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A basic problem of visual perception is how human beings recognize objects after spatial transforma-
tions. Three central classes of findings have to be accounted for: (a) Recognition performance varies
systematically with orientation, size, and position; (b) recognition latencies are sequentially additive,
suggesting analogue transformation processes; and (c) orientation and size congruency effects indicate
that recognition involves the adjustment of a reference frame. All 3 classes of findings can be explained
by a transformational framework of recognition: Recognition is achieved by an analogue transformation
of a perceptual coordinate system that aligns memory and input representations. Coordinate transforma-
tions can be implemented neurocomputationally by gain (amplitude) modulation and may be regarded as
a general processing principle of the visual cortex.
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How can we recognize objects regardless of spatial transforma-
tions such as plane and depth rotation, size scaling, and position
changes? This ability is often discussed under the label object
constancy or shape constancy. Even young children recognize
objects so immediately and effortlessly that it seems to be a rather
ordinary and simple task. However, changes in the spatial relation
between observer and object lead to large changes of the image
that is projected onto the retina. Hence, to recognize objects
regardless of orientation, size, and position is not a trivial problem.
No computational system proposed so far can successfully recog-
nize objects over wide ranges of object categories and contexts.

Several different approaches have been proposed over the years
(for reviews, see Palmeri & Gauthier, 2004; Ullman, 1996). A
number of models rely on abstract object representations, which
predict that recognition performance is typically invariant regard-
ing spatial transformations (e.g., structural description models; see
Hummel & Biederman, 1992; Marr & Nishihara, 1978). In con-
trast, image-based or view-based models propose that object rep-
resentations are close to the format of the perceptual input and
therefore depend systematically on image transformations (e.g.,
Edelman, 1998; Tarr, 2003). More recently, hybrid models have
been proposed that aim at integrating both approaches (Edelman &
Intrator, 2001; Hummel & Stankiewicz, 1998).

One central issue of research and scientific debate in this area is
the question of orientation dependency. A large number of studies
have demonstrated that recognition performance depends system-
atically on the orientation of the stimulus (for reviews, see Joli-
coeur & Humphrey, 1998; Lawson, 1999; Tarr, 2003). Even
though it is widely accepted that orientation dependency should be
interpreted in terms of a pictorial or image-based (or view-based)
model of recognition (Jolicoeur & Humphrey, 1998; Tarr &
Bülthoff, 1998), there is still no consensus as to which model is
best suited to explain the data (e.g., Bar, 2001; Biederman & Bar,
2000; Biederman & Gerhardstein, 1995; Edelman & Intrator,
2001; Foster & Gilson, 2002; Hayward & Tarr, 2000; Tarr &
Bülthoff, 1995; Thoma, Hummel, & Davidoff, 2004).

The aim of this article is to lay the groundwork for a new
framework of object recognition that accounts for the majority of
findings and integrates previously distinct areas of research. When
further classes of—previously neglected—data are considered, a
new integrative view on recognition emerges that suggests that
object recognition relies on coordinate transformations, that is, on
transformations of a perceptual coordinate system that align input
and memory representations. Researchers from computational neu-
roscience have also proposed that coordinate transformations are
crucial for object perception and recognition (e.g., Pouget & Sej-
nowski, 1997, 2001; Salinas & Abbott, 1997a, 1997b), arriving at
this conclusion from an entirely different starting point and pro-
viding converging evidence for coordinate transformations in ob-
ject recognition. Coordinate transformations are fundamental also
for visuomotor control and so may be considered as an integrative
processing principle for the visual cortex (e.g., Salinas & Abbott,
2001; Salinas & Sejnowski, 2001; Salinas & Thier, 2000). Thus,
the transformational framework is integrative at three different
levels. First, it accounts for a large number of currently unrelated
and neglected studies in the recognition literature. Second, it
integrates behavioral findings with approaches from computational
neuroscience modeling the behavior of single neurons. Third, the
transformational framework suggests common processing princi-
ples in object recognition and visuomotor control.
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Three central classes of findings are identified that have to be
explained by any model of recognition. First, recognition perfor-
mance deteriorates systematically with increasing changes of ori-
entation, size, and position of the object (addressed in Section 1).
Second, transformation processes in recognition (rotations and size
scalings) pass through intermediate points along the transforma-
tional path, suggesting that compensation processes in recognition
are analogue (addressed in Section 2). Third, the recognition of
objects that are rotated or size scaled is facilitated when they are
presented immediately after a different object shown at the same
orientation or size. This indicates that recognition involves the
adjustment of a perceptual coordinate system or reference frame.
Coordinate transformations can be implemented at the neuronal
level by gain modulation, that is, by simple multiplicative inter-
action (addressed in Section 3). In Section 4, I argue that current
object recognition models are not able to explain all three classes
of data without introducing new ad hoc assumptions. A transfor-
mational framework of recognition (TFR) that can accommodate
all three classes of findings in a simple and parsimonious way is
proposed in Section 5. According to TFR, recognition is achieved
by an analogue alignment transformation of a perceptual coordi-
nate system that specifies correspondences between memory rep-
resentations and the visual input. In contrast to relatively slow
image transformations in mental imagery, recognition is based on
relatively fast coordinate transformations (implemented by neural
gain modulation).

1. Systematic Relation Between the Amount of Spatial
Transformation and Recognition Performance

In traditional models of recognition, the ability to recognize
objects after rotations, size scalings, and displacements (transla-
tions) has been accounted for by the concept of invariance, that is,
on the basis of structures or relations that do not change with
spatial transformations (e.g., Biederman, 1987; Cassirer, 1944;
Marr & Nishihara, 1978; Pitts & McCulloch, 1947; Selfridge &
Neisser, 1963). The concept of invariance is still influential, but is
recognition performance actually invariant regarding spatial trans-
formations? Whereas research has often focused narrowly on ori-
entation effects, I also review studies investigating effects of other
spatial transformations, like changes of size and position.

Orientation Dependency

The question of how people recognize objects after changes in
their spatial orientation has been investigated extensively. Many
studies have demonstrated that recognition performance depends
on orientation (for reviews, see H. H. Bülthoff, Edelman, & Tarr,
1995; Jolicoeur & Humphrey, 1998; Lawson, 1999; Tarr, 2003;
Tarr & Bülthoff, 1998). Most objects can be recognized faster and
more accurately from certain perspectives, called canonical per-
spectives. The canonical perspective often corresponds to an up-
right orientation in between a frontal and side view (approximately
a three-quarter view; Blanz, Tarr, & Bülthoff, 1999; Palmer,
Rosch, & Chase, 1981). An object can have several canonical
perspectives (Edelman & Bülthoff, 1992; Newell & Findlay,
1997). The further an object is misoriented from the canonical
orientation, the more time it takes to recognize the object and the
more frequently errors are made.1 Recognition performance de-

pends in a systematic way on orientation, both for rotations in the
picture plane (e.g., Jolicoeur, 1985, 1988, 1990b; Lawson & Joli-
coeur, 1998, 1999) and rotations in depth (e.g., Lawson & Hum-
phreys, 1998; Lawson, Humphreys, & Jolicoeur, 2000; Palmer et
al., 1981; Srinivas, 1993; Tarr, Williams, Hayward, & Gauthier,
1998). This orientation dependency was found even when all
major parts or features of an object remained visible after a
rotation in depth (Humphrey & Jolicoeur, 1993; Lawson, Hum-
phreys, & Watson, 1994), and thus it is not just a result of
self-occlusion (as claimed by Biederman & Gerhardstein, 1993).
Moreover, the systematic deterioration of performance with in-
creasing misorientation of the stimulus is not simply due to low-
level perceptual processes but rather seems to be caused by high-
level object representations (Jolicoeur & Cavanagh, 1992; Lawson
& Humphreys, 1998; Verfaillie, 1993).

When objects are presented frequently in specific orientations,
these orientations may become canonical perspectives, as demon-
strated in two elegant studies (Tarr, 1995; Tarr & Pinker, 1989):
Participants had to study novel two-dimensional (2-D) or three-
dimensional (3-D) objects from a specific orientation. In naming
tasks, reaction times (RTs) increased with increasing departure
from the study orientation. With extensive practice, participants
recognized the objects almost equally quickly at all familiar ori-
entations. However, when the objects were presented at unfamiliar
viewpoints, performance was again viewpoint dependent, now
related to the distance from the nearest familiar view. The authors
have interpreted these studies as evidence that the recognition of
misoriented objects involves both compensation (transformation)
processes and the encoding of multiple views (see also B. S.
Gibson & Peterson, 1994; Heil, Rösler, Link, & Bajric, 1998;
Murray, 1999).

Orientation effects are found not only for novel objects (e.g.,
H. H. Bülthoff & Edelman, 1992; Edelman & Bülthoff, 1992; Tarr
& Pinker, 1989) but also for common, familiar objects (e.g.,
Hayward & Tarr, 1997; Lawson & Humphreys, 1996, 1998; Mur-
ray, 1997, 1999; Newell & Findlay, 1997; Palmer et al., 1981).
Orientation-dependent recognition performance is not limited to
individual objects, like faces (e.g., Hill, Schyns, & Akamatsu,
1997) or to objects at the subordinate level of categorization (e.g.,
Edelman & Bülthoff, 1992; Tarr, 1995) but has also been demon-
strated for basic level recognition (Hayward & Williams, 2000;
Jolicoeur, Corballis, & Lawson, 1998; Lawson & Humphreys,
1998; Murray, 1998; Palmer et al., 1981). Orientation dependency
has been observed in the perception of biological motion (Daems
& Verfaillie, 1999; Verfaillie, 1993; for a review, see I. Bülthoff &

1 In naming tasks a systematic increase usually holds only for plane
rotations from 0° to 120° or 150°, whereas inverted objects are often again
recognized faster, leading to an M-shaped response time function (e.g.,
Jolicoeur, 1985, 1988). For some participants, naming times at 180° still
increase relative to naming times at 120° (e.g., Jolicoeur & Milliken, 1989;
Murray, 1997). This pattern seems to result from two different compensa-
tion processes: The monotonic increase (from 0° to 120° or 150°) appears
to be caused by compensating rotations in the picture plane, whereas the
fast recognition of inverted objects seems to be due to fast rotations in
depth (flipping). There is evidence that participants with monotonically
increasing naming latencies make use of only plane transformations,
whereas participants with an M-shaped pattern use the fast flipping trans-
formations to recognize inverted objects (Murray, 1997).
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Bülthoff, 2003), in scene perception (Diwadkar & McNamara,
1997; Nakatani, Pollatsek, & Johnson, 2002), and in the perception
of large, navigable spaces (Shelton & McNamara, 1997).

A dependency on rotations has been demonstrated for sequential
picture–picture matching tasks (Lawson & Humphreys, 1996;
Murray, 1999; for a review, see Jolicoeur & Humphrey, 1998),
picture–name matching tasks (Newell & Findlay, 1997), and nam-
ing tasks (e.g., Jolicoeur, 1985, 1988; Lawson & Humphreys,
1998; Palmer et al., 1981; Srinivas, 1993). Picture–picture match-
ing and naming tasks seem to reflect the same basic processes in
object recognition (Jolicoeur & Humphrey, 1998; Lamberts,
Brockdorff, & Heit, 2002). Moreover, orientation-dependent per-
formance has been found with priming tasks (for reviews, see
Jolicoeur & Humphrey, 1998; Lawson, 1999), with a visual search
task (Jolicoeur, 1992), and even with figure–ground tasks (B. S.
Gibson & Peterson, 1994). Overall, there is convincing evidence
that recognition performance depends systematically on the
amount of misorientation.

Size and Position Dependency

Recognition performance is also influenced by the size of the
stimulus. The pattern of results is quite similar to orientation-
dependent recognition: RTs and error rates in (sequential) picture–
picture matching tasks depend on the extent of transformation that
is necessary to align memory and stimulus representations. RTs
increase in a monotonic way with increasing change of perceived
size (e.g., Bundesen & Larsen, 1975; Bundesen, Larsen, & Farrell,
1981; K. R. Cave & Kosslyn, 1989; Jolicoeur, 1987; Larsen &
Bundesen, 1978; Milliken & Jolicoeur, 1992; for a review, see
Ashbridge & Perrett, 1998).

Whereas the dependency of recognition performance on orien-
tation and size scalings is widely accepted in the literature, it is
often assumed that recognition performance is invariant regarding
position. However, evidence is accumulating that recognition per-
formance is position dependent as well. Several studies have
shown a systematic relation between the amount of translation and
recognition performance: Increasing displacement between two
sequentially presented stimuli can lead to a deterioration of per-
formance, both for novel objects (Dill & Edelman, 2001; Dill &
Fahle, 1998; Foster & Kahn, 1985; Nazir & O’Regan, 1990) and
familiar objects (K. R. Cave et al., 1994). These results do not
appear to merely be due to eye movements or shifts of attention
nor a problem of information exchange between the two hemi-
spheres of the brain (K. R. Cave et al., 1994; Dill & Fahle, 1998).

Some priming studies have suggested that recognition perfor-
mance does not depend on size (Biederman & Cooper, 1992;
Cooper, Schacter, Ballesteros, & Moore, 1992; Schacter, Cooper,
& Delaney, 1990) or position (Biederman & Cooper, 1991a),
because priming effects were independent of size and position
changes. However these studies should be considered with caution
for several reasons. The logic of these studies depends on accept-
ing the null hypothesis (i.e., the absence of an effect), which is less
convincing than the demonstration of view-dependent effects in a
large number of studies. In addition, these experiments may not
have had the statistical power to measure the small effects that
would be expected (for a more detailed discussion, see Jolicoeur &
Humphrey, 1998). Moreover, the lack of an effect in these exper-
iments might (at least partially) be due to congruency effects (see

Section 3), as these studies did not control the way in which the
perceptual scale or position was set (e.g., by the previous object;
see Larsen & Bundesen, 1978, 1998, p. 728). Thus, size and
position invariance may have been obtained by transformations of
a perceptual reference frame and not by invariant representations.
Overall, these priming studies have not provided convincing evi-
dence for invariant recognition performance regarding size and
position.

Neurophysiological Evidence for Transformation
Dependency

Is the behavioral dependency on spatial transformations consis-
tent with neurophysiological findings? Many laboratories have
observed neurons in the inferotemporal (IT) cortex with highly
selective responses for particular patterns and objects (for a re-
view, see Farah, 2000, p. 89). Single-cell studies suggest that the
responses of the majority of shape-selective cells in IT are orien-
tation dependent, for faces and body parts (Hasselmo, Rolls, Bay-
lis, & Nalwa, 1989; Perrett et al., 1985), and for objects (Logoth-
etis, Pauls, & Poggio, 1995). The typical finding is that cells have
a bell-shaped tuning curve, that is, they discharge maximally to
one view of an object, and their response declines gradually as the
object is rotated away from this preferred view. Few cells respond
in a view-invariant manner, and these cells do not seem to be
representative for neural processing in object recognition (for a
review, see Logothetis & Sheinberg, 1996). Although there is
consensus that the responses of IT neurons depend on orientation,
there is less agreement regarding size scalings and translations. A
number of researchers have claimed that the responses of IT cells
depend on size but are invariant regarding translations (e.g., Ash-
bridge & Perrett, 1998; Perrett, Oram, & Ashbridge, 1998). It has
sometimes been argued that position invariance results from the
large size of receptive fields of IT neurons, especially in area TE.
However, this argument is not convincing for two reasons. First,
cell responses in IT depend on the position in the receptive field,
with receptive field profiles resembling a two-dimensional Gauss-
ian function (Op de Beeck & Vogels, 2000). Thus, neuronal
responses are not invariant regarding the position within the re-
ceptive field. Second, receptive field sizes in IT are much smaller
than originally assumed (DiCarlo & Maunsell, 2003). A closer
inspection of the data reveals that responses of many IT cells vary
with both size and position (e.g., DiCarlo & Maunsell, 2003;
Lueschow, Miller, & Desimone, 1994; Op de Beeck & Vogels,
2000). These results would not be expected if objects’ shapes are
encoded with invariant representations, which do not contain spa-
tial information about orientation, size, and position. In contrast,
object position and scale information can be read out from small
populations of IT neurons (Hung, Kreiman, Poggio, & DiCarlo,
2005). In accordance with these single-cell studies, monkey lesion
studies have found that damage to area V4 and posterior IT affects
the ability to compensate for spatial transformations more than the
ability to recognize nontransformed shapes (Schiller & Lee, 1991;
Weiskrantz, 1990; Weiskrantz & Saunders, 1984).

Taken together, the data from behavioral, neurophysiological,
and lesion studies indicate that recognition performance depends
on the spatial relation between the observer and the object, that is,
recognition depends on plane and depth orientation, size, and
position. At least three conclusions can be drawn from these
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findings. First, object constancy is not equivalent with invariance.
Although we are able to recognize objects after spatial transfor-
mations, recognition performance depends systematically on the
amount of transformation. Therefore I propose that the terms
constancy and invariance should not be used as synonyms. This
lack of invariance is in accordance with introspective experience,
because the percept is not invariant, even when object constancy is
achieved. The percept of a circular disk that is rotated in depth
(tilted to the viewer) is not circular but squashed. If the disk is
rotated further in depth, the percept changes, although the object
may still be perceived as a disk. The second conclusion is that
recognition models should not be limited to modeling orientation-
dependent performance but also have to account for size- and
position-dependent performance. Third, the systematic depen-
dency on spatial transformations (like rotations, size scalings, and
translations) suggests that object representations are image-based
or imagelike. This dependency is more easily compatible with
representations that are in a similar format as the visual input, as
compared with abstract representations that should—by defini-
tion—be independent of image transformations. The notion of
imagelike representations corresponds with the proposal that cog-
nitive functions are embodied, that is, are grounded in sensorimo-
tor mechanisms (e.g., Barsalou, 1999; M. Wilson, 2002).

2. Evidence for Analogue Transformations
in Object Recognition

The evidence that recognition performance is not invariant
regarding spatial transformations can be accounted for by a num-
ber of different approaches. There is, however, a second class of
data that provides further constraints to modeling—the finding that
recognition seems to imply analogue spatial transformation pro-
cesses. A transformation (e.g., rotation) is analogue if it proceeds
through intermediate points along the transformational path, that
is, if it is performed in a continuous or incremental way.

Analogue Transformation Processes in Mental Imagery
and in Object Recognition

In a seminal study by Shepard and Metzler (1971), participants
had to judge whether two simultaneously presented objects were
identical or mirror images. RTs increased linearly with angular
disparity between the two objects both in the picture plane and in
depth. The authors interpreted these results as evidence for an
internal rotation process that they dubbed mental rotation. A large
number of subsequent studies confirmed the original findings (for
reviews, see Finke, 1989; Kosslyn, 1994; Shepard & Cooper,
1982). Similar results were also found for size scalings (e.g.,
Bundesen & Larsen, 1975) and for mental translations (Bennett,
2002; Larsen & Bundesen, 1998). One of the central questions of
the so-called imagery debate was whether linear or monotonic
increases of RTs in mental imagery tasks actually reflect an
analogue mental rotation, or whether visual representations are
propositional and relatively abstract (e.g., Anderson, 1978; Koss-
lyn, 1981, 1994; Pylyshyn, 1981, 2002). Cooper (1976; see also
Cooper & Shepard, 1973, Experiment 2) developed a paradigm
that allowed her to test whether rotations in mental imagery were
analogue processes or not, that is, whether they passed through
intermediate points along the transformational path. Participants

saw random polygons that they had to mentally rotate as soon as
the pattern was removed. Some time after stimulus presentation, a
test pattern was presented. Participants had to indicate whether the
pattern was a normal image or a mirror-image of the starting
pattern. The orientation of the test pattern was selected according
to participants’ individual rate of mental rotation, which was
measured in a previous experiment. When the test shape was
presented in the expected orientation (based on the participant’s
normal rate of rotation), RTs were short and constant. RTs in-
creased linearly with increasing departure of the test pattern ori-
entation from where the mentally rotated pattern should have been
at that time. This was also true when the test pattern was presented
in unfamiliar orientations that had not been shown to the partici-
pant before. These results indicate that mental rotations in short-
term memory (STM) pass through at least some intermediate
points along the rotational path.

This evidence for the analogue nature of imagery transforma-
tions does not necessarily transfer to object recognition. The sys-
tematic relation between the amount of transformation and recog-
nition performance could be due to any time-consuming and
error-prone process (see Perrett et al., 1998). Thus, more direct
evidence is necessary to confirm that analogue transformation
processes are involved in object recognition. Interestingly, there is
evidence for the analogue nature of rotations and size scalings in
object recognition, based on the logic of sequential additivity
(Bundesen, Larsen, & Farrell, 1981; see also Sternberg, 1998). In
each trial of the experiment, two familiar objects (alphanumeric
characters) were presented successively and participants had to
decide as quickly as possible whether the two stimuli were iden-
tical except for size and orientation in the picture plane. If a
transformation is analogue, then the time to pass through a given
path of transformation can be predicted by the sum of the times
that are required to traverse the segments that make up that path:
tAC � tAB � tBC (see Figure 1).

In other words, to show that the time for a transformation from
A to C is an additive combination of the transformation times from
A to B and from B to C provides evidence that the process of
transforming from A to C passes through the intermediate point B.
Sequential additivity of RTs therefore suggests analogue transfor-
mations.2 The results of Bundesen et al. (1981) confirmed the
prediction of additivity for rotations in the picture plane, and also
for combinations of rotations and size scalings, providing evidence
for analogue rotation and scaling processes in object recognition.
The importance of these findings is increased by the fact that
sequential additivity for rotations could be demonstrated even
though the RT function was nonlinear. In general, it took more
time to traverse a sector when the image was farther from upright,
and when the direction of rotation was away from upright (see
Sternberg, 1998, p. 783). Nonetheless, sequential additivity was
found despite these nonlinearities in the RT function.

Kourtzi and Shiffrar (2001) provided further evidence suggest-
ing that analogue transformations are involved in object recogni-
tion. They investigated the perception of objects that deform as

2 Notice that an analogue transformation leads to sequential additivity
only when the time to traverse any particular sector is the same, regardless
of the other sectors with which its traversal is concatenated (Sternberg,
1998, p. 781).
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they rotate (i.e., that were bent), using a priming paradigm. Two
primes (a normal and a deformed object) were presented succes-
sively, and after a short blank interval two target images appeared
simultaneously on the screen. The participants’ task was to press a
key when both targets were physically identical. In Experiments 3
and 4, priming was found for targets at an intermediate orientation
and an intermediate level of deformation relative to the two
primes. This is consistent with the hypothesis that object percep-
tion involves an analogue spatial remapping, even when the ob-
jects differ both by a rotation and an elastic deformation.

Studies showing an advantage of ordered versus scrambled
sequences in the recognition of rotating objects (Lawson et al.,
1994; Vuong & Tarr, 2004) are also suggestive of analogue up-
dating processes in object recognition. Recognition performance
was better when several images were sequentially presented in an
ordered rotational sequence (which corresponds to a physical
rotation) compared with a randomly ordered sequence of frames.
Thus, recognition of dynamic objects seems to be facilitated when
the visual presentation corresponds to an analogue transforma-
tional sequence.

It should be noted that there are also findings suggesting orien-
tation functions that are not monotonic, showing benefits for
orientations matching the principal axes (90°, 180°, 270°; Lawson
& Jolicoeur, 1999). These results cannot be fully accounted for by
analogue transformations but may require additional processes.

In the attention literature, the notion of an attentional spotlight,
which can be shifted in location, is an important metaphor. Shul-
man, Remington, and McLean (1979) and Tsal (1983) have tried to
document the analogue nature of the shifting of spatial attention
from one location to another. However, a number of criticisms
have been raised about these studies (Eriksen & Murphy, 1987;
Remington & Pierce, 1984; Sperling & Weichselgartner, 1995;
Yantis, 1988; for a review, see K. R. Cave & Bichot, 1999). Thus,
the evidence for analogue location shifts of an attentional spotlight
is rather weak.

Neurophysiological Findings

Are neurophysiological findings consistent with the psycho-
physical evidence for analogue transformation processes in object
recognition? Electrophysiological evidence for analogue visuomo-
tor transformation processes was found in the motor cortex. Mon-
keys’ mental rotation from the initial to the final direction of
movement corresponded to a continuous rotation of a neural pop-
ulation vector that represents the intended direction of movement
(Georgopoulos, 2000; Georgopoulos, Lurito, Petrides, Schwartz,
& Massey, 1989; Lurito, Georgakopoulos, & Georgopoulos, 1991;
Pellizzer & Georgopoulos, 1993). It is not clear whether these
results can be transferred to the visual cortex, because the distri-

bution of orientation-tuned neurons is inhomogeneous in the su-
perior temporal sulcus. More cells were optimally tuned to canon-
ical views of the head, like full face or profile, than to other views
(Perrett et al., 1991). Statistical methods, which are less suscepti-
ble to inhomogeneities in view tuning, may be better suited under
these circumstances (e.g., Oram, Földiák, Perrett, & Sengpiel,
1998; Sanger, 1996). However, inhomogenities do not exclude
analogue transformation processes in object recognition. An opti-
cal imaging study is in accordance with analogue transformation
processes in recognition: Wang, Tanifuji, and Tanaka (1998) first
determined the critical features for the activation of neurons with
single-cell recordings. With subsequent optical imaging tech-
niques, it was demonstrated that these critical features evoked dark
spots on the cortex approximately 0.5 mm in diameter. Some spots
were specifically activated by faces. The positions of the activation
spots changed gradually along the cortical surface as the stimulus
face was rotated in depth. This finding was interpreted as evidence
that the orientation of objects is continuously mapped and is
consistent with analogue transformations occurring in object
recognition.

Thus, there is both behavioral and neurophysiological evidence
that object recognition involves analogue transformation pro-
cesses, although the evidence for analogue transformation pro-
cesses is not as strong as the evidence for orientation dependency.
However, the notion of analogue time-consuming transformation
processes provides a parsimonious account for the systematic
dependency with increasing amount of transformation (see Section
1). In contrast, one-step models of recognition (which do not
involve intermediate steps in the recognition process) require
additional assumptions to explain this systematic dependency.

3. Congruency Effects in Object Recognition and the
Adjustment of Reference Frames

The third relevant class of findings comprises reference frame
effects in object recognition. Reference frames, which are a means
of specifying locations in space, were investigated in cognitive
psychology over a long period of time (e.g., Larsen & Bundesen,
1978; Marr & Nishihara, 1978; Rock, 1973, 1974; Rock & Hei-
mer, 1957; for reviews, see Farah, 2000; Jolicoeur & Humphrey,
1998; Palmer, 1999). A reference frame can be regarded as a
specific coordinate system. Reference frames have an origin in a
certain location in space, are often conceptualized as orthogonal
grids, and usually involve the notion of axes, which correspond to
particular directions in space (e.g., Farah, 2000, pp. 71–73, 107–
109; Jolicoeur, 1990b; Jolicoeur & Humphrey, 1998; Palmer,
1999, pp. 370–377).

Many different types of reference frames have been proposed
that differ along a number of dimensions (for a review, see
Jolicoeur & Humphrey, 1998). One important distinction is
whether object recognition is based on a viewer-centered or object-
centered reference system (Marr & Nishihara, 1978). These frames
differ in the location of the origin of the coordinate system: In a
viewer-centered system the origin is located on (or in) the viewer,
whereas in an object-centered system the origin is located on (or
in) the viewed object. A viewer-centered frame may be retinotopic,
head-, trunk-, or even hand-centered. Viewer-centered reference
frames imply orientation-dependent performance, whereas object-
centered reference frames predict that recognition performance is

Figure 1. Sequential additivity of transformation times: tAC � tAB � tBC.
Sequential additivity means that the time that is required to traverse a
certain transformational distance (tAC) is equal to the sum of the times that
are necessary to traverse its subsections (tAB � tBC).
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not influenced by the spatial relation between observer and object,
because the reference frame is already centered on the object’s
intrinsic axes. The findings reviewed in Section 1 indicate that
recognition performance deteriorates systematically with increas-
ing amounts of spatial transformation. This is clear evidence for
viewer-centered reference frames.

Orientation Congruency Effects in Object Recognition

Evidence for a special role of reference frames in object recog-
nition was supplied by experiments that demonstrated a generic
(i.e., not shape-specific) orientation congruency effect, which sug-
gests that recognition involves the adjustment of a perceptual
coordinate system. Participants’ ability to identify a misoriented
stimulus is facilitated if it is preceded by a different stimulus
shown at the same orientation. An orientation congruency effect
has been found for alphanumeric stimuli (Jolicoeur, 1990b, 1992),
for novel objects (Gauthier & Tarr, 1997; Tarr & Gauthier, 1998),
and also for common familiar objects (Graf, Kaping, & Bülthoff,
2005). In this latter study, participants had to name two briefly and
sequentially displayed objects followed immediately by a pattern
mask. The objects were presented either in congruent or incongru-
ent orientations. Recognition accuracy was more than 10 to 15
percentage points higher for congruent orientations, indicating a
strong orientation congruency effect. This suggests that recogni-
tion involves the adjustment of a perceptual coordinate system.
However, there remained a significant effect of orientation in
congruent trials, so there was no full compensation for orientation
effects.

Previous studies with novel objects have suggested that congru-
ency effects were limited to similar objects (Gauthier & Tarr,
1997; Tarr & Gauthier, 1998) and therefore can be accounted for
by class-based processing (Moses & Ullman, 1998), without need-
ing to assume an abstract coordinate system. However, Graf et al.
(2005) found congruency effects for dissimilar objects, which
would not be predicted by class-based processes. In Experiment 1,
Graf et al. (2005) found congruency effects when the two objects
were from different basic level categories and even from different
superordinate level categories (i.e., a biological and a human-made
object; see Figure 2A). The congruency effect was not shape
specific, as objects from different superordinate categories (and
usually also from different basic level categories) tend to have
different shapes (Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976). In Experiment 2, congruency effects were found when one
object had a horizontal main axis of elongation, while the other
object had a vertical main axis (see Figure 2B). Thus, congruency
effects were not shape specific and could not be reduced to a
priming of the main axis of elongation.

These findings are important in at least two ways. First, they
demonstrate congruency effects for common objects and thus
suggest that the processes that underlie orientation congruency
play a role also in default object recognition. Second, the results
provide evidence that a rather abstract (i.e., not shape-specific)
frame of reference is adjusted during recognition. This is consis-
tent with the finding that congruency effects transfer from a task
that requires the recognition of alphanumeric stimuli to a symme-
try detection task for dot pattern stimuli (Pashler, 1990). Overall,
the orientation congruency effect is a robust effect. It was found
with naming paradigms (Graf et al., 2005; Jolicoeur, 1990b; Gau-

thier & Tarr, 1997; Tarr & Gauthier, 1998) and with a visual
search paradigm (Jolicoeur, 1992), using different dependent mea-
sures and a variety of different types of stimuli.

The most parsimonious interpretation of the orientation congru-
ency effect is that in tasks requiring the identification of misori-
ented patterns, the visual system adjusts the orientation of a per-
ceptual frame of reference by means of a frame rotation process
(Graf et al., 2005; Jolicoeur, 1990b). Assuming that the frame can
be rotated at a finite rate, a rotation through a larger angle takes
more time than a rotation through a smaller angle. In general, the
identification of a pattern is achieved by rotating the frame to the
orientation of the pattern. A second pattern presented at this
orientation can be more readily identified because no further
correction for misorientation is necessary. This frame rotation
hypothesis is also consistent with head-tilt studies that suggest that
reference frames can be adjusted or rotated in an analogue way
(Corballis, Nagourney, Shetzer, & Stefanatos, 1978; McMullen &
Jolicoeur, 1990; see also Jolicoeur & Humphrey, 1998).

The findings of Graf et al. (2005) and Jolicoeur (1990b, 1992)
do not rule out two alternative explanations. First, several
orientation-dependent frames (with different orientations) may ex-
ist in parallel and compete for activation. Perceptual identification
may be achieved when one frame becomes dominant over the
others (e.g., Hinton, 1981; for a more detailed discussion, see

A

Congruent
orientations

Incongruent
orientations

Different superordinate 
category

Same superordinate 
category

Congruent
orientation

Incongruent
orientation

B Same main axis Different main axis

Figure 2. Example displays used in Graf et al. (2005) in order to inves-
tigate orientation congruency effects. Objects were presented sequentially
in congruent or in incongruent orientations. In both experiments, recogni-
tion accuracy was higher when the objects had congruent orientations. A.
In Experiment 1, congruency effects were found for objects from the same
and from different superordinate level categories. B. In Experiment 2,
congruency effects were found when objects had the same and when they
had different main axes of elongation. Note. Objects from “A standardized
set of 260 pictures: Norms for name agreement, image agreement, famil-
iarity, and visual complexity,” by J. G. Snodgrass and M. Vanderwart,
1980, Journal of Experimental Psychology: Human Learning and Memory,
6, 174–215. Copyright, 2000 by Life Science Associates. Adapted with
permission.
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Jolicoeur, 1990b). This approach again involves reference frames
but does not include analogue frame transformations. However,
this proposal cannot explain the findings that suggest analogue
rotation processes in object recognition (see section 2). Second,
identification may be achieved by mentally rotating the stimulus
representation until it is upright. In order to account for the
orientation congruency effect, it must further be assumed that the
rotation process can be facilitated or primed by a prior rotation in
the same direction and through the same or a similar angle. This
explanation also has to assume that the rotation mechanism is not
shape specific, because the orientation congruency effect is not
limited to identical stimuli. This second explanation lacks parsi-
mony, and it is not compatible with several studies indicating that
recognition does not involve mental rotation (see the subsection
The Relation Between Object Recognition and Mental Rotation in
Section 5).

Size and Position Congruency Effects

Evidence for frame transformations in object recognition was
demonstrated also for size-scaling transformations. In their Exper-
iment 2, Larsen and Bundesen (1978) investigated the role of
frame transformations relating to long-term memory (LTM) in a
recognition task. Uppercase letters were used as stimuli, in four
different sizes. In every trial one stimulus was presented. The task
was to decide as quickly as possible whether the stimulus was an
upright letter or not. The trials were arranged so that the same size
format was repeated with a first-order probability of 0.75. Partic-
ipants were informed about the statistical properties of the stimulus
sequence and could build up an expectation about the size of the
next stimulus. Both introspective reports and participants’ perfor-
mance indicated that participants perceptually prepared for the
expected (cued) size format. RTs were fastest when the stimulus
was in the expected size format, increasing monotonically with
increasing size divergence. These results cannot be due to shape-
specific image transformations, because the same letter was never
used in two successive presentations. Larsen and Bundesen (1978)
interpreted these size adjustments as coordinate transformation
processes in LTM, as the stimulus had to be compared with the
representation of a familiar object in LTM. The speed of frame
transformations was higher than the rate of image transformations
in STM, as measured in simultaneous matching studies (Bundesen
& Larsen, 1975) and sequential matching studies with novel ob-
jects (Larsen & Bundesen, 1978, Experiment 1). Larsen and
Bundesen (1978) argued that two size adjustment processes have
to be differentiated. One is a relatively fast frame adjustment
process, which refers to representations in LTM. The other is a
relatively slow image transformation in STM, which is shape
specific.

Larsen and Bundesen’s (1978) study confirmed that frame trans-
formations are involved in object recognition. In the object recog-
nition task (Experiment 2), RTs were fastest for the expected size,
which suggests that a frame of reference was preadjusted. This
finding can only be explained by a frame transformation process,
and not by an image transformation. First, only a frame transfor-
mation can logically take place before the stimulus has been
presented, not an image transformation. Second, only frame trans-
formations are generic in nature, that is, are not stimulus (or shape)
specific. Larsen and Bundesen’s (1978) results suggest that object

recognition relies on transforming a perceptual reference frame
(coordinate transformation) and not on image transformations.

Congruency effects were also found regarding location trans-
formations. There is a large body of experimental evidence on this
issue, although it is usually described in terms of shifting the focus
of spatial attention rather than transforming the location of a
reference frame. Processing one stimulus at a location makes it
easier to process another stimulus at that location (K. R. Cave &
Pashler, 1995), and there are numerous spatial cuing studies dem-
onstrating that a stimulus can be processed more quickly when its
location is known in advance (e.g., Eriksen & Hoffman, 1974;
Posner, Snyder, & Davidson, 1980). When a location cue tells a
participant to expect a stimulus at a location, the RT for detecting
the stimulus generally increases with the distance between the
expected and the actual location (Downing & Pinker, 1985), but
only under some circumstances (Hughes & Zimba, 1985, 1987;
Zimba & Hughes, 1987). The distance effect could be interpreted
as the time necessary to shift the location in a reference frame,
although LaBerge and Brown (1989) argued for a different expla-
nation based on an attentional gradient (for a review, see K. R.
Cave & Bichot, 1999).3

Frame Transformations Versus Image Transformations

The distinction between frame transformations and shape-
specific image transformations regarding object size was corrob-
orated in a single experimental task. In Larsen and Bundesen’s
(1978) Experiment 3 also stimulus repetitions could occur. Partic-
ipants were instructed to decide as rapidly as possible whether the
stimulus letter belonged to a set of letters that was defined at the
beginning of each block. Performance of both stimulus-repetition
and stimulus-nonrepetition trials were fastest for the expected
(cued) size and monotonically increased with increasing size
disparity. The slopes of the RT functions were different for
stimulus repetitions and nonrepetitions. The results of stimulus-
nonrepetition trials were similar to Experiment 2, with relatively
high speeds of transformation, indicating frame transformations. In
contrast, even though in total stimulus-repetition trials were faster
than nonrepetition trials (because of a lower y-intercept), transfor-
mation processes in stimulus-repetition trials were slower than in
nonrepetition trials, suggesting image transformations in repetition
trials. K. R. Cave and Kosslyn (1989) confirmed these results,
using geometrical stimuli. Again, different rates of size transfor-
mation were found, with fast size transformation processes for
stimulus nonrepetitions and slow transformation processes for
stimulus repetitions. The effects of stimulus repetition versus stim-
ulus nonrepetition and the effect of size ratio interacted, suggesting
that different size scalings were used in the two conditions. Over-
all, these studies demonstrated the existence of two different
size-scaling processes: a generic (i.e., not shape or stimulus spe-
cific) and fast frame scaling process for object recognition—
relating to LTM representations—and a stimulus-specific and rel-
atively slow image scaling process for mental imagery size
scalings in STM.

Are there also two different adjustment processes regarding
orientation? As described earlier, object recognition seems to

3 I thank Kyle Cave for bringing this literature to my attention.
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imply frame rotation processes, because orientation congruency
effects are not limited to similar shapes (Graf et al., 2005; Joli-
coeur, 1990b, 1992). Mental imagery rotations, on the other hand,
are typically shape specific, that is, are not frame transformations
but image transformations (Cooper & Shepard, 1973; Koriat &
Norman, 1984, 1988, 1989; Shepard & Hurwitz, 1984; but see
Robertson, Palmer, & Gomez, 1987).4,5 This distinction is similar
to the proposal of two different types of compensation processes
regarding orientation that operate at different rates (Simion, Bag-
nara, Roncato, & Umiltà, 1982): The authors proposed that a slow
process operates on mental images (image transformation), while
a second—faster but presumably also analogue—process operates
directly on visual input (visual code). The latter seems to coincide
with frame transformations. Confirming this conception of slow
image rotations and fast frame rotations, hypothetical rates of
rotation in recognition tasks are typically faster than in mental
rotation tasks (e.g., Jolicoeur, 1988; Shepard & Metzler, 1971;
Tarr, 1995; Tarr & Pinker, 1989; see also Perrett et al., 1998, pp.
113–114). A simple conclusion is that object recognition involves
a relatively fast frame rotation process (coordinate transforma-
tions), whereas mental imagery typically relies on a relatively slow
and image-specific image rotation process (Larsen & Bundesen,
1998).

It remains an open question whether a similar discrimination
between two translation processes can be found concerning posi-
tion. Kosslyn (1994) postulated two different adjustment processes
for position, but there does not seem to be any research that has
directly investigated this issue. There is some evidence that the rate
of translation in sequential matching tasks is faster for familiar
objects (K. R. Cave et al., 1994) than for novel objects (Dill &
Fahle, 1998), which is in accordance with the conception of
different translation processes in LTM and STM.

The claim that object recognition involves frame transforma-
tions does not, however, have to imply that symbolic advance
information about orientation (without information about object
identity) is sufficient in order to compensate the effects of misori-
entation. Symbolic cues, like an arrow indicating the expected
orientation, have not provided very effective facilitation in naming
(recognition) tasks (Gauthier & Tarr, 1997; McMullen, Hamm, &
Jolicoeur, 1995; Palmer et al., 1981, Experiment 2) and mental
rotation tasks when no additional information about stimulus iden-
tity was given (Cooper & Shepard, 1973). It seems that the
adjustment of a frame is bound to the presentation of an external
stimulus in the corresponding orientation or size (see K. R. Cave
& Kosslyn, 1989; Koriat & Norman, 1988, Experiment 4; Larsen
& Bundesen, 1978; Robertson et al., 1987) or the previous pre-
sentation of a background that provides depth information that
may supply a visual reference frame (Humphrey & Jolicoeur,
1993).

Overall, there is converging behavioral evidence for two differ-
ent compensation processes, both for rotations and size scalings: a
relatively fast and generic frame transformation process, related to
LTM representations, and a relatively slow and shape-specific
image transformation process in STM. Accordingly, generic (i.e.,
not shape-specific) orientation and size congruency effects have
been found in object recognition, whereas mental imagery trans-
formations seem to be shape specific. The faster speed of frame
transformations as compared with image transformations fits with
performance in recognition and imagery tasks. Orientation and size

adjustment processes in object recognition are faster than in mental
imagery transformations (e.g., K. R. Cave & Kosslyn, 1989;
Larsen & Bundesen, 1978; Simion et al., 1982).

Neurocomputational and Neurophysiological Evidence

Independent from psychophysical evidence for the adjustment
of a perceptual coordinate system in object recognition, research-
ers in computational neuroscience proposed that object perception
and recognition rely on coordinate transformations (Olshausen,
Anderson, & Van Essen, 1993, 1995; Salinas & Abbott, 1997a,
1997b, 2001; Salinas & Sejnowski, 2001; Salinas & Thier, 2000).
One starting point for this work was research on visuomotor
control (e.g., reaching, grasping, and eye movements), for which
coordinate transformations are crucial. For instance, if a person
wants to grasp an object, a coordinate transformation has to be
performed, because eyes and hands rely on different coordinate
systems. Visual information coded in retinal coordinates has to be
transformed into hand-centered coordinates. Eye movements are
another important example. Dynamic updating processes are nec-
essary to cope with the constant changes of eye-centered coordi-
nates relative to head-centered, body-centered, or world-centered
coordinates (Duhamel, Colby, & Goldberg, 1992; Mays & Sparks,
1980). In general, visuomotor control requires coordinate transfor-
mations (for reviews, see Andersen, Batista, Snyder, Buneo, &
Cohen, 2000; Colby, 1998; Salinas & Sejnowski, 2001; Salinas &
Thier, 2000; Snyder, 2000). Gain (amplitude) modulation, which is
implemented ubiquitously in the visual cortex, provides an effi-
cient solution to the coordinate transformation problem (e.g., Sali-
nas & Abbott, 1995; Zipser & Andersen, 1988; see also Salinas &
Thier, 2000). Gain-modulated neurons are ideally suited to per-
form computations that are fundamental for coordinate transfor-
mations (e.g., Pouget, Deneve, & Duhamel, 2002; Pouget & Se-
jnowski, 1997; Salinas & Abbott, 1995; Salinas & Sejnowski,
2001).

In order to explain how coordinate transformations can be
implemented by gain modulation, I use the example of a transfor-
mation from eye-centered to head-centered coordinates. Imagine a
neuron in the parietal cortex that responds to a spot of light within
its visual receptive field and codes the position of the stimulus in
retinal coordinates. To factor out the effects of eye movements,
extraretinal information about eye position has to be included.
Most neurons in the lateral and medial parietal areas and in area 7
respond to the retinal stimulation and are also sensitive to the
position of the eyes in the orbit (Andersen, Bracewell, Barash,
Gnadt, & Fogassi, 1990; Andersen & Mountcastle, 1983;
Andersen, Snyder, Bradley, & Xing, 1997). Eye position modu-
lates the amplitude of visual responses, whereas the shape and
position of the receptive field in retinotopic coordinates are unaf-
fected by eye position. Typically, the gain of the sensory response

4 In some experiments on frame effects in mental imagery (that involved
LTM representations), frame effects were found (Koriat & Norman, 1988,
Experiment 4; Robertson et al., 1987).

5 Reference frames affected performance in mental imagery experiments
in which participants’ had their head tilted, but these studies investigated
the existence of environmental frames (e.g., Corballis, Zbrodoff, & Roldan,
1976; Corballis, Zbrodoff, Shetzer, & Butler, 1978; McMullen & Jolicoeur,
1990).
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increases monotonically as the eye moves along a particular di-
rection in space, corresponding to linear or sigmoidal gain fields
(Andersen, Essick, & Siegel, 1985).

The response of gain-modulated neurons can be modeled by a
multiplication of the sensory response and the eye position signal
(see Figure 3). The interaction between the retinal and the ex-
traretinal (eye position) signals does not have to be exactly mul-
tiplicative but simply nonlinear (Pouget & Sejnowski, 1997; Sali-
nas & Abbott, 1997b)—although the responses of gain-modulated
neurons can usually be described well by a multiplication (e.g.,
McAdams & Maunsell, 1999; Treue & Martinez Trujillo, 1999).
Several neural mechanisms have been proposed that may underlie
this type of nonlinear multiplicative interaction (for a review, see
Salinas & Sejnowski, 2001).

The important point for our concerns is that gain-modulated
responses at one level of the cortical hierarchy correspond to a
coordinate transformation at a higher level. For instance, although
gain-modulated responses are still coded in retinotopic coordi-
nates, responses of neurons at the next cortical level can be head
centered (Salinas & Abbott, 1995; Zipser & Andersen, 1988; see
also Salinas & Abbott, 2001). The following basic principle can be
derived: The presence of gain modulation at one stage of a pro-
cessing pathway suggests that responses at a downstream stage
will be in a different coordinate system (Salinas & Abbott, 2001;
Salinas & Thier, 2000). In other words, gain-modulated responses

at one level of the cortex correspond to coordinate transformations,
implemented as transformations of receptive fields at the next
cortical level (see Figure 4). A number of studies have provided
evidence for dynamic transformations of receptive fields in several
brain areas (e.g., Graziano, Hu, & Gross, 1997; Graziano, Yap, &
Gross, 1994; Jay & Sparks, 1984; Stricanne, Andersen, & Maz-
zoni, 1996; Wörgötter et al., 1998; Wöhrgötter & Eysel, 2000),
including IT (Rolls, Aggelopoulos, & Zheng, 2003), which fits
nicely with this approach.

On the basis of gain-modulated neural responses, several dif-
ferent (e.g., eye-centered and head-centered) coordinate systems
can be spanned concurrently in downstream areas (Pouget &
Sejnowski, 1997, 2001; Salinas & Abbott, 1995; Salinas & Se-
jnowski, 2001). Moreover, intermediate coordinate systems can be
created, which, for instance, code information in coordinates in
between eye- and head-centered frames, corresponding to partially
shifting receptive fields of downstream neurons (Pouget et al.,
2002). In accordance with intermediate coordinate systems, there
is neurophysiological evidence for partially shifting receptive
fields (e.g., Cohen & Andersen, 2000; Duhamel, Bremmer, Ben-
Hamed, & Graf, 1997; Stricanne et al., 1996).

Gain-modulated neural responses have been found in parietal
cortex (Andersen & Mountcastle, 1983; Andersen et al., 1985,
1990, 2000; Batista, Buneo, Snyder, & Andersen, 1999; Cohen &
Andersen, 2002) and premotor cortex (Graziano et al., 1994, 1997;
Jouffrais & Boussaoud, 1999), in V1 (Trotter & Celebrini, 1999),
V3 (Galletti & Battaglini, 1989), and medial superior temporal
cortex (Shenoy, Bradley, & Andersen, 1999; Treue & Martinez
Trujillo, 1999). Eye-position-dependent gain field modulation has
also been demonstrated in the ventral stream in V4 (Bremmer,
2000), which is primarily involved in object recognition and object
perception (Milner & Goodale, 1995). Moreover, gaze-dependent
gain modulation has significant influences on visual perception.
Gaze direction modulates the magnitude of the motion aftereffect,
the tilt aftereffect, and the size aftereffect (Nishida, Motoyoshi,
Andersen, & Shimojo, 2003).

In two neurocomputational approaches, the notion of coordinate
transformations by gain modulation was extended to account for
object recognition (Salinas & Abbott, 1997a, 1997b; see also
Olshausen et al., 1993) and object perception (Deneve & Pouget,
2003; Pouget & Sejnowski, 1997, 2001). The first approach pro-
poses that differences between the memory representation and the
input representation can be compensated for by attentional gain
modulation (Salinas & Abbott, 1997a, 1997b), or dynamic routing
(Olshausen et al., 1993, 1995). The basic idea is that attentional
modulation of neural responses leads to a transformation from
retinotopic to attention-based coordinates. For instance, changes in
position can be compensated for by shifting the focus of attention
to the position of the stimulus. As attention can be shifted inde-
pendent of the fixation position of the eye, an object can be
recognized in different positions, even when it is not fixated.
Compensation is achieved by gain-modulated responses, using
attention as an extraretinal modulatory signal (instead of eye
position as in visuomotor control). This hypothesis has been sup-
ported by the demonstration of attentional gain field modulation in
the ventral stream. Neurons in V4 have gain fields that are func-
tions of the currently attended location (Connor, Gallant, Preddie,
& Van Essen, 1996; Connor, Preddie, Gallant, & Van Essen,
1997). On the basis of these gain-modulated V4 neurons, coordi-

Figure 3. Gain modulation as multiplication. The graph in the lower left
shows the Gaussian response function f(x) of a parietal neuron that encodes
information in retinotopic coordinates (rx) and is independent of eye
position (ex). In order to achieve coding in head-centered coordinates, eye
position has to be taken into consideration. Eye position information can be
described by a gain field g(x), shown in the lower right. The response
function of gain-modulated neurons, which are common in the visual
cortex, can be described by a multiplicative (nonlinear) interaction. These
neurons still code in retinal coordinates (rx), but the amplitude (gain) of the
response depends on eye position (top left graph). Gain-modulated neurons
provide the neuronal basis to perform coordinate transformations, such as,
in this case, from eye-centered to head-centered coordinates (Pouget &
Sejnowski, 1997). Note. From “Spatial transformations in the parietal
cortex using basis functions,” by A. Pouget and T. J. Sejnowski, 1997, The
Journal of Cognitive Neuroscience, 9, p. 226. Copyright 1997 by MIT
Press. Adapted with permission.

928 GRAF



nate transformations can be performed downstream in IT, by
shifting IT receptive fields so that they are centered at the point
where attention is directed (Salinas & Abbott, 1997a, 1997b; see
also Salinas & Abbott, 2001). As a consequence, differences in
position are compensated for by coordinate transformations, and
objects can be recognized more or less independent of position.
Similarly, coordinate transformations can also account for how we
recognize objects at different sizes, depending on viewing distance
(Salinas & Abbott, 1997b; Salinas & Sejnowski, 2001). IT recep-
tive fields of variable, attention-controlled spatial scales are ob-
tained when the mechanism is extended to scale dependent atten-
tional gain fields in V4. V4 neurons have been found to be tuned
to images of specific sizes and have gain fields that depend on
viewing distance (Dobbins, Jeo, Fiser, & Allman, 1998). Accord-
ing to the computational principles of gain modulation, these
size-dependent gain fields should correspond with the scaling of
receptive fields in IT.

The prominent role of attention in these gain modulation models
is consistent with behavioral findings showing that attention plays
an important role in object recognition (Mack & Rock, 1998;
Thoma et al., 2004). Note that the attentional modulation does not
necessarily imply conscious and controlled processes, because the
attentional processes in object recognition may be highly autom-
atized (Salinas & Abbott, 2001).

To recapitulate, according to this approach, object recognition is
achieved by coordinate transformation processes. Attentional gain
modulation in V4 can lead to the transformation of receptive fields
of IT neurons, compensating for position and size changes (Salinas
& Abbott, 1997a, 1997b; Olshausen et al., 1993, 1995). These
models were designed to compensate for translations and size
scalings but can be extended to orientation changes, based on
orientation-modulated neurons in V4 and corresponding rotating

receptive fields in IT. Accordingly, there is evidence that orienta-
tion tuning functions in V4 are gain modulated by attention, and
the effects of attention are consistent with a multiplicative scaling
(McAdams & Maunsell, 1999; for further evidence for orientation-
dependent gain modulation, see Sabes, Breznen, & Andersen,
2002).

The second extension of the gain modulation approach to object
perception has been proposed by Alex Pouget and collaborators
(Deneve & Pouget, 2003; Pouget et al., 2002; Pouget & Sejnowski,
1997, 2001). Their gain modulation proposal accounts for several
physiological and neuropsychological findings related to object
orientation, which were previously regarded as evidence for
object-based representations. Pouget and colleagues have success-
fully modeled hemineglect (Pouget & Sejnowski, 2001) and
single-cell data related to eye movement control in object percep-
tion (Deneve & Pouget, 2003). Instead of using explicit object-
centered representations, their approach relies on retinotopic re-
ceptive fields modulated by the orientation of the object (Deneve
& Pouget, 2003). This type of orientation-dependent modulation
has been confirmed by neurophysiological findings (Sabes et al.,
2002). In contrast to the approach by Salinas and collaborators,
Pouget and coworkers implemented coordinate transformations in
parietal and frontal cortex (Deneve & Pouget, 2003), as they
investigated object perception in relation to motor control.

In conclusion, there is converging evidence that transformations
of perceptual coordinate systems are involved in object recognition
from psychophysics, neurophysiology, and computational neuro-
science. Several researchers have proposed that object recognition
and perception can be modeled neurocomputationally on the basis
of coordinate transformations, implemented by gain modulation.
These processes may provide the neural basis for the relatively fast

Figure 4. Gain-modulated neurons at one cortical level (A) correspond to transformed (e.g., shifted) receptive
fields at a downstream area of processing (B). Thus, gain modulation at one level conforms to a coordinate
transformation at the next level (Salinas & Abbott, 2001). The different lines represent Gaussian tuning functions
of two exemplary neurons (A and B). In (A), the three tuning functions of the same neuron are gain-modulated,
that is, have different amplitudes, while in (B) the tuning functions (and thus the receptive fields) are shifted.
This conforms to a shifting of the coordinate system (coordinate transformation) that compensates for a gaze
shift, or for the change of an object’s position. The gain-modulated Gaussian response functions (in A)
correspond to different sections through the gain-modulated response function in Figure 3. Figure 4A and 4B are
from “Coordinate transformations in the visual system: How to generate gain fields and what to compute with
them,” by E. Salinas and L. F. Abbott, 2001. In M.A.L. Nicolelis (Ed.), Advances in neural population coding:
Progress in brain research (Vol. 130, p. 180), Amsterdam: Elsevier. Copyright 2001 by Elsevier. Adapted with
permission.
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coordinate transformations in object recognition that have been
observed in the behavioral studies.

4. Do the Existing Recognition Models
Explain the Findings?

A number of approaches have been proposed to explain how the
visual system can recognize objects after spatial transformations
(for a review, see Ullman, 1996). In the following the most
influential models are presented, and their ability to account for the
three classes of findings is examined.

Models Based on Abstract (View-Independent)
Representations

In view-independent models, the ability to recognize trans-
formed objects is explained on the basis of properties that are
invariant to rotations (or to other spatial transformations, like size
and position changes). Models of this type differ mainly in the way
this spatial invariance is derived. In invariant-property models,
formless mathematical properties are defined that are invariant to
certain spatial transformations (e.g., Cassirer, 1944; J. J. Gibson,
1950; Pitts & McCulloch, 1947; Van Gool, Moons, Pauwels, &
Wagemans, 1994; Wagemans, Van Gool, & Lamote, 1996). Ex-
amples for invariant properties are the aspect ratio or the cross
ratio. Another influential approach has been to account for recog-
nition on the basis of a decomposition of patterns into a set of
transformation-invariant elementary features. The pandemonium
model is a well-known example of this model type (Lindsay &
Norman, 1972; Selfridge & Neisser, 1963). Most prominently, in
structural description models, invariance is derived from a decom-
position into object parts and their spatial relations. Objects are
represented in terms of their parts (described by geometrical prim-
itives) and the relations between the parts, which are invariant
regarding most spatial transformations (e.g., Biederman, 1987;
Hummel & Biederman, 1992; Marr & Nishihara, 1978; Suther-
land, 1968). As all view-independent models aim at invariance
regarding spatial transformations, they cannot account even for the
first major class of findings. There are minor exceptions, for
instance, the model of Hummel and Biederman may explain ef-
fects of rotations in the picture plane. Attempts have been made to
reconcile structural description models (Bar, 2001) and invariant-
property models (Wagemans et al., 1996) with the lack of invari-
ance in behavioral studies. However, these modified approaches
still cannot account for sequential additivity (see Larsen &
Bundesen, 1998). Furthermore, none of the view-independent
models predict congruency effects, as they rely on invariant rep-
resentations, or on object-centered reference frames. In general,
view-independent models fail to accommodate the second and
third classes of findings.

Models With Image-Based (View-Dependent)
Representations

Image-based models were developed in order to account for
view-dependent recognition performance and thus are well-suited
to explain effects of object rotations. However, these models are
often limited to orientation effects and do not explain effects of
size and position, although they might be extended to encompass

these results. Do these models account for the second and third
class of findings?

Alignment models. One of the first models that was developed
to explain orientation- and size-dependent recognition perfor-
mance was the alignment model. The alignment approach proposes
that recognition is achieved by spatial transformations that align
input and memory representations. As alignment processes are
usually assumed to be based on mental rotations (e.g., Jolicoeur,
1985, 1990a; Tarr & Pinker, 1989), these models cannot account
for the differences between recognition and mental imagery (see
Section 3 and and in Section 5, The Relation Between Object
Recognition and Mental Rotation subsection). Several computa-
tional alignment models of recognition have been developed;
Ullman’s (1989, 1996) alignment model, which relies on 3-D
object representations, is probably the best known example (for a
similar model, see Lowe, 1987). Ullman’s 3-D alignment model
seems compatible with analogue transformations, whereas the 2-D
linear combination model (Ullman & Basri, 1991) cannot explain
the evidence for analogue transformation processes because a
linear combination does not traverse intermediate points on a
transformational path. These models cannot account for congru-
ency effects, as they rely on compensation processes that are shape
specific.

Interpolation models. In the interpolation approach, recogni-
tion is achieved by localization in a multidimensional representa-
tional space that is spanned by stored views (Edelman, 1998;
Poggio, 1990; Poggio & Edelman, 1990; Poggio & Girosi, 1990).
The interpolation model is based on the theory of approximation of
multivariate functions and can be implemented with radial basis
functions (usually Gaussian classifiers that model neurons tuned to
shapes in specific orientations).6 Object recognition is achieved if
the visual input can be approximated by the existing tuned basis
functions, that is, if a new data point is localized close to the
surface that is spanned by the stored basis functions. The interpo-
lation approach does not require transforming or reconstructing an
internal image. It can accommodate view-dependent recognition
performance but is not in accordance with the evidence for ana-
logue transformation processes. Edelman (1999) tried to accom-
modate evidence for analogue transformations in mental rotations
(Cooper, 1976) by enhancing the interpolation approach with a
binding of views by temporal contiguity. Edelman (1999) argued
that temporally contiguous views can be associated to a fixed
sequence of snapshot representations, a “footprint” in visual cor-
tex. Images that are frequently seen in close temporal contiguity,
for instance when one walks around an object, will tend to be
bound together. If, later, the object is activated in memory, the
spread of activation through the footprint creates a semblance of
mental rotation. After extensive exposure, new connections be-
tween the representations of nonneighbors are formed, so that the
semblance of mental rotation should disappear with increasing
practice. However, the interpolation model cannot account for
findings that imply analogue transformations even after extensive
practice (Bundesen et al., 1981). Therefore, even this enhanced

6 One of the gain modulation approaches also relies on basis functions
(e.g., Pouget & Sejnowski, 1997). In contrast, the interpolation model of
recognition does not involve gain modulation processes (but may be
extended accordingly).
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interpolation model does not explain the evidence for analogue
transformations in object recognition. More critically, the interpo-
lation model cannot account for spatial congruency effects. It
explains recognition with basis functions that are tuned to both
orientation and shape, and therefore congruency effects are pre-
dicted only for identical or visually similar objects (see also
Gauthier & Tarr, 1997) but not for dissimilar shapes as demon-
strated by Graf et al. (2005).

Pooling and threshold models. In pooling and threshold mod-
els, recognition is explained on the basis of the behavior of IT cells
that are selectively tuned to specific image features in a view-
dependent (and size-dependent) way (Perrett & Oram, 1998; Perrett et
al., 1998; Riesenhuber & Poggio, 1999, 2002; Wallis & Bülthoff,
1999). A hierarchical pooling of the outputs of view-specific cells
provides generalization over viewing conditions. The threshold model
(Perrett et al., 1998) accounts for the systematic relation between
recognition latencies and the amount of rotation and size scaling: The
speed of recognition depends on the rate of accumulation of activity
from neurons selective for an object in a specific orientation. A given
level of evidence is reached faster for orientations that were perceived
more frequently. Pooling and threshold models were partly motivated
to avoid the mental rotation account of recognition and its implica-
tions (Perrett et al., 1998). Similar to Edelman’s (1999) footprint
extension, pooling and threshold models were enhanced with the
notion that stored views of objects can be associated by temporal
contiguity (Perrett & Oram, 1998; Wallis & Bülthoff, 1999). This
enhanced model has problems similar to those of Edelman’s (1999)
footprint extension. Finally, the present pooling and threshold models
cannot accommodate congruency effects, as they are based on units
that are simultaneously tuned to shape and orientation. Therefore, they
do not predict a facilitation effect for the recognition of dissimilar
shapes in the same orientation or size. Note that this criticism is not
directed against the notion of hierarchical pooling of information in
the cortex but points to the necessity of extending present models.

Hybrid Models

Hybrid models combine structural and image-based approaches.
Several hybrid models have been proposed to account both for the
lack of invariance regarding spatial transformations and for evi-
dence that object representations have a part structure (Biederman
& Cooper, 1991b; Goldstone & Medin, 1994; Newell, Sheppard,
Edelman, & Shapiro, 2005; but see C. B. Cave & Kosslyn, 1993;
for a review, see Graf & Schneider, 2001). A study with novel
objects provided evidence that parts-based structured representa-
tions and image-based representations operate in parallel (Foster &
Gilson, 2002). These findings suggest a hybrid model of recogni-
tion, with independent parts-based and image-based processes (see
also Hayward, 2003). However, it is not clear yet whether these
results transfer to common (and more complex) objects. Some
hybrid models have been derived from structural description mod-
els (Hummel & Stankiewicz, 1998), whereas others are extensions
of view-based models (Edelman & Intrator, 2000, 2001). Hybrid
models provide some new interesting predictions, for example,
concerning the role of attention in object recognition (Thoma et al.,
2004). Present hybrid models usually account for orientation-
dependent recognition performance but account for neither ana-
logue transformation processes nor for congruency effects.

To conclude, none of the existing models can account for all
three classes of findings without introducing additional ad hoc
assumptions. View-independent models typically fail to account
for all three classes of findings. Interpolation, pooling, and thresh-
old models have problems in explaining the evidence for analogue
transformation processes. Almost all recognition models, includ-
ing hybrid models, do not address congruency (frame) effects in
object recognition. None of the existing models include reference
frames or similar structures that are suited to explain these ef-
fects—apart from a model by Hinton and Parsons (1981; Hinton,
1981) that would not predict the first two classes of findings.
Congruency effects in recognition were mostly ignored in the
development of recognition models, even though reference frames
seem to play a major role in recognition and shape perception.

5. A Transformational Framework of Recognition

In this section, I lay the foundations for a transformational
framework that accommodates all three classes of findings. TFR
can be summarized as follows. Object recognition relies on frame
(coordinate) transformations related to LTM (implemented by gain
modulation), whereas mental imagery seems to involve image
transformations in STM. The recognition of objects after spatial
transformations is achieved by a compensating transformation of
the perceptual coordinate system that defines the correspondence
between positions specified in memory and positions in the current
visual field. By default, the perceptual coordinate system is aligned
with the retinal upright (McMullen & Jolicoeur, 1990), but it can
be adjusted to the orientation of the stimulus representation. The
adjustment of the perceptual coordinate system is achieved by
time-consuming (although relatively fast) and error-prone com-
pensation processes. Object representations are imagelike; both
representations and transformation processes are analogue. Objects
are represented by one or more canonical views. Recognition is
achieved by a transformation of the perceptual coordinate system
until the input representation is aligned with the nearest canonical
orientation. Coordinate transformations (but not necessarily image
transformations) can be neurocomputationally implemented by
gain modulation. The transformational framework accounts for
recognition performance after rotations, size scalings, and transla-
tions, from the level of individual objects up to the basic level of
recognition. By allowing for nonlinear transformations, the trans-
formational framework can be extended to account for structural
alignment processes in categorization.

Alignment by Analogue Transformations

While the systematic dependency of recognition performance on
orientation, size, and position can be explained with a number of
models, the evidence for analogue transformation processes im-
poses stronger limitations on possible models of recognition. The
simplest and most intuitive way to explain these two classes of
findings is to assume that object recognition involves an alignment
of input and memory representations, which is achieved by ana-
logue spatial transformation processes such as rotations and size
scalings. When stimulus and memory representations are aligned,
a comparison or matching process is relatively straightforward
because stimulus representation and object representation are more
or less in correspondence (an exact alignment of all shape features
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may not be necessary). Thus, the human visual system solves the
problem of object constancy by using spatial transformations as
compensation processes and not by using spatially invariant mem-
ory representations. The first two classes of findings can be easily
explained with the plausible assumption that these analogue trans-
formation processes are time-consuming and error prone. First,
with increasing transformational distance between stimulus repre-
sentation and memory representation, more time is required to
recognize the object and the probability for errors increases. Sec-
ond, the evidence for analogue transformation processes can be
easily explained within an analogue alignment model. Thus, the
analogue model accounts for both classes of findings. Moreover,
TFR is in accordance with evidence for a transformational model
of similarity (Hahn, Chater, & Richardson, 2003).

The alignment approach implies that memory representation and
stimulus representation are brought into correspondence in order to
compare them. This correspondence not only helps to determine
the identity of an object but also specifies which parts of the image
correspond to which parts of the memory representation. When a
correspondence between memory and stimulus representation is
established, ambiguous parts become more easily recognizable.
Moreover, the correspondence helps to direct the attention to
selected object parts. Alignment seems to be an integral aspect of
the recognition process (Ullman, 1996, pp. 196–197) and was
even proposed to underlie language processing (Pickering & Gar-
rod, 2004). Alignment seems to be a general principle of the brain.
Alignment is also involved in multisensory and sensorimotor in-
tegration; an alignment of neuronal maps can be found in the
parietal cortex and even in subcortical areas like the superior
colliculus (e.g., Duhamel, Colby, & Goldberg, 1991, 1998; King &
Schnupp, 2000; Salinas & Abbott, 1995; Sparks & Nelson, 1987;
Stein, Wallace, & Stanford, 2000).

Reference Frames in Object Recognition

The transformational framework, as delineated so far, can ex-
plain the first two classes of findings. But what about the third
class of findings—the congruency in object recognition? First I
want to come back to the question of whether reference frames in
object recognition are viewer centered or object centered. The
transformational account suggests a viewer-centered reference
frame and is in agreement with the finding that recognition per-
formance depends on the spatial relation between observer and
object. Moreover, TFR can explain why the impression of an
object-centered frame may arise. According to TFR, object recog-
nition is achieved by aligning input and memory representations,
so that they are in spatial correspondence. Thus, as a result of the
recognition process, the reference frame of the memory represen-
tation is centered on the object. It should be noted that this is a
result of time-consuming spatial compensation processes (see
Morvan & Wexler, 2005) and does not imply inherently object-
centered reference frames (for related arguments, see Deneve &
Pouget, 2003).

What about congruency effects in object recognition? Previous
transformational models of recognition were based on the idea that
the alignment between memory representation and stimulus rep-
resentation is achieved by a process of mental rotation (e.g.,
Jolicoeur, 1990a; Kosslyn, 1994; Tarr & Pinker, 1989). Initially,
this conception appeared reasonable, because performance in ob-

ject recognition tasks was found to be orientation dependent in a
similar way as handedness decisions in imagery tasks (e.g., Joli-
coeur, 1985, 1988; Tarr & Pinker, 1989, 1990). However, there are
also important differences between transformation processes in
recognition and mental imagery, which cast doubt on the notion
that object recognition relies on imagery transformations (see
Section 3 and, in Section 5, The Relation Between Object Recog-
nition and Mental Rotation subsection). The orientation or size
congruency effect by itself could still be accommodated in a
mental rotation model of recognition on the assumption that a
frame of reference is activated in addition to the mental rotation
process. However, this extended mental rotation account could not
explain the fact that the rates of transformation are typically faster
in object recognition than in mental imagery rotation. Therefore, it
is unlikely that recognition involves transformations of mental
images. Instead, TFR proposes that object recognition involves an
adjustment of a perceptual coordinate system. Transformation
processes in mental imagery, in contrast, are regarded as transfor-
mations of mental images, which proceed at a slower rate than
frame transformations.

Alignment by Coordinate Transformations

What does the term frame transformation really mean; how is it
specified in TFR? Perceptual reference frames are coordinate
systems, and frame transformations are transformations of a coor-
dinate system. In the alignment process, a perceptual coordinate
system is adjusted to the input representation by an analogue
coordinate transformation, so that input and memory representa-
tions are in correspondence (see Figure 5). Only the reference
frame is adjusted, whereas the memory representations (in LTM)
remain unchanged. It is likely that the adjusted frame decays quite

(a)

(b)

(c)

Figure 5. Alignment by analogue coordinate transformations. (a) A misori-
ented stimulus is presented. The perceptual coordinate system is in its default
upright orientation. Memory representations are stored in a canonical orienta-
tion. (b) An analogue rotation of the perceptual coordinate system is performed
(coordinate transformation), which traverses intermediate points on the rota-
tional path. (c) When the perceptual coordinate system is adjusted to the
stimulus representation, it compensates for orientation differences between the
input representation and memory representations.
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fast, leading to only transient facilitation effects. The notion of
frame transformations is in accordance with findings suggesting
that memory representations have to be regarded as representations
within a frame of reference (for reviews, see Farah, 2000; Joli-
coeur & Humphrey, 1998). Frame transformations need to be
distinguished from mental imagery, where typically just an image
in STM is transformed, not the perceptual coordinate system
(Koriat & Norman, 1984, 1988, 1989; but see Robertson et al.,
1987). Therefore, frame effects should not be expected in STM
mental imagery tasks.

Congruency effects (see Section 3) can be explained in a
straightforward way on this theoretical basis. First, the orientation
congruency effect (Graf et al., 2005; Jolicoeur, 1990b, 1992) can
easily be accounted for with frame rotations. Recognition involves
a rotation of the perceptual coordinate system until input and
memory representations are aligned. When another stimulus is
presented in the same orientation, it can be recognized more easily,
because the reference frame is already adjusted (see Figure 6). If
the orientation differs from the first presentation, the frame is
readjusted until it is in alignment with the stimulus. The orientation
adjustment is not stimulus specific, because the perceptual coor-
dinate system is transformed, and not just a mental image. Because
the transformation is an analogue, time-consuming, and error-
prone process, RTs and error rates increase with increasing amount
of transformation.7

In a similar way, the size congruency effect in Larsen and
Bundesen’s (1978, Experiments 2 and 3) experiments can be
explained. When a stimulus is presented, the size of the coordinate
system is adjusted. Participants were informed that the next stim-
ulus would frequently be in the same size so that the reference
frame would be kept active over the intertrial interval. If the next
stimulus had the same size, no further size adjustment would be
necessary. If the size differed from the expected size, the frame
would have to be readjusted until an alignment with the new input
representation was achieved. If the same stimulus is repeated, a
shape-specific image transformation, which presumably occurs in
parallel, may lead to a faster alignment. The image transformation
proceeds with a slower rate than a frame transformation, but the
RT function has a lower y-intercept.

TFR also accounts for the finding that compensation can occur
even before the stimulus is presented if adequate prior information
is provided (Larsen & Bundesen, 1978). According to TFR, the

perceptual coordinate system is transformed, not the input repre-
sentation. When the next stimulus is presented in the expected size,
it can be recognized relatively fast, without further adjustment.
Moreover, the frame hypothesis fits with evidence that the scene
context can provide information that aids object recognition from
unfamiliar viewpoints, presumably by providing a consistent ref-
erence frame (Christou, Tjan, & Bülthoff, 2003).

The proposed transformational framework has two further (re-
lated) advantages. First, it accounts for congruency effects without
the need to adjust the memory representations—in contrast to
alternative models of recognition, which can only account for
congruency effects when all memory representations are adjusted
(as congruency effects are not limited to similar shapes and there-
fore cannot be accounted for by class-specific processes). In TFR
it is not necessary to transform every stored shape, but simply the
perceptual frame of reference. Thus, the transformational approach
based on coordinate transformations avoids the combinatorial ex-
plosion that would result if every stored memory representation
had to be aligned individually. Second, a framework based on
coordinate transformations does not require a mechanism that
preselects some memory representations to reduce the computa-
tional effort, because the adjustment of a perceptual coordinate
system obviates the need to transform every memory representa-
tion. Thus, potential problems of a preselection process may be
avoided (for a discussion, see Ullman, 1989, pp. 237–238).

TFR is consistent with findings from neurophysiology and com-
putational neuroscience that suggest that recognition relies on
coordinate transformations. Changes in the position and size of an
object can be compensated for by performing coordinate transfor-
mations based on gain modulation (Salinas & Abbott, 1997a,
1997b; Olshausen et al., 1993): IT receptive fields are shifted—
because of attentional gain modulation in V4—so that they are
centered at the point where attention is directed (for an illustration,
see Salinas & Sejnowski, 2001). Similarly, IT receptive fields of
variable, attention-controlled spatial scales are obtained when the
mechanism is extended to scale dependent attentional gain fields
(see also Salinas & Abbott, 2001; Salinas & Sejnowski, 2001;
Salinas & Thier, 2000). The recognition of objects in different
orientations can be accounted for by orientation-dependent gain
modulation (Deneve & Pouget, 2003; Pouget & Sejnowski, 2001).
Orientation-dependent gain modulation should correspond to the
rotation of receptive fields in IT, which compensates for orienta-
tion differences. Moreover, the gain modulation approach also
allows partial coordinate transformations (Pouget et al., 2002), so
that partial compensation in orientation congruency tasks (Graf et
al., 2005; Jolicoeur, 1990b) can be accounted for.

Updating processes involved in transforming the coordinate
system can either proceed gradually, as in TFR, or can be per-
formed in one step. The basis function network for coordinate
transformations (Deneve & Pouget, 2003; Pouget et al., 2002;
Pouget & Sejnowski, 1997) is a one-step model—that is, the
transformation does not proceed through intermediate stages (see
Pouget & Sejnowski, 2005). The approach proposed by Salinas

7 In addition to the frame that is adjusted to the stimulus orientation, the
frame in the retinal upright orientation may also be activated (see Murray,
1999). This might explain why there is still an effect of absolute orientation
(Graf et al., 2005; Jolicoeur, 1990b, Experiment 3).

(a) (b) (c)

Figure 6. Object recognition by adjusting a perceptual reference frame
accounts for orientation congruency effects. (a) Recognition involves the
adjustment of a perceptual coordinate system to the orientation of the
stimulus. (b) The coordinate system remains active for some time after the
initial stimulus has disappeared. (c) A facilitation effect for different
objects in the same orientation is expected, as the perceptual coordinate
system is already adjusted. This orientation congruency effect is not limited
to objects with similar shapes (Graf et al., 2005).

933COORDINATE TRANSFORMATIONS IN OBJECT RECOGNITION



and collaborators (e.g., Salinas & Abbott, 1997a, 1997b) relies on
linear combinations and was not explicitly conceptualized as an
analogue approach but seems compatible with analogue transfor-
mation processes in recognition (Emilio Salinas, personal commu-
nication, May 19, 2003). Of interest, gain modulation models can
be formalized within a framework of continuous—that is, ana-
logue—field computations (MacLennan, 1997, 1999). Thus,
present gain modulation approaches can be translated into a frame-
work that involves analogue coordinate transformations. Several
neurocomputational models for coordinate transformations rely on
analogue dynamic updating processes (Dominey & Arbib, 1992;
Droulez & Berthoz, 1991; Zhang, 1996), consistent with the evi-
dence for analogue transformation processes (see Section 2).

Whatever the exact details of the neuronal implementation of
coordinate transformations, the present gain modulation ap-
proaches clearly show that object recognition can be modeled on
the basis of coordinate transformations, thus demonstrating com-
putational feasibility. Coordinate transformations, based on gain
modulation, are also biologically plausible. Gain modulation is
implemented ubiquitously in the visual cortex and can be regarded
as a general computational principle of the cortex (e.g., Salinas &
Sejnowski, 2001; Salinas & Thier, 2000). Coordinate transforma-
tions based on gain modulation provide a possible neural imple-
mentation of TFR.

Template Matching: Multiple Views Plus Transformations

Even though transformation processes are central to TFR, trans-
formations are not the whole story. It is not necessarily just a single
view of an object that is stored; more likely, multiple views are
encoded. Consequently, it is possible that several views may serve
as canonical perspectives if objects are perceived frequently from
specific points of view. Thus, TFR embraces the “multiple views
plus transformations” approach (Tarr, 1995; Tarr & Pinker, 1989).
Recognition is achieved by transforming the perceptual coordinate
system until the input representation is aligned with the nearest
canonical orientation.

According to TFR, memory representations in default object
recognition are image based (for reviews, see Jolicoeur & Hum-
phrey, 1998; Tarr & Bülthoff, 1998) and can be conceptualized as
templates. The idea of template matching is still criticized in many
introductory textbooks, even though an abundance of evidence has
accumulated in favor of a template model of recognition (see
Jolicoeur & Humphrey, 1998). An important criticism against
template models lies in the difficulties in matching after spatial
transformations of the stimulus. In TFR the matching of template
and stimulus representation is achieved according to two princi-
ples: transformation processes and multiple representations.

This framework, which includes both transformation processes
and multiple representations, accommodates the majority of find-
ings in the recognition literature. In TFR, the systematic relation
between recognition performance and the transformational dis-
tance is weakened with extensive practice, because new canonical
perspectives are formed (e.g., Tarr, 1995; Tarr & Pinker, 1989).
Evidence for an M-shaped RT function for the naming of rotated
objects may be explained as well on the basis of a transformational
approach to recognition (Murray, 1997). However, it should be
noted that under certain conditions, recognition can be based on
the opportunistic use of discriminative features (Murray, Jolicoeur,

McMullen, & Ingleton, 1993). The use of discriminative features,
though, does not reflect the default processes in object recognition
but is restricted to situations in which a limited set of stimuli is
presented repeatedly (Jolicoeur & Humphrey, 1998; Jolicoeur &
Milliken, 1989; Lawson, 1999). Moreover, the use of orientation-
invariant features is not driven purely by bottom-up stimulus
features but requires voluntary strategic top-down processes (K. D.
Wilson & Farah, 2003). Thus, view-invariant features may be used
under specific conditions and voluntary strategic control but do not
reflect default recognition processes.

Now, as the major parts of TFR have been presented, recogni-
tion can be described according to the following scheme (see
Figure 7). First, when a stimulus is presented, an analogue trans-
formation of the perceptual coordinate system is performed, until
the stimulus representation is aligned with the closest memory
representation (alignment stage). The perceptual coordinate system
specifies correspondences between memory representations and
the visual input. Memory representations are stored in the canon-
ical perspective (i.e., within a canonical reference frame). Multiple
canonical views may be stored. Second, stimulus and memory
representations are compared, and the best matching memory
representation is determined (matching stage). These steps do not
have to occur strictly sequentially but may be executed in a
cascade (e.g., Humphreys & Forde, 2001). At least in mental
rotation tasks, the rotation process can start before perceptual
discrimination processes are finished (Ruthruff & Miller, 1995),
and response preparation can begin before mental rotation is
finished (Band & Miller, 1997; Heil, Rauch, & Hennighausen,
1998).

A Process-Based Geometrical Framework

TFR can be regarded as a geometrical approach to object rec-
ognition, because the transformations that are necessary to provide
a solution to the first main problem of recognition—rotations, size
scalings, and translations—correspond to specific transformation

(a) (c)

…

(b)

Figure 7. Recognition by alignment via coordinate transformations: (a) A
misoriented stimulus is presented, which has to be matched with memory
representations in order to be recognized. (b) A perceptual coordinate
system is transformed in order to be adjusted to the orientation of the
stimulus representation. The coordinate system defines the correspondence
between positions specified in memory and positions in the current visual
field and thus aligns memory representations and input representation. (c)
Object representations in long-term memory are stored in a canonical
orientation, typically the retinal upright.
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groups of euclidean geometry, as specified in Felix Klein’s (1872/
1893) Erlanger Programm.8 It seems reasonable to conceptualize
object recognition in terms of geometry: If we strive for an
understanding of shapes, we have to deal with the branch of
science that deals with the description of form and space—that is,
with geometry (see Shepard, 1994). However, TFR differs from
previous geometrical models, because it is a process-based and
dynamic geometrical framework that relies on coordinate transfor-
mations. Traditionally, geometrical models of recognition are
static models, as they usually postulate the detection of geometri-
cal invariants relative to a specific transformation group (e.g.,
Cassirer, 1944; Van Gool et al., 1994) or the use of object-centered
frames (see Palmer, 1983, 1989, 1999). These models predict that
recognition performance is independent of the amount of transfor-
mation, as they do not rely on time-consuming compensation
processes. Therefore, these static models cannot explain the three
classes of findings outlined earlier. An alternative geometrical
conception is suggested here: a dynamic system in which object
recognition is achieved by a time-consuming and error-prone
transformational alignment process.

Structural Alignment and Categorization

Image-based object representations are often confused with ho-
listic representations (for a similar argument, see Barsalou, 1999).
However, the question of whether representations are holistic or
structured is orthogonal to the issue of whether representations are
abstract or image based. The transformational approach does not
imply that object parts and relations between parts do not play a
role in object recognition. There is evidence that object represen-
tations have a part structure (see the Hybrid Models subsection of
Section 4). However, it seems overstated to associate this evidence
for parts-based representations with abstract representations that
predict view-invariant recognition performance (e.g., Biederman,
1987), given that most findings speak against invariant recognition
performance (see Section 1). It seems more reasonable to integrate
parts-based representations into an image-based framework (see
Edelman & Intrator, 2000, 2001; Graf, 2002; Graf, Bundesen, &
Schneider, 2006; Graf & Schneider, 2001). In a transformational
framework, parts may have an important role. The identification of
parts can facilitate the alignment process, because corresponding
parts indicate possible correspondences between stimulus repre-
sentation and memory representation. Therefore, knowledge about
the hierarchical organization of an object can guide the alignment
process (Basri, 1996; Basri, Costa, Geiger, & Jacobs, 1998). Of
interest, the notion of structural alignment processes is popular in
the categorization and similarity literature. An alignment of struc-
tured representations accounts for similarity judgments of objects
and scenes (e.g., Goldstone, 1996; Goldstone & Medin, 1994;
Medin, Goldstone, & Gentner, 1993) and for object categorization
(Markman & Gentner, 1993; Markman & Wisniewski, 1997).
Thus, the alignment approach is not in contradiction to the notion
of hierarchically structured object representations. By allowing for
nonlinear (deforming) transformations (termed topological trans-
formations in Klein’s, 1872/1893, hierarchy of transformation
groups), TFR may be extended to object categorization up to the
basic level, that is, the highest level at which category members
still have highly similar shapes (Rosch et al., 1976). Shape differ-
ences of basic-level category members can be compensated for by

deforming transformation processes—in other words, by deform-
able template matching (Basri et al., 1998). Consistent with this
proposal, categorization performance deteriorates systematically
with increasing amount of deforming transformation (Graf, 2002;
Graf et al., 2006), reminiscent of orientation dependency in object
recognition. These findings can be accounted for by deforming
coordinate transformations, that is, by assuming that the brain uses
the whole range of transformations specified in Klein’s Erlanger
Programm (cf. Chen, 2005). Deforming transformations seem to
be necessary also for the recognition of deformable objects, like
plants and animals, and for articulated objects (Ullman, 1989).
Moreover, the integration of nonlinear transformations allows re-
jecting arguments against image-based models of recognition
(Hummel, 2000); it provides the basis for a hybrid framework of
recognition that is both image based and structural. On the basis of
deforming transformations, an image-based alignment of corre-
sponding object parts, that is, a structural alignment, is feasible.
Thus, the proposed framework can be regarded as an image-based
extension of the structural alignment approach of categorization
and similarity (Goldstone, 1996; Goldstone & Medin, 1994; Mark-
man & Gentner, 1993; Markman & Wisniewski, 1997; Medin et
al., 1993).

Finally, evidence for a role of nonaccidental properties (NAPs)
in recognition (Biederman & Bar, 1999; Vogels, Biederman, Bar,
& Lorincz, 2001) is compatible with a transformational framework
as well. NAPs are features that are likely to be more or less
invariant over large ranges of viewpoints, like instances of con-
nectivity, collinearity, parallelism, and so forth. The conception of
NAPs was popularized by Biederman’s (1987) recognition-by-
components model of recognition, but the use of NAPs was actu-
ally proposed first within an alignment model (Lowe, 1985, 1987).
NAPs may provide possible constraints in a transformational
framework—for example, NAPs may serve as alignment keys that
guide the alignment process (Ullman, 1989).

The Relation Between Object Recognition and Mental
Rotation

TFR proposes that object recognition relies on coordinate trans-
formations related to LTM, whereas mental imagery typically
involves image transformations in STM.9 This conception ac-
counts for similarities and differences between transformation
processes in recognition and imagery. According to TFR, both
mental imagery and object recognition rely on time-consuming
and error-prone transformation processes in order to achieve an
alignment of two representations, which results in a systematic
dependency of performance on the amount of transformation. In
addition, transformation processes in imagery and recognition
seem to be analogue processes (Bundesen et al., 1981; Cooper,
1976; Kourtzi & Shiffrar, 2001).

8 In mathematics, a group is a set that has rules for combining any pair
of elements and that obeys four properties: closure, associativity, existence
of an identity element, and existence of an inverse element.

9 The distinction between transformations in mental imagery and object
recognition is actually more complex, because tasks with rather different
requirements are pooled under the label mental rotation, some of them
involving LTM (for a more detailed account, see Graf, 2002).
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Unlike previous alignment models, TFR does not equate com-
pensation processes in object recognition and mental rotation and,
therefore, accounts for several important differences between rec-
ognition and imagery. Transformation processes in recognition are
fast and shape unspecific, whereas transformation processes are
slower and shape specific in typical mental imagery tasks (see
Section 3). The distinction between coordinate transformations in
recognition and image transformations in mental imagery accounts
for several further differences between mental rotation and recog-
nition. First, mental rotations are consciously accessible, whereas
compensation processes in recognition are not (see Lawson &
Humphreys, 1998). Second, the initial assignment of top and
bottom is preserved throughout mental rotation, but not in object
recognition. For instance, participants did not recognize the outline
of the state of Texas when it was misoriented by 90°, even after
mentally rotating it into its canonical orientation. Participants only
recognized it when they were implicitly instructed to redefine the
top and bottom of the shape (B. S. Gibson & Peterson, 1994;
Reisberg & Chambers, 1991). Third, perceived rotary motion
influenced speeded naming responses in a recognition task but did
not affect responses in an imagery task (Jolicoeur et al., 1998).
Fourth, mental rotation performance was facilitated when the axis
of rotation corresponded with the main axis of the objects or one
of the axes of the environment, whereas recognition performance
was not (Willems & Wagemans, 2001). Fifth, studies in which
participants had to tilt their head showed that recognition relies on
a reference frame more closely aligned with retinal upright,
whereas the frame for mental rotation tasks was aligned more
closely with environmental upright (McMullen & Jolicoeur, 1990).
Sixth, neuropsychological dissociations have been demonstrated
between the ability to recognize misoriented objects and to men-
tally rotate objects. Farah and Hammond (1988) described a pa-
tient who failed three different STM mental rotation tasks but was
nonetheless able to recognize misoriented letters, numbers, and
drawings. Seventh, a functional magnetic resonance imaging study
showed that neural activations in the recognition of misoriented
objects and mental imagery are not identical, even though there
was considerable overlap between both tasks (Gauthier et al.,
2002).

All these findings and arguments are directed against the idea
that recognition is based on mental imagery transformations, but
they are often interpreted as evidence against transformational (or
alignment) models in general. However, they actually do not
question that recognition involves analogue transformation pro-
cesses that are not imagery transformations—like analogue coor-
dinate transformations. Instead the findings confirm the distinction
between frame and image transformations in TFR. Object recog-
nition seems to be more closely related to visuomotor control,
which also relies on coordinate transformations, than to mental
rotation.

Unresolved Issues

Although TFR is supported by numerous studies, some issues
still remain unresolved. First, what about rotations in depth, which
lead to drastic changes in the appearance of the objects due to
self-occlusion? TFR proposes that depth rotations are also based
on coordinate transformations. Consistent with this view, fore-
shortened views are recognized faster when a background with

strong monocular depth cues is presented whose orientation is
congruent with object orientation, supplying a visual reference
frame (Humphrey & Jolicoeur, 1993), or when a congruent scene
context provides a reference frame (Christou et al., 2003). Initial
alignment models were based on the assumption that the visual
system uses 3-D representations that are rotated in depth (Ullman,
1989, 1996). A later model proposes that an alignment is achieved
by a linear combination of 2-D images (Ullman & Basri, 1991).
Also interpolation models, which do not involve alignment pro-
cesses, rely on 2-D images (Edelman, 1998; Edelman & Bülthoff,
1992). There are good arguments that the underlying memory
representations are 2.5-D, that is, include depth information but do
not correspond to full 3-D models (for a discussion, see Pinker,
1997, pp. 256–261). But how can coordinate transformations in
depth be explained on the basis of 2-D or 2.5-D representations?
Coordinate transformations in depth may work more efficiently
when memory representations are stored such that different views
of an object are bound together to one coherent object represen-
tation, conforming to a sequentially ordered rotation in depth.
Temporal contiguity is clearly one important principle for associ-
ating views to an integrated representation: When one walks
around objects or interacts with them, one typically observes
sequences of continuous depth rotations. Recent experiments using
human faces have shown that views that were initially presented in
a temporal sequence were bound together to form a coherent
identity (e.g., Wallis, 2002; Wallis & Bülthoff, 2001; for a com-
putational model, see Wallraven & Bülthoff, 2001). Accordingly,
it has been shown that several 2-D projections can be associated to
a 3-D percept by visual experience (Sinha & Poggio, 1996). Such
2.5-D representations, consisting of associated views stored in
sequential order, may provide the representational basis for coor-
dinate transformations in depth. This principle alone, however,
does not account for all findings, because generalization across
views is possible with a single view of a novel object (Biederman
& Bar, 1999). It seems possible that unfamiliar views are approx-
imated by views of similar objects from the relevant perspective,
especially from members of the same basic- or subordinate-level
category (Vetter, Hurlbert, & Poggio, 1995).

A second unresolved issue is related to animal versus nonanimal
categorization tasks with natural images that showed ultrarapid
categorization decisions (e.g., Thorpe, Fize, & Marlot, 1996;
Rousselet, Fabre-Thorpe, & Thorpe, 2002). It has been argued that
recognition is so fast in these tasks that it is essentially a feedfor-
ward process. There remains little or no time for recurrent pro-
cesses or compensation processes like alignment. However, the
results on ultrarapid categorization do not speak against alignment
processes in recognition, for three reasons. First, an event-related
potential study confirmed that there is enough time for compen-
sation processes in recognition (Johnson & Olshausen, 2003). The
authors identified two signals related to object recognition. The
early signal at around 135 ms represents a presentation-locked
component that did not covary with recognition latencies. This
signal is present when there are low-level feature differences
between images, which appeared sufficient to do the animal versus
nonanimal categorization task (see also Torralba & Oliva, 2003).
The other component arises between 150 and 300 ms, and its
latency covaries with subsequent RTs for identification. Thus, the
neural signatures of recognition have a substantially later and
variable time of onset, leaving enough time for alignment pro-
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cesses in object recognition. The second reason is that the
bottom-up processes reflected in the results of Thorpe and collab-
orators may simply correspond to a fast feedforward sweep in
visual processing that does not lead to a conscious percept (e.g.,
Lamme, 2003). And actually, participants in animal detection tasks
often cannot report basic-level category membership. Conse-
quently, conscious object perception may require recurrent pro-
cesses (Lamme, 2003; Lamme & Roelfsema, 2000), including
coordinate transformations. Third, in accordance with TFR, orien-
tation congruency effects have been found recently even in an
ultrarapid categorization task with natural images (Rieger, Köchy,
Schalk, & Heinze, 2006). In Experiment 2, Rieger et al. varied
picture plane orientation of objects and scene background inde-
pendently. They presented either upright images, 90° rotated full
images, 90° rotated objects (with upright background), or 90°
rotated backgrounds (with upright objects). RT was fastest for
upright full images, followed by rotated full images, and was
slowest when the orientation of the object and background was
incongruent. Thus, recognition was facilitated when the back-
ground provided a frame of reference that was congruent with the
object orientation.

A third unresolved issue is that in the alignment approach the
stimulus apparently has to be recognized first before the compen-
sating alignment transformation (along the shortest path) can be
determined, leading to an apparent paradox (e.g., Corballis, 1988).
In an elegant model, Ullman (1989) demonstrated that an align-
ment can be achieved on the basis of information that is available
before object identification. A number of heuristics may be used to
determine correspondences (Palmer, 1999, pp. 375–376). Further
solutions to this correspondence problem have been proposed in
the computer vision literature (e.g., Belongie, Malik, & Puzicha,
2002; Sclaroff, 1997; Sclaroff & Liu, 2001; Witkin, Terzopoulos,
& Kass, 1987; see also Ullman, 1996). It should be noted that the
correspondence problem is not specific for the alignment approach
to recognition but also arises in (apparent) motion perception and
stereoscopic vision (for reviews, see Chen, 2001; Palmer, 1999). A
possible solution to this problem is that the shortest direction of
alignment is determined by early perceptual processes that occur in
a fast and unconscious feedforward sweep (Lamme, 2003),
whereas conscious recognition requires an alignment of input and
memory representations and, therefore, time-consuming (but still
fast) recurrent alignment processes.

6. Conclusions and Outlook

Three important classes of findings regarding the recognition of
objects after spatial transformations were identified, including
independent behavioral and neurocomputational evidence that ob-
ject recognition relies on coordinate transformations. All three
classes of findings can be explained in a consistent and parsimo-
nious way with a transformational account of recognition, whereas
existing recognition models cannot accommodate all findings. The
main difference from previous alignment models is that compen-
sation processes in recognition are conceptualized in TFR as
coordinate transformations and not as mental imagery transforma-
tions. TFR covers a broad range of data on the basis of few
processing principles—such as alignment and the use of analogue
transformation processes. TFR is supported by an impressive num-
ber of studies, the weakest point probably being the evidence for

analogue transformations. For instance, analogue transformations
and coordinate transformations have not yet been demonstrated
within one single experiment. However, given the current state of
research, the assumption of analogue transformations seems to
provide the most parsimonious account.

Several extensions of TFR seem possible. A number of findings
indicate that object categories contain knowledge about possible
transformations (Landau, 1994; Stone, 1998; Zaki & Homa, 1999).
The transformational account offers a possibility of explaining
how this transformational knowledge may be represented in the
visual system. In addition, TFR is in accordance with evidence for
massive top-down processes in the visual cortex (e.g., Bar, 2003;
Mumford, 1994), because the alignment approach is easily com-
patible with interactions between top-down and bottom-up pro-
cessing (Salinas, 2004; Ullman, 1995).

As described earlier, at present some issues remain unresolved
within TFR. However, new questions arise that seem to be fruitful
for further research. First, even though TFR is compatible with
many neurophysiological and neurocomputational findings, there
are open questions regarding the neuronal implementation of TFR.
There is still little evidence for predicted dynamic transformations
of IT receptive fields due to spatial compensation processes in
object recognition, although context-dependent changes of recep-
tive fields in IT cortex have been demonstrated (Rolls et al., 2003).
Another important issue relates to the question of in which parts of
the visual cortex the compensation processes are performed. The
notion that recognition relies on coordinate transformations is
compatible with the view that recognition is achieved exclusively
in the ventral pathway (Salinas & Abbott, 1997b). However, it
seems possible that spatial transformation processes in recognition
also involve the dorsal pathway (as implemented by Pouget and
collaborators), which is traditionally associated with spatial pro-
cessing and coordinate transformations. There is suggestive evi-
dence that the dorsal stream is involved in the recognition of
objects that are rotated or size scaled (Eacott & Gaffan, 1991;
Faillenot, Decety, & Jeannerod, 1999; Faillenot, Toni, Decety,
Grégoire, & Jeannerod, 1997; Gauthier et al., 2002; Kosslyn et al.,
1994; Sugio et al., 1999; Vuilleumier, Henson, Driver, & Dolan,
2002; Warrington & Taylor, 1973, 1978).10 These findings chal-
lenge the assumption of a strict functional and anatomical separa-
tion of the visual cortex into two distinct pathways (Milner &
Goodale, 1995; Ungerleider & Haxby, 1994; Ungerleider & Mish-
kin, 1982). However, it still must be shown whether these dorsal
processes are related to transformation processes in recognition.

Second, the role of attention in object recognition requires
further elaboration. Different gain modulation models differ in the
role they assign to attentional mechanisms. Attentional pro-
cesses are central in the proposals of Salinas and collaborators
(e.g., Salinas & Abbott, 1997b; Salinas & Sejnowski, 2001) and
Olshausen and collaborators (e.g., Olshausen, Anderson, & Van
Essen, 1993). In contrast, gain modulation is simply a function of
stimulus orientation in Pouget’s approach and does not depend on
attention (e.g., Pouget & Sejnowski, 1997, 2001). Of interest, gain
modulation has been proposed as one of two basic neural mech-
anisms of attention (Bundesen, Habekost, & Kyllingsbæk, 2005).

10 For a review discussing parietal activations in mental imagery, see
Jagaroo (2004).
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These open questions indicate that the study of coordinate
transformations in recognition is still in an early phase. Clearly,
much further work is necessary to establish these claims. Not only
is further behavioral and neural evidence required but so are
computational implementations of the behavioral data. Neverthe-
less, the transformational framework seems computationally fea-
sible and biologically plausible, as exemplified by neurocomputa-
tional implementations based on gain modulation (e.g., Pouget &
Sejnowski, 2001; Salinas & Abbott, 2001). Although a lot of work
still has to be done, these neurocomputational models indicate that
in principle, the gain modulation approach can be extended to
object recognition.

TFR proposes that recognition and visuomotor control involve
similar processing principles. This is in contrast to the claims by
Milner and Goodale (1995) but fits well with the proposal that
perception and action planning are coded in a common represen-
tational medium (e.g., Hommel, Müsseler, Aschersleben, & Prinz,
2001; Prinz, 1990, 1997). Accordingly, TFR is compatible with
evidence for a close coupling between object recognition and
perception for action (e.g., Chao & Martin, 2000; Creem & Prof-
fitt, 2001; Helbig, Graf, & Kiefer, 2006; Tucker & Ellis, 2001).

Coordinate transformations (based on gain modulation) provide
a unifying computational principle for diverse tasks such as eye
and limb movements, spatial perception, navigation, attention, and
object recognition (Andersen et al., 2000; Bizzi & Mussa-Ivaldi,
2000; Salinas & Sejnowski, 2001; Salinas & Thier, 2000). The
brain may solve the problem of object constancy by principles
similar to those used to solve the problem of spatial constancy, that
is, the question of how the perceived outer world is stable despite
body and eye movements (e.g., Nishida et al., 2003). This seems
reasonable because when the observer moves the object perception
system has to compensate for changes induced by self-motion.

In conclusion, the transformational framework is fruitful for
further research, and it is highly parsimonious, because it allows
the integration of previously distinct literatures on several levels. It
explains a range of findings that were mostly neglected in the
recognition literature. TFR accounts for similarities and differ-
ences between object recognition and mental imagery without
needing to equate processes in recognition and imagery. TFR relies
on processing principles that are already established for the visual
cortex. And last but not least, TFR allows for an integrative
framework of object recognition and action.
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