 1971) and using the relative motions in the
vicinity of these boundaries to infer the relative locations of surfaces in
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COMPUTATIONS UNDERLYING MOTION 513

depth (Kaplan 1969, Nakayama & Loomis 1974, Mutch & Thompson
X985).

Detection of motion discontinuities as early as possible is advantageous
for two reasons. First, the fast detection of a sudden relative movement in
the environment can serve as an early warning system, alerting the observer
to a possible prey or predator, or to the sudden movement of an object
toward the viewer. It is essential not only to detect the presence of move-
ment but also to identify the outline of the object. A second reason for
detecting motion discontinuities early is that they facilitate the subsequent
measurement of 2-D motion in the image. The computation of a velocity
field requires the integration of local measurements of the perpendicular
components of motion. Motion measurements should only be combined
within single surfaces, as the combination of measurements across object
boundaries will generally yield errors in the velocity field. If detected early,
the motion discontinuities can define regions of the image within which
the local motion measurements should be combined.

With regard to computational schemes, one issue that arises is the
question of what stage in the analysis of the image should discontinuities
first be detected. Three alternatives present themselves. First, motion dis-
continuities could be localized prior to the computation of the full velocity
field, just after the initial measurements of the perpendicular components
of motion in the image (for example, Schunck & Horn 1981, Hildreth
1984). Schunck & Horn used simple heuristics to avoid combining motion
measurements likely to occur on surfaces undergoing different motions.
Hildreth presented a scheme to detect sudden changes in the perpendicular
components of motion, which uses techniques that were previously used
for edge detection (Marr & Hildreth 1980). H. Bfilthoff and T. Poggio
(1986, personal communication) use the binary output of simple cor-
relation-like detectors, signaling motion to the left or the right, to localize
discontinuities in dense random-dot patterns. Surprisingly, such a simple
measure gives a fairly accurate assessment of discontinuities, at least for
random-dot stimuli.

A second possible stage at which boundaries can be detected is after
the velocity field has been computed explicitly everywhere. For example,
Nakayama & Loomis (1974) proposed a local center-surround operator
to detect boundaries in optical flow fields. Similar ideas are incorporated
in models suggested by Clocksin (1980) and Thompson et al (1982, 1985,
Mutch & Thompson 1985), which use a Laplacian operator applied

¯ to components of the optical flow field. In other schemes explored, for
example, by Potter (1977) and Fennema & Thompson (1979, Thompson
1980), region-growing techniques are used to group together elements of
similar velocities.
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514 HILDRETH & KOCH

Finally, the velocity field and its discontinuities could be computed
simultaneously. In a scheme suggested by Wohn (1984) and Waxman
(1986), the motion segmentation problem is approached by detecting
"boundaries of analyticity" at which an approximation of the local image
flow by second-order polynomials breaks down. The boundaries are
located within the process that models the local motion field. Koch et al
(1986a) have proposed that binary line processes, first introduced in the
solution of vision problems by Geman & Geman (1984), can successfully
demarcate motion boundaries. At locations at which this line process is
set, an unobservable line or edge is postulated to interrupt the otherwise
smooth velocity field, segmenting the image into its natural components.
The appropriate algorithm can be formulated as an energy minimization
problem that maps naturally into simple analog networks (Koch et al
1986a).

A detailed neural circuitry for the detection of motion discontinuities
by the housefly was proposed by Reichardt et al (1983, Reichardt 
Poggio 1979). Large field binocular "pool" cells summatc the output of 
retinotopic array of small field elementary movement detectors (EMD)
over a large part of the visual field of the two compound eyes. The EMD
signal movement in one of two directions : progressive, i.e. movement from
front to back, and regressive, i.e. movement from back to front. The pool
cells inhibit in turn, via a silent or shunting inhibition (see the section on
circuitry and biophysics), the signals provided by the EMD, irrespective
of their preferred direction. After inhibition of each channel, all signals
from the EMD feed into a large field output cell. This circuit shows
two important propcrtics : It detects relativc motion of a moving figure
superimposed on a stationary background of the same texture as the figure,
and its output, the optomotor response, is independent of the size of
moving figure. Motion discontinuities arc signaled by significant activity
in the output cells. The model agrees well with behavioral data from the
fly. Moreover, elements of the proposed circuitry can be identified with
anatomically and physiologically characterized cells in the visual system
of the fly (Egelhaaf 1985).

Physiological studies have revealed center-surround mechanisms that
are organized antagonistically for direction of motion in many vertebrate
species (for example, Sterling & Wickelgren 1969, Collett 1972, Bridgeman
1972, Frost 1978, Frost et al 1981, Frost & Nakayama 1983). Motion-
sensitive cells with this organization have been found in area MT of the
owl monkey (Miezin et al 1982, Allman et al 1985) and in striate cortex 
the cat (Orban et al 1986). The existence of center-surround relative motion
detection mechanisms across such a range of species suggests that a similar
strategy may be utilized in the underlying computations. Richards &
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Lieberman (1982) show in psychophysical studies that some viewers are
"blind" to shearing motions, and suggest that the neural substrate for
detecting such discontinuous motions may be independent from mech-
anisms detecting other motion boundaries.

Psychophysical studies of motion discontinuities have mainly used
dynamic random dot patterns, in which only motion cues signal the pres-
ence of boundaries. Braddick’s (1974, 1980) studies revealed a limit on the
spatial and temporal displacements required to perceive coherent motion
in dense random-dot patterns, and showed that a boundary between coher-
ent and incoherent fields of motion can be detected. Experiments by Baker
& Braddick (1982a) and van Doom & Koenderink (1982, 1983) suggest
that the detection of discontinuities is not based on a computation that
explicitly measures only relative movement ; rather, an absolute measure-
ment of motion takes place first, followed by a process that compares
nearby motions to locate discontinuities. Baker & Braddick (1982b)
showed that the ability to discriminate the orientation of a patch that
moves against an uncorrelated background varies little with dot density
and increases with the patch size (see also Chang & Julesz 1983). In general,
the size of a patch of moving dots that can be discriminated against a
differentially moving background increases with larger displacements of
the dots between frames (Hildreth 1984). This phenomenon may reflect
the limitations of multiple spatial frequency channels involved in the early
detection of motion. Other perceptual studies have shown that spatial
frequency plays a role in determining the maximum displacements that
allow the perception of coherent motion in random dot patterns (Chang
& Julesz 1983, Nakayama & Silverman 1984b).

It is important to draw a distinction between the ability to detect differ-
ences in motion and the ability to localize a boundary between surfaces
undergoing different motions. For example, if two adjacent fields are
undergoing motion in the same direction, a 5% difference in speed is
sufficient to detect relative movement (McKee 1981, Nakayama 1981). 
localize a boundary, however, requires much larger differences in speed,
between 5060% (van Doorn& Koenderink 1982, 1983, Hildreth 1984).
If two adjacent surfaces undergo motions with similar speeds but different
directions, then an angular change in direction of at least 20° is required
to localize the position of the boundary (Hildreth 1984).

Experimental studies have provided much insight into the nature of
the mechanisms that underlies the detection of motion discontinuities in
biological systems. Many fundamental questions still remain, however.
Perhaps the most basic open question concerns at what stage in the analysis
of motion the discontinuities are first detected. It is not known, for
example, what representation of motion forms the input to the center-
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516 HILDRETH & KOCH

surround mechanisms observed in area MT by Allman et al (1985). These
mechanisms may operate directly on the perpendicular components of
motion, or they may operate on the real 2-D directions of image motion.
Psychophysical studies have not yet addressed this issue directly. Fur-
thermore, while physiological studies reveal that some sort of center-
surround mechanisms are involved in the detection of relative movement,
little is known about what these mechanisms really compute and how they
compute this information. Further computational studies are needed to
examine possible algorithms for detecting motion boundaries that may
utilize these center-surround mechanisms.

THE RECOVERY OF THREE-DIMENSIONAL
STRUCTURE FROM MOTION

The Computational Problem and Related Perceptual

Studies

When an object moves in space, the motions of individual points on the
object differ in a way that conveys information about its 3-D structure, as
illustrated in Figure 5a. The directions of motion in this case are all
horizontal, but the speed of movement varies in a way that depends on
the structure of the object. Using wire-frame objects such as that shown
in Figure 5a, Wallach & O’Connell (1953) showed that the human visual
system can derive the correct 3-D structure of moving objects from their
changing 2-D projection alone. Other perceptual studies also demonstrated
this remarkable ability (for example, Green 1961, Braunstein 1962, 1976,
Johansson 1973, 1975, Rogers & Graham 1979, Ullman 1979, Cutting
1982, Cutting & Proffitt 1982). Relative motion in the image is also created
by movement of the observer relative to the environment, and can be used
to infer observer motion from the changing image (Gibson 1950, Lee 
Aronson 1974, Johansson 1971, Lee 1980).

Theoretically, the two problems of (a) recovering the 3-D structure and
movement of objects in the environment and (b) recovering the 3-D motion
of the observer from the changing image are closely related. The main
difficulty faced by both is that infinitely many combinations of 3-D struc-
ture and motion could give rise to any particular 2-D image. To resolve
this inherent ambiguity, some additional constraint must be imposed
to rule out most 3-D interpretations, leaving one that is most plausible
from a physical standpoint. Computational studies have used the rigidity
assumption to derive a unique 3-D structure and motion ; they assume that
if the changing 2-D image can be interpreted as the projection of a rigid
3-D object in motion, then such an interpretation should be chosen (for
example, Ullman 1979, 1983, Clocksin 1980, Prazdny 1980, 1983, Longuet-

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
87

.1
0:

47
7-

53
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 C
O

L
L

E
G

E
 D

E
 F

R
A

N
C

E
 o

n 
06

/3
0/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



COMPUTATIONS UNDERLYING MOTION 517

Higgins 1981, Longuet-Higgins & Prazdny 1981, Tsai & Huang 1981,
Hoffman & Flinchbaugh 1982, Bobick 1983, Mitiche 1984, 1986, Mitiche
et al 1985, Waxman & Ullman 1985, Grzywacz & Yuille 1986). When the
rigidity assumption is used in this way, the recovery of structure from
motion requires the computation of the rigid 3-D object that would project
onto a given 2-D image. The rigidity assumption was suggested by percep-
tual studies that described a tendency for the human visual system to
choose a rigid interpretation of moving elements (Wallach & O’Connell
1953, Gibson & Gibson 1957, Green 1961, Jansson & Johansson 1973,
Johansson 1975, 1977).

Computational studies have shown the rigidity assumption can yield a
unique 3-D structure from the changing 2-D image. Furthermore, this
unique 3-D interpretation can be derived by integrating image information
over a limited extent in space and in time. For example, suppose that a rigid
object in motion is projected onto an image plane by using orthographic
projection. Three distinct views of four points on the moving object are
sufficient to compute a unique rigid 3-D structure for the points (Ullman
1979). In general, if only two views of the moving points are considered
or fewer points are observed, multiple rigid 3-D structures are consistent
with the changing 2-D projection. If a perspective projection of objects
onto the image is used instead, then two distinct views of seven or eight
points in motion are usually sufficient to compute a unique 3-D structure
for the points (Longuet-Higgins 1981, Tsai & Huang 1981). If the instan-
taneous velocity of movement in the image is known at discrete points,
then under perspective projection, the position and velocity at five points
may be sufficient to derive a unique structure (Prazdny 1980, Roach 
Aggarwal 1980). Longuet-Higgins & Prazdny (1981) originally showed
that if the continuous velocity field is known everywhere within a region
of the image, then the velocity field together with its first and second spatial
derivatives at a point is consistent with at most three possible surface
orientations at that point. Waxman, Kamgar-Parsi & Subbarao (see Wax-
man 1986) have recently shown that a unique solution can usually be
determined in this case. Finally, for the case of orthographic projection,
3-D structure can be recovered uniquely if both the velocity and accel-
eration fields are known within a region (Hoffman 1982). Additional
theoretical results have been obtained for classes of restricted motion, such
as planar surfaces in motion (Hay 1966, Koenderink & van Doorn 1976,
Buxton et al 1984, Longuet-Higgins 1984, Murray & Buxton 1984, Kan-
atani 1985, Waxman & Ullman 1985, Negahdaripour & Horn 1985, Sub-
barao & Waxman 1985), pure translatory motion of the observer (Clocksin
1980, Lawton 1983, Jerian & Jain 1984), planar or fixed axis rotation
(Hoffman & Flinchbaugh 1982, Webb & Aggarwal 1981, Bobick 1983,

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
87

.1
0:

47
7-

53
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 C
O

L
L

E
G

E
 D

E
 F

R
A

N
C

E
 o

n 
06

/3
0/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


518 HILDRETH & KOCH

Bennett & Hoffman 1984, Sugie & Inagaki 1984), translation perpendicular
to the rotation axis (Longuet-Higgins 1983), and motion of quadratic
surfaces (Waxman & Ullman 1985, Waxman & Wohn 1985). A review 
the theoretical results regarding the recovery of structure from motion can
be found in Ullman (1983).

The theoretical results summarized above are important for the study
of the recovery of structure from motion in biological vision systems, for
at least two reasons. First, they show that by using the rigidity assumption,
unique structure can be recovered from motion information alone; no
further physical assumptions are needed to obtain a unique solution.
Second, these results show that it is possible to recover 3-D structure by
integrating image information over a small extent in space and time. This
second observation could bear on the neural mechanisms that compute
structure from motion ; in principle, they need only integrate motion infor-
mation over a limited area of the visual field and a limited extent in time.

The above computational studies of the recovery of structure from
motion also provide algorithms for deriving the structure of moving
objects. Typically, measurements of the positions or velocities of image
features give rise to a set of mathematical equations whose solution rep-
resents the desired 3-D structure. The algorithms generally derive this
structure from motion information extracted over a limited area of the
image and a limited extent in time. Testing of these algorithms reveals that
although this strategy is possible in theory, it is not reliable in practice. A
small amount of error in the image measurements can lead to very different
(and often incorrect) 3-D structures. This behavior is due in part to the
observation that over a small extent in space and time, very different objects
can induce almost identical patterns of motion in the image (Ullman 1983,
1984).

This sensitivity to error inherent in algorithms that integrate motion
information only over a small extent in space and time suggests that a
robust scheme for deriving structure should use image information that is
more extended in space, time, or both. This conclusion is supported in
recent computational studies (Bruss & Horn 1983, Lawton 1983, Ullman
1984, Adiv 1985, Negahdaripour & Horn 1985, Waxman & Wohn 1985,
Wohn & Waxman 1985). Lawton (1983) showed that recovery of 
translatory motion of an observer could be coupled with the solution to
the motion correspondence problem over an extended region of the image,
to yield a robust solution. Adiv (1985) presented an algorithm for recover-
ing the motion parameters for several moving objects, which assumes
that object surfaces are piece-wise planar. The extraction of the motion
parameters uses a least-squares approach that minimizes the deviation
between the measured flow field (at a large number of points) and that

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

19
87

.1
0:

47
7-

53
3.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 C
O

L
L

E
G

E
 D

E
 F

R
A

N
C

E
 o

n 
06

/3
0/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


COMPUTATIONS UNDERLYING MOTION 519

predicted from the estimated motion and structure (Bruss & Horn 1983).
Negahdaripour & Horn (1985) also addressed the recovery of the motion
of an observer relative to a stationary planar surface, and showed that a
robust recovery of the observer motion and the orientation of the plane is
possible when dense measurements of the spatial and temporal derivatives
of image brightness are integrated over a large region of the changing
image. Thus, consideration of motion information that is more extended
in space can lead to a stable recovery of structure. The study by Ullman
(1984), elaborated below, demonstrated that a robust recovery of structure
is also possible when motion information is integrated over an extended
period of time. The extension in time can be achieved, for example, by
considering a large number of discrete frames or by observing continuous
motion over a significant temporal extent.

With regard to the human visual system, the dependence of perceived
structure on the spatial and temporal extent of the viewed motion has not
yet been studied systematically, but the following informal observations
have been made. Regarding spatial extent, two or three points undergoing
relative motion are sufficient to elicit a perception of 3-D structure (Borj-
esson & yon Hofsten 1973, Johansson 1975), although theoretically the
recovery of structure is less constrained for two points in motion, and
perceptually the sensation of structure is weaker. An increase in the number
of moving elements in view appears to have little effect on the quality of
perceived structure (for example, Petersik 1980). Regarding the temporal
extent of viewed motion, Johansson (1975) showed that a brief observation
of patterns of moving lights generated by human figures moving in the
dark (commonly referred to as biological motion displays) can lead to 
perception of the 3-D motion and structure of the figures. Other perceptual
studies indicate that the human visual system requires an extended time
period to reach an accurate perception of 3-D structure (Wallach & O’Con-
nell 1953, White & Mueser 1960, Green 1961, Doner et al 1984, Inada et
al 1986). It is not known, however, whether this implies an algorithm with
an extended "convergence" time, i.e. many iterations, or whether eye
movements are necessary for the recovery of 3-D structure. A brief obser-
vation of a moving pattern sometimes yields an impression of structure
that is "flatter" than the true structure of the moving object. Thus, the
human visual system is capable of deriving some sense of structure from
motion information that is integrated over a small extent in space and
time. An accurate perception of structure may, however, require a more
extended viewing period.

Most methods compute a 3-D structure from motion only when the
changing image can be interpreted as the projection of a rigid object in
motion. They otherwise yield no interpretation of structure or yield a
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solution that is incorrect or unstable. Algorithms that are exceptions to
this can interpret only restricted classes of nonrigid motions (Bennett 
Hoffman 1984, Hoffman & Flinchbaugh 1982, Koenderink & van Doom
1986, Grzywacz & Yuille 1986). The human visual system, however, can
derive some sense of structure for a wide range of nonrigid motions,
including stretching, bending, and more complex types of deformation
(Johansson 1964, Jansson & Johansson 1973, Todd 1982, 1984). Fur-
thermore, displays a rigid objects in motion sometimes give rise to the
perception of somewhat distorting objects (Wallach et al 1956, White 
Mueser 1960, Green 1961, Braunstein 1962, Sperling et al 1983, Braunstein
& Andersen 1984, Hildreth 1984, Adelson 1985). These observations sug-
gest that while the human visual system tends to choose rigid interpret-
ations of a changing image, it probably does not use the rigidity assumption
in the strict way that previous computational studies have suggested.

Ullman (1984) proposed a more flexible method for deriving structure
from motion that interprets both rigid and nonrigid motion. Referred to
as the incremental rigidity scheme, this algorithm uses the rigidity assump-
tion in a way different from previous studies. It maintains an internal
model of the structure of a moving object that consists of the estimated 3-
D coordinates of points on the object. The model is continually updated
as new positions of image features are considered. Initially, the object is
assumed to be flat, if no other cues to 3-D structure are present. Otherwise,
its initial structure may be determined by other cues available, from ster-
eopsis, shading, texture, or perspective. As each new view of the moving
object appears, the algorithm computes a new set of 3-D coordinates for
points on the object that maximizes the rigidity in the transformation from
the current model to the new positions. This is achieved by minimizing the
change in the 3-D distances between points in the model. Thus the algo-
rithm interprets the changing 2-D image as the projection of a moving 3-
D object that changes as little as possible from one moment to the next.
Through a process of repeatedly considering new views of objects in motion
and updating the current model of their structure, the algorithm builds up
and maintains a 3-D model of the objects. If objects deform over time, the
3-D model computed by the algorithm also changes over time. Other
models have been proposed that impose rigidity by requiring that the 3-D
distances between points in space change very little from one moment to
the next (for example, Mitiche 1984, 1986, Mitiche et al 1985), although
these models do not build up a 3-D model incrementally as in Ullman’s
proposed scheme.

The method proposed by Ullman (1984) was motivated partly by the
limitations of previous computer algorithms and partly by knowledge of
the human visual system. Thc method has overcome limitations of previous
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computational studies in two ways. First, it provides a reliable recovery of
structure in the presence of error in the image measurements, by integrating
image information over an extended time period. Second, it allows the
interpretation of nonrigid motions. These are essential qualities for any
method that is proposed as a viable model for the recovery of structure
from motion by the human visual system. This method also has other
attributes that are consistent with human perceptual behavior: (a) 
sometimes yields a nonrigid interpretation of rigid structures in motion,
(b) a brief viewing time results in a structure that is "flatter" than the true
structure of the object, (c) it allows a 3-D interpretation of scenes con-
taining as few as two points in motion (Borjesson & yon Hofsten 1973,
Johansson 1975), and (d) it provides a natural means for integrating
multiple sources of 3-D information.

A recent computational study by Grzywacz & Hildreth (1985) has
extended Ullman’s incremental rigidity scheme, presenting a formulation
of the algorithm that makes direct use of instantaneous velocity infor-
mation over an extended time and showing how the algorithm can he
modified to use perspective projection of the scene onto the image. With
regard to the use of velocities, previous studies had suggested that the
recovery of 3-D structure from velocity information at a single moment
is inherently unstable (Prazdny 1980, Ullman 1983). Through computer
simulations and a theoretical analysis, Grzywacz & Hildreth showed that
the integration of velocity information over an extended time does not
overcome this problem of instability. The velocity-based formulation of
the incremental rigidity scheme does not yield a robust computation of
structure over an extended time; rather, the solution oscillates between
good and poor estimates of the 3-D structure of a moving object. More
generally, if discrete views of moving elements are used instead, the
incremental rigidity scheme performs best when the spatial changes
between views are large. For example, if an object is rotating, the algorithm
computes a better 3-D structure for the object if larger angular rotations
between discrete frames are considered.

With regard to the human visual system, discrete movie-like "snapshots"
are unlikely to form a direct input to the recovery of 3-D structure from
motion. Second, if a short-range motion measurement system exists and
provides essentially instantaneous measurements of movement in the
changing image, these measurements should be used in some way to
interpret the 3-D structure of the scene. These short-range measurements
may, however, form the input to a longer-range tracking operation that
integrates image motion information over a more extended time for the
accurate recovery of 3-D structure. In any case, the short-range measure-
ments can also be used to identify motion discontinuities, which are likely
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to indicate the locations of object boundaries in the scene. Knowledge of
object boundaries can improve the overall recovery of structure from
motion.

This discussion of the structure-from-motion problem illustrates a num-
ber of important points that often arise in the computational study of
other problems in the early stages of vision. First, a single solution to the
problem cannot be obtained from information in the image alone ; some
additional constraint is required. Second, theoretical studies can be used
to show that a genera] physical assumption such as rigidity is sufficient to
solve the structure-from-motion problem uniquely. Third, an assumption
such as rigidity can be incorporated in many ways into an algorithm to
recover structure. The development of a reliable algorithm requires an
iterative process of computer implementation, testing, and refinement.
Finally, perceptual studies can suggest and test particular assumptions and
reveal aspects of the algorithm used by the human visual system for solving
a given problem. A typical characteristic of computational studies is that
thc initial methods proposed for solving a problem only loosely consider
the detailed observations of biological systems. These first studies uncover
useful aspects of the problems, however. Later studies then combine this
knowledge of the problem with observations of biological systems to derive
models that more closely reflect the computations carried out in biological
systems.

Physiological Studies of the Recovery of Structure
from Motion

Physiological studies have uncovered neurons in higher cortical areas that
are sensitive to properties of the motion field that may be relevant to the
recovery of the 3-D structure and motion of surfaces in the environment,
or to the recovery of the motion of the observer relative to the scene.
Many studies have revealed neurons sensitive to uniform expansion or
contraction of the visual field, a property that is correlated either with
translation of the observer forward or backward, or equivalcntly, motion
of an object toward or away from the observer. Such neurons have been
found, for example, in the posterior parietal cortex of the monkey (Motter
& Mountcastle 1981, Andersen 1986). Other neurons have been found that
are sensitive to global rotations in the visual field (Andersen 1986, Sakata
et al 1985). All of these neurons have large receptive fields, so they probably
lack the spatial sensitivity required to derive the detailed shape of an object
surface from relative motion. In the human visual system, the accurate
recovery of object shape from motion may be an ability that is restricted
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to the central region of the eye ; the ability to interpret 2-D structure-from-
motion displays seems to degrade rapidly as one moves away from the
fovea (S. Ullman, personal communication). Siegel & Andersen (1986)
showed that motion processing in area MT is critical to the recovery of
structure from motion.

The neurons sensitive to relative movement that were discussed in the
context of motion discontinuities may also contribute to the recovery of
3-D structure. Certainly the detection and localization of object boundaries
is essential to the construction of a 3-D representation of surfaces in
the scene. Mechanisms such as the "convexity" detector suggested by
Nakayama & Loomis (1974) may also derive information about the rela-
tive depths of surfaces on either side of a motion boundary. The com-
putational study by Mutch & Thompson (1985) also addressed this issue.

Regan & Beverley (1979, 1983) have hypothesized the existence 
"changing-size" detectors (analogous to detectors of uniform expansion
or contraction in the visual field) based on psychophysical evidence from
adaptation studies. They also suggested that the changing-size detectors
may be distinct from neural mechanisms signaling motion in depth (Bever-
ley & Rcgan 1979). Neurons cxist in area 18 of the cat visual cortex (for
example, Cynader & Regan 1978, 1982) and area V1 of the primate visual
cortex (Poggio & Talbot 1981) that appear to be selective for direction 
movement in depth. These studies on cells responsive to movement in
depth used binocularly viewed moving bars, however, so they may address
the interaction between binocular stercopsis and motion measurement for
the recovery of movement in space, rather than the recovery of structure
from motion alone.

Finally, Grzywacz & Yuille (1986) have proposed a neuronal network
implementation for the motion correspondence problem. They derive a
nonconvex energy expression for both the matching and the recovery of
3-D structure, which they minimize by using analog networks, similar to
Koch et al (1986).

CONCLUDING REMARKS

We have tried to integrate studies from computation, psychophysics, physi-
ology, and biophysics into a computational framework. The interaction
among these different approaches promises to be fruitful in furthering our
understanding of motion analysis in biological vision systems, because the
various perspectives each provide valuable and different insight into how
vision systems analyze motion information.

Perceptual studies, for example, help to define the problems in motion
analysis that are solved and reveal the quantitative ability with which the
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human visual system can solve these problems. We have seen that many
problems in motion analysis do not have a unique solution, and additional
constraint must be imposed to solve them. Often, different choices for the
assumptions can be embodied in the underlying computations, which
critical perceptual experiments can attempt to distinguish. Many algor-
ithms can solve a given problem, and different algorithms might fail in
different ways. Again, critical perceptual experinaents can be designed to
determine whether the human visual system fails in the same way. Per-
ceptual studies often provide initial hints about the strategies used in the
underlying computations.

Studies from physiology and biophysics can reveal what parts of the
visual system are involved in a particular computation, and what the
elementary operations are that neurons use in processing motion infor-
mation. Properties of the underlying hardware also constrain the nature of
the algorithms and representations that are used in motion computations.
Detailed computer models of neuronal networks subserving motion
measurement have helped to focus further experimental questions regard-
ing physiological and biophysical behavior. Finally, physiological methods
can help eliminate ambiguities in perceptual studies. Since the primate
visual system may have evolved a variety of different algorithms to cope
with a particular problem, a psychophysical paradigm may be unable to
distinguish between these different algorithms, while single-cell recordings
may do so.

Computational studies help to focus questions for perceptual studies
about the assumptions, representations, and algorithms used by the human
visual system to analyze motion. Implementations of proposed algorithms
have provided powerful predictive tools for making hypotheses about
what the behavior of the system ought to be if it is performing motion
computations in particular ways. In the case of physiological studies,
by elucidating the problems that need to be solved in motion analysis,
computational studies can aid the initial exploration of the function of
neurons in motion-sensitive areas in the visual pathway. By elucidating
possible methods by which computations can be performed, computational
studies can help to refine our understanding of how neurons function and
by what mechanisms.
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