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Abstract: 
 
Studies comparing diverse groups have shown that many psychiatric diseases involve 
disruptions across distributed large-scale networks of the brain. There is hope that fMRI 
functional connectivity techniques will shed light on these disruptions, providing prognostic and 
diagnostic biomarkers as well as targets for therapeutic interventions. However, to date, 
progress on clinical translation of fMRI methods has been limited. Here, we argue that this 
limited translation is driven by a combination of inter-subject heterogeneity and the relatively low 
reliability of standard fMRI techniques at the individual level. We review a potential solution to 
these limitations: the use of new “precision” fMRI approaches that shift the focus of analysis 
from groups to single individuals through the use of extended data acquisition strategies. We 
begin by discussing the potential advantages of fMRI functional connectivity methods for 
improving our understanding of functional neuroanatomy and disruptions in psychiatric 
disorders. We then discuss the budding field of precision fMRI and findings garnered from this 
work. We demonstrate that precision fMRI can improve the reliability of functional connectivity 
measures, while showing high stability and sensitivity to individual differences. We close by 
discussing the application of these approaches to clinical settings.   
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There is an enormous need to improve diagnosis and treatment of neuropsychiatric disorders 
given their personal and societal burden (1-3). A substantial body of neuroimaging work has 
documented variations in brain function that accompany psychiatric disorders with the hope of 
developing biomarkers and novel treatments. These studies generally observe that psychiatric 
disorders are associated not with focal brain pathology, but with widespread dysfunction of 
distributed brain networks (4-6). However, to date, few of these findings have been translated to 
clinical settings. At least two factors may contribute to this lack of translation. First, group 
comparisons do not capture the heterogeneity of phenomenological characteristics present 
across any given disorder. For example, individuals with schizophrenia can present with 
variable symptoms including delusions, hallucinations, disorganized behavior, and/or 
anhedonia. Individuals with depression may exhibit symptoms from anxiety to diminished 
reward sensitivity (7). Children with Tourette syndrome (TS) exhibit varied motor and vocal tics 
and frequently demonstrate comorbidity with ADHD and OCD (8). It is not surprising that 
findings from group studies do not adequately account for any individual’s unique 
characteristics. Second, many neuroimaging techniques are noisy and exhibit low reliability in 
single individuals, limiting the ability to capture neural characteristics related to individual 
heterogeneity. Thus, new approaches are needed to measure brain function reliably in 
individuals. 
 
In this review, we highlight insights that neuroimaging methods can provide about systems-level 
brain function in health and disease. We then review recent efforts from our laboratories and 
others to develop individualized (“precision”) applications of fMRI using extended data 
acquisition strategies that can provide reliable and stable individual measures of brain 
organization. We close by discussing the practical application of precision fMRI in translational 
settings. 
 
Measuring functional neuroanatomy with fMRI correlations 
Human brain function is organized at many spatial scales, from local circuits to cortical columns, 
brain areas, and large-scale systems (9). The systems (10-14) and areal (15, 16) organization 
of human brains can be characterized noninvasively using functional connectivity MRI. 
Functional connectivity (FC) refers to temporal correlations in fMRI activity between different 
regions, which can be measured during experimental tasks or as spontaneous activity patterns 
during the resting-state (in the absence of task instructions). Resting-state methods have the 
advantage of not requiring patients to complete a task, which may prove challenging for patients 
and provide added burdens in administration for clinical centers. Despite the lack of 
experimental constraint, resting-state correlations demonstrate rich systematic patterns, with 
functionally-related regions showing high correlations to each other (“within system”), and lower 
correlations to regions in other systems. Indeed, resting-state fMRI has been used to define 
systems throughout the brain (11, 13, 17-20). These patterns are robust, with independent 
studies converging on similar descriptions of group-averaged system organization of the human 
brain (11, 13) (Figure 1A). Moreover, validation of FC patterns has been established through 
convergent evidence from other neural measures (21), lesion approaches (22, 23), and 
behavior (24). At a finer scale, FC can also be used to parcellate the brain into regions that 
approximate functional areas and map onto differences in task function (15, 16, 25).  
 
FC approaches can be used to measure differences in brain systems between neurotypical 
controls and diverse neuropsychiatric populations, such as in schizophrenia (5, 26), depression 
(27), or TS (28, 29), and to identify commonalities across diagnostic boundaries (e.g.,(30-32)). 
Additionally, functional network mapping provides context for interpreting brain activity during 
tasks. Task results are often described using large, poorly-defined anatomical locations (e.g., 
“lateral prefrontal cortex”). With coincident FC, task results can instead be ascribed to specific 
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functional systems (e.g., frontoparietal or cinguloopercular), refining our understanding of task 
mechanisms in healthy individuals (17, 33, 34) and youths with diverse psychiatric symptoms 
(35). Furthermore, FC facilitates complex systems approaches to understanding brain function 
(36), which can be used to identify brain hubs (37-40) that support task function (41-45) and are 
vulnerable to damage (46-48). Network approaches hold promise for providing concise 
descriptions of how complex systems like the brain change across the lifespan (49-51) and are 
disrupted in psychiatric disorders (52), and may help develop mechanistic theories for these 
alterations (52-54). 
 
Towards clinical utility of functional connectivity  
Thus, FC has strong potential for clinical applications (55), including in the use of network 
mapping to enhance neurosurgical planning (56-60), providing systems-level biomarkers to 
identify at-risk individuals (61-63), sub-typing patients with diverse etiologies (32, 64), and 
identifying targets for treatment (e.g., with TMS) (55, 65, 66). However, despite a 20+ year 
history, FC techniques have yet to become widely used clinically. This observation raises the 
question of why clinical implementation has stalled. 
 
For a measure to be clinically useful, it should be both reliable, such that repeated 
measurements produce the same result, and stable across contexts, such that it primarily 
reflects trait- rather than state-dependent effects. Additionally, it should show sensitivity to 
idiosyncratic features that may be clinically relevant. We suggest that new approaches are 
needed to reach clinically-relevant reliability, stability, and sensitivity of FC at the individual-
level.  
 
Achieving single-subject reliability is not trivial. While group descriptions of functional networks 
are robust, most studies collect insufficient data (5-10 min.) to obtain reliable FC estimates in 
single individuals (67-71). Recent estimates suggest that at least 40 min. of low-motion fMRI 
data are needed to achieve high reliability (test-retest r>0.9) across the full connectome (69, 70) 
(Figure 2A). While some networks may achieve reliability more quickly (e.g., the default-mode), 
most single connections show poor-to-fair reliability with < 40 min. of data (67, 71) (see 
Supplemental Discussion). Derived FC measures require even more data (e.g., areal 
parcellations require >50 min. (72); measures of lag structure require >200 min. (73, 74)). 
Moreover, reliability of fMRI data usually is worse in non-cortical regions that are implicated in 
many psychiatric disorders (75-77). Current estimates suggest that 90 min. of data are needed 
to achieve high reliability of cerebellar FC (78) and >100 min. are needed for the basal ganglia 
and thalamus (79). Notably, it may be possible to identify an individual within a large group – so-
called “fingerprinting” approaches (80, 81)– using substantially less data (81). However, subject 
identification is not the same as individual-specific characterization of brain-based disease 
processes, which requires substantially more data and is the ultimate target for clinical utility.  
 
A precision fMRI approach 
The findings above motivate an alternative strategy for data acquisition. The core feature of this 
approach is to collect larger quantities of fMRI data in single individuals as opposed to smaller 
quantities of data averaged over groups. For convenience, we call this acquisition strategy 
“precision” fMRI (pfMRI), though other terms, including “deep” or “high-sampling” have also 
been used. PfMRI data are frequently coupled with extensive phenotypic and behavioral 
measurements to aid in establishing validity. Moreover, pfMRI benefits from being combined 
with advanced analysis including dataset denoising, alignment, and network definition. 
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The MyConnectome dataset is one of the original demonstrations of the utility of pfMRI for 
functional network mapping*. For this dataset, Russ Poldrack scanned himself twice weekly for a 
year, and collected additional phenotypic variables regarding health, affect, genotype, gene 
expression, and metabolomics (90). This work established that even in a single person, classic 
network patterns are evident, but clear deviations from typical “group” organization are also 
observed (70). Importantly, despite modest day-to-day variability (perhaps associated with 
caffeine or arousal levels (70)), these network patterns were fundamentally stable over the 
course of the year (70, 91).  
 
The MyConnectome study inspired several related pfMRI projects (for examples see Table 1, 
Supp. Table 1). Among these, the “Midnight Scan Club” (MSC) dataset collected >20 hrs. of 
fMRI data in each of 10 people (Figure 1B), including large amounts of task and resting-state 
data. Initial reports from this dataset established that extended data acquisitions can be used to 
generate reliable individual descriptions of functional brain organization (69). Robust individual 
differences in FC were observed and these network variations corresponded to brain activations 
during tasks (69).  
 
Additional pfMRI datasets have made important contributions to our understanding of functional 
systems. For example, Braga and Buckner (92) used a four person pfMRI dataset to describe 
substructure within several networks that is too individually variable to easily delineate in group 
data. Noble et al. (71) identified brain regions that are more or less reliable with a given quantity 
of data, which is critical for designing studies focused on specific regions. Given the public 
availability of many of these datasets (Table 1), their contribution to the field will likely increase 
in future years. 
 
Precision approaches quantify stability and variability in functional brain networks 
In addition to reliability, clinical utility requires that measurements show stability across contexts. 
That is, a diagnostic measurement would ideally be influenced only by the conditions of interest 
(e.g., long-term disease status, individual traits) rather than by day-to-day variation, ongoing 
states, or thoughts (e.g., whether the patient ate breakfast, if they were cold in the scanner 
room, if a technician was calm or abrupt, etc.). Thus, the stability of FC across different time-
scales and contexts is important for its utility in psychiatric care.  
 
The pfMRI design of the MSC is well-suited to examining this issue, as it contains data from 
multiple tasks spanning different cognitive domains collected in multiple individuals across 
multiple days (69). We used these data to identify cortical network patterns that were consistent 
across all measurements (static “group” effects) or that varied across individuals, days, or tasks 

                                            
* While pfMRI has only recently been employed in the field of large-scale functional network 
mapping, the practice of extended data collection in single individuals has a long history in both 
behavioral psychophysics and visual field mapping with fMRI (82-84). Recently these methods 
have been extended to measuring responses to complex naturalistic stimuli (85-87). PfMRI also 
mirrors the tradition of monkey electrophysiology studies that typically collect large amounts of 
data from small samples of monkeys (often 1-3). While these samples are not large enough for 
statistical testing, their logic is that they serve as study replicates across samples: i.e., an effect 
can be more meaningful when seen within each individual in a small group than if it is only 
observable on average across a large population sample (88, 89). We argue that a similar logic 
applies to studies of brain network organization, especially in clinical settings where treatment is 
applied to individuals. 
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(93). Our findings demonstrated that functional networks are largely stable, with shared group 
patterns as well as network features that were specific to individual subjects (Figure 2B).  
 
Variations in FC from day-to-day and task-to-task were also observed, but these effects were 
relatively small in magnitude. Interestingly, task effects on FC were largely individually-specific, 
rather than common across the group (93) (Figure 2B), consistent with previous studies 
showing subtle group-average task modulations of FC (45, 94) and added task-by-individual 
interactions (95, 96). The individual-specificity nature of task influences on brain networks 
suggests that their study may especially benefit from the use of pfMRI. In addition to 
characterizing task and daily variation, we also used pfMRI to show that FC is stable over 
shorter time-scales (i.e. minutes). In this work, apparent within-session variability in FC was 
primarily driven by sampling error, acquisition artifacts (such as motion), and subject arousal 
during scans (97). 
 
The dominance of stable factors on FC was relatively consistent across spatial scales, from the 
full connectome, to single networks, regions, and even single connections (93). Subsequent 
work observed similar effects in subcortical and cerebellar regions (78, 79) with hints of 
increased individual variability (78) - an intriguing finding given evidence of variation within non-
cortical structures in psychiatric disorders (75-77, 98-101). 
 
Thus, FC techniques are well suited to measuring stable aspects of brain organization, including 
aberrant features that may underlie psychopathology. Moreover, these findings indicate a high 
sensitivity to individual differences in brain networks (see next section). Jointly, the strong 
reliability, stability over states, and sensitivity to individual differences seen with pfMRI methods 
make them strong candidates for clinical applications. 
 
An emergent question is how FC varies across months and years. The MyConnectome dataset 
suggests that many aspects of FC are stable over a year (70, 91) (also seen for some networks 
over 3.5 years in the Kirby Weekly dataset (102)). However, new studies are needed to 
determine to what extent these patterns persist throughout the lifespan, from early infancy into 
aging, and whether they can be altered with prolonged or profound life experiences. 
 
Characteristics of individual variation in brain networks 
Individual FC differences (69, 80, 81, 103-106) have been identified at multiple scales, ranging 
from differences in brain-wide network organization (e.g., network “efficiency” (69)) to punctate 
regions that vary across individuals (70, 91, 103, 104). One open question is whether these 
disparate spatial scales measure related aspects of individual variation (e.g., variation in FC of a 
single region may cause apparent variation in brain-wide efficiency). Interestingly, in the MSC 
dataset different individuals are highlighted as ‘atypical’ depending on the scale of analysis: e.g., 
Gordon (69) found that brain-wide efficiency was significantly lower for subjects MSC02 and 
MSC06 relative to the group, but Seitzman (91) found that MSC02 and MSC06 sorted into 
different sub-groups based on regional variations, and Gratton (93) found that MSC01 was most 
different from the group in task and rest FC. An important question for future work is whether 
individual differences in FC reflect differences in the spatial organization of networks/areas or 
differences in the magnitude of functional correlations within a static spatial structure (e.g., (107, 
108)). 
 
Recent reports have observed that individuals demonstrate localized regions of distinct FC 
relative to the group (70, 91). We term these “network variants” (Figure 3). Network variants 
occur most frequently in association cortex (e.g., parts of the frontoparietal, default mode, and 
cinguloopercular systems) and appear in two general forms: border shifts between networks 
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(e.g., the default network enlarges, encroaching on classically frontoparietal regions) and 
ectopic intrusions (e.g., an isolated area in the frontoparietal network shows altered FC, such 
that it connects to the default network). Despite their low correspondence to the “average” 
architecture, network variants are common. Indeed, in preliminary investigations (70, 91) across 
datasets (109), we found network variants in every individual. These findings suggest that the 
average brain is not a veridical representation of any individual person.  
 
Network variants have a number of systematic trait-like properties (91) that suggest they may be 
good candidate clinical targets. They are stable across scans (reaching r>0.8 with >40 min. of 
data). Moreover, like other phenotypic traits such as eye-color, blood type, or personality, 
individuals can be grouped based on their characteristic patterns of network variants. Two sub-
groups were identified across multiple datasets: one with variants more associated with the 
default-mode network and another with variants more associated with goal-directed control and 
sensorimotor processing systems (81). These findings suggest that network variants may relate 
to individual differences in complex goal-directed functions subserved by these networks (17, 
110-113) - functions known to vary in the typical population (114) and implicated across a range 
of disorders including depression (27, 64, 115, 116), schizophrenia (103-105), and TS (28, 117).  
 
Despite the nascent state of pfMRI studies, there is preliminary convergent evidence that 
validates the connection between these individual differences and differences in brain function 
(e.g., (80, 107, 108, 118-121)). For example, network variants re-assigned to the default-mode 
showed de-activations during tasks– much like canonical default-mode locations – even when 
found within cortical territories that are classically identified with task-activated networks (e.g. 
frontoparietal) (91). Thus, network variants may represent locations with shifted functions, 
leading to altered network correlations. Other findings have also suggested that individual-
specific FC – defined at rest – overlaps well with task-related brain activations (118, 119, 121). 
Further preliminary validation of individualized FC measures comes from their successful 
guidance of TMS (e.g., (66, 122)) and by comparison with structural brain measures (e.g., 
overlap between FC variations and variations in myelin density in (69)). 
 
Moreover, individual differences in network organization also appear to relate to behavioral 
variation (80, 107, 108). In the sub-groups described above, differences in network variants 
were associated with small differences in quality of life and drug use (91). Similarly, Smith (120) 
suggests that FC differences link to a “positive-negative mode” of behavioral variation. One 
important question to address in future research will be which variations in brain system 
organization have critical consequences on behavior and which reflect degenerate solutions to 
carrying out the same behavioral function. 
 
Looking forward: pfMRI and psychiatry 
Thus far, pfMRI approaches have primarily examined small, homogenous cohorts (Table 1). 
These datasets have highlighted the reliability of FC measurements, in the spirit of recent 
movements in psychology and psychiatry to increase reproducibility in research (123-125). This 
work has already provided important preliminary results regarding sources of variance and 
stability of FC techniques. Critically, the large amounts of data per subject in pfMRI approaches 
allow for observations to be verified reliably at the level of individuals (even in clinical samples 
(126)), which is the level most pertinent for clinical applications. It is this feature that makes 
pfMRI a compelling platform to address outstanding challenges in psychiatry. 
 
One such challenge has been in understanding differences between the ‘normal’ and pathologic 
brain, which have so far been obscured in group format studies. Group studies typically find 
modest differences in FC across a range of comparisons: between tasks (45, 94), across states 
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of consciousness (127), over development (128), and across major neurological and psychiatric 
disorders (30, 129, 130). One question is whether pfMRI approaches that take advantage of 
both group commonalities and individually specific features may be more sensitive to detecting 
heterogeneous differences, especially those relevant to clinical work. Early reports support this 
conjecture, as pfMRI approaches have demonstrated enhanced sensitivity not only to individual 
differences, but also to task-state effects (93), and clinical symptoms (126).  
 
A second, related, challenge in psychiatry is to create tools for accurate diagnosis and 
prognosis of clinical features at the individual level. While pfMRI has yet to be used widely in 
clinical populations, initial accounts have suggested that high-data approaches can increase the 
association between fMRI measures and behavior in the neurotypical population (80, 107, 108, 
120). We are aware of only one study to date to apply pfMRI to a clinical population (126). In 
that study, ~3.5 hrs. of MRI data were collected from 26 veterans with varying history of TBI and 
PTSD. Interestingly, FC mediated observed associations between TBI and PTSD symptoms. 
However, this relationship was only evident with large amounts of data; analyses using only 10 
min. of data per subject were non-significant. Two other recent papers further highlight 
advantages of individualized analysis techniques in psychiatric datasets (although with lower 
amounts of per-subject data (131, 132)). In Wang (131), fMRI data were gathered from 158 
participants diagnosed with schizophrenia, schizoaffective disorder, or bipolar disorder. FC 
derived from individually-specific regions significantly predicted symptom levels, while models 
using group regions performed consistently worse. Similarly, in participants with OCD, Brennan 
(132) found that brain networks modeled using individually-defined regions outperformed group-
defined regions in predicting symptoms, and that individualized FC changes predicted 
treatment-based improvements. These findings highlight the added utility of individualized 
approaches to FC in psychiatry. Beyond post-hoc diagnosis, it is worth investigating whether 
pfMRI approaches will prove sensitive to risk factors for psychiatric disorders and disease 
progression, which would greatly enhance the utility of imaging in clinical management.  
 
A third area of psychiatry that pfMRI can help to address are interventions that rely on subject-
specific targeting of pathology. The spatially localized nature of many individual differences in 
FC (91, 103, 107, 108) means they may serve as patient-specific targets for stimulation-based 
interventions with TMS or DBS. While stimulation-based interventions can be effective, they 
suffer from variable patient responses (e.g. (133, 134)), which have been attributed to 
stimulation targeting procedures that do not respect individual variations in structural (135, 136) 
or functional (65, 137) neuroanatomy. Indeed, individual variability in FC of dorsolateral 
prefrontal cortex has been related to variation of TMS treatment efficacy in depression (66). 
Moreover, a recent pfMRI study of the sub-cortex showed that regions with consistent FC 
across individuals overlap with DBS stimulation sites that have shown more consistent 
treatment response, while DBS sites with known variability in response overlap with regions that 
exhibit variable FC (79). Use of pfMRI to identify individual-specific targets for brain stimulation 
thus has significant potential for improving treatment response rates (138).  
 
A fourth challenge is to improve tracking of treatment efficacy and long-term remission. The 
multi-session nature of pfMRI allows researchers to determine how FC measurements vary over 
different time-scales. Thus far, evidence suggests that FC is stable across multiple sessions 
and even year-long periods, as long as sufficient data are collected per measurement to 
achieve high reliability (93). As such, pfMRI may be more sensitive to trait-like features that 
predict disease status or risk (e.g., whether a person has or will develop depression) than those 
that are associated with fluctuating behavior (e.g., current sad mood). However, pfMRI may also 
prove a more reliable baseline from which to expose rapid or profound changes in FC linked to 
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treatment response to a pharmacologic or behavioral therapy. For example, lower-data but 
individualized FC approaches can predict changing OCD symptoms after intervention (132).  

 
Feasibility of pfMRI in Clinical Samples 
While pfMRI has many useful properties, the feasibility and cost of collecting extended datasets 
in patients are commonly cited as barriers to its use. Moreover, psychopathology is prevalent 
across the lifespan, and collecting pfMRI data from children and elderly adults may compound 
feasibility concerns. Such concerns can be addressed in a number of ways. 
 
First, initial pfMRI studies have established that 30-45 minutes of low-artifact data may be 
sufficient to achieve good reliability for many cortical FC measures. In our initial investigations, 
we find that patient, pediatric, and elderly populations retain ~50-80% of data after motion 
denoising (29, 126, 129); thus, 45-90 min. of data collection would be needed to reach high 
reliability. While this is substantially more resting-state than is typically collected, this is not an 
unreasonable amount of scanning to ask of participants in general, as routine neurology 
assessments collect 2 hrs. of structural MRI. Clinicians may adjudicate whether the severity of 
psychiatric cases calls for similar scan investment (e.g., compare a relatively healthy patient 
with ADHD vs. a severely depressed patient with high suicide risk). Future methodological 
improvements may reduce the data needed to achieve reliable FC, though these may come at 
the cost of increased reliance on priors and decreased ability to observe divergent individual 
patterns (see Supplemental Discussion). 
 
Second, since patient, pediatric, and elderly samples often exhibit increased head motion, 
additional strategies have been proposed to minimize motion and improve data quality (139). 
Our findings on FC stability suggest that data collection can effectively be split into several 
shorter runs within or across sessions to increase patient compliance. Indeed, breaking up data 
collection may even increase reliability levels (71), likely because of the autocorrelation 
structure of fMRI timeseries. Some have proposed combining task and rest to increase data 
quantities for FC (67), which could open up many current datasets for analysis. Care should be 
taken when mixing task and rest datasets, especially when effects of interest are small, but this 
may be an acceptable qualification for prediction/diagnosis (see Supplemental Discussion). 
Finally, data acquisition strategies such as movement feedback (140), on-line head motion 
estimates (141), and head cases to minimize motion (142) provide promising strategies to 
improve data quality during collection, rather than through post-hoc denoising.  
 
Thus, while pfMRI studies require additional data per participant, for many applications the 
benefits of this investment (dramatically increased reliability and sensitivity to individual 
features) may be well worth the cost. Two or three hours of scanning may be of relatively small 
concern to patients considering having a DBS device implanted, suicidal individuals suffering 
from treatment-resistant depression, or parents seeking improved treatment for their child. We 
contend that it is not enormously useful to spend money on cheaper measures that do not 
replicate well within or across individuals – either for clinical practice or to forward research 
knowledge. Rather, direct translational application of neuroimaging results may be better 
afforded by pfMRI.  
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Tables 
 

Dataset name Location 
of Dataset 

Participants Sessions 
& 

Collection 
Window 

Resting-
state 

data per 
session 

Scan Parameters Additional data collected 

Anderson (68) http://fcon_
1000.projec
ts.nitrc.org/i
ndi/CoRR/h
tml/utah_2.

html 

1 M (age 39) 5 sessions 
over 3 
weeks 

50 min. • Scanner: Siemens Magnetom Trio 
3T, 12 channel coil 

• TR: 2000 ms 
• Voxel Size: 3.4 x 3.4 x 3 mm 
• Multiband/accelerated: GRAPPA2 

• Structural MRI: T1 
• Task fMRI: video clips (250 min.)  
• Physiological Measures: Respiration, 

heart rate 
• 36 additional participants have 8 min. of 

resting state 
IPCAS – 3 Day 

[IPCAS 6] 
 

Zuo (143) 

http://fcon_
1000.projec
ts.nitrc.org/i
ndi/CoRR/h
tml/ipcas_6.

html 

2 (1 F, ages 
21 and 25) 

15 
sessions 
over 3 
days 

30 min. • Scanner: Siemens Magnetom Trio 
3T, 8 channel coil 

• TR: 2500 ms 
• Voxel Size: 3.5 x 3.5 x 3.5 mm 
• Multiband/accelerated: none 

• Structural MRI: T1, T2 

MyConnectome 
 

Poldrack (90) 

https://open
neuro.org/d
atasets/ds0
00031/versi
ons/00001 

 

1 M (age 45, 
author) 

89 
sessions 
over 72 
weeks 

10 min. • Scanner: Siemens Skyra 3T, 32 
channel coil 

• TR: 1160 ms 
• Voxel Size: 2.4 x 2.4 x 2 mm 
• Multiband/accelerated: MB4 

• Structural MRI: T1, T2, DWI 
• Task fMRI: ~7 hours, 7 tasks (n-back, 

stop signal, WM localizers, retinotopic 
mapping, breath holding) 

• Behavioral Measures: affect, sleep, 
health 

• Blood draws: RNA, genotyping, 
metabolomics 

• 11 additional fMRI sessions during a 
pilot phase; additional fMRI data also 
collected at alternate site 

Kirby Weekly 
Dataset 

 
Choe (102) 

https://www
.nitrc.org/pr
ojects/kirby

weekly 

1 M (age 40) 158 
sessions 
over 185 
weeks 

7 min. • Scanner: Philips Achieva 3T, 16 
channel coil 

• TR: 2000 ms 
• Voxel Size: 3 x 3 x 3 mm 
• Multiband/accelerated: SENSE2 

• Structural MRI: T1 
• 21 additional participants have 7 min. of 

resting-state 

Midnight Scan Club 
(MSC) 

 
Gordon (69) 

https://open
neuro.org/d
atasets/ds0
00224/versi
ons/00001 

 

10 (5 F, ages 
24-34) 

10 
sessions 
within 7 
weeks 

30 min. • Scanner: Siemens Trio 3T 
• TR: 2200 ms 
• Voxel Size: 4 x 4 x 4 mm 
• Multiband/accelerated: none 

• Structural MRI: T1, T2, MRA, MRV 
• Task fMRI: 6 hours, 4 tasks (semantic, 

dot coherence, motor, 
categorization/implicit memory) 

• Behavioral Measures: 
neuropsychological assessment, IQ, 
personality 

Buckner Lab 
Dataset 

 
Braga and Buckner 

(92) 

- 4 (4 F, ages 
21-26) 

24 
sessions 
over ~16 
weeks 

7 min. • Scanner: Siemens Prisma 3T, 64 
channel coil 

• TR: 1000 ms 
• Voxel Size: 2.4 x 2.4 x 2.4 mm 
• Multiband/accelerated: MB5 

• Structural MRI: T1 
• Other scans: ASL, task fMRI 
• Physiological Measures: Eye-tracking, 

respiration, heart rate, galvanic skin 
response 

• Behavioral Measures: sleep, 
smartphone monitoring, behavioral 
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testing 

Day2Day Dataset 
 

Filevich (144) 

e-mail 
authors 

8 (6 F, ages 
24-32; N=6 
with > 120 

min.) 

11-50 
sessions 
over 8-56 

weeks 

5 min. • Scanner: Siemens Magnetom Trio 
3T, 12 channel coil 

• TR: 2000 ms 
• Voxel Size: 3 x 3 x 3 mm 
• Multiband/accelerated: GRAPPA2 

• Structural MRI: T1, T2 (hippocampus), 
DTI, MRS 

• Behavioral Measures: weather, health, 
sleep, affect, activity, hormones  

Healthy Brain 
Network Dataset 

(HBN-SSI) 
 

O'Connor (145) 

http://fcon_
1000.projec
ts.nitrc.org/i
ndi/hbn_ssi/ 

13 (8 F, ages 
21-42) 

13 
sessions 
over 4-8 
weeks 

10 min. • Scanner: Siemens Avanto 1.5T, 32 
channel coil 

• TR: 1460 ms 
• Voxel Size: 2.46 x 2.46 x 2.5 mm 
• Multiband/accelerated: MB3 

• Structural MRI: T1, T2, DKI, FLAIR, 
magnetization transfer 

• Task fMRI: 6 hours, 3 tasks (inscape, 
movie, flanker) 

• Behavioral Measures: internal state, 
affect, health, activity/sleep, ADHD, 
voice samples 

Yale Test-Retest 
Dataset 

 
Noble (71) 

http://fcon_
1000.projec
ts.nitrc.org/i
ndi/retro/yal
e_trt.html 

12 (6 F, ages 
27-56) 

4 sessions 
over ~1 
week 

36 min. • Scanner: Siemens Magnetom Trios 
3T (2 separate matched), 32 
channel coil 

• TR: 1000 ms 
• Voxel Size: 2 x 2 x 2 mm 

Multiband/accelerated: MB5 

• Structural MRI: T1 - MPRAGE, T1- 
FLASH, T2 - SPACE 

Meszlénvi Dataset 
 

Meszlenyi (146) 

- 1 F (age 28) 10 
sessions 
over 5 
days 

20 min. • Scanner: Siemens Magnetom 
Prisma 3T 

• TR: 1770 ms 
• Voxel Size: 3 x 3 x 3 mm  
• Multiband/accelerated: MB2 

• Structural MRI: T1 
 

Gordon TBI 
Dataset 

 
Gordon (126) 

- 26 (5 F, ages 
37 +/- 11.8; 
21 with TBI; 
N=24 with > 

120 min.) 

2-5 
sessions 
over less 
than 12 
weeks 

 

5-44 min. • Scanner: Philips Achieva 3T 
• TR: 3000 ms 
• Voxel Size: 3 x 3 x 3 mm  
• Multiband/accelerated: SENSE1.5 

• Structural MRI: T1, DTI 
• Behavioral Measures: TBI, PTSD, 

combat exposure 

SIMON Dataset 
 

Duchesne (147) 

http://fcon_
1000.projec
ts.nitrc.org/i
ndi/retro/SI
MON.html 

1 M (age 29) 15 
sessions 
over 468 
weeks 

10-11 
min. 

• Scanner: Philips Achieva 3T, 8 
channel coil 

• TR: 2500 ms 
• Voxel Size: 3.5 x 3.5 x 3 mm 
• Multiband/accelerated: SENSE2 

• Structural MRI: T1, T2, DWI, FLAIR 
• Functional MRI: ASL 
• 58 other scans also available across 32 

other scanners 
 

Donnelly-Kehoe 
Dataset 

 
Donnelly-Kehoe 

(148) 

- 1 F (age 29) 50 
sessions 
over 26 
weeks 

5 min. • Scanner: Siemens Magnetom Trio 
3T, 12 channel coil 

• TR: 2000 ms 
• Voxel Size: 3 x 3 x 3 mm 
• Multiband/accelerated: GRAPPA2 

• Structural MRI: T1, DWI 
• An additional 50 Participants with only 1 

session 

 
Table 1: A collection of precision fMRI datasets with resting-state data. ‘Precision’ datasets are defined here as datasets with >120 min. of resting state per individual collected in 2 or 
more sessions on the same scanner, and whole-brain data acquisition. These parameters allow for reliability and non-cortical analyses; additional “high-data” fMRI projects with 40-120 
min. are listed in Supp. Table 1. Datasets were in part identified through Kong (149).   
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Figure Legends 
 
Figure 1: Group and individual functional brain networks. (A) Robust group-average 
functional networks (different colors) are observed across multiple studies using different 
methods. This group-average map was created by averaging data from the MSC subjects at 
rest. (B) Functional networks in individuals exhibit similarities to the group-average, but also 
pronounced individual differences. For example, note variations in the network organization of 
the dorsolateral prefrontal cortex (colors are matched to group-average labeling in A). A and B 
are based on data from (69). 

Figure 2: Reliability and stability of functional brain networks. (A) Recent studies using 
precision fMRI methods have demonstrated that more than 40 min. of high-quality fMRI data are 
necessary to achieve high test-retest reliability of functional networks in the cortex (top: 
functional networks from a single individual across two split-halves of the data; bottom: similarity 
of individual functional network measures across the connectome with increasing amounts of 
data). Even larger amounts of data may be needed to achieve high-reliability in non-cortical 
regions (78, 79). (B) Analysis of precision fMRI datasets allows for a decomposition of the 
sources of variance in functional networks. This work has shown that functional networks are 
dominated by stable factors, including common structure across groups and stable patterns of 
individual differences. Task-state makes modest contributions to FC that are largely individually 
specific, and daily variation is small with sufficient data. This is shown by examining how similar 
functional networks are from datasets that share group, individual, task, or session factors (or a 
combination). A is from (70), B is adapted from (93).  

Figure 3: Network variants. Comparison of (A) group networks and (B) an individual from the 
MSC (MSC06, colors match Fig. 1). (C) Some locations exhibit low similarity to the group (a few 
examples are circled), which can be identified through vertex-wise spatial correlation; (D) we 
call these low-similarity locations network variants. (E) Variants may represent shifts of network 
borders (left) or isolated ectopic intrusions (right). We hypothesize that network variants are 
caused by stable factors that reprioritize the neural functions of cortical areas, causing shifts in 
the boundaries of cortical networks and ectopic intrusions. These altered prioritizations lead to 
changes in the dominant systems-level relationships of a region (e.g., increasing FC to relevant 
regions in alternate networks), causing these regions to appear as network variants. Thus, 
network variants may be related altered brain function during tasks and behavioral responses 
across individuals. See (91). 
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