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Abstract. Correlation provides one of the
most useful and widely employed techniques
of data analysis in geography and in the larger
scientific community. Most correlation coeffi-
cients describe relations among scalar data.
Vector-valued data have received less atten-
tion despite their obvious geographic impor-
tance: vectors can describe motions across the
landscape and relations between locations.
After a brief review of the meaning and past
applications of vector correlation, we present
a vector correlation measure for comparing
two-dimensional vectors. This vector correla-
tion describes the goodness-of-fit of a rela-
tionship between two sets of vectors that
includes translation, scaling, and either rota-
tional or reflectional dependency. Linear
regression parameters additionally emerge
from the computation. We illustrate the prop-
erties of the vector correlation using wind
velocity data.

Key Words: vector correlation, statistics, boot-
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UANTITATIVE comparisons among two

or more variables are well known in the

geographic literature. Most of us are
familiar with Pearson’s product-moment cor-
relation between two variables, and for
decades geographers have used that correla-
tion to describe the degree of association
between two variables (Taylor 1977; Slocum
1990). Other measures of correlation, includ-
ing rank-order correlations, have been used
when required by the data (Slocum 1990).
Despite our familiarity with and use of corre-
lation, geographers have made little use of
bivariate correlation between those variables,
like the movement of people and goods,
whose observations may be expressed as vec-
tors. Geographers’ use of univariate direc-

tional statistics spans at least two decades
(Clark 1971, 1972; Gaile and Burt 1980), but it
too has been limited (Gaile 1990). Geologists
have made more frequent use of directional
statistics (cf. Fisher et al. 1985; Davis 1986).
Our use of whole-vector (nonunit) univariate
statistics is even less common (Odland et al.
1989). More importantly, the “vector” corre-
lations that geographers have proposed and
used (Costanzo and Gale 1984) have not
accounted for magnitude. One could even
argue that our correlations of directional data
have been inadequate (see the exchange
between Costanzo and Gale 1985, and Klink
and Willmott 1985). With few exceptions (e.g.,
Tobler 1978), correlations among vector-val-
ued spatial fields fail to appear in the geo-
graphic literature. Our purpose is to introduce
vector correlation among vector-valued spatial
fields into the geographic literature and to
explicate a particularly useful vector correla-
tion coefficient.

Principles of Vector Correlation

Some geographical data can be represented
by vectors or line segments characterized by
their length and their direction. Some vectors
have a constant, unit magnitude and are called
directional or unit vectors. Vectors with non-
unit magnitudes are termed whole vectors or
simply vectors. Common examples of vectors
include topographic slopes, wind velocities,
ocean currents, and migration rates of human
populations. Examples of directional data
include orientations of cirque basins and
directions of a road network. Any point along
a path can be assigned a sense of direction,
but magnitude cannot be assigned unless a
rate of motion or a distance along the path is
apparent.
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A useful vector correlation measure should
possess several desirable properties. The mea-
sure should have a bounded magnitude, pre-
ferably such that the maximum magnitude
indicates a perfect functional relationship and
a zero magnitude indicates complete indepen-
dence of the two vector-valued variables. Sim-
ple linear transformations of either of the var-
iables should not influence the correlation. A
simple linear transformation may be any com-
bination of scaling (z'; = kz;, where k is a
scalar constant, z; is the jth observation of
a vector variable, and z/ the transformed
observation, Fig. 1a, b) and translation
(z'; = z; + a, where a is a constant vector). In
contrast, the measure should account for both
rotational and reflectional dependencies

Figure 1. Examples of vector scaling, rotation, and
reflection. The arrows in panel (a) show a set of
three vectors that undergo transformations, as a set,
in the subsequent panels. Panel (b) shows the three
vectors scaled at 0.5, (c) a counterclockwise rotation
of 75°, (d) a 180° rotation, (e) a reflection about an
axis 30° counterclockwise from vertical, and (f) the
reflection about the vertical axis of the diagram.

between two vector-valued variables, z; and
w;. Vector-valued variables are rotationally
dependent when the pairwise difference be-
tween the angular components of two
variables is constant: 2z — Zw; = © = con-
stant. Rotational dependence indicates that
the two vector series turn clockwise or coun-
terclockwise together (Fig. 1a, c, d). The vec-
tors z; and w; have a reflectional dependence
when the pairwise sum of their angles is con-
stant: Zz; + £w; = ® = constant. With reflec-
tion, the vectors in one variable tend to prog-
ress clockwise while those in the other
variable progress counterclockwise (Fig. 1a, e,
f). Vector correlation should be insensitive (in
magnitude) to rotation or reflection in either
variable (in other words, its magnitude should
be rotation- and reflection-invariant), although
the correlation ought to provide information
on the angle of rotation (®) or axis of reflec-
tion (9/2).

Vector Correlation Literature

A number of directional and vector corre-
lation measures have been proposed, includ-
ing both nonparametric and parametric coef-
ficients. One of the earliest contributions on
the expression of the correlation between vec-
tors appeared more than fifty years ago
(Masuyama 1939). Most measures have been
developed for directional data, but some
could be extended to accommodate vector
observations (Table 1).

Nonparametric correlation coefficients for
directional data are based on the ranks of
directional variables. Measures proposed by
Hillman (1974) and Fisher and Lee (1982) range
from -1 for a reflectional relationship
between the variables to +1 for a rotational
dependence. Uncorrelated variables result in
avalue of zero. Mardia (1975) defined a slightly
different rank correlation coefficient with a
range of zero to one. His coefficient is defined
as the maximum of a reflection and a rotation
measure, allowing both types of dependence
to be distinguished. Perfect rotational or
reflectional dependence occurs when the
measure is one and uncorrelated variables
yield a value of zero. Fisher and Lee (1982)
extended Mardia’s coefficient to range from
-1 to +1. All of the above measures are invar-
iant under rotation or reflection, but they do
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Table 1. Comparison of Directional and Vec-
tor Correlation Measures

Author Properties Range
Masuyama (1939) V, P R,IF [=1.1]
Epp et al. (1971) D, P (=11
Downs (1974) D,P.R,FFA [-1,]
Hillman (1974) D, N, R, F [—1,1]
Mardia (1975) D,N,R,F [0,1]
Kundu (1976) Vi P; R,:A [0,1]
Johnson & Wehrly (1977) D,P, R, F, A [0,1]
Mardia & Puri (1978) D PiR; E [0,4]
Stephens (1979) D,P.R A [0,1]
Jupp & Mardia (1980) D, P.R, F [0,cl*
Batschelet (1981) D,P, R [0,1]
Fisher & Lee (1982) D,N,R,F [=1,1]
Rivest (1982) D,P,R,F [-1,1]
Fisher & Lee (1983, 1986) B, P, R, F [=1,1]
Wylie et al. (1985) V,P, R [0,1]
Breckling (1989) V,P,R, F A [0,1]
Hanson et al. (this V.P, R, F.A 1-11]
paper)

* See text.

Properties indicated as follows:

D: Limited to directional data.

: Usable with whole vector data.
Parametric.

: Nonparametric.

: Invariant under rotation of the original data.
Invariant under reflection of the original data.

: Angle of rotation or axis of reflection.is given.
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not provide information on the axis of reflec-
tion or angle of rotation. Since vectors can be
ranked by either magnitude or direction, rank
correlation measures cannot be extended
unambiguously to whole-vector variables.

Parametric directional measures suggested
by Mardia and Puri (1978) and Jupp and Mardia
(1980) give values that range from zero to a
positive upper bound. The coefficient defined
by Mardia and Puri is zero for uncorrelated
directions, two for perfect rotational or reflec-
tional dependence, and reaches four when the
two variables are coincident. Jupp and Mardia
(1980) proposed a coefficient whose limit is
based on the rank of the covariance matrix of
the trigonometric components of the direc-
tional variables. Their coefficient is zero for
uncorrelated data and reaches its maximum
when the variables have a perfect rotational or
reflectional relationship. Both measures are
invariant under rotation or reflection, but nei-
ther conveys information on the angle of rota-
tion or axis of reflection.

Other parametric directional coefficients are
within the range —1 to +1. The coefficient
proposed by Epp et al. (1971) reaches —1 when

the directional variables are 180° out of phase,
is zero for a phase shift of =90°, and reaches
+1 when the variables are coincident. Their
coefficient also is zero for uncorrelated data.
Downs’s (1974) directional coefficient also var-
ies between —1 and +1, where —1 denotes a
perfect reflectional dependence and +1 indi-
cates a perfect rotational relationship. The axis
of reflection or angle of rotation can be
obtained from the measure. Coefficients
developed by Rivest (1982) and Fisher and Lee
(1983, 1986) also range from —1 to +1. Once
again, —1 indicates perfect reflectional and +1
perfect rotational dependence. Except for the
Epp et al. (1971) measure, all the coefficients
described here are invariant under rotation or
reflection. Only Downs’s (1974) statistic con-
tains information on the axis of reflection or
angle of rotation.

Parametric measures that range from zero
to one include a coefficient developed by
Johnson and Wehrly (1977). Their correlation
reaches one when one variable is a constant
rotation, or a rotation with a reflection, of the
other variable. Stephens (1979) and Batschelet
(1981) describe measures that attain their max-
imum (+1) for a rotational dependence and
are zero for uncorrelated data. Stephens’s for-
mulation also gives the mean rotation angle
between the two variables. Johnson and
Wehrly’s coefficient is invariant for rotation or
reflection in either variable. Both Stephens’s
(1979) and Batschelet’s (1981) coefficients are
invariant only for rotation and do not detect
reflectional relationships.

Whole-vector correlation measures have
been proposed by Kundu (1976), Wylie et al.
(1985), and Breckling (1989). Kundu’s (1976)
coefficient ranges from zero to one and is
maximized by perfect rotational dependence
between the variables. The angle of rotation
is easily found from the measure. The coeffi-
cients discussed by Stephens (1979) and Bat-
schelet (1981) are essentially unit-vector
reductions of Kundu’s measure. Wylie et al.
(1985) base their coefficient on the individual
correlations of trigonometric vector compo-
nents. Rotational dependence results in a cor-
relation of one, but the angle of rotation is
not provided. In each case, the measure is
rotation-invariant and is zero when the varia-
bles are uncorrelated. Neither measure is sen-
sitive to reflectional relationships, and they
will vary in magnitude under reflection of
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either variable. Breckling (1989) described a
coefficient that is very similar to Downs’s
(1974) measure, with an extension to accom-
modate vector data. His coefficient attains a
value of one for either a perfect rotational or
reflectional dependence, is zero for uncorre-
lated variables, and is invariant under rotation
or reflection. The angle of rotation or axis of
reflection also can be determined. Breckling's
correlation is synonymous with our develop-
ment below, but is not straightforward com-
putationally nor does it allow easy interpreta-
tion of rotational or reflectional qualities.

Rotary (vector) cospectra (Mooers 1973) also
can (in theory) lead to correlation expressions
equivalent to ours for both rotational and
reflectional correlation. As with cross corre-
lation functions derived from scalar cospectra,
short data series or nonstationarity can pro-
duce unreliable estimates.

Vector Correlation in a Regression
Context

Simple Regression with Vector-valued
Variables

Correlation measures how strongly some
underlying function relates one variable to
another. For a simple underlying function, the
extraction of a correlation coefficient may
closely follow the estimation of the function’s
parameters from data; parametric correlation
and regression are inextricably linked.

Pearson’s product-moment correlation is
easily understood as a goodness-of-fit mea-
sure associated with a least-squares linear
regression model. Most of us visualize corre-
lation by the degree to which an ellipse of data
points approximates a regression line drawn
through the data. The vector correlation expli-
cated here is a direct analogue to the scalar
product-moment correlation.

Consider the correlation between n pairs of
two dimensional vectors, represented here as
complex numbers z; and w;. The observations
are

Zi=X; vy ) =715 5 00 (1a)

and

wi=u+iv; j=1,...,n (1b)

where i = V=1, and x; and y; are the compo-
nents of the two-dimensional vector z; and so
forth. Variance and covariance then can be
defined as
5 T 2
o7 =;}-’21 Z—2)*z;—2) =0di+ o} (2

and

Tz =

S |=

_21 (Zz— 2w, — W)
i~

= (Oxu + Opw) + [(Oxv — Oyu) (3)

where z} = x; — iy; is the complex conjugate
of z. An overbar indicates the arithmetic
mean. Variance of z; is just the sum of its com-
ponents’ variances while the covariance is a
vector in its own right (here represented as a
complex number). The real portion (first com-
ponent) of @ is the sum of the covariances
between corresponding elements of the vari-
ables. The imaginary portion (second compo-
nent) measures the “twisting” of one vector’s
components into the opposite components
of the other vector. Twisting implies a direc-
tion (from one vector into another) so
vector covariance contains the asymmetry
0. = O, not found in scalar covariance.
A vector correlation measure defined as
Pew = Low (4)
T2T
forms a direct analogue to scalar correlation.
Interpretation of this measure arises naturally
from its relationship to a scalar regression, but
in this case involving complex numbers.
Consider the regression equation

w,=pz;+a+eg (5)

with the complex regression coefficients
B = bo + iby and & = ap + ias. Fit error asso-
ciated with the jth observation is €. A least-
squares regression then requires that e and B
minimize 2.1 €''g;. Expressions for the regres-
sion coefficients are

B = pow ? (6)
and
o =w— Bz, (7)

and they are again exact analogues to the sca-
lar case. Furthermore the squared magnitude
of the correlation, p-wp?w is the proportion of
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the variance in w; explained by the regression
equation. The magnitude of the correlation is
in the range zero to one and is unaffected by
linear transformations of either z; or w;.

Correlation Under Rotation

Equation (5) implies a transformation that
involves translation, rotation, and scaling of
the vector z;. The “intercept” a defines a trans-
lation of coordinates. Rotation and scaling
appear clearly when f and z; are recast in their
polar forms, B = Be'® and z = Ze", where
the magnitude and angle are

B = Vb + by (8)
and
_b
tan @ = rod (9)
Equation (5) can be rewritten
w; = BZe®" + a + ¢ (10)

where it is apparent that B is the scaling factor
and O is the rotation angle from Z to w.
Vector correlation p.. is related to the
regression “slope” 8 by a real scalar (equation
6). Hence, the phase angle ® can be extracted
directly from the correlation,
Im Paw Txv — Oyu

tan @ = = : 11
d Re paw  Oxu + O an

which is equvalent to equation (9). The phase
© extracted from p.., is the angle required to
go from the orientation of Z to the orientation
of W. Switching the order of subscripts
requires the same angular travel, but in the
opposite direction,

Vector correlation p.., is itself a two-dimen-
sional vector. While correlation and regression
must be computed in Cartesian form, they are
easier to understand in polar form. The mag-
nitude of the correlation |p.u| is a single num-
ber with an interpretation quite similar to
Pearson’s scalar correlation. It ranges from
zero for no correlation to one for perfect cor-
relation, and its square is a ratio of explained
variance to a total variance. Neither the cor-
relation magnitude nor the size scaling factor
B retain a sign. Phase conveys information
similar to the sign of a scalar correlation, but
drawn from a much richer set of possibilities.

Correlation Under Reflection

Calculations discussed above can be slightly
modified to obtain a correlation that describes
a reflectional relationship between two sets of
vectors. Covariance and correlation con-
structed on the conjugate of the independent
variable consequently provide measures of the
reflectional relationship. Taking the complex
conjugates of a set of vectors produces no
change in the variances of the set, o2 = g2*.
Covariance involving complex conjugates
becomes

3=
L3

Tztw = (zf* —Z") " w;, — W)

~c
Il

= (Oxu — va) + i(osw + (Tyu)-" (12)
Equation (4) produces the reflectional corre-
lation p.*w when .+ is used instead of o,
Reflectional correlation and covariance have
the symmetry 0. = @.-. Changing the sign
in the exponent of equation (10) and comput-
ing new regression parameters produces

W, = szjei(!l)fﬂ,) + o' + €. (13)

(Obtaining the complex conjugate in polar
coordinates merely requires changing the sign
of the azimuth without modifying the magni-
tude.) Constructing the regression of w; on
z} thus produces the coefficients B’ = B'e™®
and &' of equation (13). As with the rotation,
reflectional correlation magnitude expresses
goodness-of-fit, and the magnitude of B’ is the
scaling factor. The azimuth of B’ (®) indicates
twice the axis of reflection—the direction of
the line about which variations in the paried
observations are approximately symmetric.
Owing to the symmetry of the reflectional cor-
relation, ® keeps the same value regardless of
whether z; or w; is the independent vector.

Comparison of Reflection and Rotation

Whether rotation or reflection is the better
model can be determined by calculating both
coefficients and comparing the results. A
slightly simpler comparison may be derived
from the correlation magnitudes. We define a
rotation/reflection index

f. = OxuTyv — TxvTyu. (14)
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When £ is positive, rotation is a better model,
whereas if £ is negative, reflection is better.
The relationship of the index to the two mod-
els is apparent in their explained-variance
forms:

- - (G'xu)2 + (va)z = (U'xv)z + (Uyu)z + z‘g
|pzul” = P

(15)

and

prruf? = (@x)” + (@)° + (@)" + (0y0)* — 2€
oiow '
(16)

While calculating this index a priori nets only
a negligible decrease in the total number of
calculations, the form of & illuminates some
differences between reflection and rotation.
Rotation, for instance, dominates when covar-
iances among like components (i.e., real-to-
real and imaginary-to-imaginary) are of the
same sign while unlike components are of
opposite sign.

A more geometric interpretation of the rota-
tion/reflection index is possible when it is writ-
ten as the determinant of the covariance ten-
sor:

(17)

& = det o= det (0',“, va) .

R

The pattern of signs required to produce a
positive or negative value of & corresponds to
the pattern of signs in the rotation and reflec-
tion matrices

( cos ® sin G)) (cos @  sin cb)
—sin® cos ® sin ® —cos ®/ "’
(18)

Covariances represent the inner product (dot
product) of two n-dimensional vectors of
deviations from the mean. Another interpre-
tation of the inner product is as the product
of the absolute values of the vectors (in this
case, n times the standard deviations) and the
cosine of the angle between them (in the n-
dimensional space). It is thus no coincidence
that the pattern of signs of the covariances
required for £ to indicate rotation or reflection
is the same as the pattern of signs in the matri-
ces of (18).

Similarity between equations (15) and (16)
allows us to define a correlation measure as

_ (£
= ()
\/(Uxu)z cin (U'yv)z + (U'xv)2 + (U‘yu)z i 2|§|
oo ’

(19)

Equation (19) selects p as the largest correla-
tion of (15) and (16), and it gives the correla-
tion a negative sign if the reflection model is
superior. This correlation ranges between —1
and +1, where +1 implies a perfect rotational
relationship, —1 implies a perfect reflectional
relationship, and zero implies completely
uncorrelated data with respect to both types
of relationship. Our correlation also is invar-
iant under scaling, rotation, reflection, and
translation of the constituent vectors. Its
square is the proportion of variance explained
by the regression model.

Correlations among Upper-Air
Wind Fields over the U.S.

To illustrate the use of vector correlation,
we compare upper-level wind fields over the
coterminous U.S. Wind data were drawn from
the National Meteorological Center (NMC)
Narthern Hemisphere octagonal grid analyses.
The NMC data then were interpolated from
the octagonal grid to a 2° of latitude by 2° of
longitude grid using a 16-point distance-
weighted interpolation scheme yielding 208
grid points. A computer program for calculat-
ing the interpolated field was provided along
with the data by the National Center for
Atmospheric Research. Owing to the relatively
smooth nature of upper-air wind fields, the
interpolated field should be quite accurate.
Our first example considers the correlation
between the 850-mb and 500-mb winds at 1200
UTC (Universal Time Coordinate) on 9 Febru-
ary 1989. Our second case study examines
winds at these same levels for 0000 UTC on 12
February 1987,
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Reflectional Example

Upper-air wind conditions at 1200 UTC on 9
February 1989 were dominated by a deep low-
pressure system over Baffin Island in north-
eastern Canada and a weaker center of low
pressure just off the west coast of the U.S.
Strong westerly and northwesterly winds in
the eastern two-thirds of the country resulted
from the steep pressure gradient and deep
trough surrounding the polar low. Cold advec-
tion occurred throughout the region. In the
western U.S., the secondary low-pressure sys-
tem yielded warm advection from a more
southerly and southeasterly wind regime.
High pressure near the surface and centered
over Texas led to noticeable veering (clock-
wise turning) of winds in the 850-mb-500-mb
layer west of the system, and backing (coun-
terclockwise turning) to its east.

Vector correlation between these 850-mb
and 500-mb wind fields is, on the average,
reflectional (Fig. 2). Approximately 60 percent
of the variance is explained by the reflection
model (p = —0.77) and the axis of reflection is
129° (clockwise from North). The most influ-
ential patterns are (1) the clockwise turning of
the 500-mb winds from the 850-mb winds in
the western and north-central parts of the
country, and (2) the counterclockwise turning
in the East, particularly in the Southeast. A
moderate, positive correlation among the
speed components of the velocity fields is
apparent (Fig. 3a) while the directional com-
ponents are spatially segregated (Fig. 3b).
Over the central and eastern portions of the
country, the 500-mb wind directions are pre-
dominantly from the west or northwest. While
there is more variability within the 850-mb
field in these regions, the 850-mb winds also
are from the west and northwest. Covariance
between the 850-mb and 500-mb wind direc-
tions over the central and eastern portions of
the U.S. produces a dense concentration of
points on a direction scatterplot (Fig. 3b). A
relationship between the southerly and south-
easterly winds (at both levels) over the western
part of the country also results in a character-
istic but elongated swarm of points on the
direction scatterplot. This swarm, however, is
based on fewer grid points as well as on
weaker and more variable winds; therefore it
is less distinctive than the pattern over the
central and eastern U.S. It is noteworthy that

vector correlations can be interpreted only
partially through a graphical examination of
scalar components (Klink and Willmott 1989).

Rotational Example

Conditions at 0000 UTC on 12 February 1987
were controlled by a sharp ridge of high pres-
sure centered over the northern Rocky Moun-
tains and a strong low-pressure system over
New Brunswick, Canada. The complementary
positions of the ridge and the low center
yielded strong northwesterly winds from the
Creat Lakes into the Northeast. In the West,
upper-air winds were split around the ridge
into two branches. A southwesterly wind
regime was evident in the western part of the
country. To the south, a westerly flow
occurred. Only slight veering of winds in the
850-mb-500-mb layer was evident.

Vector correlation between the 850-mb
(Fig. 4a) and 500-mb (Fig. 4b) winds on Feb-
ruary 12 exhibits a strong rotational character
(p = 0.84). The 500-mb field is rotated on the
average 16° clockwise from the 850-mb field.
Strong westerly and northwesterly winds (at
both levels) in the eastern half of the country
dominate the correlation. Correspondence
between high speed in the East and lower
speeds in the West also is evident in a speed-
component scatterplot (Fig. 5a). The contri-
bution of the directional components is not as
clear; but a relatively dense grouping of points
(centered at about 90° on the direction scat-
terplot, Fig. 5b) suggests an important covari-
ance among westerly and near-westerly winds
at the two levels. Such maps and graphics are
essential to an informed interpretation of vec-
tor correlation.

It is noted that the rotation is not necessarily
produced by a consistent thermal wind pat-
tern. A thermal wind that varied only slightly
over the map would produce, in all cases, a
high rotational correlation. High rotational
correlation, conversely, does not always imply
a consistent thermal wind pattern. Any corre-
lation between wind vectors at different pres-
sure levels will show a rotational correlation if
the area examined is not large enough to con-
tain regions of both veering and backing
winds. Negative correlation, implying reflec-
tion, would thus indicate a situation of syn-
optic complexity.
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Figure 2. Upper-air wind vectors over the coterminous U.S. for 1200 UTC 9 February 1989 (Mercator projection).
Each vector (arrow) is plotted over a point on the 2° by 2° grid. Arrow lengths are proportional to the wind-
speed component (m s~ ') according to the scale at lower right: (a) winds at 850 mb, (b) winds at 500 mb.

Evaluating Reliability bility distribution for p can be generated by

choosing ns random samples of size n (with

Bootstrap methods (Efron and Tibshirani
1986) provide a means to estimate the natural
variability expected in p. An empirical proba-

replacement) from our wind-field data set,
also of size n. The correlation is then reeval-
uated for each of the nz samples. An empiri-
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Figure 3. Scatterplots comparing polar components of the wind velocities shown in Figure 2: (a) speeds, (b)
directions (in the meteorological coordinate system: angles are clockwise from North).

cally derived frequency distribution can be
formed and evaluated using the ns estimates
of p. Usually, ng is large.

Following Willmott et al. (1985a), 1000 boot-
strap estimates of p were computed from
ng = 1000 random samples, each of size
n = 208. A scatterplot of the bootstrap-derived
vector correlation values for the 9 February
1989 fields (Fig. 6) indicates that p is centered
about the initial correlation of —0.77. Magni-
tudes of our bootstrapped ps vary little (+0.06)
as do the axes of reflection (+8°). These boot-
strap estimates suggest that our original eval-
uation of p is reliable. One thousand bootstrap
estimates of p were similarly obtained for the
12 February 1987 fields (Fig. 7). Once again,
the estimated values are centered roughly
about the original correlation of 0.84. Magni-
tudes range from about 0.79 to 0.89 (+0.05)
and rotation angles from about 10° to 22° (£6°).

Whether two data sets are derived from ran-
dom sampling, simulation, or interpolation
(e.g., to a regular grid), the correlation
between them is a useful algebraic description
of their similarity. When the data have not
been randomly sampled, as is the case here,
the usual statistical interpretations of reliabil-
ity, confidence, or significance are inappro-
priate. A degree of spatial autocorrelation also
exists within our (and most geographic) data,

and this constitutes another interpretational
difficulty since spatial autocorrelation can bias
reliability estimates (Cliff and Ord 1981). The
small ranges of our bootstrapped vector cor-
relations then may imply greater reliabilities
than actually exist.

Summary and Conclusions

A bivariate vector correlation measure has
been developed, described, and applied to
wind velocity fields to illustrate its use. This
correlation characterizes the strength of a lin-
ear relationship between two variables whose
observations are two-dimensional vectors. It
takes into account the magnitudes of the vec-
tor observations as well as rotational and
reflectional relationships between the two var-
iables of interest. A few comparable correla-
tions have appeared in the wider scientific lit-
erature, but they have not been adapted to
geographic problems. A bootstrap method
was used in conjunction with the wind-field
examples to demonstrate a way to examine the
correlation’s reliability.

Geographers regularly examine direction,
flow, and other vector quantities, but they
rarely subject them to appropriate (vector) sta-
tistical methods. Our limited use of directional




112

Hanson et al.

N - s 4 e . - aoe w0 N
N - ’ ” - - - . . - ~

)

N
L

IR EPIPENENE L SN
NEVAVENRS

\

Y

y,,,,,,,-zx\\\¥§7 a

\ T e e e e e e B
R S e e e B e W)
. W P e s s e s r

A A W —p —p —p ~—p ~—p

—i

s

d e

km at 40° N
T |
0 500 1000

at 850 mb, (b) winds at 500 mb.

Figure 4. Upper-air wind vectors over the coterminous U.S. for 0000 UTC 12 February 1987 (Mercator projec-
tion). The same vector conventions are used as in Figure 2, except at a different magnitude scale: (a) winds

and vector statistics reveals more about the
relative unavailability of such methods than
about the number of geographic problems
that could make appropriate use of such sta-
tistics. Witness the lack of treatment of vector

statistics and data within our standard geo-
graphical statistics texts and the unavailability
of the necessary algorithms within standard
statistical packages. A primary purpose of this
paper has been to present vector correlation
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Figure 6. Bootstrapped estimates of the vector cor-
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correlations is located according to signed magni-
tude (p) and reflection axes (d/2).

in such a way that it can be readily applied to
a large number of geographic problems. An
algorithm is given in the Appendix; a com-
puter program is also available (see Appendix).

Vector correlation should find nearly as

Figure 7. Bootstrapped estimates of the vector cor-
relation between 850-mb and 500-mb winds for 0000
UTC 12 February 1987, similar to Figure 6 except the
angles here represent rotation angles (0).

many uses within geography as scalar corre-
lation has found. Consider that flows across
the landscape can be represented as two-
dimensional vectors as can the spatial gra-
dients associated with most geographic fields.
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Potential applications include comparisons of
residential mobility patterns, where movers’
origins and destinations define the endpoints
of data vectors, and evaluations of the earth’s
magnetic field over time or space where the
magnetic imprints that are ‘frozen’ in igneous
rock at the time of solidification can be rep-
resented as vectors. Imagined journeys from
one location to another on mental maps also
could be represented as vectors and analyzed
using vector correlation. Vectors additionally
are used to represent the first harmonic of any
climate variable’s seasonal cycle (e.g., Will-
mott et al. 1985b) and could be used to com-
pare interannual or spatial variability in the
seasonal cycle.

Many useful extensions of bivariate vector
correlation also may be conceived. Our pres-
entation of vector regression could be
extended easily to multiple regression using
the same least-squares criterion. Typical data
transformations applied in scalar regression
may be challenged by the much fuller palette
of transforms provided by complex functions.
Geographers additionally may find it useful to
develop and apply cross- and autocorrelation
functions or eigenvector techniques based on
vector correlation. The best extensions will
help solve geographic problems that previ-
ously could not be analyzed. We are confident
that geographers have many such problems in
mind.
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Appendix: Calculation of the
Coefficients

Calculation of the various regression and corre-
lation coefficients described on pp. 106-08 requires
one pass through the data to collect the required
sums. Component sums are obtained from

Su=EU;; SV=Eva (A.1)

sn - E X? ' syy E )/;2 ’
=1 =1
n n
=¥y KL=% 4= (A.2)
i=1 =1
while the between-vector cross-products are
n n
Sw =2 Xith ; Sw=Z XV ;
= =1
n n
Su=2 Vil ; Sp= 2 YV - (A.3)
=1 =1

Intermediate calculations yield the variances:

Sex + S, §2+82
Eim . o ;n‘ Z (A.4)
S+ S S+ s
gL = T (A.5)
n n°

and the four component covariances, Gx, Ox, Oy,
and oy, from
Svu SiSu

e (A.6)
n n

and so on. Users of computerized statistical pack-
ages should note that all of the preceding calcula-
tions can be replaced by treating the components
x, ¥, u, and v as four independent variables and
generating their means and their variance/covari-
ance matrix.

The reflection/rotation coefficient & can be calcu-
lated using equation (14). A special sign variable,
s = sign(f) = &€, helps to automate the remaining
calculations:

J(U‘xu)z + (U'yv)l # ()" + (Gyu)l + 2s§
(0% + opos + oF)

(A7)
of + ot
B =sp
x + O'y
and
v — S0yu
@ = arctan (;) s (A.9)
ey + STy

Here B is the scale factor for either reflection or
rotation and similarly © represents either ® or &,
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depending on whether rotation or reflection domi-
nates.

When  coefficients for predicted values
(W, = @; + iv;) are required, they are

by = B cos © (A.10)

b= Bsin® (ATT)

Su — boSx + sbiS
an:w (A12)
n

S = sboS, = biS.

a (A.13)
n

0y = ao + box; — sbyy; (A.14)

l?',' =a + Sbo}’j -+ b1X;. (A.15)

If one wishes to choose rotation or reflection
regardless of which dominates, one may sets = +1
for rotation and s = —1 for reflection, regardless of
the value of £ Equations (A.7) onward then will
produce the desired result. A Fortran subroutine for
making these calculations, and a sample pro-
gram, can be obtained by writing to Professor Han-
son, or preferably via electronic mail to Hanson at
aey16590@udelvm on Bitnet or
aey16590@udelvm.udel.edu on Internet.

Notes

1. The author list is given alphabetically to indicate
an equal contribution from each author.
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