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Abstract
A major challenge for systems neuroscience is to break the neural code.
Computational algorithms for encoding information into neural activity and
extracting information from measured activity afford understanding of how
percepts, memories, thought, and knowledge are represented in patterns of
brain activity. The past decade and a half has seen significant advances in
the development of methods for decoding human neural activity, such as
multivariate pattern classification, representational similarity analysis, hy-
peralignment, and stimulus-model-based encoding and decoding. This ar-
ticle reviews these advances and integrates neural decoding methods into
a common framework organized around the concept of high-dimensional
representational spaces.

435

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
14

.3
7:

43
5-

45
6.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 6
4.

22
2.

21
9.

16
9 

on
 0

7/
22

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



NE37CH22-Haxby ARI 30 June 2014 9:14

MEG: magnetoen-
cephalography

fMRI: functional
magnetic resonance
imaging

Multivariate pattern
analysis (MVPA):
analysis of brain
activity patterns with
methods such as
pattern classification,
RSA, hyperalignment,
or stimulus-model-
based encoding and
decoding
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INTRODUCTION
Information is encoded in patterns of neural activity. This information can come from our ex-
perience of the world or can be generated by thinking. One of the great challenges for sys-
tems neuroscience is to break this code. Developing algorithms for decoding neural activity in-
volves many modalities of measurement—including single-unit recording, electrocorticography
(ECoG), electro- and magnetoencephalography (EEG and MEG), and functional magnetic res-
onance imaging (fMRI)—in various species. All decoding methods are multivariate analyses of
brain activity patterns that are distributed across neurons or cortical regions. These methods are
referred to generally as multivariate pattern analysis (MVPA). This review focuses on the progress
made in the past decade and a half in the development of methods for decoding human neural ac-
tivity as measured with fMRI. We make occasional references to decoding analyses of single-unit
recording data in monkeys and of ECoG and MEG data in humans to illustrate the general utility
of decoding methods and to indicate the potential for multimodal decoding.

Prior to the discovery that within-area patterns of response in fMRI carried information that
afforded decoding of stimulus distinctions (Haxby et al. 2001, Cox & Savoy 2003, Haxby 2012), it
was generally believed that the spatial resolution of fMRI allowed investigators to ask only which
task or stimulus activated a region globally. Thus, fMRI studies focused on associating brain
regions with functions. A region’s function was identified by determining which task activated it
most strongly. The introduction of decoding using MVPA has revolutionized fMRI research by
changing the questions that are asked. Instead of asking what a region’s function is, in terms of a
single brain state associated with global activity, fMRI investigators can now ask what information
is represented in a region, in terms of brain states associated with distinct patterns of activity, and
how that information is encoded and organized.

Multivariate pattern (MVP) classification distinguishes patterns of neural activity associated
with different stimuli or cognitive states. The first demonstrations of MVP classification showed
that different high-level visual stimulus categories (faces, animals, and objects) were associated
with distinct patterns of brain activity in the ventral object vision pathway (Haxby et al. 2001, Cox
& Savoy 2003). Subsequent work has shown that MVP classification can also distinguish many
other brain states, for example low-level visual features in the early visual cortex (Haynes & Rees
2005, Kamitani & Tong 2005) and auditory stimuli in the auditory cortex (Formisano et al. 2008,
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Representational
similarity analysis
(RSA): analysis of the
pattern of similarities
among response
vectors

Response vector:
a brain activity pattern
expressed as the
response strengths for
features of that
pattern, e.g., voxels,
single neurons, or
model dimensions

Hyperalignment:
transformation of
individual
representational spaces
into a model
representational space
in which each
dimension has a
common tuning
function

REPRESENTATIONAL SPACE

Representational space is a high-dimensional space in which each neural response or stimulus is expressed as a
vector with different values for each dimension. In a neural representational space, each pattern feature is a measure
of local activity, such as a voxel or a single neuron. In a stimulus representational space, each feature is a stimulus
attribute, such as a physical attribute or semantic label.

Staeren et al. 2009), as well as more abstract brain states such as intentions (Haynes et al. 2007,
Soon et al. 2008) and the contents of working memory (Harrison & Tong 2009).

Whereas MVP classification simply demonstrates reliable distinctions among brain states, more
recently introduced methods characterize how these brain states are organized. Representational
similarity analysis (RSA) (Kriegeskorte et al. 2008a) analyzes the geometry of representations
in terms of the similarities among brain states. RSA can show that the representations of the
same set of stimuli in two brain regions have a different structure (Kriegeskorte et al. 2008a,b;
Connolly et al. 2012a,b), whereas MVP classification may find that the classification accuracy is
equivalent in those regions. Stimulus-model-based encoding and decoding algorithms show that
brain activity patterns can be related to the constituent features of stimuli or cognitive states. This
innovation affords predictions of patterns of brain response to novel stimuli based on their features
(Kay et al. 2008, Mitchell et al. 2008). It also affords reconstruction of stimuli from brain activity
patterns based on predictions of the stimulus features (Miyawaki et al. 2008, Naselaris et al. 2009,
Nishimoto et al. 2011, Horikawa et al. 2013).

Several excellent reviews have focused on MVP classification (Norman et al. 2006, Haynes &
Rees 2006, O’Toole et al. 2007, Pereira et al. 2009, Tong & Pratte 2012), RSA (Kriegeskorte
& Kievet 2013), or stimulus-model-based encoding and decoding (Naselaris et al. 2011). Here
we integrate neural decoding methods into a common framework organized around the concept
of high-dimensional representational spaces (see sidebar). In all these methods, brain activity
patterns are analyzed as vectors in high-dimensional representational spaces. Neural decoding
then analyzes these spaces in terms of (a) reliably distinctive locations of pattern response vectors
(MVP classification), (b) the proximity of these vectors to each other (RSA), or (c) mapping of
vectors from one representational space to another—from one subject’s neural representational
space to a model space that is common across subjects (hyperalignment) or from stimulus feature
spaces to neural spaces (stimulus-model-based encoding).

CORE CONCEPT: REPRESENTATIONAL SPACES
The core concept that underlies neural decoding and encoding analyses is that of high-dimensional
representational vector spaces. Neural responses—brain activity patterns—are analyzed as vectors
in a neural representational space. Brain activity patterns are distributed in space and time. The
elements, or features, of these patterns are local measures of activity, and each of these local
measures is a dimension in the representational space. Thus, if neural responses measured with
fMRI have 1,000 voxels, the representational space is 1,000-dimensional. If a population response
has spike rates for 600 cells, the representational space is 600-dimensional. If fMRI responses with
1,000 voxels include six time points, the response vectors are analyzed in a 6,000-dimensional space.

For fMRI, measures of local activity are usually voxels (volume elements in brain images), but
there are numerous alternatives, such as nodes on the cortical surface, the average signal for an
area, a principal or independent component, or a measure of functional connectivity between a pair
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Machine learning:
a branch of artificial
intelligence that builds
and evaluates
induction algorithms
that learn data patterns
and associate them
with labels

Pattern feature:
a single element in a
distributed pattern,
such as a voxel, a single
neuron, or a model
space dimension

Tuning function: the
profile of differential
responses to stimuli or
brain states for a single
pattern feature

of locations. For single-unit recording, local measures can be single-neuron spike rates, multiple-
unit spike rates, or local field potentials, among other possibilities. Similarly, EEG and MEG
responses can be analyzed as time-varying patterns of activity distributed over sensors or sources,
with numerous possibilities for converting activity into frequencies, principal or independent
components, or measures of synchrony between sources.

The computational advantages of representational vector spaces extend beyond neural repre-
sentational spaces to representational spaces for stimuli or cognitive states. For example, a visual
stimulus can be modeled as a set of features based on response properties of neurons in V1, as
higher-order visual features, or as a set of semantic labels. Sounds—voices and music—can be mod-
eled as sets of acoustic features, words can be modeled as sets of semantic features, actions as sets
of movement and goal features, etc. Once the description of the stimulus is in a representational
space, various computational manipulations can be applied for relating stimulus representational
spaces to neural representational spaces.

All the major varieties of neural decoding and encoding analyses follow from this conversion
of patterns of brain activity or stimuli to single points in high-dimensional representational vector
spaces. MVP classification uses machine learning methods to define decision boundaries in a neu-
ral representational space that best distinguish a set of response vectors for one brain state from
others. RSA analyzes the similarity between response vectors as distances in the representational
space. Stimulus-model-based encoding predicts the location of the neural response vector for a
new stimulus on the basis of the coordinates of that stimulus in a stimulus feature space. Stimulus-
model-based decoding tests whether the encoding-based prediction allows correct classification
of neural response vectors to new stimuli. Building a model of a neural representational space
that is common across brains requires hyperalignment to rotate the coordinate axes of individual
representational spaces to minimize the difference in the locations of response vectors for the
same stimuli. Thus, stimuli and other cognitive events are represented as vectors in neural rep-
resentational spaces as well as in stimulus representational spaces, and the computational task for
understanding representation becomes one of characterizing the geometries within spaces and
relating the geometries of these spaces to each other.

Numerically, a set of response vectors in a representational space is a matrix in which each col-
umn is a local pattern feature (e.g., voxel) and each row is a response vector (Figure 1). The values
in each column reflect the differential responses of that pattern feature to conditions or stimuli.
This profile of differential responses is called the tuning function. All the neural decoding and
encoding methods can be understood in terms of analyzing or manipulating the geometry of the
response vectors in a high-dimensional space. Computationally, these analyses and manipulations
are performed using linear algebra. Here we illustrate the concepts related to high-dimensional
representational spaces in two-dimensional figures by showing only two dimensions at a time—
the equivalent of a two-voxel brain or a two-neuron population. The linear algebra for these
two-dimensional toy examples is the same as the linear algebra for representational spaces with
many more dimensions and larger matrices. Most of the algorithms that we discuss here can
be implemented using PyMVPA (http://www.pymvpa.org; Hanke et al. 2009), a Python-based
software platform that includes tutorials and sample data sets.

The geometries in a neural representational space, as defined here, are distinctly different
from the geometries of cortical anatomy and of cortical topographies. A cortical topography
can be thought of as a two-dimensional manifold. Neural encoding can be thought of as the
problem of projecting high-dimensional representations into this low-dimensional topography.
Decoding is the problem of projecting a neural response in a two-dimensional topography into
a high-dimensional representational space. The methods that we discuss here are computational
algorithms that attempt to model these transformations.
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Brain activation
patterns Data matrix

Pattern features
(e.g., voxels)

Conditions
(e.g., stim

uli or tim
e points)

x y

Flatten
-1.6-1.6-1.61.6-1.6-1.61 61.6

-1.6-1.6-1.6-1.6-1.6-1.6-1.6-1.6

-1.7-1.7-1.71.7-1.7-1.71.7-1.7

Representational space
of 2-voxel brain

Voxel y

Voxel x

Figure 1
Multivariate pattern analysis (MVPA) is a family of methods that treats the measured fMRI signal as a set of pattern vectors stored in an
N × M matrix with N observations (e.g., stimulus conditions, time points) and M features (e.g., voxels, cortical surface nodes) define an
M-dimensional vector space. The goal of MVPA analyses is to analyze the structure of these high-dimensional representational spaces.

In a neural representational space, brain responses are vectorized, thus discarding the spatial re-
lationships among cortical locations and the temporal relationships among time points. Thus, the
approaches that we present here do not attempt to model the spatial structure of cortical topogra-
phies or how high-dimensional functional representations are packed into these topographies. An
approach to modeling cortical topographies based on the principle of spatial continuity of func-
tion can be found in work by Aflalo & Graziano (2006, 2011) and Graziano & Aflalo (2007a,b).
Anatomy and, in particular, cortical topography are important aspects of neural representation, of
course. Although decoding methods discard anatomical and topographic information when brain
responses are analyzed in high-dimensional representational spaces, the anatomical location of
a representational space can be investigated using searchlight analyses (Kriegeskorte et al. 2006,
Chen et al. 2011, Oosterhof et al. 2011), and the topographic organization of that representation
can be recovered by projecting response vectors and linear discriminants from a common model
representational space into individual subjects’ topographies (Haxby et al. 2011).

MULTIVARIATE PATTERN CLASSIFICATION
MVP classification uses machine learning algorithms to classify response patterns, associating each
neural response with an experimental condition. Pattern classification involves defining sectors
in the neural representational space in which all response vectors represent the same class of
information, such as a stimulus category (e.g., Haxby et al. 2001, Cox & Savoy 2003), an attended
stimulus (e.g., Kamitani & Tong 2005), or a cognitive state (e.g., Haynes et al. 2007).
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Training data
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Figure 2
MVP classification analyses involve partitioning data matrices into different sets for training and testing a pattern classifier. A classifier
is trained to designate sectors of the vector space to the labels provided for the samples in the training set. Test samples are then
classified as belonging to the labeled class associated with the sector in which they reside. Classification accuracy is measured as the
proportion of predicted labels that match the actual label (target) for each test item. A confusion matrix provides information about the
patterns of correct classifications (on the diagonal) and misclassifications (off diagonal).

Test data: the data
set used to test the
validity of a decision
rule that was derived
on training data

Training data: the
portion of a data set
that is used to derive
the decision rule for
pattern classification

Decision surface: a
surface that defines the
boundary between
sectors in a
representational space
and is used to classify
vectors

An MVP classification analysis begins with dividing the data into independent training and test
data sets (Figure 2). The decision rules that determine the confines of each class of neural response
vectors are developed on training data. The border between sectors for different conditions is called
a decision surface. The validity of the classifier is then tested on the independent test data. For
valid generalization testing, the test data must play no role in the development of the classifier,
including data preprocessing (Kriegeskorte et al. 2009). Each test data response vector is then
classified as another exemplar of the condition associated with the sector in which it is located.

Classifier accuracy is the percentage of test vectors that are correctly classified. A more revealing
assessment of classifier performance is afforded by examining the confusion matrix. A confusion
matrix presents the frequencies for all classifications of each experimental condition, including the
details about misclassifications. Examination of misclassifications adds information about which
conditions are most distinct and which are more similar. This information is analyzed using
additional methods in RSA (see next section). Examination of classification accuracy for each
condition separately can alert the investigator to whether average accuracy is really dependent on
a small number of conditions, rather than an accurate reflection of performance across all or most
conditions. Thus, average classification accuracy is a useful metric but discards information that
can be discovered by examining the classification confusion matrix. Confusion matrices are shown
in Figure 3 for two category perception experiments (Haxby et al. 2011; Connolly et al. 2012a,b).
From the first experiment, on the perception of faces and objects, the confusion matrix reveals
that if misclassified, faces are classified as other faces and objects as other objects. Moreover,
the classifier cannot distinguish female from male faces. From the second experiment, on the
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Within-subject classification
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Figure 3
Confusion matrices for two experiments that measured responses to visual objects in human ventral temporal (VT) cortex. The patterns
of misclassifications show that when items are misclassified they are more likely to be confused with items from the same superordinate
category: faces and small objects (top); and primates, birds, and bugs (bottom). Classification performed on data matrices from the same
subject (i.e., the same set of features) produces higher overall accuracies (a) than does between-subject classification (BSC) (b) where the
features (voxels) have been aligned on the basis of a standard anatomical template.

perception of animals, the confusion matrix reveals that misclassifications are usually within animal
class (primates, birds, and insects) and rarely across classes.

MVP classification uses machine learning classifiers to develop the decision rules. In general,
different classifiers produce similar results, and some classifiers tend to perform better than others.
A seminal MVP classification study (Haxby et al. 2001) used a one-nearest-neighbor classifier that
classified a test response vector as the category for the training data vector that was closest in the
neural representational space. Distance between vectors was measured using correlation, which is
the cosine of the angle between mean-centered vectors. Because a single vector was used for each
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Between-subject
classification (BSC):
classification of a
subject’s response
vectors based on a
classifier built on other
subjects’ data

Within-subject
classification (WSC):
classification of a
subject’s response
vectors based on a
classifier built on that
subject’s own data

Dissimilarity matrix
(DSM): the set of all
pairwise dissimilarities
between response
vectors

class in the training data—the mean pattern for each class in half the data—the decision surfaces
were linear hyperplanes separating each pair of unique classes. Nearest-neighbor methods are
fast and conceptually clear, but most have found that other classifiers provide slightly higher
accuracies. Cox & Savoy (2003) were the first to use support vector machine (SVM) (Cortez &
Vapnik 1995) classifiers for fMRI. SVM classifiers fine-tune the position of the decision surface
on the basis of the vectors that are closest to the surface, i.e., the support vectors, by maximizing
the distances from the surface to these borderline cases. Other regression-based methods, such as
linear discriminant analysis (LDA) (e.g., Carlson et al. 2003, O’Toole et al. 2005), are also effective
and can include regularization methods for selecting features, such as sparse multinomial logistic
regression (SMLR) (Yamashita et al. 2008). Most MVP classification analyses have used linear
classifiers—meaning that the decision surface is planar—some for theoretically driven reasons
(Kamitani & Tong 2005) but mostly for simplicity and to avoid overfitting the noise in the training
data, which leads to larger performance decrements in generalization testing.

Until recently, almost all MVP classification analyses had built a new classifier for each indi-
vidual brain. Cox & Savoy (2003) showed that classifier performance dropped drastically if based
on other subjects’ data. The performance decrement for between-subject classification (BSC) rel-
ative to within-subject classification (WSC) shows that the structure of activity patterns differs
across subjects. This variance could be due to the inadequacy of methods for aligning cortical
topographies based on anatomical features. Some of the more successful BSC analyses are of
large-scale patterns that involve many, widely distributed areas (Shinkareva et al. 2008, 2011),
suggesting that larger-scale topographies may be aligned adequately based on anatomy and that
poor BSC performance occurs when distinctions are found in finer-scale topographies. Low BSC
accuracies could also be due to idiosyncratic neural codes. Figure 3 shows the confusion matrices
for both WSC and BSC of two category-perception experiments, illustrating the severity of the
problem (Haxby et al. 2011). Accuracies dropped from 63% to 45% for 7 categories of faces and
objects and from 69% to 37% for 6 animal species. A recently developed method for aligning the
neural representational spaces across brains—hyperalignment—affords accuracies for BSC that
are equal to, and sometimes higher than, the accuracies for WSC (Haxby et al. 2011), suggesting
that the neural codes for different individuals are common rather than idiosyncratic. Use of hy-
peralignment to build a model of a common neural representational space is reviewed in a later
section.

REPRESENTATIONAL SIMILARITY ANALYSIS
RSA examines the structure of representations within a representational space in terms of distances
between response vectors (Figure 4). The complete set of distances among all pairs of response
vectors is known as the dissimilarity matrix (DSM) (Figure 5b,c). Whereas MVP classification
analyzes whether the vectors for different conditions are clearly distinct, RSA analyzes how they
are related to each other. This approach confers several advantages. First, RSA can reveal that
representations in different brain areas differ even if MVP classification is equivalent in those
areas (Kriegeskorte et al. 2008a,b; Connolly et al. 2012a,b). Second, by converting the locations
of response vectors from a set of feature coordinates to a set of distances between vectors, the
geometry of the representational space is now in a format that is not dependent on the feature
coordinate axes. This conversion allows comparison to DSMs for the same conditions in other
spaces that have different feature coordinate axes, such as the voxels of another subject’s brain
or of another brain region (Kriegeskorte et al. 2008a,b; Connolly et al. 2012a,b). It even affords
comparison of representational spaces based on stimulus feature models or on other types of brain
activity measurement, such as single-unit recordings or MEG.
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Representational similarity analysis
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Figure 4
Representational similarity analysis examines the patterns of distances between vectors in the high-dimensional vector space. Measures
of angular similarity such as cosine and Pearson product-moment correlation are standard measures that are most sensitive to the
relative contributions of feature dimensions. These similarity measures are transformed into dissimilarities by subtracting them from 1.
Another standard measure of the distance between vectors is Euclidean distance, which is more sensitive to overall differences in vector
length or magnitude.

Investigation of the similarity of neural representations from fMRI data dates back to an early
paper by Edelman et al. (1998), which was the first to use multidimensional scaling to visualize the
representational space for visual objects. Two groups reanalyzed data from an early MVP classifi-
cation study on the distributed representation of faces and objects (Haxby et al. 2001; reanalyzed
by Hanson et al. 2004; O’Toole et al. 2005, 2007) and found similar similarity structures using
different distance measures, one based on intermediate-layer weights in a neural network classifier
and the other based on misclassifications. Both found that the strongest dissimilarity was between
the animate (human faces and cats) and inanimate (houses, chairs, shoes, bottles, and scissors)
categories and, within the inanimate domain, a strong dissimilarity between houses and all the
smaller objects. These basic elements of the structure of face, animal, and object representations
were corroborated and greatly amplified by subsequent studies in monkeys (Kiani et al. 2007) and
humans (Kriegeskorte et al. 2008b). Kiani et al. (2007) measured the responses of single neurons
in the monkey inferior temporal (IT) cortex to a large variety of faces, animals, and objects and cal-
culated correlations among response vectors as indices of the similarity of the population response
vectors. The results revealed the major distinctions between animate and inanimate stimuli, with
a clear distinction between faces and bodies, but went deeper to show a similarity structure for the
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Figure 5
Three examples of
representational
similarity analysis
(RSA). (a)
Dendrogram derived
from multiple
single-unit recordings
in macaque inferior
temporal (IT) cortex
(from Kiani et al. 2007)
shows hierarchical
category structure
with remarkable detail
to the level of different
classes of animal body
type. (b) An example of
cross-modal and
cross-species RSA
analysis for a common
set of stimuli (from
Kriegeskorte et al.
2008b) shows a high
degree of common
structure in the
representational spaces
between humans and
monkeys, however,
with less definition of
subordinate categories
within humans. (c) A
targeted study of
subordinate class
structure for animal
categories (from
Connolly et al. 2012b)
shows detailed
structure for animal
classes in human VT
cortex.
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representations of animals that appears to reflect knowledge about similarities among species (see
Figure 5a). Kriegeskorte et al. (2008a,b) used a subset of the stimuli from the Kiani et al. study
in an fMRI study in humans and showed that the basic similarity structure of representations
in human ventral temporal cortex is quite similar to that for representations in the monkey IT
cortex (Figure 5b). Although Kriegeskorte et al. did not show the detailed structure among
animal species that was evident in the monkey data, subsequent targeted studies by Connolly
et al. (2012b) show that this structure is also evident in the human ventral temporal (VT) cortex
(Figure 5c).

RSA can be applied in many different ways to discover the structure of neural representational
geometries. These approaches include data-driven analyses and model-driven analyses. Data-
driven RSA discovers and describes the similarity structures that exist in different cortical fields.
Model-driven RSA searches for cortical fields whose similarity structures are predicted using
stimulus or cognitive models, including behavioral ratings of perceived similarity.

Cortical fields that have representational spaces with similarity structures of interest can be
identified in numerous ways. Cortical fields that show significant MVP classification can be further
analyzed with RSA to describe the similarity structure of the conditions that can be distinguished
(Figure 6a). Cortical fields can also be identified by virtue of having similarity structures that

0 Proportion correct 0.65

0 0.85Mean correlation

a  MVP classification

b  Between-subject correlation of DSMs

1 12Number of subjects

1 12Number of subjects

c  DSM cluster 1 - LOC

d  DSM cluster 2 - early visual

Figure 6
MVPA searchlight analyses (Kriegeskorte et al. 2006) for identifying cortical fields of interest (from Connolly et al. 2012a). MVP
classification accuracies (a) and consistency in local similarity structures across subjects (b) identify similarly large swaths of the visually
responsive cortex. Clustering of voxels based on similarities between locally defined searchlight dissimilarity matrix (DSMs) provides a
means to identify cortical fields with unique shared structure such as the lateral occipital complex (LOC) (c) and the early visual
cortex (d ).

www.annualreviews.org • Decoding Neural Representations 445

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
14

.3
7:

43
5-

45
6.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 6
4.

22
2.

21
9.

16
9 

on
 0

7/
22

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



NE37CH22-Haxby ARI 30 June 2014 9:14

are consistent across subjects (Figure 6b). The similarity structures in different cortical fields
identified in these ways, however, may differ. Connolly et al. (2012b) developed a clustering
method for finding different similarity structures in different cortical locations that were shared
across subjects (Figure 6c,d).

Understanding the similarity structure in a cortical field requires examining that structure. Of-
ten, the DSM itself is too complicated and high-dimensional to see the structure clearly. The full
DSM, therefore, is often distilled into a lower-dimensional illustration to facilitate examination.
The most common methods for reducing the dimensionality of a DSM are hierarchical clustering
to produce a dendrogram (e.g., Figure 6a,c), multidimensional scaling (MDS), and related meth-
ods such as DISTATIS (Abdi et al. 2009, 2012a). The dendrogram in Figure 5c (Connolly et al.
2012b), for example, reveals that animal species from the same class are most similar to each other
and that vertebrate classes (primates and birds) are more similar to each other than they are to the
invertebrate class (insects). MDS often reveals that a low-dimensional subspace can account for
a large portion of a similarity structure. For example, in Connolly et al. (2012b), the similarities
among animal classes were captured by a single dimension—the animacy continuum—that ranged
from primates to birds to insects and was associated with a distinctive coarse scale topography in
human VT cortex that had previously been attributed to the distinction between animate and
inanimate stimuli. Finer within-class distinctions (e.g., moths versus ladybugs), however, were
based on other dimensions and finer-scale topographies.

The meaning of the similarity structure in a representational space can also be investigated by
comparing it to a DSM generated by a model of the experimental conditions based on stimulus
features or behavioral ratings (Kriegeskorte et al. 2008a). For example, Connolly et al. (2012b)
showed that the DSM in the first cluster (Figure 6b) correlated highly with a DSM based on
behavioral ratings of similarities among animals, whereas the second cluster correlated highly with
a DSM based on visual features from a model of V1 neuron responses. Carlin et al. (2011) used
RSA to investigate the representation of the direction of another’s eye gaze that is independent of
head angle. They constructed a model similarity structure of gaze direction with invariance across
head angle. In addition, they constructed models of similarity structure due to confounding factors,
such as image similarity, and searched for areas with a similarity structure that correlated with their
DSM of interest after partialling out any shared variance due to confounding factors—illustrating
how RSA may be used to test a well-controlled model.

One of the great advantages of RSA is that it strips a cluster of response vectors out of a feature-
based representational space into a representational space based on relative distances among vec-
tors. This format allows comparison of representational geometries across subjects, across brain
regions, across measurement modalities, and even across species. The second-order isomorphism
across these spaces is afforded by the feature-independent format of DSMs. For example, between-
subject similarity of DSMs has been exploited to afford between-subject MVP classification (Abdi
et al. 2012b, Raizada & Connolly 2012).

The feature-independent second-order isomorphism, however, does have some cost. Stripping
representational spaces of features makes it impossible to compare population codes in terms of the
constituent tuning functions of those features. Thus, one cannot investigate whether the spaces in
different subjects share the same feature tuning functions or how these tuning function codes differ
for different brain regions. One cannot predict the response to a new stimulus in a subject on the
basis of the responses to that stimulus in other subjects. One cannot predict the tuning function for
individual neural features in terms of stimulus features, precluding investigators from predicting
the response pattern vector for a new stimulus on the basis of its features. The next two sections
review methods that do afford these predictions using hyperalignment and stimulus-model-based
encoding and decoding.
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Procrustes
transformation:
aligns two patterns of
vectors by finding an
orthogonal
transformation that
minimizes distances
between paired vectors
in two matrices

BUILDING A COMMON MODEL OF A NEURAL
REPRESENTATIONAL SPACE
MVP classification usually builds a new classifier for each individual brain [within-subject classi-
fication (WSC)]. Except for distinctions that are carried by large, coarse-scale topographies, BSC
based on other subjects’ anatomically aligned response vectors yields accuracies that are much
lower than those for WSC (see Figure 3). Basing decoding on classifiers that are tailored to in-
dividual representational spaces leaves open the question of whether the population responses in
different brains use the same or idiosyncratic codes, in terms of the tuning functions for individual
features within those responses.

Building a common model of a representational space requires an algorithm for aligning the
representational spaces of individual subjects’ brains into that common space. Anatomical align-
ment, using affine transformations of the brain volume and rubber-sheet warping of the cortical
manifold, does not afford BSC accuracies that approach WSC accuracies (Cox & Savoy 2003,
Haxby et al. 2011, Conroy et al. 2013). Algorithms for function-based, rubber-sheet alignment
of the cortical manifold, based on either the tuning functions or the functional connectivity of
cortical nodes, improve BSC but still do not afford BSC accuracies that are equivalent to WSC
accuracies (Sabuncu et al. 2010, Conroy et al. 2013).

A recently developed algorithm for aligning individual neural representational spaces into a
common model space, hyperalignment, does afford BSC accuracies that are equivalent to, and
sometimes exceed, WSC accuracies (Haxby et al. 2011). The algorithm revolves around a trans-
formation matrix that is calculated for each individual subject that rotates that subject’s representa-
tional space into the common model space (Figure 7). Valid parameters with broad general validity
for high-level visual representations can be calculated on the basis of brain responses measured
while subjects watch a complex, dynamic stimulus. This method was demonstrated using data col-
lected while subjects watched the full-length action movie Raiders of the Lost Ark, reasoning that
the subjects’ visual cortices represent the same visual information while they watch the movie. The
response vectors in different subjects’ brains, however, are not aligned because voxels in the same
anatomical locations do not have the same tuning functions. Hyperalignment uses the Procrustes
transformation (Schönemann 1966) to rotate the coordinate axes of an individual’s representa-
tional space to bring that subject’s response vectors into optimal alignment with another subject’s
vectors. Iterative alignments of individual representational spaces to each other produced a single
common representational space for the VT cortex. Each individual representational space could
then be rotated into that common model space. The dimensionality of the common model space
was reduced using principal components analysis. Optimal BSC accuracy for validation testing
across experiments required more than 30 dimensions. Thus, the common model of the represen-
tational space in the VT cortex has 35 dimensions, meaning that the transformation matrix is an
orthogonal matrix with 35 columns for the 35 common model dimensions and the same number
of rows as the number of voxels in an individual subject’s VT cortex (Figure 7).

The hyperalignment transformation matrix derived from responses to the movie provides the
keys that unlock an individual’s neural code. The parameters derived from the movie have general
validity across a wide range of visual stimuli and can be applied to data from any experiment,
making it possible to decode a subject’s response vectors for a wide variety of stimuli based on
other subjects’ brain responses. BSC of data from two category perception experiments, after
transformation into the common model dimensions using parameters derived from movie viewing,
was equivalent to WSC. In subsequent work, we have found that the algorithm produces valid
common models of representational spaces in early visual cortex, in lateral occipital and lateral
temporal visual cortices, in auditory cortices, and in motor cortices.
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Figure 7
Intersubject hyperalignment of neural representational spaces. Hyperalignment aligns individual subjects’ representational spaces into a common model representational
space using high-dimensional rotation characterized by an orthogonal transformation matrix for each subject. A dimension in this common model space is a weighted
sum of voxels in each individual subject (a column of the transformation matrix), which is functionally equivalent across subjects as reflected by the alignment of pattern
vectors in the common model space.
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Figure 8
Modeling response patterns as weighted sums of common model dimensions. (a) Any response pattern in a
subject can be modeled as a weighted sum of patterns representing common model dimensions.
(b) Category-selective regions defined by contrasts, such as faces-versus-objects for the fusiform face area,
can be modeled in the same way.

The transformation matrix provides a set of basis functions that can model any pattern of brain
response. Each column in the matrix, corresponding to one common model dimension, is a set
of weights distributed across voxels. A pattern of brain response in those voxels is a weighted
sum of these patterns of weights (Figure 8a). Models of VT cortex based on single dimensions,
such as contrasts that define category-selective regions, are modeled well in the 35-dimensional
model space (Figure 8b), but these single dimensions account for only a small portion of the
variance in responses to a dynamic and varied natural stimulus such as the movie. For example,
the contrast between responses to faces and responses to objects, which defines the fusiform face
area (FFA) (Kanwisher et al. 1997), accounts for only 12% of the variance that is accounted for by
the 35-dimensional model. This result indicates that models based on simple, univariate contrasts
are insufficient as models of neural representational spaces.

The use of a complex, dynamic stimulus is essential for deriving transformation matrix param-
eters that afford general validity across a wide range of stimuli. Transformation matrices can also
be calculated on the basis of responses to more controlled experiments, such as the category per-
ception experiments. These transformation matrices are valid for modeling the response vectors
for stimuli in that experiment but, when applied to data from other experiments, do not afford
BSC of new stimuli (Haxby et al. 2011). This result indicates that data from a limited sampling of
brain states, such as those sampled in a standard category perception experiment, do not provide
a sufficient basis for building a common model of a neural representational space.

STIMULUS-MODEL-BASED ENCODING AND DECODING
For MVP classification, RSA, and hyperalignment, a response vector to be decoded is compared
with response vectors for that same stimulus measured in the same subject or in other subjects.
These methods cannot predict the response pattern for a novel stimulus or experimental condition.
Stimulus-model-based methods extend neural decoding to novel stimuli by predicting the response
to stimulus features rather than to whole stimuli.

The stimuli used to produce training data for stimulus-model-based decoding are analyzed
into constituent features. Feature sets used for this type of analysis include models of V1 neuron
response profiles, namely oriented Gabor filters (Kay et al. 2008, Naselaris et al. 2009), visual
motion energy filters (Nishimoto et al. 2011), semantic features (Mitchell et al. 2008, Naselaris
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ECoG:
electrocorticography

et al. 2009), and acoustic features of music (Casey et al. 2012). These features can be continuous or
binary. Thus, each stimulus is characterized as a vector in the high-dimensional stimulus feature
space (Figure 9). The response for each feature in a neural representational space (e.g., voxel) is
then modeled as a weighted sum of the stimulus features. For example, a V1 voxel may have the
strongest weights for Gabor filters of a certain orientation and spatial frequency in a particular
location, reflecting the orientation selectivity and retinotopic receptive field for that voxel. The
prediction equation for each voxel is calculated on the basis of regularized regression analysis of
responses to the stimuli in the training data. The result is a linear transformation matrix in which
each column is a neural pattern feature and each row is a stimulus feature (Figure 9). The values
in each column are the regression weights for predicting the response of that neural feature given
a set of stimulus feature values.

Applying the encoding parameter transformation matrix to the stimulus feature values for a
new stimulus thus predicts the response in each voxel (Figure 9). This new stimulus can be any
new stimulus in the same domain that can be described with the same stimulus features. For ex-
ample, using Gabor filters, investigators can predict the response to any natural still image (Kay
et al. 2008, Naselaris et al. 2009). Using motion energy filters, the response to any video can be
predicted (Nishimoto et al. 2011). Using acoustic features, the response to any clip of music can
be predicted (Casey et al. 2012). The validity of the transformation can then be tested using either
MVP classification or Bayesian reconstruction of the stimulus. Each type of validation testing
involves analysis of response vectors for new stimuli. For MVP classification, neural response vec-
tors are predicted for stimuli in the validation testing set using the linear transformation matrix
estimated from an independent set of training stimuli. The classifier then tests whether the mea-
sured response vector is more similar to the predicted response vector for that stimulus than to
predicted response vectors for other stimuli in the testing set. For Bayesian reconstruction, the al-
gorithm identifies predicted response vectors generated from a large set of stimuli (priors) that are
most similar to the measured response vector. The reconstructed stimulus is then produced from
those matching stimuli. For example, Nishimoto et al. (2011) found the 30 videos that generated
predicted response vectors that most closely matched a measured response vector. They then pro-
duced a video by averaging those 30 video priors. The reconstructed videos bear an unmistakable
resemblance to the viewed video, albeit lacking detail, providing a convincing proof of concept.

Related methods have been used to reconstruct 10 × 10 contrast images (Miyawaki et al.
2008) and decode the contents of dream imagery (Horikawa et al. 2013). A study of brain activity
measured over the auditory language cortex using electrocorticography (ECoG) in surgery patients
used related methods to reconstruct the spectrogram for spoken words, producing auditory stimuli
that closely resembled the original words (Pasley et al. 2012).

In general, stimulus-model-based decoding is limited to Bayesian reconstruction based on sim-
ilarities to a set of priors. Simply generating a stimulus based on predicted features is infeasible
because the dimensionality of the neural representational space, given current brain measure-
ment techniques, is much lower than that of stimulus feature spaces that are complete enough to
construct a stimulus. Some researchers have speculated, however, that perception also involves a
process of Bayesian reconstruction based on similarity to prior perceptual experiences, a process
that could operate effectively with incomplete specification of stimulus features (Friston & Kiebel
2009).

MULTIPLEXED TOPOGRAPHIES FOR POPULATION RESPONSES
The spatial resolution of fMRI used in most neural decoding studies is 2–3 mm. Consequently,
each fMRI voxel contains more than 100,000 neurons and roughly 10–100 cortical columns.
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Figure 9
Stimulus-model-based encoding and decoding involve deriving a transformation matrix that affords prediction of responses of neural features from stimulus-model
features. Each column in the encoding transformation matrix corresponds to a neural feature and provides the weights for stimulus features to estimate that neural
feature’s response. Decoding responses to novel stimuli involves comparing measured response patterns to predicted patterns for stimulus priors.
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The fact that neural activity resampled into this coarse spatial grid can be effectively decoded
suggests that the topographies for distinct neural representations of the decoded information
include lower spatial frequency patterns. In fact, decoding of different distinctions appears to be
based on topographies of different spatial scales. Coarse distinctions, such as the difference between
animate and inanimate stimuli (Martin 2007, Mahon et al. 2009) or animal species at different levels
on the animacy continuum (Connolly et al. 2012b), are found in a coarse topography from lateral
to medial VT cortex. Finer distinctions, such as those between old and young human faces (Op
de Beeck et al. 2010, Brants et al. 2011) or between two types of birds (Connolly et al. 2012b), are
carried by finer-scale topographies. The finer-scale topographies for subordinate distinctions, such
as old versus young faces, are not restricted to the areas of maximal activity for the superordinate
category (Op de Beeck et al. 2010, Brants et al. 2011, Haxby et al. 2011). Thus, the topographies
for different distinctions appear to be overlapping and exist at multiple scales.

The topographic organization of the cortex reflects the problem of projecting a high-
dimensional representational space, composed of features with complex, interrelated tuning func-
tions, into a two-dimensional manifold. Kohonen (1982, 2001) proposed that cortical maps self-
organize to locate neurons with related tuning functions close to each other. Aflalo & Graziano
(2006, 2011; Graziano & Aflalo 2007a,b) have used this principle of spatial continuity of func-
tion to account for the topographic organization of the motor cortex (Aflalo & Graziano 2006)
and the coarse-scale topographic organization of the extrastriate visual cortex (Aflalo & Graziano
2011). Others have used this principle to account for multiplexed functional topographies in the
primary visual (Durbin & Mitchison 1990) and auditory (Schreiner 1995) cortices. Accounting
for seemingly disordered multiplexed functional topographies requires an adequate model of the
high-dimensional representational space. Haxby et al. (2011) showed that the topographies in
VT cortex that support a wide range of stimulus distinctions, including distinctions among re-
sponses to complex video segments, can be modeled with 35 basis functions. These pattern bases
are of different spatial scales and define gradients in different locations. Low-dimensional mod-
els of neural representation, such as those exemplified by category-selective regions (Kanwisher
2010, Weiner & Grill-Spector 2011), however, are not sufficient to model complex, multiplexed
functional topographies that support these distinctions.

FUTURE DIRECTIONS
Recent advances in computational methods for neural decoding have revealed that the information
provided from measurement of human brain activity is far more detailed and specific than was
previously thought possible. This review of the current state of the art shows that these methods
can be integrated in a framework organized around the concept of high-dimensional represen-
tational spaces. The development of algorithms for neural encoding and decoding, however, has
only begun. Although the power of neural decoding is limited by brain activity measurement
methods—and further technological breakthroughs will bring greater power and sensitivity to
neural decoding projects—new computational methods can direct investigators to additional im-
portant topics. Three areas for future investigation are addressed below.

Individual and Group Differences
Most neural decoding work to date has focused on the commonality of neural representational
spaces across subjects. The methods for aligning representational spaces across subjects, namely
RSA and hyperalignment, however, can also be adapted to investigate how an individual’s repre-
sentational space differs from others’ or how groups differ. Developing methods for examining
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individual and group differences would facilitate studies of how factors such as development,
education, genetics, and clinical disorders influence neural representation.

Between-Area Transformations in a Processing Pathway
RSA affords one way to draw distinctions among how representations are structured in different
parts of a processing pathway (Kriegeskorte et al. 2008b, Connolly et al. 2012b). Modeling the
transformation of representations from one cortical field to another, however, would help elucidate
how information is processed within a pathway, leading to the construction of representations
laden with meaning from representations of low-level physical stimulus properties. For example,
the manifold of response vectors that correspond to different views of the same face in early visual
cortex is complex and does not afford easy separation of the responses to one individual face from
the responses to another, whereas the manifold in the anterior temporal cortex may untangle these
manifolds, affording viewpoint-invariant identity recognition (DiCarlo & Cox 2007, Freiwald &
Tsao 2010). Determining the structure of these transformations and the role of input from multiple
regions is a major challenge for future work.

Multimodality Decoding
fMRI has very coarse temporal resolution. Neural decoding studies with other measurement
modalities, such as single-unit recording (e.g., Hung et al. 2005, Freiwald & Tsao 2010), ECoG
(Pasley et al. 2012), and MEG (Carlson et al. 2011, Sudre et al. 2012), have shown how population
codes for different types of information emerge over time as measured in tens of milliseconds.
Similar tracking of population codes has been demonstrated with fMRI but is severely limited by
the temporal characteristics of the hemodynamic response (Kohler et al. 2013). Using multiple
modalities, representational spaces could be modeled in which some dimensions reflect different
time points for the same spatial feature and other dimensions reflect spatiotemporal gradients or
wavelets. The potential of multimodal neural decoding is largely unexplored.
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