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Abstract
Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical
topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we
present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among
population responses with response-tuning basis functions that are common across brains and models cortical patterns of
neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex
using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual,
auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal
cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational
geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of
information. Themodel provides a rigorous account for individual variability of well-known coarse-scale topographies, such as
retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale
topographies and carry finer distinctions.

Key words: functional magnetic resonance imaging (fMRI), hyperalignment, multivariate pattern analysis (MVPA), neural
decoding, representational similarity analysis (RSA)

Introduction

The information in perceptions, thoughts, and knowledge is re-
presented in patterns of activity in populations of neurons in
human cortex. Representation in a cortical field can be modeled
as a high-dimensional space in which each dimension is a local
measure of neural activity, for example, a neuron’s spike rate or
a functional magnetic resonance imaging (fMRI) voxel’s hemo-
dynamic response, and patterns of activity are vectors in this
space (Haxby et al. 2014). Response vectors can be decoded with
multivariate pattern analysis (MVPA; Haxby et al. 2001, 2014) of

fMRI data in cortical fields that are associated with different
domains of information, such as low-level visual features in
early visual cortex (Kay et al. 2008), meaningful objects, and
faces in ventral temporal (VT) cortex (Haxby et al. 2001; Cox and
Savoy 2003; Kriegeskorte, Mur and Bandettini 2008; Kriegeskorte,
Mur et al. 2008; Naselaris et al. 2009; Haxby et al. 2011; Connolly
et al. 2012; Khaligh-Razavi and Kriegeskorte 2014), biological
motion, and facial expression in the superior temporal sulcus
(STS; Said et al. 2010; Carlin et al. 2011), speech and music in
the superior temporal gyrus (STG; Formisano et al. 2008; Casey
et al. 2011), and motor actions in sensorimotor and premotor
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cortices (Oosterhof et al. 2010, 2013). Representational similarity
analysis (RSA; Kriegeskorte, Mur and Bandettini 2008; Krieges-
korte, Mur et al. 2008; Connolly et al. 2012; Kriegeskorte and Kievit
2013) reveals that representational geometry for the same stimuli
varies across different cortical fields, reflecting how information
is transformed in processing pathways.

Currently dominant models for the functional architecture of
human cortex, which are based on tiled, interconnected cortical
areas for global functions (Desikan et al. 2006; Power et al. 2011;
Yeo et al. 2011; Amunts et al. 2013; Kanwisher 2010; Gordon
et al. 2016; Grill-Spector and Weiner 2014; Sporns 2015), do not
offer an account for distributed population codes, which are con-
tained within these areas, in a framework that is common across
subjects. These population codes are detected with fMRI as vari-
able patterns of activity with a fine spatial scale that carry fine-
grained distinctions in the information that they represent.
Arealmodels of the functional architecture of cortex posit a com-
mon framework on a spatial scale that captures only a coarser
topography of dissociable, more global functions, such as simple
motion versus biological motion perception.

Here, we present a common high-dimensional model of rep-
resentational spaces in the human cortex that is based on a large
set of response-tuning basis functions that are common across
brains, each of which is associated with individual-specific topo-
graphic basis functions. Once individuals’ data are transformed
into the model dimensions with common response-tuning
basis functions, patterns of response across dimensions afford
between-subject multivariate pattern classification (bsMVPC)
with high accuracy and markedly enhanced intersubject correl-
ation (ISC) of representational geometry. This model is a radical
departure from previous models of cortical functional architec-
ture as it is based on a common representational space rather than a
common cortical topography. By modeling functional topographies
as weighted sums of overlapping topographic basis functions,
our model also accounts for coarse areal topography and goes
further to capture fine-scale topographies that coexist with
coarse topographies and carry finer distinctions.

We derive this model using a searchlight hyperalignment
algorithm, extending our previous region of interest (ROI) hyper-
alignment algorithm (Haxby et al. 2011), to produce a model for
the whole cortex (Fig. 1). Our new algorithm produces a single
transformation matrix for each individual brain, affording
conversion of the representational spaces for all cortical fields
in that individual into a single common model space (Fig. 1b).

Wederived the transformationmatricesbasedonbrain responses
measured with fMRI while subjects watch and listen to a full-length
movie, affording a rich variety of visual, auditory, and social percepts
(Hassonetal. 2010).Thealgorithmalsocanbeapplied tosimpler, con-
trolled experimental data, but our previous results showed that the
sampling of response vectors from these experiments is impover-
ished and produces a model representational space that does not
generalize well to new stimuli in other experiments (Haxby et al.
2011). Results show that the computational principles underlying
this commonmodel have broad general validity for representational
spaces in occipital, temporal, parietal, and frontal cortices.

The common model is a high-dimensional representational
vector spacewith the capacity tomodel awide variety of response
vectors, their representational geometry, and their complex,multi-
plexed cortical topographies. Themodel also captures coarse-scale
features of human brain functional organization that have been
described based on univariate analyses, such as one-dimensional
category selectivities (e.g., faces versus objects; Kanwisher et al.
1997; Epstein and Kanwisher 1998; Downing et al. 2001) and 2-
dimensional retinotopy (polar angle and eccentricity; Sereno

et al. 1995; Nishimoto et al. 2011) and captures their topographic
variability across individual brains. Capturing these dimensions
in the context of a high-dimensional common model space pro-
vides an explicit, computational account for how coarse- and
fine-scale topographies that code coarse- and fine-scale distinc-
tions are multiplexed and overlapped.

Materials and Methods
Participants

We scanned 11 healthy young right-handed participants (4 fe-
males; mean age: 24.6 ± 3.7 years) with no history of neurological
or psychiatric illness. All had normal or corrected-to-normal vi-
sion. Informed consentwas collected in accordancewith the pro-
cedures set by the Committee for the Protection of Human
Subjects. Subjects were paid for their participation.

MRI Data Acquisition

Wecollected fMRI data fromall subjects, while theywatched a full-
length featurefilm “Raidersof the LostArk” thatweuseasthebasis
for hyperalignment and for the principal validation tests of
bsMVPC and intersubject alignment of representational geometry.
Foradditional validation tests of generalization to independent ex-
periments, we collected fMRI data in 10 subjects in a visual cat-
egory perception experiment (6 animal species; Haxby et al. 2011;
Connolly et al. 2012), in 9 subjects in a visual category-selectivity
functional localizer study, and in 8 subjects in a retinotopy locali-
zer study. The most relevant aspects of the fMRI data acquisition
are presented here, and further details about scanning parameters
and preprocessing can be found in Supplementary Material.

Movie Study
Stimuli and design. Subjects watched the full-length feature film,
Raiders of the Lost Ark, divided into 8 parts of ∼14 min 20-s dur-
ation. Successive parts repeated the final 20 s of the previous part
to account for hemodynamic response. Data collected during
overlapping movie segments were discarded from the beginning
of each part. Participants viewed the first 4 parts of the movie in
one session and were taken out of the scanner for a short break.
Participants then viewed the remaining 4 parts after the break.
Video was projected onto a rear projection screen with an LCD
projector, which the subject viewed through a mirror on the
head coil. The video image subtended a visual angle of ∼22.7°
horizontally and 17° vertically. Audio was presented through
MR-compatible headphones. Subjects were instructed to pay at-
tention to the movie and enjoy.

See Supplementary Material for details about the fMRI
scanning protocol and data preprocessing.

Animal Species Perception Study
Stimuli and design. Stimuli consisted of 32 still color images for
each of 6 animal species: ladybugs, luna moths, yellow throated
warblers, mallards, ring-tailed lemurs, and squirrel monkeys
(Connolly et al. 2012). Stimuli were presented in a slow event-
related design. Each event started with the presentation of 3
different images of the same species for 500 ms each followed
by 4500 ms of fixation cross. Subjects performed a memory task
after every 6 events corresponding to 6 species in which they re-
ported whether the task event appeared during the last 6 events.

See Connolly et al. (2012) and Supplementary Material for fur-
ther details about the task design, fMRI scanning protocol, and
data preprocessing.
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Retinotopic Mapping
Stimuli and design. Stimuli consisted of high-contrast black and
white checkerboard patterns flickering at 8 Hz within symmetrical
wedges for polar anglemapping runs andwithin a ring for eccentri-
citymapping runs. Therewere 3 runseachof clockwise andcounter-
clockwise rotating wedges and 2 runs each of expanding and
contracting rings. Subjects performed an attention-demanding fix-
ation color-change detection task during all runs.

See SupplementaryMaterial for furthermore details about the
fMRI scanning protocol and data preprocessing.

Category-Selectivity Localizer
Stimuli and design. Subjects viewed still images from 6 categories—
human faces, human bodieswithout heads, small objects, houses,

outdoor scenes, and scrambled images—to obtain independent
measures of category-selective topographies in lateral occipital
and VT cortex. We used a block design in which each block con-
sisted of 16 images from a category with 900 ms of image presen-
tation and 100 ms of gray screen. Subjects performed a one-back
repetition detection task by reporting when an image repeated in
succession. Each subject participated in a total of 4 runs.

See SupplementaryMaterial for furthermore details about the
task design, fMRI scanning protocol, and data preprocessing.

T1 Weighted Scans of Anatomy
High-resolution T1-weighted anatomical scans were acquired at
the end of each session (MPRAGE, time repetition (TR) = 9.85 s,
time echo = 4.53 s, flip angle = 8°, 256 × 256 matrix, field of view =

Figure 1. Schematic of whole-cortex searchlight hyperalignment. (a) Hyperalignment aligns neural representational spaces of ROIs in individual subjects’ into a common

model space of that ROI using rotation in a high-dimensional space. The Procrustes transformation finds the optimal orthogonal transformation matrix to minimize the

distances between response vectors for the same movie timepoints in different subjects’ representational spaces. An individual subject’s transformation matrix rotates

that subject’s anatomical space into the common space and can be applied to rotate any pattern of activity in that subject’s brain into a vector in common space

coordinates. (b) Searchlight hyperalignment aligns neural representational spaces in all cortical searchlights. Local searchlight transformation matrices are then

aggregated into a single matrix for each subject. Each subject’s whole-cortex transformation matrix maps any data from that subject’s cortex into the common model

space. The transpose of that matrix maps any data from the common model space into individual subject’s cortex. Dimensions in the common space have common

tuning basis functions, as documented by increased ISC of movie fMRI time series (Supplementary Fig. 1), and individual-specific topographic basis functions

(Supplementary Fig. 2).
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240 mm, 160 1 mm thick sagittal slices). The voxel resolutionwas
0.938 mm× 0.938 mm× 1.0 mm.

Between-Session and Anatomical Alignment of MRI Data
fMRI datawere preprocessed using AFNI software (Cox 1996; http
://afni.nimh.nih.gov) and programs for defining and manipulat-
ing cortical surfaces using FreeSurfer (Fischl et al. 1999; http
://freesurfer.net) and PyMVPA (Hanke et al. 2009; http://www.
pymvpa.org), including definition of cortical surface searchlights
(Oosterhof et al. 2011). For all fMRI sessions, functional data
were corrected for head motion by aligning to the last volume
of the last functional run. We aligned data from all fMRI sessions
to the mean functional image from the first half of the movie
study. The anatomical scan of each subject was aligned to the
MNI 152 brain, and those parameters were used to align fMRI
data to the same template.Wederived a graymattermask by seg-
menting theMNI_avg152T1 brain provided in AFNI and removing
any voxel that was outside the cortical surface by more than
twice the thickness of the gray matter at each surface node. It
included 54 034 3 mm isotropic voxels across both hemispheres.
We used this mask for all subsequent analyses of all subjects.

Resampling Data to Cortical Surface
Cortical surfacemodelswere derived fromanatomicalT1-weighted
anatomical scans using FreeSurfer (Fischl et al. 1999; http
://freesurfer.net). These surfaces were aligned to the standard sur-
face (fsaverage)using cortical curvature and resampled into a regu-
lar grid using AFNI’s MapIcosahedron (Saad et al. 2004). We used a
surface with a total of 20 484 cortical nodes in each hemisphere
with 1.9 mm grid spacing to define cortical surface searchlights
for thewhole-cortex hyperalignment algorithm.We used a higher
density grid to map coarse-scale cortical topographies (retinotopy
and category selectivity) based on subjects’ own functional locali-
zer data and on other subjects’ data projected into each subject’s
cortical spacebasedonanatomy, using curvature-basedalignment
(FreeSurfer; Fischl et al. 1999), and using our common model.
Finally, we performed supplementary analyses (see Supplemen-
tary Fig. 10) in which we tested bsMVPC in cortical surface node
searchlights to compare performance after curvature-based ana-
tomical alignment (Fischl et al. 1999), our cortical functional
alignment algorithms using rubber-sheet warping of the cortical
surface (Conroy et al. 2009, 2013; Sabuncu et al. 2010), and search-
light whole-cortex hyperalignment. All of these analyses are
described in greater detail below and in Supplementary Material.

Functional ROIs
We analyzed the properties of the model in a variety of function-
ally defined cortical loci to illustrate the general validity of the
common model, in particular its applicability in different infor-
mation domains and the extent to which it captures fine-grained
topographies, and to examine the relationships among the re-
presentational geometries of distributed cortical regions. We
selected 20 loci using Neurosynth, a database derived from meta-
analysis of over 10 000 fMRI studies (http://www.neurosynth.org;
Yarkoni et al. 2011). We took the coordinates for the peak location
associated with selected terms (Supplementary Table 1) and ana-
lyzed the properties of the model representational spaces that sur-
rounded these loci in searchlights with a 3-voxel radius (mean
volume= 119 voxels; Figs 2–5; Supplementary Figs 8 and 12).

We implemented our algorithm and ran our analyses in PyMV-
PA unless otherwise specified (Hanke et al. 2009; http://www.
pymvpa.org). All preprocessing and analyses were carried out on
a 64-bit Debian 7.0 (wheezy) system with additional software

from NeuroDebian (Halchenko and Hanke 2012; http://neuro.
debian.net).

Derivation of A Common Model Representational Space
Using Cortical Surface-Searchlight Hyperalignment

The common model of representational spaces in human cortex
consists of a single high-dimensional representational space
and individual-specific transformation matrices that are used
to derive the space and to project data from individual anatomic
spaces into the commonmodel space and, conversely, to project
data from the common space into individual anatomic spaces.
The model uses hyperalignment to derive the transformation
matrices and the common model representational space. We
base the derivation of the transformation matrices and the com-
mon space on responses to the movie—a complex, naturalistic,
dynamic stimulus. Although the algorithm also can be applied
to fMRI data from more controlled experiments, we found that
a common model based on such data has greatly diminished
general validity (Haxby et al. 2011), presumably because, relative
to a rich and dynamic naturalistic stimulus, such experiments
sample an impoverished range of brain states.

Overview of Algorithm
An individual’s transformation matrix rotates that subject’s
voxel space into the common model representational space
(with reflections), and its transpose rotates the common model
space back into the individual subject’s anatomical voxel space
(Haxby et al. 2011). Hyperalignment uses the Procrustes trans-
formation (Schönemann 1966) to derive the optimal rotation
parameters that minimize intersubject distances between re-
sponse vectors for the same stimuli, namely the same timepoints
in the movie. Consequently, common model dimensions are
weighted sums of individual subjects’ voxels. In other words, in-
dividual voxels are not simply shuffled or assigned, one-by-one
to single common model dimensions.

Derivation of a Common Model Space
To derive a single common representational space, we first
hyperalign one subject to a reference subject’s representational
space. Then, we hyperalign a third subject to the mean response
vectors for the first 2 subjects. We then hyperalign each succes-
sive subject to the mean vectors for the previously hyperaligned
subjects. In a second iteration, we recalculate transformation
matrices for each subject to the mean vectors from the first iter-
ation and then recalculate the space of mean vectors. This space
is the model space. We then recalculate the transformation
matrices for each subject to the mean vectors in this common
space. Each dimension is linked to a single location in the refer-
ence subject’s brain, but the mean response vectors in this space
are derived from all subjects and the transformation matrix for
the reference subject is not an identity matrix.

Searchlight Hyperalignment
Hyperalignment of a cortical region permits mapping information
from a cortical location in one subject into locations anywhere
within that region of another subject, making it inappropriate for
whole-brain analysis. We developed a surface-searchlight algo-
rithm for hyperalignment of all of human cortex that only permits
mapping of information in one subject’s cortex into locations
in nearby cortex in other subjects (Kriegeskorte et al. 2006; Chen
et al. 2011; Oosterhof et al. 2011; Fig. 1b). We calculate hyperalign-
ment transformationmatrices for each subject in each cortical disc
searchlight then aggregate an individual’s searchlight matrices

2922 | Cerebral Cortex, 2016, Vol. 26, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/26/6/2919/1754308 by guest on 17 M

ay 2020

http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://freesurfer.net
http://freesurfer.net
http://freesurfer.net
http://freesurfer.net
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://freesurfer.net
http://freesurfer.net
http://freesurfer.net
http://freesurfer.net
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw068/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw068/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw068/-/DC1
http://www.neurosynth.org
http://www.neurosynth.org
http://www.neurosynth.org
http://www.neurosynth.org
http://www.neurosynth.org
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw068/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw068/-/DC1
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://neuro.debian.net
http://neuro.debian.net
http://neuro.debian.net
http://neuro.debian.net
http://neuro.debian.net
http://neuro.debian.net


into a single transformation matrix. Thus, data from any cortical
location can only be rotated into locations in a reference brain
that are within one searchlight diameter.

We defined surface searchlights (as implemented in PyMVPA)
in all subjects (Oosterhof et al. 2011) in which each surface node
was the center of a searchlight cortical disc of radius 20 mm. We
extended the thickness of this disc beyond the graymatter thick-
ness, as computed using the FreeSurfer, by 1.5 times inside the
white matter–gray matter boundary and 1.0 times outside the
gray matter–pial surface boundary. This dilation was done to ac-
count for any misalignment of gray matter as computed on the
anatomical scan and the gray matter voxels in the EPI scan due
to distortion. To reduce the contribution from noisy or nongray
matter voxels that were included due to dilation, we performed
voxel selection within these cortical discs of all subjects using a
between-subject correlationmeasure as described in Haxby et al.
(2011) and selected the top 70% voxels in each cortical disc
searchlight. Themean number of voxels in these cortical surface
searchlights was 235. We then performed hyperalignment of
searchlights from all subjects at each cortical location using the
selected voxels across all subjects. We thus hyperaligned surface
searchlights centered over all 20 484 nodes producing a list ofma-
trices for each node (Fig. 1a). For each subject, we aggregated the
orthogonal matrices by adding all the weights estimated for a
given voxel-to-feature mapping from all surface searchlights
that included that voxel-feature pair. This resulted in an N × N
transformationmatrix for each subject, where N is the number
of voxels in the gray matter mask. Each subject’s whole-cortex
transformation matrix is sparse with each column (a model
dimension) populated by nonzero values only for those rows
(voxels) that were within one searchlight diameter of the loca-
tion for that dimension in the reference brain. We used the
transpose of each subject’s transformation matrix to get a re-
verse mapping from the common space to each individual
subject’s cortical voxel space (Fig. 1b). Whole-cortex hypera-
lignment transformation matrices were applied to new data-
sets by first normalizing the data in each voxel by z-scoring
and multiplying that normalized dataset with the transform-
ation matrix. The same procedure was followed to apply
reverse mapping.

Validity Testing

We test the validity of the common model by transforming data
from new experiments into the common model space using
transformation matrices derived from responses to the movie,
then testing whether the representation of information is better
aligned across subjects. For validation testing using only movie
data, we derived the common model space and transformation
matrices using data from one half of the movie and performed
validity tests on the other half. We performed these tests twice
using each half of the movie for deriving a model, then testing
validity on the other half, and averaged the results across these
2 tests for each subject. For validation testing using data from
other experiments, we derived the common model space and
transformation matrices using all of the movie data then used
each individual’s transformation matrix to project the data
from the independent experiments into the common model
space. The other experiments for validation testing were on cat-
egorical perception of animal species (Connolly et al. 2012), on
functional localizers for category-selective regions (Malach
et al. 1995; Kanwisher et al. 1997; Epstein and Kanwisher 1998;
Downing et al. 2001; Peelen and Downing 2005), and on the ret-
inotopic organization of early visual cortex (Sereno et al. 1995).

Control for the Effect of Resampling
Mapping any data into the common model space by applying
transformation matrices resamples the original data and, thus,
is a complex spatial filter. In order to control for the effect of
spatial filtering in comparisons between hyperaligned data and
anatomically aligned data, we derived a control dataset with
equivalent filtering that preserved anatomical variability across
subjects. We computed 11 sets of hyperalignment transforma-
tions each with a different subject as reference. Each such set
maps the data from all subjects to a common model space
based on the voxel-space of that set’s reference subject. To derive
the control dataset, wemapped each subject’s data into the com-
mon model space derived with the next subject in our order as
reference subject, with the data of the last subject in the list
mapped to the commonmodel spacewith first subject as the ref-
erence. These datasets are filtered by hyperalignment; but, since
their commonmodel spaces have different references, the corres-
pondence across these datasets is based only on anatomical align-
ment and preserves the anatomical variability in this sample of
subjects. In contrast, regular hyperalignment mapped all subjects
into a single commonmodel space, with the first subject in the list
as the reference in our analyses. We show in supplementary ana-
lyses using this spatial filtering control that the effect of spatial fil-
tering is small and does not account for the much larger effect of
hyperalignment (Supplementary Figs 1 and 5).

bsMVPC of Movie Time Segments
We tested bsMVPC of movie time segments in each half of the
movie separately using searchlights with a radius of 3 voxels
(Figs 2 and 5, Supplementary Figs 4, 5, 7, and 10) for both data
in the common model space and for anatomically aligned data.
Only voxels in the gray matter mask were included for bsMVPC
analysis in each searchlight. The mean number of voxels in
these volume searchlights was 102. We classified 15-s time seg-
ments (6 timepoints or TRs) using a correlation distance one-
nearest neighbor classifier (Haxby et al. 2001, 2011). We also
tested bsMVPC of shorter time segments in supplemental ana-
lyses (Supplementary Fig. 4). The response vectors for each
time segment in each subject were compared with the mean re-
sponse vectors from other subjects for the same time segment
and all other time segments of the same length, using a sliding
window in single TR increments for a total of over 1300 such
time segments in each half of the movie. A subject’s time seg-
ment response vector was correctly classified if it wasmost simi-
lar to the mean response vector for the same time segment in
other subjects (1 out of over 1300 classification, chance <0.1%).
Classification accuracies in each searchlight were averaged
across both halves of the movie in each subject and mapped to
the center voxel for that searchlight for visualization.

In addition to the searchlight bsMVPC of movie segments, a
whole-cortex bsMVPC analysis of movie segments was per-
formed. Test data in model dimensions or anatomically
aligned voxels were projected into singular vector (SV) spaces
that were derived from the training data (Supplementary
Fig. 3). The SVs were sorted in the descending order of their
singular values for both the hyperaligned data in common
model space and for the anatomically aligned data. bsMVPC
was performed for multiple sets of top SVs in each half of the
movie, and the accuracies for the 2 halves were averaged for
each subject at each set size. The 95% confidence interval (CI)
for the difference between peak bsMVPC of anatomically
aligned and peak bsMVPC of hyperaligned data was estimated
using a bootstrap procedure by sampling subjects 10 000 times
(Kirby and Gerlanc 2013).
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ISC of Movie fMRI Time Series Responses
ISCs of time series for each half of the movie were computed be-
tween each subject and the average of all others subjects before
and after hyperalignment. We present the mean of these values
in each voxel for visualization in Supplementary Figure 1. The
mean ISC was calculated across all the voxels in the gray matter
mask, and the 95% CI for the difference between anatomically
aligned and hyperaligned data was estimated using a bootstrap
procedure as described above (Kirby and Gerlanc 2013). All
operations involving correlations were performed after Fisher
transformation and the results were inverse Fisher transformed
for presentation. Note that the bootstrapping procedure does not
assume any distribution, so we could perform it on correlation
values.

ISC of Representational Geometry
ISCs of representational geometries were computed as the
correlations between each subject’s representational geometry
and the mean representational geometry of other subjects
for each half of the movie using searchlights with a radius of
3 voxels. In each searchlight, representational geometry was
computed as a matrix of correlation coefficients between re-
sponses for every pair of timepoints (TRs) in one half of the
movie, resulting in representational geometry vectors with
over 850 000 timepoint pairs. This representational geometry
vector captures the similarity of the responses to timepoints,
presumably based on the information that is represented in a
cortical searchlight and is shared across timepoints. Different
searchlights will have different representational geometries
because of differences in the type of information that is repre-
sented. ISCs were Fisher-z-transformed before averaging
across both halves of the movie in each voxel. These were
then averaged across all subjects and inverse Fisher trans-
formed before mapping onto the cortical surface for visualiza-
tion (Fig. 3 and Supplementary Fig. 6). The same steps were
performed to compute ISCs of representational similarity
before and after hyperalignment. Fisher transformed correl-
ation values were averaged across all voxels in the gray matter
mask in each subject and the 95% CI for the difference between
anatomically aligned and hyperaligned data was calculated
using bootstrapping as described above (Kirby and Gerlanc
2013).

Second Order, Inter-Regional Representational Geometry
For a closer examination of the relationships among selected
functional ROIs (Supplementary Table 1) in terms of the dissimi-
larities of their respective representational geometries, which re-
flect differences in the information represented by activity in
these cortical areas, we analyzed the pairwise distances between
ROI representational geometry vectors with multidimensional
scaling (MDS) (Fig. 4). Dissimilarities between representational
geometries for different ROIs were measured as intersubject dis-
similarities, that is, the distance between the representational
geometry for one ROI in one subject and the representational
geometry for a different ROI in a different subject. Thus, this pro-
cedure is not affected by within-subject factors, such as head
movements andmoments of distraction that can simultaneously
alter between timepoint similarities of responses in distant
cortical fields but are unrelated to the information that is repre-
sented in those fields. Correlation-based inter-regional dissimi-
larity indices (D) were based on inter-regional ISCs (rROI1×ROI2)
adjusted for the maximum possible similarity based on within-
region ISCs of representational geometry for each of the 2 regions

(rROI1 and rROI2):

D ¼ 1� rROI1×ROI2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rROI1 × rROI2
p

Note that thesewithin-region and inter-regional distances re-
flect intersubject similarities, not similarities within-subjects.

Estimating Spatial Granularity of Common Model Maps
Decoding neural representations using MVPC and RSA relies on
fine features of patterns that have a finer, within-area spatial
scale than do the larger, coarse-scale “functional areas”, such
as MT (the motion-sensitive middle temporal area) or the FFA.
The goal of the common model is to align these fine-scale fea-
tures that represent fine information distinctions. To test
whether the common model does in fact align information-
carrying features of patterns of brain activity that have afine spa-
tial scale in cortical anatomy, we analyzed the effect of spatially
smoothing or blurring data—a common procedure that increases
signal-to-noise for coarsely distributed information but blurs fine
spatial patterns—and the spatial point-spread function (PSF) of
the response-tuning functions that are shared across brains.

Effect of spatial smoothing. We smoothed the movie data prior to
estimating the common model space and deriving individual
transformation matrices using Gaussian smoothing filters with
full-width-at-half-maximums (FWHM) of 0 mm, 4 mm, 8 mm,
and 12 mm. The main bsMVPC analysis is identical to the part
of this analysis with a spatial smoothing filter of FWHM= 4 mm.
Application of the cortical surface-searchlight hyperalignment
algorithm and bsMVPC of movie time segments then followed
the same procedures as used for the main analysis (Fig. 5a and
Supplementary Fig. 7).

Estimating the cortical PSF for intersubject similarity of local response
tuning. We calculated ISCs of movie time series for one half of
the movie for voxels or model dimensions with the same ana-
tomical location (distance = 0), for voxels or dimensions with
adjacent anatomical locations (sharing a face; distance = 1), and
for voxels or dimensions separated by 2, 3, or 4 voxels. Note
that this analysis examines only ISCs and, thus, does not reflect
within-subject factors that can increase spatial autocorrelations
and, thereby, flatten the cortical PSF.We calculated themean ISC
for each cortical distance across all voxels/dimensions in each
searchlight functional ROI (Supplementary Table 1). The PSF
was calculated as the magnitude of ISC of time series as a func-
tion of cortical distance. The PSF was calculated for time series
from each half of the movie. For the analysis of PSF of data in
the common model space, we derived the common space and
calculated hyperalignment transformation matrices based on
data from the other half of the movie. The PSFs for the 2 halves
of the movie were averaged for each subject. We used linear re-
gression to estimate the slope of the relation between cortical
distance (in voxels) and ISC of time series (Fig. 5b).

Testing General Validity with an Experiment on Perception of
Animal Species
Searchlight within-subject MVPC (wsMVPC), bsMVPC, and repre-
sentational geometry analyses of the neural representation of 6
animal species categories (Connolly et al. 2012) were performed
on data that was rotated into the common model space based
on responses to the movie, as well as on anatomically aligned
data. MVPC of animal species used a linear SVM classifier (Cortes
and Vapnik 1995) and β weights for responses to each species in
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each run in searchlights of 3 voxel radius (see Supplementary
Methods). The SVM classifier used the default soft margin option
in PyMVPA that automatically scales the C parameter according
to the norm of the data. For within-subject classification, a leave-
one-run-out cross validation was used. For bsMVPC, leave-one-
subject-and-one-run-out cross validation was used to avoid any
effect of run-specific information. Accuracies from all run folds
of a subject were averaged, and mean accuracy across all subjects
was mapped onto a cortical surface for visualization. The same
procedure was used on data before and after hyperalignment.
bsMVPC accuracies were averaged across all searchlights with
wsMVPC accuracies above 30% (chance= 16.7%) in a ventral visual
pathwayROI (see Fig. 6), and the 95%CI for the differences between
mean wsMVPC, mean bsMVPC of anatomically aligned data, and
mean bsMVPC of hyperaligned data was estimated using a boot-
strap procedure (Kirby and Gerlanc 2013).

Projecting Other Subjects’ Topographic Maps Into A Subject’s
Cortical Anatomy
Transformation of individual anatomical voxel spaces into the
commonmodel spacewith high-dimensional improper rotations
may appear to obscure the coarse-scale functional topography in
the individual brain or, on the other hand,may provide a rigorous
computational method that preserves that topography andmod-
els individual variations of that topography. To investigate the
fate of coarse-scale topographies, we examined whether 2 of
the most prominent such topographies—retinotopy in early vis-
ual cortex and category selectivity in the ventral visual pathway
—could be modeled in individual cortical spaces by projecting
functional localizer data from other subjects into those spaces
via the commonmodel as derived frommovie-viewing fMRI data.

Common model maps of retinotopy. Retinotopic tuning maps were
projected into commonmodel space dimensions using the trans-
formation matrices derived from movie data. Instead of using
preferred polar angle and eccentricity values at each voxel, we
computed the tuning function at each voxel for 18 different
polar angles, from 0 to 170° in steps of 10, and 18 different eccen-
tricities, from fovea to maximum eccentricity in our experiment.
We derived a subject’s common model-estimated retinotopic
tuning maps by averaging other subjects’ tuning maps in the
common model space and projecting them into that subject’s
brain using reverse mapping—multiplying the tuning maps in
commonmodel space by the transpose of that individual’s trans-
formation matrix. These common model-estimated maps were
then resampled into the curvature-aligned standard cortical
surface mesh (Fischl et al. 1999; Saad et al. 2004).

Retinotopic maps for individual subjects also were computed
based on other subjects’ data after anatomical alignment. Indi-
vidual subjects’ tuning maps computed from the retinotopic
mapping study were resampled into the same curvature-aligned
standard cortical surface mesh (Fischl et al. 1999). We analyzed
the similarity of the retinotopic maps as estimated from a sub-
ject’s own retinotopy and as estimated from other subjects’
data. We fit sinusoids to each node’s polar angle and eccentricity
tuning functions and computed the cosines of its preferred an-
gles. In order to limit this computation to early visual areas
with reliable retinotopy, we selected surface nodes in each
subject that were reliable as measured by a correlation between
the measurements of polar angle and eccentricity on odd and
even runs that was greater than or equal to 0.45 as reported by
AFNI’s 3dRetinoPhase. Correlation coefficients between tuning
maps based on each subject’s own data and other subjects’
data were computed and Fisher transformed. We estimated the

95% CI for the difference between these correlations based on
anatomically aligned and hyperaligned data using bootstrapping
(Kirby and Gerlanc 2013).

Common model maps of category selectivity. To project category-
selectivity topographic maps based on other subjects into the
cortical anatomy of a new subject, we first transformed all sub-
jects’ data from the category-selective localizer study into the
commonmodel space using the transformationmatrices derived
from the fullmoviedata. For each subject, the functional localizer
data from all other subjects were projected into that subject’s
brain using the transposes of individual transformationmatrices
derived from the fullmovie data. These datawere then smoothed
with a 6 mmFWHMGaussian filter andmapped to the curvature-
aligned cortical surfacemesh. Category-selective t-statisticmaps
were then computed for selectivity for faces, places, objects, and
bodies using 3dDeconvolve and 3dREMLfit in AFNI on surface
nodes based on each subject’s own data and, independently, on
the data from other subjects in that subject’s anatomical space.
For comparison, similar category-selective t-statistic maps also
were calculated for each subject based on other subjects’ data
in the curvature-aligned cortical surfacemesh before hyperalign-
ment, thereby using only anatomical alignment. The similarity of
category-selectivitymaps calculated from subjects’ own localizer
data and from other subjects’ localizer data was computed by
calculating correlations (Pearson’s r) of the t-statistic maps in a
ventral visual pathway surface ROI that included VT and lateral
occipital cortices, testing the similarity of each individual to
both the hyperaligned and anatomically aligned data from
other subjects.

We then contrasted the similarity of maps based on individ-
ual and other subjects’ data to the within-subject reliability of
category-selective maps. We estimated the within-subject reli-
ability of the category-selectivity maps by computing the correl-
ation between t-statistic maps computed from odd and even
runs. To control for the effect of only using half of the localizer
data, we also computed the correlations between the t-statistic
maps calculated from the odd and the even runs in each subject
and the maps calculated from other subjects’ data and averaged
these correlations after Fisher transformation. We tested the sig-
nificance of differences between correlations by calculating 95%
CI of these differences using bootstrapping (Kirby and Gerlanc
2013).

Results
Between-Subject Classification of Movie Segments

In the first set of validation tests, we performed searchlight
bsMVPCof 15 smovie time segments using a sliding timewindow
with 1 TR increments (1 out of over 1300 classification for each
half of the movie, chance accuracy <0.1%). Figure 2a shows the
map of searchlight bsMVPC accuracy of movie segments based
on anatomically aligned features (top) and common model fea-
tures (bottom). bsMVPC using common model features yielded
accuracies greater than 5% in fields in occipital, temporal, par-
ietal, and prefrontal cortices with an overall peak of 50.3% in VT
cortex. In contrast, bsMVPC using anatomically aligned features
with accuracies greater than 5%was limited to early visual cortex
with a peak of 8.6%.

To illustrate the size of the effect in different cortices, we
selected 20 functionally defined loci in occipital, temporal, par-
ietal, and prefrontal cortices for different visual, auditory, and
cognitive functions using a meta-analytic database of functional
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neuroimaging studies (http://www.neurosynth.org; Yarkoni et al.
2011; see Supplementary Table 1). Figure 2b shows that bsMVPC
using commonmodel dimensionswhen comparedwith anatom-
ically aligned voxels yielded markedly higher accuracies in
searchlights surrounding each of these loci. Mean bsMVPC ac-
curacy across these loci is 7-fold higher for response vectors in
the common model space (mean = 13.7%) than for vectors in
the anatomically aligned voxel space (mean = 1.9%).

Because the information in a movie scene is multimodal, we
predicted that aggregating information across all cortical fields
would yield substantially better bsMVPC than that for local cor-
tical neighborhoods in searchlights. For whole-cortex bsMVPC,
we reduced the dimensionality of the common model with sin-
gular value decomposition (SVD) of the movie response vectors,
averaged across subjects. Whole-cortex bsMVPC accuracy, using
common model SVs as features, peaked at 93.0% (SE = 1.4%) with
around 450 SVs, which account for ∼90% of the variance (Supple-
mentary Fig. 3). We performed SVD in a similar way on the

anatomically aligned data and found that bsMVPC accuracies
were significantly lower with a peak of 74.8% (95% CI for the dif-
ference in peak accuracies: [14.8%, 21.8%]) with a much smaller
set of dimensions (∼50). These results show that shared informa-
tion content in the neural representation of the multimodal
moviewas far greater when information fromdistributed cortical
fields was aggregated in both common model and in anatomical
spaces. Thiswhole-cortex analysis combined shared information
from coarse-scale topographies, which is captured in both the
model and anatomical spaces, and fine-scale patterns, which
only the common model captures. Relative to anatomical align-
ment, hyperalignment reduced whole-cortex bsMVPC errors by
72%, indicating that aggregating the shared, fine-grained local
information, which is captured in the common model space,
greatly increases the total shared neural information about
multimodal experience. The shared information in the common
model space ismuch higher dimensional than is the information
that is shared in the anatomically aligned space, providing

Figure 2. bsMVPC of movie time segments. (a) bsMVPC accuracies of 15 s movie segments using voxels in 3-voxel radius searchlights before (top) and after whole-cortex

hyperalignment (bottom). Model dimensions are assigned to searchlights based on their locations in the reference subject’s brain. As in all validation tests onmovie data,

the common model space and transformation matrices were derived from one half of the movie data and then applied to the other half for cross-validated tests, in this

case bsMVPC. (b) bsMVPC accuracies in twenty searchlight ROIs thatwere selected to cover a range of early and late visual areas in occipital and temporal cortices (V1,MT -

middle temporal visual motion area, VWFA—visual word form area, FFA—fusiform face area, PPA—parahippocampal place area), auditory areas in superior temporal

cortices (A1, voice areas, music areas), and areas in parietal and prefrontal cortices that are associated with cognitive and language functions (calculations, working

memory, expressive speech). We used the coordinates for the peak location associated with selected terms in the Neurosynth database (http://www.neurosynth.org;

Supplementary Table 1) as searchlight centers. ROI names are colored to group visual (orange and red), auditory (blue), and cognitive areas (green).
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further evidence that anatomy-based methods align fewer,
coarser-grained features of shared functional topographies.

Representational Geometry

ISC of Local Representational Geometries
Whereas MVPC detects distinctions among response vectors,
RSA characterizes the representational geometry of the similar-
ities among those vectors, revealing relationships among re-
presentations that MVPC does not (Kriegeskorte, Mur and
Bandettini 2008; Kriegeskorte, Mur et al. 2008; Connolly et al.
2012; Kriegeskorte and Kievit 2013; Haxby et al. 2014). We
analyzed the representational geometry of responses to the
movie by calculating representational similarity matrices
(RSMs) comprised of all correlations between response vectors
for all pairs of timepoints (TRs) in each half of the movie
(>850 000 pairs each) in each searchlight. Figure 3a shows cortical
maps of ISCs of local representational geometries before and
after hyperalignment. Hyperalignment increased mean ISC of
searchlight representational geometries from 0.103 to 0.197
(95% CI of difference: [0.081, 0.106]). Figure 3b illustrates the size
of the increases of ISCs of representational geometries for the
same functional loci used in Figure 2b. Mean ISCs of representa-
tional geometries were greater in all of these loci in common
model space than in anatomically aligned spaces. Mean ISC across

these loci was 1.8 times larger in common model space (r = 0.28)
than in anatomical space (r = 0.16).

Second-Order Geometry of Distances Between Regional
Representational Geometries
Regional movie RSMs index the similarities and dissimilarities
of neural responses to different parts of the movie, reflecting
the representational geometry of information that is represented
in a cortical field. Cortical fields that encode different types of
information, therefore, will show different representational
geometries. The similarities and differences among regional rep-
resentational geometries, therefore, will reflect how the represen-
tation of information is structured across these cortical fields. We
calculated between-region ISCs of RSMs for all pairs of these 20
functional loci. Mean between-region ISCs were consistently
lower than thewithin-region ISCs (means of 0.11 and 0.28, respect-
ively).We then analyzed the structure of the between-region inter-
subject dissimilarities—second-order RSA of the inter-regional
representational dissimilarity matrix (RDM)—using MDS (Fig. 4).
The full inter-regional intersubject RDM is shown in Figure 4a.
Note that this second-order geometry for the main analysis is
basedon intersubject dissimilarities between local representation-
al geometries. The reliability of inter-regional geometry was in-
dexed by ISC of within-subject inter-regional RDMs to assure

Figure 3. ISC of neural representational geometry for movie content. (a) ISCs of representational geometries before (top) and after whole-cortex hyperalignment (bottom).

Local representational geometries were computed as the similarities among responses to all movie timepoints within a 3-voxel radius searchlight, and the correlations

were mapped to the center voxel. (b) The size of these effects is illustrated in the same 20 searchlight ROIs as shown in Figure 2b.
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independence. Inter-regional representational geometry was
highly consistent across subjects in anatomically aligned space
but significantly more so in common model space (ISC = 0.857
and 0.927, respectively; 95% CI for the difference: [0.064, 0.077]).

The first dimension of theMDS solution for all 20 ROIs (Fig. 4b)
separated visual from auditory areas with cognitive areas in be-
tween but with calculation areas overlapping visual areas. The
second dimension separates V1 from all other areas. The third
dimension separates the cognitive areas from the visual and
auditory sensory/perceptual areas. Because this MDS analysis at-
tempts to account for pairwise similarities among all 20 ROIs, the
relationships among areas within the visual and auditory sys-
tems are not shown clearly. SeparateMDS analyses of the 9 visual
ROIs and the 6 auditory ROIs revealed a structure that reflects
their functional relationships. The first dimension of the MDS
plot of visual ROIs (Fig. 4c left panel) separates V1 from the high-
er-level visual ROIs, whereas the second dimension captures dis-
tinctions among these higher-level visual ROIs with MT at one
end, PPA at the other, and the FFAs and VWFA in the middle.
Right and left visual areas clustered most closely with each
other. The first dimension of the MDS plot of auditory ROIs
(Fig. 4c right panel) captures distinctions among A1, voice
areas, and music areas. The second dimension separates left
hemisphere areas from right hemisphere areas with a minimal
difference between left and right A1 and maximal difference be-
tween left and right voice areas. Both right and left music areas
are closer to the right voice area than to the left voice area.

The results of this second-order RSA show that these regional
geometries reflect representations of different types of informa-
tion, show that the inter-regional relationships reflect the large-
scale organization of the human cortex into sensory, perceptual,
and cognitive systems, and reveal more detailed organization in
visual and auditory pathways. These results demonstrate that
the local representational spaces that aremodeledwith common
basis functions in the common model do indeed represent

different domains of information, not global information that is
spread across these cortical fields.

Spatial Resolution of Shared Information Content

bsMVPCofmovie time segments showed that the benefit of using
features in the common model space, rather than anatomically
aligned voxels, was greater for searchlights, which are local,
than for thewhole cortex. This difference suggests that the effect
of hyperaligning data into the commonmodel space has a much
larger effect on fine-scale local patterns than on inter-regional,
coarse-scale global patterns. We performed 2 analyses to exam-
ine more directly the spatial resolution of patterns of activity
that are shared across subjects in common model space.

The Effect of Smoothing on bsMVPC
In the first analysis, we tested the effect of smoothing the data
before hyperalignment, and, thereby, blurring the fine-scale
patterns of response. The highest bsMVPC accuracies using
model space features were achieved with no spatial smoothing
(Fig. 5a and Supplementary Fig. 7). A 4 mm FWHM filter produced
a small decrement that was inconsistent across areas. An 8 mm
FWHM filter, in contrast, produced a large decrement in bsMVPC
accuracies in all regions except right and left PPA. On average,
8 mm smoothing decreased bsMVPC accuracy by 28.3%, and
12 mm smoothing decreased bsMVPC accuracy by 46.2% in
these searchlight ROIs. These results indicate that the informa-
tion that is aligned in the commonmodel space carries informa-
tion in patterns that are shared across subjects with a spatial
resolution as fine as 2 voxels. Analysis of the effect of spatial
smoothing, however, is confounded with the effect of noise sup-
pression that smoothing affords. Because of this effect, we found
that the very low bsMVPC accuracies for anatomically aligned
data actually increased with spatial smoothing. Mean bsMVPC
accuracy across ROIs for anatomically aligned data increased

Figure 4. Second-order RSA of functional areas. (a) Matrix of all pairwise dissimilarities between the representational geometries in searchlight ROIs. (b) Multidimensional

scaling (MDS) plots of the relationships among the representational geometries in visual (orange and red), auditory (blue), and cognitive (green) ROIs. Searchlight ROIs are

the same as those shown in Figures 2 and 3. The plot on the left shows the ROIs plotted on the first and second dimensions. The plot on the right shows the ROIs plotted on

the first and third dimensions. (c) Separate MDS analyses restricted to the visual (left) and auditory areas (right).
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from 1.14% for unsmoothed data to 3.54% for data smoothedwith
a 12 mm FWHM filter, a 2.3-fold increase.

The Spatial PSF for Time Series ISCs
In the second analysis, we made a more direct and uncon-
founded test of the spatial resolution of distinctive response-
tuning functions that are aligned across subjects in the common
model space by analyzing the spatial PSF of ISCs of tuning func-
tions. Note that this analysis examines only ISCs and, thus, does
not reflect within-subject factors, such as spatial autocorrelation,
that can increase spatial smoothness and, thereby, flatten the
cortical PSF. The slopes relating ISCs of voxel time series by
distances between voxels weremarkedly steeper for data in com-
monmodel space than for data in a common anatomical space in
all ROIs (Fig. 5b). Examination of the PSF for hyperaligned and
anatomically aligned data, averaged across ROIs, shows that
ISCs of time series are higher for hyperaligned data than for

anatomically aligned data in voxels/dimensions with the same
location in the reference subject’s anatomical space and in vox-
els/dimensions that are in adjacent locations. Moreover, whereas
ISCs in anatomical space do not differ for voxels with the same
locations when compared with adjacent voxels, ISCs for the
same common model dimension are substantially higher than
for adjacent common model dimensions. ISCs of time series for
voxels separated by more than 2 voxels were higher for anatom-
ically aligned data than for data in the common model space.
These results indicate that the alignment of response-tuning
profiles in the common model space is highly spatially specific
capturing distinctions between the response-tuning functions
in adjacent dimensions.

Overall, the results of these analyses of the spatial resolution
or granularity of the information content that is shared across
subjects in the common model space indicates that hyperalign-
ment aligns response-tuning functions across subjects at a fine

Figure 5. Estimating the spatial resolution of shared representations in the commonmodel space. (a) Effect of spatial smoothing of fMRI data on accuracies of bsMVPCof 15

smovie time segments in 20 selected searchlight ROIs (same as those used in Figs 2–4, Supplementary Table 1). Smoothing filters had a FWHMof 0 mm, 4 mm, 8 mm, and

12 mm. See Supplementary Figure 7 for brain maps of the effect of smoothing. (b) The slope of ISCs of time series by cortical distance in 20 searchlight ROIs after

hyperalignment and anatomical alignment (left). The ROI mean correlations between time series for voxels in the same locations and for voxels at different distances

from each other are shown on the right. ISC of time series for anatomically aligned data were calculated on data that were controlled for the effect of filtering (see

Supplementary Fig. 1).
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spatial scale. The analysis of the effect of smoothing the data
revealed that reducing the differences between voxels that are
adjacent or separated by a single voxel—the effect of smoothing
with an 8 mm FWHM filter—significantly degrades bsMVPC of
hyperaligned responses to movie time segments, indicating
that bsMVPC relies on inter-voxel differences of tuning functions
at this fine spatial scale. The analysis of the intersubject PSF re-
vealed that hyperalignment captures distinctions in response-
tuning functions for adjacent voxels that are common across
subjects. Thus, the common model is capturing variations in
shared response-tuning functions with a fine-grained spatial
distribution—carrying information in patterns of activity with
granularity as fine as a single voxel.

Analysis of Data FromOther Experiments in the Common
Model Space

Perception of Animal Species
We asked if the whole-cortex hyperalignment derived from the
movie data generalizes to an independent experiment and how
the shared information captured by bsMVPC compares with the
information captured by wsMVPC, in which a new classifier
model is derived for each subject. Since subjects only watched
the movie once, wsMVPC of movie time segments was not pos-
sible. Figure 6 shows average wsMVPC and bsMVPC accuracy
maps using anatomically aligned and hyperaligned data.
Whole-cortex hyperalignment, when compared with anatomical
alignment, dramatically increased bsMVPC accuracies in bilateral
early visual, lateral occipital, VT, and posterior lateral temporal
cortices and in right parietal and prefrontal cortices. The cortical
areas in which the 6 animal species can be classified with accur-
acies >30% (chance = 16.67%) are strikingly similar for wsMVPC
and bsMVPCof hyperaligned data.Mean bsMVPCof hyperaligned
data in the occipitotemporal searchlights (44.6%) is slightly, but
significantly, higher than mean wsMVPC of hyperaligned data
in the same searchlights (41.2%) (95% CI for this difference: [1.5%,
6.3%]). Thus, whole-cortex hyperalignment affords bsMVPC in
local cortical fields that is equivalent or better than that of
wsMVPC, suggesting that a classifier model trained on a set of
subjects in the commonmodel space can predict categorical infor-
mation in a new subject better than a classifier that was trained on
that test subject’s owndata, presumably because bsMVPC analysis
affords larger datasets for training classifiers.

Retinotopic Maps in Common Model Space
We tested the capacity of the hyperalignment-derived common
model to capture functional topography and individual topo-
graphic variation by delineating retinotopy in an individual
brain by projecting other subjects’ data into that brain. In our pre-
vious report (Haxby et al. 2011), we showed that we could predict
individual-specific topographies for category-selective regions
in VT cortex using region-of-interest hyperalignment, and we
found similar results in the current data using whole-cortex
hyperalignment (see Supplementary Fig. 8).

We computed retinotopic maps of receptive field polar angle
and eccentricity in early visual cortex for 8 subjects using a
standard fMRI retinotopy localizer, then compared the maps
computed from each subject’s own retinotopy scan with maps
computed based on other subjects’ retinotopy data. We hypera-
ligned each subject’s retinotopy data into the common model
space using whole-cortex hyperalignment transformationmatri-
ces derived from themovie data.We then averaged the data from
all but one subject in the commonmodel space and projected the
average data back into the left-out subject’s brain, using the in-
verse mapping computed from the movie data. These projected
data were used to estimate polar angle and eccentricity maps in
that subject based on other subjects’ retinotopy. Figure 7a shows
a subject’s polar angle maps with estimated boundaries between
early visual areas based on the locations of the horizontal and
vertical meridia (Sereno et al. 1995), derived from that subject’s
own retinotopy data and as estimated from other subjects’ data
projected into that subject’s cortical anatomy (see Supplemen-
tary Fig. 9 for all subjects). The common model-estimated polar
angle map is highly similar to the map based on the subject’s
own retinotopy scan data and preserves the topography enough
to draw the boundaries between multiple early visual areas. Fig-
ure 7b shows the average spatial correlations of themeasuredmaps
with themaps estimated based on other subjects’ data after hyper-
alignment (mean correlation for polar angle = 0.75 and eccentricity
= 0.81) and after surface-curvature-based alignment (mean correl-
ation for polar angle = 0.42 and eccentricity = 0.56). Hyperalignment
significantly increases the correlation between measured and esti-
mated maps for both polar angle and eccentricity (95% CIs for dif-
ferences: [0.295, 0.345] and [0.185, 0.326], respectively).

Thus, whole-cortex hyperalignment based on neural activity
measured during free viewing of a movie affords precise delinea-
tion of retinotopy in the early visual cortices of individual subjects,

Figure 6. MVPC of responses to animal species. Searchlight-based classification accuracies of 6 animal species within-subjects (left) and between-subjects (right).

Classification is performed on the data after anatomical alignment (top row) and whole-cortex hyperalignment (bottom row). Whole-cortex transformation matrices

were derived from the movie data.
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even though the transformationmatrices are computedusing large
overlapping cortical searchlights and subjects do not maintain fix-
ation to this complex, cluttered and dynamic visual stimulus.

Discussion
Common Model Structure, Components, and Principles

We present here a linear model of the functional organization of
human cortex. The model is a high-dimensional representation-
al vector space. Model dimensions have distinctive tuning func-
tions—profiles of responses to a wide variety of stimuli—that are
common across brains and serve as response-tuning basis func-
tions formodeling anypattern of activity in an individual brain as
a response vector in the common model representational space.
Model dimensions are associated with local, individual-specific
patterns of activity that serve as topographic basis functions for
modeling individual variability of functional topographies (Fig. 7
and Supplementary Figs 2, 8 and 9). Themodel space is not a 2- or
3-dimensional anatomical space. We use a new searchlight hy-
peralignment algorithm to derive transformation matrices for
thewhole cortex that rotate individual brain spaces into the com-
mon representational space and, conversely, to project data from
the common representational space into individual cortical
topographies.

The common representational space affords a validmodel for
widely divergent domains of information. In order to derive a
common model space with general validity, we sampled a
broad range of functional brain states by measuring patterns of
cortical activity evoked by viewing and listening to a complex, dy-
namic stimulus, namely a full-length adventure movie, Raiders
of the Lost Ark. After transformation into common space coordi-
nates, neural response vectors in occipital, temporal, parietal,
premotor, and prefrontal cortices showed markedly increased
bsMVPC of brain states and ISCs of representational geometries.
The representational geometries for different cortical loci are dis-
tinctive and have a second-order inter-regional geometry that re-
flects relationships among areas in visual and auditory pathways
and in other cognitive areas. Importantly, the lawful variation in
local representational geometries revealed by this second-order
analysis shows that the common model aligns representations
of diverse domains of information and is not simply aligning

global factors that are common across these areas. Analyses of
the effect of spatial smoothing and the spatial PSF of shared
local tuning functions revealed that the commonmodel captures
shared information-bearing patterns of neural activity with fine-
grained spatial resolution. Projection of data from the common
model space back into individual subjects’ anatomy captures in-
dividual variability in retinotopy in early visual cortex and cat-
egory selectivity in occipitotemporal cortex.

This common model of representational spaces can afford
better classification of an individual’s brain states based on
other subjects’ data (bsMVPC) than on that subject’s own data
(wsMVPC), because it makes it possible to have an arbitrarily
large, multisubject training dataset. In this report, we show this
effect with only 10 subjects’ data from an animal category per-
ception experiment. Increasing the number of subjects should
improve further the precision of the model and the power of
bsMVPC (see Supplementary Fig. 2c in Haxby et al. 2011).

Overall, these results suggest that the commonmodel captures
common, underlying principles of representation that are valid
across widely divergent domains of information. The broad-
based validity of the model rests on 3 factors: its general concep-
tual framework—a linear, high-dimensional representational
space; the computational algorithm for deriving transformation
matrices—whole-cortex hyperalignment; and the use of rich,
naturalistic stimuli for broad sampling of response vectors in
representational spaces.

A Straightforward, High-Dimensional Linear Model
The general structure of themodel is a linear model that rests on
common bases for modeling tuning functions, population codes,
and functional topographies. The common model space is a
high-dimensional representational vector space, and any pattern
of activity in an individual brain can be transformed into a vector
in this commonmodel space. Conversely, any response vector in
model space coordinates can bemapped into the anatomy of any
subject’s cortex as a weighted sum of the local topographies for
model dimensions. Thus, the tuning functions for model dimen-
sions are a basis set that can model the functional response of
any voxel, and the local topographies for model dimensions are
a basis set that can model any pattern of cortical activity.

Figure 7.Modeling individual retinotopymaps using the commonmodel. Polar angle and eccentricitymapswere estimated in each subject based on correspondingmaps

of other subjects aligned into the commonmodel derived from themovie data. (a) Polar anglemaps in a subject based on that subject’s own retinotopy scan and based on

others’ retinotopy thatwas rotated into commonmodel dimensions then projected in this subject’s cortical anatomy. See Supplementary Figure 9 for all subjects. (b)Mean

correlations between the polar angle and eccentricitymaps of each subject andmaps estimated from other subjects after anatomical alignment (surface alignment using

sulcal curvature, blue) and whole-cortex hyperalignment (red). Retinotopic maps based on the commonmodel are significantly better predictors of individual retinotopy

than are maps based on anatomical features.
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The Hyperalignment Algorithm
Hyperalignment is based on the Procrustes transformation
and finds the optimal rotation that aligns a pattern of high-
dimensional response vectors in a searchlight from one subject
to the pattern of response vectors for the same brain states in
other subjects. A critical factor underlying the success of this
algorithm is that it preserves the similarity structure of local
neural representations—the pairwise distances between re-
sponse vectors (see Supplementary Fig. 6). Similarity structures for
neural response vectors are highly consistent across subjects and
suggest commonality of representation (Kriegeskorte, Mur and
Bandettini 2008; Kriegeskorte, Mur et al. 2008; Connolly et al. 2012;
Kriegeskorte and Kievit 2013), and preserving that similarity struc-
ture prevents losing that commonality.

A Broad Sampling of Brain States
We used a large sample of response vectors for a broad range of
brain states to derive the model space and transformation
matrices. Neural representational spaces in human cortex are
high-dimensional. Discovery of a rich variety of common tuning
functions and finely tuned estimation of parameters in trans-
formation matrices rest on extensive sampling of vectors in
these very large spaces. We measure a broad sample of response
vectors while subjects view and listen to a complex, dynamic
stimulus that contains a rich variety of visual objects, scenes,
and motion; auditory speech, music, and other sounds; human
actions, and social interactions.

Dimensionality of the Common Model Space
A lower-dimensional subspace is adequate to capture the distinc-
tions among response vectors. SVD of the movie data indicated
that the information contained in those data could be captured
in a common model space with ∼450 orthogonal dimensions. In
our initial report on a common model of VT cortex, whose vol-
ume is ∼10% of all cortex, we found that ∼35 dimensions were
sufficient to capture the movie information content contained
in the fMRI data, as well as the information in 2 category percep-
tion experiments. These dimensionality estimates are a function
of the spatial and temporal resolution of fMRI and the number
and variety of response vectors used to derive the common
space. The true dimensionality of representation in human
cortex surely involves vastlymore distinct tuning functions. Esti-
mates of the dimensionality of cortical representation, therefore,
will almost certainly be much higher as data with higher spatial
and temporal resolution for larger and more varied samples of
response vectors are used to build new common models.

Other Common Bases for Neural Representation

Themodel thatwe present here is based on the discoveryof neur-
al tuning basis functions that are common across brains. Others
have developed models that rest on other common bases. RSA
(Kriegeskorte, Mur and Bandettini 2008; Kriegeskorte, Mur et al.
2008; Kriegeskorte and Kievit 2013) is based on finding a common
pattern of pairwise similarities between stimulus vectors based
on neural response patterns, models, or behavioral measures.
RSA affords comparison of representational geometry across
brain areas, measurement modalities, and species (Kriegeskorte,
Mur and Bandettini 2008; Kriegeskorte, Mur et al. 2008; Connolly
et al. 2012; Kriegeskorte and Kievit 2013; Cichy et al. 2014;
Khaligh-Razavi and Kriegeskorte 2014), but models of this type
are limited to the stimuli that are included in the experiment
for discovering similarity structure, whereas our approach pro-
vides a basis for recasting any new response vector in the

dimensions of the common model space. Stimulus model
based encoding (Kay et al. 2008; Mitchell et al. 2008; Naselaris
et al. 2009, 2010; Nishimoto et al. 2011; Huth et al. 2012) finds
the common basis in the features of the stimuli themselves,
then derives mappings to predict the responses in each voxel in
each subject’s brain based on these stimulus feature bases. This
approach affords predictions of response patterns for new stim-
uli but provides no systematic procedure to discover shared neur-
al population codes for the stimulus feature bases. In fact, our
method complements stimulus encoding models by providing
a common model of brain responses to map stimulus feature
models, thus affording a single common encoding model across
subjects.

Individual Deviations From the Common Model Space

The common model of representational spaces that we present
here is designed to discover the commonalities of neural represen-
tation that are shared across brains, and the results show that such
commonality is stronger and more detailed than was previously
known. Neural representations, however, clearly vary across
brains. Similarly, an individual’s cortical topography canhave idio-
syncratic features, such as those described by Laumann et al.
(2015), whichpresumablywouldnot bemodeledwell by projection
of other subjects’ data from the common model space into that
subject’s cortical space. Because the common model accounts for
individual topographies based on other subjects’ data better than
other methods can, it may provide a better basis for describing
topographic variations that are true deviations from group norms.

Why A Common Model?

The transformation matrix for an individual is the key that un-
locks that person’s neural code. Once a subject’s neural re-
sponses are in common model space coordinates, they can be
decoded based on other subjects’ data. Thus, neural decoding
can be based on very large datasets from unlimited numbers of
other subjects. Our results show that the commonmodel captures
fine-grained distinctions among neural response vectors that en-
code a broad range of stimuli in diverse domains of information.
This common model representational space offers a framework
for multisubject neural decoding that captures the shared fine-
grained structure of representations encoded in population re-
sponses. Moreover, by accounting for between-subject variability
of function–anatomy relationship at fine-scale, ourmodel can pro-
vide a basis for more sensitive investigations of individual differ-
ences in neural representations and cortical topographies.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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