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primers with which to assay RPS4X methylation in particular species; primer

and underlying sequences have been deposited at GenBank: human, accession

no. G36429; chimp and gorilla, G36430 and G36431; rabbit, G36432; guinea

pig, G36433; mouse, G36434; rat, G36435; lemming, G36436; squirrel, G36437;

dog, G36438; anteater, G36439; hedgehog, G36440; whale, G36441; and horse,

G36442. For SMCX, PCR primers were chosen from CpG-island sequences

found to be conserved between human and mouse: CCTCGGGCCCACCATG-

GAG and CTGATTTTCGCGATGTAGCC amplify a 117-bp product that

includes three CCGG sites in humans and two in mice. We selected these

conserved SMCX primers after sequencing 59 portions of the mouse transcript

(GenBank AF0398940; obtained by 59 RACE cloning) and comparing these

with previously published 59 human SMCX sequences20.

Y-chromosomehomologues. We searched for Y-specific homologues of ZFX/

ZFY and SMCX/SMCY in mammalian species by Southern blotting of EcoRI-

digested male and female genomic DNAs. For ZFY, we used two hybridization

probes in separate experiments, with entirely concordant results (Figs 2 and 3):

(1) a 395-bp genomic BssHII fragment10 from the 59 CpG island of human ZFY,

and (2) pDP1007, a 1.3-kb genomic fragment containing the zinc-finger exon26

of human ZFY. Probes were labelled with 32P by random-primer synthesis and

hybridized overnight to Southern blots at 67 8C (65 8C for pDP1007) in 1 mM

EDTA, 0.5 M NaPO4 pH 7.2 and 7% sodium dodecyl sulphate (SDS). Blots were

then washed three times for 20 min each at 62 8C in 0:1 3 SSC

(1 3 SSC ¼ 0:15 M NaCl, 15 mM Na citrate pH 7.4), 0.1% SDS and exposed

at −80 8C with X-ray film backed with an intensifying screen for one day. The

SMCY hybridization probe (pCM4) and conditions were described previously20.

We also searched for Y-chromosome homologues of RPS4X/RPS4Y and

SMCX/SMCY in particular species by cDNA selection, or by screening cDNA

libraries. In cDNA selection27, human RPS4Y coding sequence (as selector) was

hybridized at 55 8C to cDNA libraries (Clontech) prepared from adult male rat,

rabbit, dog or cattle liver. Selection products were cloned into plasmid vectors

and sequenced. cDNA libraries prepared from adult male dog liver (Clontech)

and adult male opossum spleen (Stratagene) were screened with the entire

human RPS4Y coding sequence as probe, at low stringency (overnight

hybridization at 58 8C in 1 mM EDTA, 0.5 M NaPO4 pH 7.2, 7% SDS;

subsequent washing three times for 20 min each at 50 8C in 1 3 SSC, 0.1%

SDS). Once dog and opossum RPS4X clones were identified, by sequencing,

these were used as probes for high-stringency rescreening of their respective

libraries (hybridization at 65 8C and washes at 658C in 0:1 3 SSC, 0.1% SDS).

We anticipated that RPS4Y clones, if present, would be detected in the low-

stringency screen but not in the high-stringency screen. In this manner, we

identified opossum RPS4Y ( and RPS4X) cDNA clones, confirmed by sequen-

cing (GenBank AF051137 and AF051136, respectively) and mapping studies

(K.J. and D.C.P., unpublished results; complete description will be published

elsewhere), but in dog we detected only RPS4X clones. Similarly, we screened a

cDNA library (Clontech) prepared from adult male rabbit liver at low

stringency using a 370-bp mouse Smcx cDNA fragment (prepared from

clone pCM4 (ref. 20) by PCR using primers CCTTCCAAGTTCAACAGTT

ATGG and CATACGTATGACTCAATAAACTGGG), identifying 13 SMCX but

no SMCY clones.
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When we make saccadic eye movements or goal-directed arm
movements, there is an infinite number of possible trajectories
that the eye or arm could take to reach the target1,2. However,
humans show highly stereotyped trajectories in which velocity
profiles of both the eye and hand are smooth and symmetric for
brief movements3,4. Here we present a unifying theory of eye and
arm movements based on the single physiological assumption
that the neural control signals are corrupted by noise whose
variance increases with the size of the control signal. We propose
that in the presence of such signal-dependent noise, the shape of a
trajectory is selected to minimize the variance of the final eye or
arm position. This minimum-variance theory accurately predicts
the trajectories of both saccades and arm movements and the
speed–accuracy trade-off described by Fitt’s law5. These profiles
are robust to changes in the dynamics of the eye or arm, as found
empirically6,7. Moreover, the relation between path curvature and
hand velocity during drawing movements reproduces the empiri-
cal ‘two-thirds power law’8,9. This theory provides a simple and
powerful unifying perspective for both eye and arm movement
control.

The trajectories of eye and arm movements (that is, the change in
position and velocity over time) are not inevitable consequences of
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the mechanical properties of muscles, but reflect an orchestrated
pattern of neural activation by motor and pre-motor neurons. For
saccadic eye movements, it has been proposed that trajectories are
selected to minimize the time to reach the target10. For a linear
system, the minimum-time requirement results in ‘bang-bang’
control, where the control signal is instantaneously switched
between its maximum positive and negative values to accelerate
and decelerate the eye. However, it is difficult to generate the
observed symmetrical saccadic velocity profiles with bang-bang
control signals11,12. For arm movements, it has been suggested that
trajectories are selected to optimize a cost that is integrated over the
movement, such as jerk (rate of change of acceleration)13,14 or torque
change15. However, there has been no principled explanation why
the central nervous system should have evolved to optimize such
quantities, other than that these models predict smooth trajectories.
Indeed, the advantage of smoothness of movement still remains
unexplained. Furthermore, how the central nervous system could
estimate complex quantities, such as jerk or torque change, and then
integrate them over the duration of a trajectory is also unknown.

We propose that minimizing the variance of the eye or arm’s

position, in the presence of biological noise, is the underlying
determinant of trajectory planning. Noise in the final neural control
signal (that is, noise in the firing of motor neurons) will cause
trajectories to deviate from the desired path. These deviations will
be accumulated over the duration of a movement, leading to
variability in the final position. If the noise were independent of
the control signal16, then the accumulated error would be mini-
mized by making the movement as rapidly as possible, as in bang-
bang control for linear systems. However, here we assume that the
noise in the neural control signal increases with the mean level of the
signal. This is based on the empirical observation that the standard
deviation of motor-neuronal firing increases with the mean level,
with a coefficient of variation between 10 and 25% (refs 17, 18). This
assumption of signal-dependent noise is also consistent with
psychophysical observations that the variability of motor errors
increases with the magnitude of the movement, as captured by the
empirical Fitt’s law5. In the presence of such signal-dependent noise,
moving as rapidly as possible requires large control signals, which
would increase the variability in the final position. As the resulting
inaccuracy of the movement may lead to task failure or require
further corrective movements, moving very fast becomes
counterproductive19,20. Accuracy could be improved by having low
control signals, but the movement will be slow. Thus, signal-
dependent noise inherently imposes a trade-off between movement
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Figure 1 A comparison of bang-bang (dashed line) and minimum-variance (solid

line) control for a 10 degree saccade with a duration of 50ms. a, Neural control

signals; b, average position profiles of trajectories across repeated movements

are similar; c, velocity profiles show a marked difference in their degree of

symmetry; d, positional variance (obtained from equation (1) in Methods) which

represents the spread of the eye position across repeated trials, about the mean

position shown in b. Note that the variance continues to evolve after the mean

position has become steady. The eye was modelled as a second-order linear

system with time constants of 224 and 13ms. The variances have been scaled so

that the peak for the minimum-variance model is unity. e, Empirical (from ref. 22,

with permission) and predicted motor neuronal firing of agonist and antagonist

eye muscles in monkey for a 12 degree saccade. To model the monkey’s faster

plant, time constants of 150 and 7ms were used for this simulation. The predicted

motoneuronal activity was derived from the control signal by splitting it into

positive (agonist) and negative (antagonist) parts (the final tonic level of the

antagonist has not been modelled). Note that temporal jitter of firing is likely to

broaden and lower the predicted sharp antagonist peak.

Figure 2 Comparison of empirical and predicted saccade trajectories. a, Velocity

profiles of actual horizontal saccadic eye movements ranging in amplitude from 5

to 50 degrees (taken from ref. 4, with permission). Saccades below 30degrees are

symmetric, whereas larger saccades are asymmetric with a longer decelerative

phase. b, Theoretical optimal trajectories for minimizing positional variance with

signal-dependent noise for a second-order linear model of the eye with time

constants of 224 and 13ms. c, Theoretical optimal trajectories for a third-order

linear model of the eye with the additional time constant of 10ms. The predicted

trajectories show the change in symmetry with saccade amplitude.
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duration and terminal accuracy. The key point is that for a given
amplitude and duration of movement, the final positional variance
will depend critically on the actual neural commands and the
subsequent velocity profile. We propose that the temporal profile
of the neural command is selected so as to minimize the final
positional variance for a specified movement duration, or equiva-
lently to minimize the movement duration for a specified final
positional variance determined by the task.

We assume that neural commands have signal-dependent noise
whose standard deviation increases linearly with the absolute value
of the neural control signal. On the basis of this single assumption,
we determined the optimal trajectories of the eye and arm that
minimized the total positional variance during the immediate post-
movement period (see Methods). For saccades, we considered a
commonly used second-order linear system21, in which the mini-
mum-variance and bang-bang solutions were compared for a 50-ms
10-degree movement (Fig. 1). Both the control strategies reach the
target position in the same time (Fig. 1b), but the positional
variance in the post-movement period is significantly lower for
the minimum-variance solution (Fig. 1d). Although on average
the eye is on target, with zero velocity at the end of the movement
(Fig. 1b), on any single trajectory there will be a positional error and
a non-zero velocity at the end of the movement due to the effect of
the signal-dependent noise. Therefore, as seen in Fig. 1d, the
positional variance can continue to change after the movement.
Thus to minimize deviations from the final position, it is necessary
to minimize variance over a post-movement period. The mini-
mum-variance solution results in a smooth symmetric velocity
profile, in contrast to the asymmetric profile produced by bang-
bang control (Fig. 1c). The model is also in qualitative agreement
with observed agonist and antagonist motoneuronal firing
patterns22 (Fig. 1e).

Over a range of amplitudes, the minimum-variance solutions
(Fig. 2b) also capture the important features of natural saccadic
movements (Fig. 2a)—symmetric short movements and asym-
metric long movements with an extended deceleration phase4.
With a third-order model of the eye, the optimal trajectories capture
the bell-shaped trajectories observed empirically (Fig. 2c). The
optimal trajectories also show a similar rise time for all saccades
and a saturation in the peak velocity for saccade amplitudes above
,30 degrees, as is observed experimentally. Although it has been
proposed that this saturation arises from limits on the control
signal10, the minimum-variance model predicts this saturation
without any such limits. The shapes of trajectories for amplitudes
under 20 degrees were insensitive to modest changes in the time
constants of the system, whereas these parameters had a much

bigger effect on the slower movements. This is consistent with the
general observation that the speed and duration of large saccades
have greater variability within and between individuals than those
of small saccades. For brief movements, the order of the plant is the
major determinant of the optimal trajectory. In the limit, for
infinitely brief movements, the highest-order term dominates and
the model predicts symmetrical trajectories12. In Fig. 2, trajectories
for second- and third-order models are shown; the trajectories
for models of higher order are very similar to the third-order
model. For longer movements, the lower-order terms become
more important, leading to asymmetrical and complex optimal
trajectories.

For arm movements, we first considered a simple one-dimen-
sional fourth-order linear model which captures the muscle
dynamics and the arm’s skeletal inertia and viscosity23 (see
Methods). The optimal trajectory for a fast movement (Fig. 3b),
in which feedback was assumed to play a negligible role, shows the
typical bell-shaped velocity profile seen in natural movements24

(Fig. 3a). The profile is again insensitive to changes in the plant,
so that even when the inertia and viscosity of the arm or the time
constants of the muscle are individually halved or doubled, the
optimal profile remains essentially unchanged (Fig. 3c). This is
consistent with the observation that when the arm is subject to
elastic, viscous or inertial loads, the bell-shaped velocity profile is
regained after a period of adaptation6,7,25–28.

For arm movements, the required accuracy varies with the task, as
for example in the difference between pointing to someone in a
room compared with threading a needle. When pointing at targets,
it is empirically observed that movement duration increases with
the accuracy demanded by the task. This relationship is captured
empirically by Fitt’s law, in which the required accuracy is deter-
mined by the width of the target (Fig. 4a). For any given movement
duration, signal-dependent noise places a lower limit on the final
positional variance given by the minimum-variance trajectory.
Conversely, given a movement accuracy constraint, specified in
terms of final positional variance, there is a minimum duration of
movement which can achieve this. We propose that this minimum
duration trajectory will be chosen, given the limits of the final
endpoint variance imposed by the task. By assuming a linear
relationship between the required final endpoint standard deviation
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Figure 3 Comparison of empirical and theoretical arm velocity profiles.a, Velocity

profile of the hand in a typical fast arm movement (taken from ref. 24, with

permission). b, Theoretical optimal trajectory for minimizing post-movement

variance with signal-dependent noise for a second-order skeletal model of a

one-dimensional arm with inertia 0.25 kgm2 and viscosity 0.2Nms rad−1 driven by
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taken from ref. 23). c, Eight velocity profiles for the model in b in which the inertia,
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essentially invariant to these large changes in the dynamics of the arm.
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Fitt’s law relates movement duration (T) to the movement amplitude (A) and target

width (W shown as different symbols and lines) according to

T ¼ a þ b log2ð2A=WÞ, where a and b are constants. Empirical data from ref. 30

(with permission). This shows the typical increase inmovement duration as either

the amplitude of movement increases or the target width decreases. b, Predicted

movement durations for the minimum-variance model in the presence of signal-

dependent noise. The movement duration was calculated as the shortest

possible, given that the target width places an upper limit on the endpoint

positional standard deviation (see Methods). Note the predictions for different

widths, W, completely overlap.
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and the target width, Fitt’s law emerges as a consequence of signal-
dependent noise (Fig. 4b).

We next considered a two-joint nonlinear model of the arm
moving in the horizontal plane (see Methods). The optimal trajec-
tories for point-to-point movements again showed bell-shaped
velocity profiles (Fig. 5d) with gently curved hand paths (Fig. 5b),
as observed empirically (Fig. 5a, c)15. For drawing movements, it has
been found that hand velocity (V) decreases as the radius of
curvature of the path (R) decreases—this has been formulated as
the ‘two-thirds power law’, V ¼ KRð1 2 bÞ, where K is a constant and
b < 2=3 (refs 8, 9). We derived the trajectory that would minimize
the positional variance of the hand when repetitively drawing
ellipses (see Methods). The optimal trajectory shows the typical
slowing down as the curvature increases (Fig. 5e) and reproduces
the two-thirds power law, as seen by the regression line in Fig. 5f
(slope of 0.32, giving b ¼ 0:68). This shows that the minimum-
variance trajectory predicts the two-thirds power law.

From these analyses, we see that the trajectories of both saccadic
eye movements and arm movements can be described as trajectories
that minimize post-movement variance in the presence of signal-
dependent noise on the control signal. This approach has several
important ramifications. Primarily, it provides a biologically plau-

sible theoretical underpinning for both eye and arm movements. In
contrast, it is difficult to reconcile observed saccade trajectories with
bang-bang control, or to explain the biological relevance of such
factors as jerk or torque change in previous models of arm
trajectories.

Moreover, there is no need for the central nervous system to
construct highly derived signals to estimate the cost to the move-
ment, which is now variance of the final position or the conse-
quences of this inaccuracy, such as the time spent in making
corrective movements19,20. Such costs are directly available to the
nervous system and the optimal trajectory could be learnt from the
experience of repeated movements. Finally, it can be seen that
optimal trajectories are inherently smooth. Abrupt changes in the
trajectory of the eye or arm require large driving signals which
would carry more noise and therefore be suboptimal.

The minimum-variance theory provides a simple, unifying and
powerful principle that can be applied to goal-directed movements
and implies that signal-dependent noise plays a fundamental role in
motor planning. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

We found the optimal trajectories numerically for both linear models of the eye

and arm, and a nonlinear model of a two-joint arm, in the presence of signal-

dependent white noise in the control signal. The cost function that was

minimized was the positional variance across repeated movements summed

over the post-movement period.

Linear models. For the linear models of the eye and arm, we consider a single-

input single-output discrete-time system under control with a state-update

equation given by xtþ1 ¼ Axt þ Bðut þ wtÞ, where xt is the n-dimensional state

at time t, ut is the neural driving signal at t (note that for arm movements, ut is

the neural command signal that activates muscles and is not torque). A is a fixed

n 3 n matrix and B is a n 3 1 vector describing the dynamics of the system; wt

represents white noise on the driving signal, with zero mean and variance ku2
t ,

which increases with the magnitude of the control signal, ut, and represents the

signal-dependent noise. By iterating the state-update equation, the distribution

of the state at time t can be shown to have a mean

E½xtÿ ¼ At x0 þ ^
t 2 1

i¼0

At 2 1 2 i
Bui

with covariance

Cov½xtÿ ¼ k^
t 2 1

i¼0

ðAt 2 1 2 i
BÞðAt 2 1 2 i

BÞ
Tu2

i ð1Þ

The variance of the position at time t, Vt, is given by the appropriate element of

the diagonal of Cov[xt]. We wish to find the driving signal, u ¼ ½u0; u1; u2; …;

uTþRÿT, that reaches the desired position at time step T (the movement time)

and maintains it for R steps (the post-movement time) and which minimizes

the summed positional variance during this post-movement period, S
T+R
i=T+1Vt

(the cost). This can be formulated as a quadratic programming problem which

was solved using Matlab.

For the second-order linear model of the eye, the time constants were 224

and 13 ms (ref. 21). Movement durations were taken from ref. 4. Simulations

were performed with a time step of 1 ms and a post-movement fixation period

of 50 ms. For the third-order model of the eye, an additional time constant of

10 ms was included. There were negligible changes in the optimal trajectories

for post-movement times R . 20 ms.

For the one-dimensional arm model, we used the combination of a second-

order linear model of muscle and a second-order linear model of the arm’s

skeletal system which included inertia and viscosity. The time constants of the

muscle were taken as 40 and 30 ms and the inertia of the arm was 0.25 kg m2 and

the viscosity was 0.2 N ms rad−1 (ref. 23). Simulations were performed with a

time step of 10 ms and a post-movement period of 500 ms. There were

negligible changes in the optimal trajectories for post-movement times

R . 200 ms.

To simulate Fitt’s law, we assumed that subjects are required to place any part

of their finger of width w (taken as 6 mm) within the target of width W with a

fixed probability (the success rate). The required accuracy of the movement,
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Figure 5 Comparison of empirical and predicted trajectories for a two-joint arm.a,

Observed hand paths for a set of point-to-point movements (from ref. 15, with

permission), and b, theoretical optimal hand paths for the same set of move-

ments. The coordinates are centred on the shoulder joint and X and Y directions

represent the transverse and sagittal axes respectively. c, Observed velocity

profiles from T1 to T3 movement in a. Note all other movements in a showed

similar velocity profiles. d, Velocity profiles of all the optimal movements shown in

b, normalized to haveamaximumvelocity of 1.e, Optimal trajectory for drawingan

ellipse, the points are equally spaced in time. Note the slowing down at points of

high curvature. f, Plot of log tangential velocity (V) against log radius of curvature

(R). The two-thirds power law predicts logðVÞ ¼ logðKÞ þ ð1 2 bÞlogðRÞ. Linear

regression gives a slope of 0.32 (r2 ¼ 0:85) and hence the value of b ¼ 0:68.
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specified as the desired final positional standard deviation, was taken as

ðW þ wÞ=r, where r was taken as 1.96 to achieve a 95% success rate. The

movement duration was calculated as the shortest possible time that could

achieve this accuracy constraint, given that the signal-dependent noise on the

entire motor-neuronal pool had a 1% coefficient of variation.

Nonlinear model. For the nonlinear two-jointed planar arm, we used two

linear second-order muscles, as described above, acting on the shoulder and

elbow joint of a two-link arm moving in the horizontal plane (arm parameters

from ref. 29). The trajectories were parametrized as cubic splines with the knots

evenly spaced in time. For the point-to-point movements, 7 cartesian (x,y)

knots were used with the first and last points fixed at the start and target

locations with zero velocity. 500 movements (650-ms duration, sampled at

10 ms) were simulated with signal-dependent noise to determine the trajectory

that minimizes the post-movement variance. The optimal trajectory was found

using the simplex algorithm to adjust the knot locations.

For ellipse-drawing movements (duration 600 ms, sampled at 20 ms), the

knots represented the proportion of the distance travelled around the ellipse as

a function of time. Seven knots were used with the first knot at zero and the last

at one. This spline determined the velocity profile of the movement which was

confined to an elliptic path. The simplex algorithm was used to find the optimal

trajectory.
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Cortical feedback improves

discriminationbetweenfigure

andbackgroundbyV1,

V2andV3neurons

J. M. Hupé, A. C. James*, B. R. Payne*, S. G. Lomber*,
P. Girard & J. Bullier
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A single visual stimulus activates neurons in many different
cortical areas. A major challenge in cortical physiology is to
understand how the neural activity in these numerous active
zones leads to a unified percept of the visual scene. The anatomical
basis for these interactions is the dense network of connections
that link the visual areas. Within this network, feedforward
connections transmit signals from lower-order areas such as V1
or V2 to higher-order areas. In addition, there is a dense web of
feedback connections which, despite their anatomical promi-
nence1–4, remain functionally mysterious5–8. Here we show,
using reversible inactivation of a higher-order area (monkey
area V5/MT), that feedback connections serve to amplify and
focus activity of neurons in lower-order areas, and that they are
important in the differentiation of figure from ground, particu-
larly in the case of stimuli of low visibility. More specifically, we
show that feedback connections facilitate responses to objects
moving within the classical receptive field; enhance suppression
evoked by background stimuli in the surrounding region; and
have the strongest effects for stimuli of low salience.

We recorded single units and multiunits (114 single units and 54
multiunits) in areas V1, V2 and V3 of anaesthetized and paralysed
macaque monkeys. To study the role of feedback connections from
area V5, a small region of the superior temporal sulcus (STS)
containing this area was reversibly inactivated by cooling; we then
compared the neuronal responses before, during and after STS
inactivation. We used visual stimuli consisting of an optimally
orientated bar moved across the centre of the receptive field on a
background of irregularly distributed, half light and half dark, but
lower luminance, square checks (Fig. 1d). In a sequence of interleaved
stimulus conditions, the bar and background moved one at a time, or
together, in the preferred direction for the cell or its opposite.

Figure 1a–c illustrates a spectrum of effects of the V5 inactivation
for single neurons recorded in areas V1, V2 and V3, and stimulated
by a bright bar moving in front of a stationary background of lower
luminance contrast. A substantial and highly significant decrease in
the response to the moving bar is observed in each case during V5
inactivation. Figure 1e, f gives the population data. It is clear that
diminution of responses is by far the most frequent effect of V5
inactivation, as observed before for other feedback connections6,8.
Of the total sample of sites tested, 33% showed a significant decrease
(P , 0:01) and 6.5% an increase. Similar effects were observed in
infragranular and supragranular layers. No effect was observed in
layer 4C of area V1.

The role of feedback connections in figure–ground discrimina-
tion was suggested to us when we found that the strength of the
effect of V5 inactivation depended on the visibility of the stimuli
used for testing neurons in area V3, an area that receives a
particularly large feedback input from MT/V5 (ref. 9). We com-

* Present addresses: Mammalian Neurobiology and Reproduction, RSBS ANU, GPO Box 475, Canberra,

ACT 2601, Australia (A.C.J.); Laboratory of Visual Perception and Cognition, Center for Advanced
Biomedical Research, Boston University School of Medicine, 700 Albany Street, Massachusetts 02118,

USA (B.R.P. and S.G.L.).


